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The devastating disease Huanglongbing (HLB) has greatly affected citrus in Florida and other growing
regions. Detecting dropped fruit is one method of estimating the presence and severity of the disease.
The purpose of this study was to develop a machine vision system that can detect dropped citrus on
the ground in varying illumination conditions and identify decaying stages of the dropped fruit. In this
paper, a novel method for image brightness correction using a contrast limited adaptive histogram equal-
ization was developed to produce constant image brightness levels between and within images.
Objectives of this study were to: (1) solve the varying illumination problem and create a consistent
brightness level between and within the images, (2) develop an algorithm to eliminate multiple detec-
tions of a single fruit from the circular Hough transform, (3) design an algorithm to evaluate decaying
stages of the dropped citrus, and (4) demonstrate ability to create a fruit drop map of citrus at each decay-
ing stage in a commercial citrus grove. The result shows all processed images had desired brightness
levels (152 out of 255) with a standard deviation of 1.0. Correct identification of fruit and false positives
were measured as 89.6% and 5.0%, respectively. False classifications of decay stages of fruit were as low as
4.2% and 18.5% for recently dropped fruit and rotten fruit, respectively. The techniques developed in this
work could be further developed into a commercial machine vision system for a real-time dropped fruit
mapping system.

� 2016 Elsevier B.V. All rights reserved.
1. Introduction

Citrus Huanglongbing (HLB) or citrus greening has become a
devastating disease in the United States, Brazil, and other citrus-
producing regions. Citrus production in the United States was esti-
mated to 5.8 million tons in 2014–2015 crop year which was
350,000 tons lower than previous season, mainly due to the
decreased production in Florida (USDA, 2015a). The widespread
cases of the disease in Florida has caused production to decrease
34.4% from 189.1 million boxes in the 2008–2009 crop year to
124.0 million boxes in the 2013–2014 crop year (USDA, 2010,
2015b). There is no known cure for the disease, but it is important
to know where the disease is located and the severity at those
places so that mitigating actions can be taken. One approximate
indicator of severity is the number of dropped fruit. However,
manual inspection to find the amount of the dropped fruit
increases the production costs due to labor cost (Choi et al.,
2015). Using colors and shapes of citrus fruit, and the machine
vision technique, the manual inspection of the dropped citrus
can be automated.

However, there are common difficulties in detecting citrus fruit
using outdoor images. First of all, developing an outdoor machine
vision system is challenging due to varying illumination conditions
among images. Many studies reported that the varying illumina-
tion caused reduced accuracy of machine vision systems for out-
door fruit detection applications (Annamalai and Lee, 2003;
Annamalai et al., 2004; Stajnko et al., 2004; Patel et al., 2012;
Wachs et al., 2010; Kurtulmus et al., 2011; Wang et al., 2012).

Annamalai and Lee (2003) developed a machine vision system
for citrus yield mapping. However, the varying brightness levels
in their images caused incorrectly detected background andmissed
fruit. Even though their algorithm included several processes to
reduce the false positives, the system showed a performance of
only R2 = 0.76 between the actual number of fruit and estimated
data. Wachs et al. (2010) also stated in their article that
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uncontrolled natural illumination was one of the reasons for lim-
ited performance. They developed a machine vision system using
color and geometric properties to detect apples in orchards. How-
ever, the color was severely affected by unconstrained illumina-
tion. Although they combined thermal images to improve varying
illumination conditions, their algorithm yielded a high false posi-
tive rate (46.8%) because their algorithmwas based on the assump-
tion that all images had the same illumination level.

Various methods were developed in many studies to overcome
varying image illumination. Most of methods were based on two
approaches. The first approach is to control the hardware system
during image acquisition. Annamalai et al. (2004) used different
shutter speeds of a camera for each image in a real-time citrus
yield estimation system. They manually adjusted the shutter speed
according to the light conditions. However, uneven illumination
within an image was not solved by adjusting the shutter speed,
and it reduced the performance during segmentation using colors.
Wang et al. (2012) developed a system to evaluate the quality of
cherries using their skin color. They used a flashlight with small
camera aperture in order to decrease the effect of varying illumina-
tion. However, they reported that the flashlight caused highly sat-
urated areas on fruit surfaces, and they had to use different color
models for each aperture size.

