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GLOBAL SENSITIVITY AND UNCERTAINTY ANALYSES OF THE

WATER QUALITY MODEL VFSMOD‐W

R. Muñoz‐Carpena,  Z. Zajac,  Y. M. Kuo

ABSTRACT. This study presents the statistical evaluation of the vegetative filter strip modeling system VFSMOD‐W as a tool
to design vegetative filter strips to use in the mitigation plans required as a part of phosphate mining permitting process by
the State of Florida. A two‐step statistical evaluation framework using global techniques is presented based on: (1) a
screening method (Morris) for qualitative ranking of parameters, and (2) a variance‐based method (extended Fourier
Analysis Sensitivity Test‐‐extended FAST) for quantitative sensitivity and uncertainty analyses. Measured characteristics of
the central Florida phosphate‐mining region are used to construct the 16 probability distributions of input factors. Two design
filter lengths (3 and 6 m) and two model structures (VFSM‐‐the filter module alone, and UH/VFSM‐‐combined filter and
source area components) are considered and compared to previous local “one‐parameter‐at‐a‐time” (OAT) analyses. It was
found that for this application the filter's saturated hydraulic conductivity (VKS) was the most important factor controlling
the filter runoff response, explaining over 90% of total output variance irrespective of model structure. In the case of the VFSM
structure, sediment‐related outputs were mainly influenced by three parameters: sediment particle size diameter (DP),
effective flow width of the strip (FWIDTH), and VKS. For UH/VFSM, there were six important parameters: DP, the source
area erosion and runoff parameters (slope of the source area Y, USLE soil erodibility index K, and runoff curve number CN),
FWIDTH, and VKS. The results show the model's additive nature for this specific application, i.e., there are no significant
parameter interactions for all model outputs except sediment outflow concentration and sediment wedge geometry. The
uncertainty analysis indicates that regardless of the model structure, the probability of meeting a minimum required 75%
sediment reduction was acceptable at the 90% confidence level for the 6 m long filter, but not for the 3 m filter. In general
the UH/VFSM model structure exhibited larger output uncertainty. Comparison with previous OAT analyses of the model
indicates the importance of performing the global evaluation for each specific model application. The results illustrate four
main products of the global analysis: ranking of importance of the VFSMOD‐W parameters for different outputs, effect of
changing modeling structure, type of influence of the important parameters, and assurance of the model's behavior.

Keywords. Computer modeling, Grass buffers, Hydrological modeling, Model evaluation, Probability of exceedance,
Sensitivity analysis, Uncertainty analysis, Vegetative filter strips, Water quality.

istoric and ongoing phosphate mining in the Peace
River watershed (Polk County, Florida) has
disturbed the land and affected water quality in
the Peace River. Surface runoff from mining lands

can be a potential source of sediment, particulate, and
dissolved phosphorus into surface water bodies. Vegetative
filter strips (areas of grass or other dense vegetation) can
effectively reduce surface runoff phosphorus and sediment
transport from reclaimed mining areas (Kuo, 2007).
Performance of these filters depends on characteristics of the
incoming pollutants and of the filter design (length, slope,
and densities of vegetation cover). Water quality models,
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when properly field calibrated and tested, can minimize the
need for field‐testing of management alternatives and
provide significant time and cost savings. The vegetative
filter strip (VFS) modeling design system VFSMOD‐W
(Muñoz‐Carpena et al., 1999; Muñoz‐Carpena and Parsons,
2004, 2005) is a field‐scale, mechanistic, storm‐based model
developed to route the incoming hydrograph and sedigraph
from an adjacent field through a VFS and to calculate the
resulting outflow, infiltration, and sediment trapping
efficiency. The Florida Department of Environmental
Protection, Bureau of Mine Reclamation, is considering the
model as a tool to design optimal vegetative filters in mining
reclamation plans.

Mathematical  models are built in the presence of
uncertainties  of various types (parameter input variability,
model algorithms or structure, model calibration data, scale,
model boundary conditions, etc.) (Haan, 1989; Beven, 1989;
Luis and McLaughlin, 1992). In a broad sense, all sources of
uncertainty that can affect the variability of the model output
have been referred to as “input factors.” The role of the
sensitivity analysis is to determine the strength of the relation
between a given uncertain input factor and the model outputs.
The role of the uncertainty analysis is to propagate
uncertainties  in input factors onto the model outputs of
interest (Saltelli et al., 2004). The formal application of
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sensitivity and uncertainty analyses allows the modeler to:
(1) examine model behavior, (2) simplify the model,
(3)�identify important input factors and interactions to guide
the calibration of the model, (4) identify input data or
parameters that should be measured or estimated more
accurately to reduce the uncertainty of the model outputs,
(5)�identify optimal locations where additional data should
be measured to reduce the uncertainty of the model, and
(6)�quantify the uncertainty of the modeling results (Saltelli
et al., 2005). When modeling a complex environmental
problem like surface runoff pollution from reclaimed mining
areas, the uncertainty of the model results is often a major
concern, since it has policy, regulatory, and management
implications (Shirmohammadi et al., 2006). However, in
spite of their strengths, formal sensitivity and uncertainty
analyses are frequently ignored in water quality modeling
efforts (Haan et al., 1995; Muñoz‐Carpena et al., 2006;
Shirmohammadi  et al., 2006), usually due to the considerable
effort these involve as the complexity and size of the models
increase and also due to the limited data available specific to
the model application (Reckhow, 1994). Beven (2006) has
recently proposed that not doing formal sensitivity and
uncertainty analyses when applying a model ultimately
results in undermining the science and value of models.

The sensitivity of a model output to a given input factor
has been traditionally expressed mathematically as the
derivative of the model output with respect to the input
variation, sometimes normalized by either the central values
where the derivative is calculated or by the standard
deviations of the input and output values (Haan et al., 1995).
These sensitivity measurements are “local” because they are
fixed to a point (base value) or narrow range where the
derivative is taken. These local sensitivity indexes are
classified as “one‐parameter‐at‐a‐time” (OAT) methods,
i.e.,�they quantify the effect of a single parameter by
assuming all others are fixed (Saltelli et al., 2005). Local
OAT sensitivity indices are only efficient if all factors in a
model produce linear output responses, or if some type of
average can be used over the parametric space. Often, the
model outputs' responses to changes in the input factors are
non‐linear, and an alternative “global” sensitivity approach,
where the entire parametric space of the model is explored
simultaneously for all input factors, is needed. The advantage
of the global approach over a local OAT method is that it
results in the ranking of parameter importance and provides
information not only about the direct (first order) effect of the
individual factors over the output, but also about their
interaction (higher order) effects. Different types of global
sensitivity methods can be selected based of the objective of
the analysis, the number of uncertain input factors, the degree
of regularity of the model, and the computing time for single
model simulation (Cukier et al., 1973, 1978; Koda et al.,
1979; Morris, 1991; Saltelli et al., 2000a, 2004, 2005; Sobol,
1990; Wallach et al., 2006).

An extensive review of uncertainty analysis methods
applied to environmental models can be found in Morgan and
Henrion (1992), Haan (2002), and Shirmohammadi et al.
(2006). The best method to quantify model uncertainty is
based on probability distribution functions (PDFs) of the
model outputs (Haan, 1989, 2002; Haan et al., 1995;
Shirmohammadi  et al., 2006). Haan et al. (1995) presented
two methods for generating the general probability distri-
butions of the output variables of interest. The first method

was the First‐Order‐Approximation (FOA) (Morgan and
Henrion, 1992). In this method, the mean or expected value
of the output is estimated based on the variance and
covariance of the input parameters and their local absolute
sensitivity indices. If the input parameters are independent,
then the covariance is zero and the variance of the output
becomes a function of the variance of the inputs and their
absolute sensitivities. This type of analysis produces good
estimates of the mean and variance of the model output when
the coefficient of variation (mean/standard deviation) of the
input parameter is small and the relationship between the
output and input is linear. An alternative and more general
approach is the technique of Monte Carlo simulations
(MCS), which is performed by randomly sampling the
multivariate  input distribution, running model simulations
with the sampled values to produce estimates of model output
values, and combining these to produce a PDF. The
procedure is typically computationally expensive since the
process must be repeated many times to obtain a smooth PDF.
More efficient sampling methods have been proposed and
widely used based on stratified sampling of the input PDF,
such as replicated Latin hypercube sampling (r‐LHS)
(McKay et al., 1979; McKay, 1995). An advantage of the
MCS method over FOA is that it does not require a priori
knowledge on the linearity of the model, and it does not
introduce assumptions about the form of the output PDF
distribution, although it relies on the correct determination of
the input parameter distributions. The output PDFs can be
used for decision‐making by placing confidence levels on the
outputs, usually in the form of a margin of safety (MOS)
component, or by calculating a probability of exceedance of
a threshold value (Morgan and Henrion, 1992). However,
MOS is often arbitrarily selected as a fixed percent range
around the model output (Sexton et al., 2005) rather than
based on the output PDF.

Haan et al. (1995) outlined a statistical procedure for
evaluating hydrology and water quality models. Their
procedure included: conducting local OAT sensitivity
analysis, generating probability distributions for model
inputs, generating probability distributions for the model
outputs, and using the probability distributions of the model
outputs to assess uncertainty. Recently, Saltelli et al. (2004,
2005) proposed that a desirable statistical framework for
model evaluation should be based on a set of global analyses
techniques that meet the following requirements: (1) are
model‐independent so they can be used with any model
without modification; (2) contain a screening method to
efficiently identify the subset of important inputs controlling
the output variability; (3) contain a method that, based on the
reduced set of sensitive inputs, can provide a quantitative
decomposition of the output variance in terms of first and
higher order effects of the input factors; and (4) allow for
uncertainty analysis of the model based on the construction
of PDFs using outputs derived simultaneously from the
variance‐based method. The modified method of Morris
(Morris, 1991; Campolongo et al., 2005) can be an effective
screening method since it provides, with a relatively small
number of simulations, a qualitative ranking of input factors
in terms of their relative effect over the model output, and a
measure of possible interactions for that output. A variance‐
based technique, like the extended Fourier Amplitude
Sensitivity Test (FAST) (Saltelli, 1999) can be applied over
the subset of important input parameters to complete the
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analysis with quantitative sensitivity information. A
statistical model evaluation procedure based on these
techniques can be applied to a wide spectrum of models and
applications.  However, it is especially efficient for
computationally  expensive models, or if a large number of
parameters need to be evaluated simultaneously.

Although analyses of sensitivity (Muñoz‐Carpena et al.,
1999; Abu‐Zreig, 2001) and uncertainty (Parsons and
Muñoz‐Carpena,  2001; Shirmohammadi et al., 2006) of the
VFSMOD‐W model have been previously reported for other
applications,  only classical local OAT and Monte Carlo
approaches were used. The main objective of this study is the
application of a modern global sensitivity and uncertainty
analysis framework to modeling vegetative filter strips using
VFSMOD‐W, for the conditions of the reclaimed phosphate‐
mining region of central Florida. This approach represents an
unique combination of powerful features, including: (1)
identification  of input probability distributions based on field
data, (2) consideration of the effect of model structural error,
(3) quantification of the effect of each input on the overall
output variance, and (4) separation of first‐order versus
higher‐order effects (interactions).

MATERIALS AND METHODS
APPLICATION CASE AND ANALYSIS PROCEDURE

The specific conditions selected for the evaluation of the
model are those of the phosphate‐mining region of central
Florida along the Peace River basin (fig. 1). Continued mining
of phosphorus ore has degraded water quality in the Peace River
watershed and has left behind large mounds of refuse material
(tailings) that now shape the landscape surrounding the river.
The tailings are essentially homogenous clean sand (>94% in
weight) with a high concentration of apatite, the phosphorus
mineral ore, mixed with small pockets of clay in some areas.
Currently, there is interest in studying the potential of vegetative
filter strips as a best management practice (BMP) to use in the
mitigation plans that are required as part of the mining
permitting process by the State of Florida. Field experiments
have been conducted to quantify runoff quantity and quality
from the refuse mining mounds and the effectiveness of VFS in
the area (Kuo et al., 2005; Kuo, 2007). Eight fully instrumented
runoff plots were constructed at two different locations to
represent the range of conditions found in the region (landscape
slope and lengths, soil variability, locally recommended grasses,
climate characteristics, etc.) (Kuo, 2007).