The second approach to solve the varying illumination is to use
software for pre-processing operations on the images. Chinchuluun
and Lee (2006) adopted a gamma correction algorithm to decrease
varying illumination conditions in their machine vision system for
citrus yield mapping. It showed better accuracy by applying the
pre-processing steps, achieving R2 = 0.83 between the actual num-
ber of fruit and fruit count by the algorithm. Kurtulmus et al.
(2011) developed a green citrus detection system using histogram
equalization and a logarithmic transform to enhance the image
brightness. Even though the image brightness was corrected, the
classification algorithm showed different results depending on
brightness levels of the original images. For dark images, it had a
75.2% correct identification rate and a 16.8% of false positive rate.
But for the bright images, the correct identification rate was
75.4%, and the false positive rate was 40.3%. Choi et al. (2013) pro-
posed an illumination normalization technique to develop a fruit
drop detection system. The normalization was processed by divid-
ing each RGB color component by the average gray value of all the
pixels in the image. The result showed an 81.3% correct identifica-
tion rate with a 12.9% false positive rate. The results from the men-
tioned studies show that image enhancement algorithms for
preprocessing yielded better performances compared to the
method controlling the hardware. The gamma correction, the log-
arithmic transform, and the histogram equalization are well-
known methods for image enhancement. However, the main pur-
pose of the three methods is to enhance the quality of an image.
Therefore, there is no guarantee that the algorithm would reduce
the differences in illumination between images. In fact, none of
the above studies showed analysis about improving the consis-
tency of image brightness between images. Therefore, in this study
a pre-processing step using a contrast limited adaptive histogram
equalization (CLAHE) (Zuiderveld, 1994) was introduced to have
a constant image brightness level not only within an image but
also between images.

The second challenge is that to keep the same distance from a
camera to the fruit is difficult in an outdoor machine vision system
resulting in a wide range of fruit sizes among the images. A circular
Hough transform (CHT) is the commonly used method to find
potential fruit areas using shape information. However, due to
the wide range of the fruit sizes in the images, the CHT can cause
multiple detections of a single fruit with different sizes of circles
(Bansal et al., 2013; Sengupta and Lee, 2014; Silwal et al., 2014).
To locate accurate fruit areas without multiple detections, Bansal
et al. (2013) suggested using an average of centers of overlapped
fruit. Another approach was proposed by Sengupta and Lee
(2014) to select the largest radius circle among the overlapped
ones. However, averaging the circles’ locations or picking the lar-
gest circle disregarded the actual context within the detected areas
and caused the choosing of an inappropriate circle containing not
only the fruit region but also some of the background. Therefore,
in this study, a new technique, applied canny edge density (ACED)
algorithm, was developed with a canny edge detector and a mor-
phological closing operation to locate the most proper fruit area
considering the context of the detected circles from the CHT.

The overall goal of this study was to develop a machine vision
system to estimate the amount of fruit drop in a commercial citrus
grove. Specific objectives were:

1. To develop an algorithm to solve varying illumination condition
and have constant image brightness throughout all acquired
images.

2. To develop an algorithm to remove multiple detections of a sin-
gle fruit from the circular Hough transform.

3. To develop an algorithm to evaluate decaying stages of the
citrus so that citrus growers can understand when fruit drop-
ping happened.