Values from these experiments are used as the basis for the
global evaluation of VFSMOD‐W. The model contains two
components, the main program (VFSM) and a front‐end

Figure 1. Location of the model application area, phosphate mining region in the Peace River basin, Florida (data from FGDL, 2003).
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Table 1. Simulation parameters for the combined VFSMOD‐W model (source area UH and grass buffer VFSM components).

No. Parameter Units Description

UH (source area) simulation parameters
1 P mm Design storm precipitation
2 CN ‐‐ NRCS curve number for source area
3 A ha Area of upstream portion
4 Storm type ‐‐ NRCS storm type (1 = I, 2 = II, 3 = III, and 4 = Ia)
5 D h Storm duration
6 L m Length of the source area along the slope
7 Y m/m Slope of the source area
8 Soil type ‐‐ USDA texture for source area top soil (label)
9 K (kg*h)/(m2*N) USLE soil erodibility index

10 C ‐‐ USLE cover and management factor
11 Pfact ‐‐ USLE conservation practice factor

VFSM (vegetative filter strip) simulation parameters
12 FWIDTH m Effective flow width of the strip
13 VL m Length of the filter (flow direction)
14 RNA s /m1/3 Filter Manning's roughness n for each segment
15 SOA m/m Filter slope for each segment
16 VKS m/s Soil vertical saturated hydraulic conductivity in the VFS
17 SAV m Green‐Ampt's average suction at wetting front
18 OS m3/m3 Saturated soil water content, θs

19 OI m3/m3 Initial soil water content, θi

20 SM m Maximum surface storage
21 SCHK ‐‐ Relative distance from the upper filter edge where check for ponding conditions is made 

(i.e., 1 = end, 0.5 = midpoint, and 0 = beginning)
22 SS cm Average spacing of grass stems
23 VN s /cm1/3 Filter media (grass) modified Manning's nm (0.012 for cylindrical media)
24 H cm Filter grass height
25 VN2 s /m1/3 Bare surface Manning's n for sediment inundated area in grass filter
26 DP cm Sediment particle size diameter (d50)
27 COARSE ‐‐ Fraction of incoming sediment with particle diameter >0.0037 cm (coarse fraction routed 

through wedge as bed load) (unit fraction, i.e., 100% = 1.0)

program (UH), that are selectable by the user through the
Microsoft Windows graphical user interface (GUI) (Muñoz‐
Carpena and Parsons, 2005). When no measured VFS input
data are available, the UH front‐end component can be
selected to generate source area inputs for each design storm,
including a rainfall hyetograph, a runoff hydrograph, and
sediment loss from the source area using a combination of the
NRCS curve number, the unit hydrograph, and the modified
Universal Soil Loss Equation methods. With these inputs
(table 1), a set of response curves, i.e., sediment and runoff
reduction vs. filter design/construction characteristics (filter
length, width, grass type, slope), can be developed from
VFSMOD‐W outputs for a given design scenario (Muñoz‐
Carpena and Parsons, 2004).

In general, the proposed analysis procedure follows six
main steps (fig. 2): (1) PDFs are constructed for uncertain
input factors; (2) input sets are generated by sampling the
multivariate  input distribution, according to the selected
global method (i.e., Morris method for the initial screening
and extended FAST for the quantitative refining phase);
(3)�model simulations are executed for each input set;
(4)�global sensitivity analysis is performed according to the
selected method; (5) if the Morris screening method is
selected, it results in a subset of important parameters and
steps 2 through 4 are repeated only for those important
parameters using the extended FAST method; and
(6)�uncertainty  is assessed based on the outputs from the
extended FAST simulations by constructing PDFs/CDFs and
statistics of calculated errors. Details on the Morris and
extended FAST methods are provided in the Appendix.

The software package SimLab v2.2 (Saltelli et al., 2004)
was coupled with VFSMOD‐W to perform the procedure
outlined in figure 2. SimLab's statistical pre‐processor
module executes step 1 (fig. 2) based on the PDF types and
statistics provided (described in the next section) and the
analysis method selected (Morris or extended FAST). With
this information, the pre‐processor produces a matrix of
sample inputs to run the model (step 2, fig. 2). An interface
program was written in C# (C‐sharp language) and added to
the VFSMOD‐W 4.x GUI to automatically run the model for
each new set of sample inputs generated by SimLab. The
program automatically substitutes the new parameter set into
the VFSMOD‐W input files, runs the model, and performs
the necessary post‐processing tasks to obtain the selected
model outputs for the analysis, which are stored in a matrix
(step 3, fig. 2). The statistical post‐processor module of
SimLab uses the input and output matrices to calculate the
sensitivity indexes of the Morris and the extended FAST
methods (step 4, fig. 2). The Data Analysis Toolpack of Excel
(Microsoft Corp., Redmond, Wash.), was used to construct
the output probability distributions and to quantify the
uncertainty based on the set of extended FAST simulation
outputs (step 6, fig. 2).

SELECTION OF INPUT PDFS AND MODEL OUTPUTS
Input factors of interest in the sensitivity analysis are those

that are uncertain, that is, their value lies within a finite
interval of non‐zero width. Values of common environmental
parameters usually depend on the general variability of the
application area selected and the scale (size) for which the
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Figure 2. General schematic of the global sensitivity and uncertainty analysis. Numbers in circles represent the steps in the global evaluation procedure
explained in the text.

Table 2. Input probability density functions (PDF) for the model inputs used in the global sensitivity and uncertainty analyses of VFSMOD‐W.
Parameter Base Value PDF Statistics Source

P 106.7 (T = 10 years) Fixed ‐‐ Florida Department of Transportation
CN 87 Triangular Peak = 87; min. = 75; max. = 94 Calculated on‐site
A 0.1 Fixed ‐‐ From field site

Storm type III Fixed ‐‐ NRCS for Florida
D 6 Fixed ‐‐ Recommended in area
L 21.1 ‐‐ ‐‐ NRCS standard runoff plot
Y 0.042 Normal μX = 0.042; σX = 0.0104 Measured, n = 86

Soil type Sand Fixed ‐‐ Measured on‐site
K 0.0326 Triangular Peak = 0.0326; min. = 0.019; max. = 0.0327 Measured, n = 16
C 1 Fixed ‐‐ Bare surface

Pfact 1 Fixed ‐‐ No conservation
FWIDTH 39 Beta α = 21.199; β = 5.474; min. = 10; max. = 46 Measured, n = 20

VL 3 and 6 Fixed ‐‐ ‐‐
RNA 0.12 Triangular Peak = 0.12; min. = 0.06; max. = 0.4 ‐‐
SOA 0.041 Normal μX = 0.041; σX = 0.018 Measured, n = 48
VKS 1.69E‐05 Lognormal μY = ‐11.14; σY = 0.8 Measured, n = 28
SAV 0.08‐0.28 Uniform Min. = 0.08; max. = 0.28 Measured, n = 28
OS 0.478 Triangular Peak = 0.477; min. = 0.4; max. = 0.478 Measured, n = 28
OI 0.260 Beta α = 9.77; β = 4.34; min. = 0.04; max. =0.31 Measured, n = 28
SM 0 Fixed ‐‐ No storage assumed

SCHK 0‐1 Uniform Min. = 0; max. = 1 VFSMOD manual
SS 3.6 Triangular Peak = 3.6; min. = 3.45; max. = 4.84 Measured, n = 30
VN 0.012 Triangular Peak = 0.012; min. = 0.0084; max. = 0.016 Haan et al. (1994)
H 18.5 Normal μX = 18.5; σX = 2.88 Measured, n = 56

VN2 0.021 Triangular Peak = 0.021; min. = 0.011; max.= 0.04 Maidment (1992)
DP 0.0012 Triangular Peak = 0.0012; min. = 0.0009; max. = 0.003 Measured, n = 29

COARSE 0.154 Lognormal μY = ‐1.9; σY = 0.78 Measured, n = 29

measurement is expressed (Hillel, 1998). Marginal PDFs can
be derived from scientific literature, physical bounds,
opinion polls, surveys, expert judgment, and experiments
(Saltelli et al, 2005). In general, the means, variances, and
ranges of the input parameters have more influence on the

output uncertainty than the form of the distribution (Haan at
al., 1998), although characteristics like symmetry and
skewness may also play a role (Wallach et al., 2006). The
field‐scale ambient variability of many inputs has been
reported to be modeled adequately using log‐normal
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Figure 3. Selected input probability distributions used in the global analyses of VFSMOD‐W.

distributions (Haan et al., 1998; Jury et al., 1991; Loáiciga et
al., 2006). When there is a lack of data to estimate means and
standard deviations for PDFs thought to be Gaussian, the β
(beta) distribution can be used (Wyss and Jørgensen, 1998).
Finally, when only the range and a base (effective) value are
known, a simple triangular distribution can be used, while in
the case when values seemed distributed equally along the
parametric range, a uniform distribution is recommended.

The input factors of the model (table 1) were assigned
ranges and PDFs representative of the application area in
Bartow, Florida (table 2). Normal distributions were fitted to
parameters with centrally distributed frequencies and a
sufficient amount of data available (n > 30), such as slope of
the source area and filter slope (Y and SOA) and grass height
(H) (fig. 3). A log‐normal PDF was selected for soil saturated

hydraulic conductivity of the filter (VKS) since this
distribution is commonly used for this factor (Loáiciga et al.,
2006), and it fit the measured data well (fig. 3). The same
distribution was also used for the fraction of coarse sediment
(COARSE) to match the narrow range of particle size
distribution of the soil and sediment from the area (sand >
94%). The beta distribution was used for FWIDTH (effective
flow width of the strip) and OI (initial soil water content) to
match their smooth but biased (to the right of the mean)
distributions (fig. 3). Factors with reduced numbers of
measurements,  such as parameters related to vegetation
[i.e.,�spacing  of grass stems (SS) and grass modified
Manning's coefficient (VN)] and soil [i.e., NRCS curve
number for source area (CN), USLE soil erodibility index
(K), filter Manning's roughness coefficient (RNA), saturated
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Table 3. Selected model outputs used in the global sensitivity and uncertainty analyses of VFSMOD‐W.

Component Output Units Description

Hydrology
UH TRS mm (depth over source area) Total runoff from source into filter

VFSM TRF mm (depth over source + filter) Total runoff output from filter
VFSM TIF mm (over filter) Total infiltration in filter
VFSM RDR ‐‐ Runoff delivery ratio (flow out from filter / flow in)

Sediment transport
UH MSS kg Mass sediment input from source area
UH CSS g/L Concentration sediment in runoff from source area

VFSM MSF kg Mass sediment output from filter
VFSM CSF g/L Concentration sediment in runoff exiting the filter
VFSM MSR kg Mass sediment retained in filter
VFSM SDR ‐‐ Sediment delivery ratio (mass out from filter / mass in)
VFSM EFL m Effective filter length
VFSM WD m Sediment wedge distance

soil water content (OS), and sediment particle diameter
(DP)], were given triangular PDFs, based on the limited data
available.  Finally, the user‐selectable parameter SCHK
(node to check ponding during infiltration calculations) and
Green‐Ampt suction at the wetting front (SAV) were assigned
uniform distributions since no known frequency pattern was
identified through their ranges (fig. 3). Parameters such as the
filter design lengths (VL), soil textural class (sand), and
design storm characteristics (i.e., design storm precipitation‐
P, NRCS storm type) were fixed for the application. Finally,
the remaining factors (C, Pfact, and SM) were fixed to
represent the source area worst‐case conditions (i.e., bare,
non‐terraced,  and sloping smooth surface).

All input factors were assumed to be independent of each
other. In this study, the assumption of orthogonality
(parameter independence) is based on the conceptual model
characteristics  (numerical and mechanistic) and supported
by the parameter estimation methods selected, i.e., the
parameters were measured directly or estimated
independently from applicable literature values. If parameter
correlation was identified, it would require generating the
samples from joint multivariate probability distributions
(Wallach et al., 2006; Iman and Conover, 1982), which is not
amenable to simple Monte Carlo evaluation and is
computationally  expensive (Saltelli et al., 2000b). Finally, in
addition to the VFSMOD‐W model parameters, the effect of
the model structure (VFSM with or without the UH
component) on the output uncertainty was also considered in
the analysis. In many model applications, the change in user‐
selectable model structure typically results in a conceptual
modification of the model that can have profound impacts on
the sensitivity and uncertainty of the model and must be
evaluated.

Table 4. Comparison of the number of simulations run
for each of the global analyses methods in the application.