4. To create a fruit drop map of citrus at each decaying stage.

2. Materials and methods

2.1. Image acquisition hardware

The image acquisition hardware was developed to (1) acquire
images and GPS coordinates, (2) decrease the impact of varying
illumination, and (3) protect the cameras. To achieve a continuous
image acquisition process, the whole system was developed to be
mounted to an all-terrain vehicle (Fig. 1a, Sportsman, Polaris
Industries Inc., Medina, Minnesota). Two CMOS cameras (Sony
ActionCam, Tokyo, Japan) were installed under a metal shield
and recorded videos while the vehicle was driving in a citrus grove.
Nontransparent rubber sheets (Fig. 1a) were attached to the shield
to block sunlight. To ensure enough illumination, a powerful exter-
nal LED light source (3853 Lumen/m2 at 30 cm distance) was also
installed (EXO0409, Metaphase Technologies Inc., Bensalem, PA).
The shield was designed to lift tree branches while the vehicle
was moving forward and installed at 45 cm above the ground to
minimize collisions with the tree canopy (Fig. 1b).

Fig. 2 shows the installation of the two cameras with GPS under
the metal shield. Each camera had its own GPS receiver, and small
areas of the metal shield on top of the receivers were replaced with
acrylic panels to receive the GPS signal without interruption.

2.2. Image acquisition in a commercial citrus grove

Images were acquired on May 20 and 21, 2014 in a commercial
citrus grove (Silver Strand Groves, Immokalee, Florida, Latitude:
26.366548, Longitude: �81.469557). Videos were recorded while
the vehicle moved forward along tree rows with an average speed
of 4.8 km/h. The field of view of the camera was 120� and the res-
olution of the videos was 720 by 1280. The actual size of the field of
view of the camera was about 60 cm by 75 cm (0.83 mm by
0.56 mm/pixel). The frame rate was 120 frame/sec to reduce
blurred images from vibration of the vehicle. An image was
extracted from every 59 frames to avoid overlapped areas between
images. A total of 553 images were extracted under various bright-
ness levels. Fig. 3 shows two example images that contained vari-
ous objects such as background (soil, grass, leaves and branches)
and dropped oranges from the canopy with dark and bright
regions. In this research, the brightness level of an image was
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Fig. 2. Upside down picture of the shield with cameras and a light source.
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Fig. 1. Illustration of hardware setup. (a) An off-road vehicle with a metal shield and (b) illustration of image acquisition process while the vehicle was driving forward along
with a tree row. The metal shield and cameras were installed at 45 cm from the ground.
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defined as an average of the scaled Value (V) component (0–255) in
the Hue, Saturation and Value (HSV) color space in the entire
image. Two images showing different brightness levels are Fig. 3a
having an average V component of 75.8 and Fig. 3b having an aver-
age of 100.3. The oranges in the images had largely two stages
according to relative elapsed time after dropping: (1) recently
dropped fruit and (2) rotten fruit.

Among the 553 images, 210 images were selected as a training
set considering many possible situations including different
objects and brightness levels. The other 343 images were used as
a validation set. Fig. 4 illustrates a histogram of average brightness
levels of all 553 training and validation images. A mean value of
the brightness levels was 118.6 but varied largely among different
images (standard deviation of 15.2), they ranged from 55 to 175
and were corrected in a preprocessing algorithm.
2.3. Image processing and classification algorithm

The image processing and classification algorithm was devel-
oped using Matlab (The MathWorks, Inc., Natick, Massachusetts)
Fig. 3. Example images containing various objects and image brightness. Two images had
of 100.3.
on a desktop computer (Intel, Core i7 3.6 GHz processor with
8 GB RAM and a 64-bit Windows 7 operating system). The algo-
rithm consisted of image enhancement, finding fruit areas, and
evaluating fruit stage into recently dropped or rotten fruit. A flow-
chart of the algorithm is shown in Fig. 5. Details of each step are
explained in the following subsections.