Model
Structure

VL
(m)

Morris FAST Total
RunsNP[a] Runs NP[a] Runs

VFSM 3 14 150 3 4995 5145
UH/VFSM 3 16 170 6 7974 8144

VFSM 6 14 150 3 4995 5145
UH/VFSM 6 16 170 6 7974 8144

Total simulations 640 25938
[a] NP = number of parameters considered in each analysis.

Several model outputs were selected in the analysis to
represent the potential variability of the hydrology and
sediment transport components of the model (Muñoz‐
Carpena et al., 1999) (table 3). Two of these outputs, runoff
delivery ratio (RDR) and sediment delivery ratio (SDR),
have been proposed as the objective functions for the design
of the VFS (Muñoz‐Carpena and Parsons, 2004). Although
all the selected outputs are presented in the tables and figures
below, detailed results are presented only for these two
representative  outputs (RDR and SDR) in an effort to
simplify the discussion.

In summary, four input sample sets were generated for the
Morris and FAST methods. Each sample set represented a
combination of the two model structures (VFSM or UH/
VFSM) and the two design filter lengths studied in the area
(VL = 3 m or 6 m). The number of model runs for each
method was selected according to the number of uncertain
parameters in each model structure based on equations 1 and
4 in the Appendix. The number of simulations needed for
each method (table 4) illustrates one of the potential
advantages of the Morris method over FAST, i.e., the
significantly shorter computation time needed.

RESULTS AND DISCUSSION
GLOBAL SENSITIVITY ANALYSIS

Screening Method: The Method of Morris
The ranking of the relative importance of VFSMOD‐W

input factors, based on the value of Morris' measure μ*, is
presented in table 5 for filter length VL = 6 m. As suggested
by Morris, only parameters separated from the origin of the
μ*‐σ plane are considered important. Figure 4 shows the
graphical representation of the Morris results for a selected
subset of model outputs. The number of parameters identified
as important was effectively smaller than the full set of the
model inputs, i.e., it was reduced from 14 to 3 and from 16
to 6 for the VFSM and UH/VFSM model structures,
respectively.

The Morris analysis of VFSM shows a strong influence of
the filter's Green‐Ampt infiltration parameter (VKS) on the
hydrological component of the model. This is illustrated in
figure 4 for the RDR output (top of the figure), where only
VKS is shown away from the origin on the μ*‐σ plane. Since
VKS is not far away from the σ axis, its influence is mostly
through first‐order effects with a small interaction com-
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Table 5. Ranking of sensitive parameters obtained by the method of Morris for a filter length of VL = 6 m.[a]

Model
Structure Output CN Y K FWIDTH RNA SOA VKS SAV OS OI SS VN VN2 SCHK COARSE DP H

VFSM TRS ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐
TRF ‐‐ ‐‐ ‐‐ 1 ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐
TIF ‐‐ ‐‐ ‐‐ 1 ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐

RDR ‐‐ ‐‐ ‐‐ 1 ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐
MSS ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐
CSS ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐
MSF 2 ‐‐ ‐‐ 3 ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ 1 ‐‐
CSF 3 ‐‐ ‐‐ 2 ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ 1 ‐‐
MSR 2 ‐‐ ‐‐ 3 ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ 1 ‐‐
SDR 2 ‐‐ ‐‐ 3 ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ 1 ‐‐
EFL ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐
WD ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐

UH/VFSM TRS 1 ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐
TRF 2 ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ 1 ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐
TIF 2 ‐‐ ‐‐ 3 ‐‐ ‐‐ 1 ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐

RDR ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ 1 ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐
MSS 2 1 3 ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐
CSS 3 1 2 ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐
MSF 2 1 3 5 ‐‐ ‐‐ 6 ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ 4 ‐‐
CSF 4 1 3 6 ‐‐ ‐‐ 2 ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ 5 ‐‐
MSR 3 1 2 5 ‐‐ ‐‐ 6 ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ 4 ‐‐
SDR 2 3 4 5 ‐‐ ‐‐ 6 ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ 1 ‐‐
EFL 2 ‐‐ ‐‐ ‐‐ ‐‐ 1 ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ 4 ‐‐ ‐‐ ‐‐ 3 ‐‐
WD 2 ‐‐ ‐‐ ‐‐ ‐‐ 1 ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ 4 ‐‐ ‐‐ ‐‐ 3 ‐‐

[a] Numbers for each parameter represent the parameter ranking in decreasing order of importance for each output (1 = most important for that level, and ‐‐ =
no significant influence). Missing values or symbols indicate that they are not part of the simulation.

ponent. As expected, VKS controls the infiltration (TIF) in
the VFS and thus the runoff outputs (RDR and TRF) (table�5).
These results are not altered when changing to the UH/VFSM
model structure (fig. 4), although the source area CN and the
filter effective width (FWIDTH) gain small importance.

In the case of the sediment component, for the VFSM
model structure, the main sediment outputs (MSF and SDR)
are controlled mainly by DP and, to a smaller extent, by
FWIDTH and VKS. In case of the filter outflow sediment
concentration (CSF), DP and VKS appear to be the most
important of the three. This can be explained by the fact that
the sediment concentration is calculated directly from both
mass of sediment and water outflow (thus the importance of
VKS), where MSF and SDR represent the dry mass of
sediment alone. For the UH/VFSM structure, the erosion
(Y,�K) and runoff (CN) parameters in UH  (source area
submodel) are the most important for MSF and CFS,
followed by the parameters identified for VFSM alone. This
ranking changes for SDR, where DP is ranked in the same
order of importance as CN and Y (fig. 4 and table 5). The
interactions among the important parameters controlling the
sediment outputs seem limited (σ values are low in fig. 4). It
is interesting to note that when parameters are lumped
together in the μ*‐σ plane, but separated form the origin, an
element of subjectivity may be introduced into the Morris
parameter ranking. This issue is illustrated in figure 4 for
CSF‐UH/VFSM (parameters VKS, CN, K, and DP) or for
SDR‐UH/VFSM (parameters DP and CN).

The previously performed local OAT sensitivity analysis
of VFSM (Muñoz‐Carpena et al., 1999) did not allow for a
relative and objective ranking of all model input parameters
like that obtained with the Morris method (table 5) because
the parameters were varied independently and their ranges

and magnitudes of variation were grossly different. In spite
of these limitations, the local OAT results showed that among
the parameters studied, the main parameters controlling the
runoff from the filter were saturated hydraulic conductivity
and initial soil water content (VKS and OI). The importance
of VKS is corroborated in the Morris results. However, OI
was not found important by Morris since the present model
application is different from the previously performed local
OAT study. The local OAT analysis was intended to be
general by varying the input factors within a wide range of
conditions (i.e., soils, sediment, and filter characteristics)
encountered in the literature and not specific to any particular
application area. For the sandy soil conditions of this study,
soil infiltration is dominated by the relatively large hydraulic
conductivity that outweighs the moisture deficit in the Green‐
Ampt equation. The local OAT showed that the main
parameters controlling sediment outflow were particle class
(DP) and the media spacing (SS) (Muñoz‐Carpena et al.,
1999). The high ranking of DP in current studies is also in
agreement with findings of Abu‐Zreig (2001) that sediment
class is influential for SDR. The lack of influence by SS
observed in the Morris results can be explained by the
relatively narrow range of this factor measured in the
experimental  conditions (uniform vegetation types). Abu‐
Zreig (2001) also identified FWIDTH as an important factor
for sediment trapping in VFS. This is confirmed by the Morris
analysis that identifies FWIDTH as either the second or third
most important parameter for VFSM filter sediment outputs.

Four products of the global sensitivity analysis are
illustrated by the initial screening results. First, the ranking
of parameters' importance for different model outputs is
obtained. Secondly, the effect of the change in model
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Figure 4. Global sensitivity analysis results for selected VFSMOD‐W outputs, obtained from the Morris screening method of VFSMOD‐W (VL = 6 m).
Labels of input factors close to the origin have been removed for clarity.

structure is identified. It is found to be limited for the
hydrology component but strong in the case of the sediment
component, where the source area parameters associated
with UH take priority over those of the filter. Furthermore, as
for most of the parameters, σ is relatively small, and the first‐
order effects dominate the model response (there are small
interactions between factors). Finally, since the relations

between factors and model outputs can be explained by the
model assumptions, assurance of the model behavior is
positively evaluated. When compared to local OAT methods,
the results show that the specific conditions of the application
typically dominate the importance of some parameters
(i.e.,�OI and SS).
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Figure 5. Global sensitivity analysis of VFSMOD‐W obtained from the extended FAST method (VL = 6 m): (a and c) first‐order effects; (b and d) higher‐
order effects. Units on the vertical axis are fraction of total output variance.

Variance‐Based Method: Extended FAST
The subset of important parameters selected by the

screening method for each model combination was used for
further analysis with the extended FAST method. These
parameters were: VKS, DP, and FWIDTH for the VFSM
model structure and, additionally, Y, K, and CN for the UH/
VFSM model structure.

Figure 5 presents the results for all the outputs and the
filter length of VL = 6 m. This figure depicts the fraction of
the total output variance explained by each parameter
(vertical axis) for each of the outputs (horizontal axis). The
first‐order effects (Si) are presented first for each model
structure (fig. 5a,c), followed by the higher‐order effects
(interactions) (Si ‐ STi) (fig. 5b,d). The extended FAST results
obtained reinforce and quantify those from Morris. As an
example, the results show that VKS is responsible for 97%
and 93% of the RDR variance for VFSM and UH/VFSM,
respectively (compare fig. 4, top, and fig. 5a,c). In some
cases, FAST eliminates the subjectivity introduced in the
qualitative approach of Morris (fig. 4). For the CSF‐UH/
VFSM output, it is now easy to separate VKS, CN, K, and DP
(with 13%, 10%, 8%, and 9% of the variance explained)
(fig.�5c). Similarly, FAST results for SDR‐UH/VFSM closely
match the ranking obtained with the Morris method (compare
fig. 4, bottom, and fig. 5c), and allow the quantification of the
output  variance attributed to DP (30%), CN (25%), Y (23%),
FWIDTH (6%), VKS (6%) and K (5%) (fig. 5c). It should be
recognized that the extended FAST results are considered
more reliable than Morris results, since they are based on a
much larger number of simulations (table 4) and a less
structured sampling scheme (Saltelli et al., 2004).

The sum of the total effects (ΣSi) is graphically presented
for both model structures by a solid line in figures 5a and 5c.
In general, the sum of first‐order effects is greater than 80%
of the total variance for most outputs for both model
structures, with the exception of the sediment concentration
from the filter and the sediment wedge dimensions EFL and
WD (fig. 5a,c). The interaction found for CSF can be
explained by the fact that the value is the ratio between mass
of sediment and water outflow, i.e. closely depends on the
important parameters behind these quantities (fig. 5b,d).
Since in general the sum of the total effects is close to 100%,
the model behaves as additive. This indicates that VFSMOD‐
W could be efficiently calibrated if reliable data are provided.

GLOBAL UNCERTAINTY ANALYSIS FROM EXTENDED FAST
RESULTS

Uncertainty analysis statistics for the selected output
probability distributions obtained from extended FAST
results are presented in table 6. Following Morgan and
Henrion (1992), to communicate uncertainty graphically to
end users, the density and cumulative probability
distributions (CDFs) are constructed for the selected outputs
and both model structures (fig. 6). Another method
recommended by these authors, the 95% confidence interval
(i.e., range of output values between 2.5% and 97.5%
cumulative distribution percentiles), can also be calculated
on the basis of these distributions (table 6). Example
uncertainty analysis statistics for the sediment delivery ratio
obtained from FAST results are presented in figure 6. The
difference between CDFs for VFSM and UH/VFSM
illustrates the relative effects of model structure on output
uncertainties. Generally, larger output variances are observed
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Table 6. Uncertainty analysis statistics for selected output probability distributions obtained from FAST results.[a]

Output[b] Length Components Range Mean Median 95% CI SD SE Min. Q1 Q2 Q3 Max. Skew Kurtosis

RDR

3 VFSM 0.762 0.916 0.943 0.635‐1.065 0.114 0.002 0.337 0.863 0.943 0.998 1.099 ‐1.213 1.722
UH/VFSM 0.917 0.924 0.954 0.610‐1.083 0.123 0.001 0.220 0.867 0.954 1.009 1.137 ‐1.380 2.515

6 VFSM 1.173 0.858 0.903 0.388‐1.130 0.197 0.003 0.025 0.759 0.903 0.999 1.198 ‐0.991 0.847
UH/VFSM 1.276 0.873 0.922 0.346‐1.167 0.214 0.002 0.000 0.763 0.922 1.022 1.276 ‐1.064 1.071