2.3.1. Image preprocessing using contrast limited adaptive histogram
equalization (CLAHE)

Constant brightness level is one of the key factors for good clas-
sification result for outdoor imaging since the brightness levels can
critically affect color and texture of the images. Therefore, a pre-
processing step using contrast limited adaptive histogram equaliza-
tion (CLAHE) was implemented for post-imaging illumination
correction. Originally, CLAHEwas developed for improving contrast
within an image, especially for medical images (Cheng et al., 2006;
Morrow et al., 1992; Pisano et al., 1998; Youssif et al., 2008). The
CLAHE is similar to adaptive histogram equalization (AHE). Both
algorithms improved a major drawback of histogram equalization
(HE), losing details due to overly contrasted areas. For example, in
some cases when an image has bright and dark parts at the same
time, the bright part becomes brighter, and the dark part becomes
darker decreasing the overall quality of the image. Unfortunately,
outdoor images often carry sunny and shadow parts together,
which one of the major reasons that many global illumination cor-
rection methods would fail. On the other hand, the CLAHE and the
AHE adopt a regional scheme, dividing an image into multiple sec-
tions and applying individual histogram for each section to prevent
over-contrast and generate relatively uniform levels of intensities
of an image regardless of illumination of original images. However,
the AHE often amplifies noise in the image. The CLAHE refrains from
amplifying the noise by limiting sudden increases of slopes in the
cumulative probability density function of the histogram. Various
different brightness levels: (a) average brightness of 75.8 and (b) average brightness
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Fig. 4. Histogram of average brightness levels of the 553 images used in the research.

Fig. 5. Flowchart of a proposed machine vision algorithm.
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forms of CLAHE can be used by a choice of redistribution functions
such as uniform, exponential, and Rayleigh distributions. In this
research, the main objectives of the enhancement were to correct
for variable lighting conditions and to have constant brightness
levels between images, and within an image. Therefore, the
Rayleigh distribution function in Eq. (1) was used, since it enables
adjustment of the average illumination level easier than other dis-
tribution functions by choosing different distribution function scale
parameters (r). The function is:

f ðx;rÞ ¼ x
r2 e

�x2=2r2
; x P 0 ð1Þ

where x represents a random variable (the V component value of a
pixel in the HSV color space in this study).

In this research, three parameters were used in the CLAHE: (1)
number of tiles (n), (2) clip limit (CL) and (3) distribution scale
parameter (r). The number of tiles (n) represents how many image
sections an image was divided into. A bigger number of tiles
resulted in a smaller local region for which individual histogram
equalization was applied. The number of tiles should be chosen
carefully according to the image context; a local region should be
larger than the size of objects in an image since a smaller number
of tiles (bigger size of local region) may generate overly contrasted
areas. The clip limit (CL) prevents amplification of noise. Since the
CLAHE divides an image into small regions, and if a region had a
noise, the noise would be amplified, and visibility of the noise will
be enhanced. However, if too large CL value was used, it also gen-
erates overly contrasted images. Lastly, the scale (r) of the
Rayleigh distribution function is used to adjust overall levels of
illumination of a region.

All images had different parameter values according to its
image context. The individual heuristic search process for the three
parameters was conducted for each image. Using the best first
method, the most appropriate parameter values were found to
have the desired illumination level (153 in scaled V component
(0–255) in HSV color space). In the best first method, various can-
didates of parameters and corrected brightness levels using the
candidate parameters were provided. The search criterion was
the minimum brightness level difference with the desired bright-
ness levels (153). This search method started from the number in
a most significant digit of the parameter, and then expanded to
decide numbers in smaller digits. The iteration was continued until
the difference between desired brightness level and the corrected
brightness level using the candidate parameters falls into the
threshold, 0.01.
2.3.2. Finding potential fruit areas using shape, color, and texture
After the illumination enhancement, the algorithm searched for

potential fruit areas from the background. Firstly, a circular Hough
transform (CHT) was applied to find circular objects in an image. To
apply the CHT at lower computation costs, image gradient of gray-
level images was obtained. Since the image gradient is relatively
smaller within an object than between object, pixels inside object
were removed using a threshold decided from the training set.
Then, the CHT was applied to find circular objects. However, due
to the roughness of the ground, camera heights above the ground
were not constant. This caused different sizes of objects depending
on the heights of the cameras. Fig. 6 shows different sizes of fruit in
the images taken at two different heights. Fig. 6a was acquired at a
closer distance from the ground, and a radius of the citrus fruit in
the center was about 100 pixels. On the other hand, the image of
fruit in Fig. 6b was taken at further distance resulted in a smaller
fruit radius (37 pixels).