MSF

3 VFSM 876.6 1025.5 1014.9 834.1‐1283.4 117.4 1.7 713.6 940.6 1014.9 1096.8 1590.2 0.6 0.5
UH/VFSM 2682.6 740.0 675.2 176.6‐1678.2 397.4 4.5 48.8 442.1 675.2 962.0 2731.4 1.0 1.2

6 VFSM 928.3 486.7 474.4 306.7‐734.9 109.5 1.5 118.3 408.8 474.4 552.5 1046.6 0.6 0.8
UH/VFSM 1729.3 346.0 295.7 66.59‐904.9 223.3 2.5 0.0 180.7 295.7 451.8 1729.3 1.4 2.8

CSF

3 VFSM 26.520 15.729 15.376 12.13‐21.47 2.460 0.035 10.755 14.008 15.376 16.972 37.275 1.362 4.436
UH/VFSM 42.628 11.646 10.803 3.07‐25.47 5.756 0.064 0.836 7.439 10.803 14.786 43.464 0.915 1.110

6 VFSM 62.061 8.290 7.789 5.02‐14.32 2.881 0.041 4.153 6.579 7.789 9.310 66.214 5.504 75.212
UH/VFSM 83.340 6.007 5.136 1.21‐16.07 4.072 0.046 0.000 3.359 5.136 7.624 83.340 3.259 32.137

SDR

3 VFSM 0.335 0.392 0.388 0.319‐0.492 0.045 0.001 0.273 0.360 0.388 0.420 0.608 0.576 0.458
UH/VFSM 0.547 0.324 0.324 0.158‐0.495 0.088 0.001 0.069 0.261 0.324 0.385 0.616 0.057 ‐0.387

6 VFSM 0.355 0.186 0.182 0.117‐0.281 0.042 0.001 0.045 0.156 0.182 0.211 0.400 0.600 0.761
UH/VFSM 0.401 0.149 0.143 0.055‐0.276 0.058 0.001 0.000 0.106 0.143 0.185 0.401 0.523 0.106

[a] 95% CI = 95% confidence interval (i.e., range of output values between 2.5% and 97.5% cumulative distribution percentiles); SD = standard deviation; SE
= standard error of the mean; Q1, Q2, Q3 = 1st, 2nd, and 3rd quartiles of the output probability distribution.

[b] See table 3 for output descriptions.
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Figure 6. Global uncertainty results for selected VFSMOD‐W outputs obtained by extended FAST (VL = 6 m). Left vertical axis units indicate the output
probability density distribution (frequency) and the right vertical axis the cumulative probability distribution (CDF).

for UH/VFSM, which is expected, since additional variance
is introduced by the larger number of uncertain parameters.
The filter length does not systematically affect the ranges of
the output PDFs.

The uncertainty of the results can also be communicated
as probability of exceedance of a desired regulatory or design
value. For example, if a 75% reduction of runoff sediment
(SDR < 0.25) is desired for the 10‐year design storm in the
area, then the results in table 6 and figure 6 indicate that, for
the 6 m filter, the probability of SDR > 0.25 will be
approximately  5% for the combined model (UH/VFSM) and
7% for simpler model structure (VFSM). Therefore, it may

be concluded that, depending on model structure, the 6 m
filter will perform as desired in, respectively, 95% and 93%
of the time (acceptable at the 90% level). In the case of the
3 m filter, the filter will only performs as expected less than
25% of the time for both model structures, which indicates
that this filter does not meet the design criteria in the area of
application.

The uncertainty analysis performed with the extended
FAST outputs proved to be very efficient when compared to
a classical MCS approach. Previously, Shirmohammadi et al.
(2006) showed that the number of VFSMOD simulations
needed to obtain smooth output PDFs for each parameter was
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around 2000. In this study, around 5000 to 8000 simulations
were sufficient to obtain a global assessment of the model for
all sensitive parameters (3 to 6 parameters). The reduced
number of simulations is due to the efficiencies built into the
Extended FAST evaluation procedure. Firstly, sampling of
PDFs of input factors is based on the more efficient r‐LHS,
so a reduced number of simulations are required compared to
the fully randomized‐sampling of MCS. Secondly, because
in the proposed framework, the extended FAST focuses on
the subset of important parameters identified by the Morris
method, the number of simulations to obtain a global
uncertainty assessment is reduced. . The uncertainty analysis
based on the extended FAST results also proved to be superior
when compared to the local First‐Order‐Approximation
method, since FAST does not require previous knowledge
about the additivity of the model or the form of the model
output probability distributions.

SUMMARY AND CONCLUSIONS
An advanced model evaluation framework is applied to

VFSMOD‐W that combines two types of global sensitivity
(screening method of Morris and variance‐based extended
FAST) and one uncertainty (based on extended FAST results)
analysis techniques. The Morris method allows for
qualitative ranking of the important model parameters and
their potential interactions at a relatively small
computational  cost. The extended FAST uses the subset of
important input factors identified by Morris to provide the
quantitative  measures of sensitivity in terms of each
parameter 's contribution to the output variance and higher‐
order effects (interactions) for specific outputs. Since the
extended FAST is based on randomized sampling of the
multivariate  input distribution, the outputs from the analysis
can be used to construct output probability distribution
functions suitable for uncertainty analysis. The main outputs
of interest in the analysis were runoff and sediment delivery
ratios (RDR and SDR), which are commonly used as
objective functions in filter design. Consideration to the
change in model structure changes was given in the analyses
by simultaneously evaluating two user‐defined model
structures: the filter module alone (VFSM) and the source
area and filter components combined (UH/VFSM).

In contrast to previously performed local OAT sensitivity
analysis, the method of Morris was able to provide a ranking
of the significant parameters for a variety of outputs and to
identify interactions between parameters. For the simpler
model structure (VFSM), VKS was identified as the
important parameter controlling RDR, whereas the order of
importance with respect to SDR was DP > FWIDTH > VKS.
For the combined UH/VFSM model structure, the ranking of
importance remained the same for runoff outputs but changed
for sediment, where the order of importance was Y > CN >
K. In contrast with previously performed local OAT analyses,
SS (average spacing of grass stems) and initial soil water
content (OI) were not found to be important, probably due to
the narrow range of values measured in the region of
application (sand and homogeneous filter vegetation). The
extended FAST results reinforced and quantified those of
Morris and indicated the additive nature of the model (sum
of first‐order effects, Si > 0.8 for RDR and SDR). This model

characteristic  can lead to its effective calibration if reliable
input data are available.

As expected, the predicted model uncertainty was higher
for UH/VFSM than for VFSM, since more uncertain inputs
were used in the combined model. Performance of global
uncertainty techniques (for filters of 3 and 6 m in length)
enabled evaluation of filter length (VL) as a VFS design
criteria. Under the conditions of the study, the 6 m filter
would trap at least 75% of incoming sediment approximately
93% and 95% of the time for UH/VFSM and VFSM model
structures, respectively. For the alternative 3 m filter, the
required sediment trapping efficiency would be achieved less
than 25% of the time (unacceptable at the 90% level). Given
the prior information on the characteristics of the VFSMOD‐
W input factors in the application region, it is advised to
construct 6 m filters if these design criteria are to be met.
These results also indicate that the uncertainty of the model
outputs could be reduced due to more accurate measurements
or estimates of input factors identified as important (i.e., VKS
in the case of RDR). The uncertainty analysis performed with
the extended FAST outputs proved to be very efficient when
compared to a classical Monte Carlo Simulation approach,
with a 33% reduction in the number of simulations needed.
The uncertainty analysis based on the extended FAST results
also proved to be superior when compared to the local First‐
Order‐Approximation method since no previous knowledge
of the additivity of the model or the form of the model output
probability distributions is needed.

The results obtained are particular to the specific
application (reclaimed phosphate‐mining areas of the Peace
River basin). Since different input parameter ranges can
significantly affect the sensitivity and uncertainty results, it
is recommended that these analyses are performed for each
particular model application. Although no evaluation
method can be considered objective, since it relies on the
interpretation  by the modeler of the input variation, the
model evaluation framework applied here is found
reproducible and robust, since it considers concurrent
variation of all the input factors without a priori judgment of
their relative importance over the output.
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APPENDIX: GLOBAL SENSITIVITY METHODS
THE METHOD OF MORRIS

The screening method proposed by Morris (1991) (herein
“Morris method” or “Morris”) and later modified by
Campolongo et al. (2005) was used in this study because it is
relatively easy to apply, requires very few simulations, and
its results are easily interpreted (Saltelli et al., 2005). Morris
(1991) proposed conducting individually randomized
experiments that evaluate the elementary effects (relative
output differences) of changing one parameter at a time. Each
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input may assume a discrete number of values, called levels,
that are selected within an allocated range of variation for the
parameter. For each parameter, two sensitivity measures are
proposed: (1) the mean of the elementary effects (μ), which
estimates the overall effect of the parameter on a given
output; and (2) the standard deviation of the effects (σ),
which estimates the higher‐order characteristics of the
parameter (such as curvatures and interactions). Since
sometimes the model output is non‐monotonic, Campolongo
et al. (2005) suggested considering the distribution of
absolute values of the elementary effects (μ*) to avoid the
canceling of effects of opposing signs. The number of
simulations (N) to perform in the Morris analysis results as:

N = r(k + 1) (1)

where r is the sampling size for search trajectory (r = 10
produces satisfactory results), and k is the number of factors.

Although elementary effects are local measures, the
method is considered global because the final measure μ* is
obtained by averaging the elementary effects, and this
eliminates the need to consider the specific points at which
they are computed (Saltelli et al., 2005). Morris (1991)
recommended applying μ (or μ* thereof) to rank parameters
in order of importance, and Saltelli et al. (2004) suggested
applying the original Morris measure σ when examining the
effects due to interactions. To interpret the results in a manner
that simultaneously informs about the parameter ranking and
potential presence of interactions, Morris (1991) suggested
plotting the points on a μ(μ*)‐σ Cartesian plane. Because the
Morris method is qualitative in nature, it should only be used
to assess the relative parameter ranking.

EXTENDED FAST
A variance‐based method like the Fourier Amplitude

Sensitivity Test (FAST) can be used to obtain a quantitative
measure of sensitivity (Cukier et al., 1973, 1978; Koda et al.,
1979). FAST decomposes the total variance (V = 2

Y
�  ) of the

model output )( 21 kX,...,X,XfY =  in terms of the

individual factors Xi, using spectral analysis so that:

V = 2
Y

�  = V1 + V2 + V3 + ... + Vk + R (2)

where Vi is the part of the variance that can be attributed to
the input factor Xi alone, k is the number of uncertain factors,
and R is a residual corresponding to higher‐order terms. The
first‐order sensitivity index Si, defined as a fraction of the
total output variance attributed to a single factor, can then be
taken as a measure of global sensitivity of Y with respect to
Xi, i.e.:

Si = Vi / V   (3)

To calculate Si, the FAST technique randomly samples the
k‐dimensional space of the input parameters using the
replicated Latin hypercube sampling (r‐LHS) design
(McKay et al., 1979; McKay 1995). The number of
evaluations required in the analysis can be expressed as:

N = M(k + 2)   (4)

where M is a number between 500 and 1000.
For a perfectly additive model, ΣSi = 1, i.e., no interactions

are present and total output variance is explained as a
summation of the individual variances introduced by varying
each parameter alone. In general, models are not perfectly
additive, and ΣSi < 1. FAST was extended by Saltelli et al.
(1999) to incorporate the calculation of the total order effects
through the total sensitivity index STi, calculated as the sum
of the first and all higher order indices for a given parameter

Xi. For example, for 1X :
ST1 = S1 + S1i + S1jk, + ... + S1... n

and then

ST1 ‐ S1 = S1i + S1jk, + ... + S1... n (5)

For a given parameter Xi, interactions can be isolated by
calculating STi ‐ Si , which makes the extended FAST a
powerful method for quantifying the individual effect of each
parameter alone (Si) or through interaction with others 
STi ‐�Si). An additional benefit of the extended FAST analysis
is that since the results are derived from a randomized
sampling procedure, they can be used as the basis for the
uncertainty evaluation by constructing cumulative
probability functions (CDFs) for each of the selected outputs.
This leads to a very efficient Monte Carlo type of uncertainty
analysis, since only the sensitive parameters are considered
as the source of uncertainty.