Fig. 6. Different sizes of fruits in images taken at different heights. (a) Camera at a closer distance: fruit radius of 100 pixels. (b) Camera at higher position: fruit radius of
37 pixels.

Fig. 7. Multiple detections from the CHT (red circles). (a) Multiple circles detected on a single fruit ranged from 30 to 150-pixel radius, and (b) overlapped circles containing
fruit and background objects together. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 1
List of features that were used in the classification step. The left column describes the
features, and the right column shows numbers of features.

Description Number of
features

Red, green, and blue in RGB color space 3
Hue, saturation, and value in HSV color space 3
Luminance, chrominance in red, and chrominance in blue in

YCbCr color space
3

Luminance, a, and b in Lab color space 3
Gray level 1
Gradient of gray level image 1
Edges in gray level image detected by canny method 1
Entropy of gray level image 1
Standard deviation of gray level image 1
Range of gray level image 1
Total 18

D. Choi et al. / Computers and Electronics in Agriculture 127 (2016) 109–119 113
Therefore, the CHT was applied to detect circular objects with a
wide range of radii. The range of radii was decided from manual
inspection of the fruit sizes in the training set, and it was found
to be between 30 pixels and 150 pixels. The wide range of radii
in the CHT caused multiple detections of circles on an object
(Fig. 7a) and other backgrounds that were overlapped with the
fruit were also detected (Fig. 7b).

However, not all oranges can be detected using the CHT. Some
fruits were occluded by background, and the oranges that were
located at the corner of the images resulted in random shapes
(red arrow in Fig. 8a). Another step to find potential fruit areas
using color and texture was tested. An image was sectioned into
smaller patches and a random forests (RF) classifier (Breiman,
2001) evaluated if the individual patches belonged to the fruit class
using color and texture features. Different patch sizes; 10 by 10, 20
by 20 and 30 by 30 pixels was examined to find what sizes of the
patch would perform better to detect fruit areas. The biggest patch
size was constrained to be 30 by 30 because the smallest fruit in
the training set was 30 by 30 pixels. A connected component of
detected patches was added as potential fruit areas (Fig. 8b).

To train the RF classifier for potential fruit areas, 18 color and
texture features were extracted from manually labeled objects in
the training set. Table 1 shows the list of features that were used.
Fig. 8. Comparison of two methods to find potential areas of fruit. (a) CHT: failed to find
less dependency on the fruit shape. (For interpretation of the references to colour in thi
2.3.3. Choosing the most appropriate citrus-containing circle using
applied canny edge density (ACED) algorithm

Detecting potential fruit areas using the CHT and the RF classi-
fier created multiple detections of fruit with different sizes of
circles (Fig. 9a). Previous studies by Bansal et al. (2013) and
Sengupta and Lee (2014) addressed the same problem in their
oranges that had a weak circular shape, and (b) finding fruit using color and texture:
s figure legend, the reader is referred to the web version of this article.)



Fig. 9. Incorrectly located circles by picking the maximum size of circles among the overlapped. (a) Overlapped circles before repeated circle removal and (b) after the
removal process by choosing maximum size of circles, failed to choose the most appropriate fruit area.
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(c) 

(1) (2) (3) 

Fig. 10. Comparison of the ACED values of detected circles. RGB images of the detected circles, canny edge images, and complement images of filtered circles are shown in the
first, the second, and in the last column, respectively. (a) A circle with complicated background (ACED = 0.24), (b) a circle that contained the citrus fruit and the background
together (ACED = 0.76), and (c) a circle with a single fruit (ACED = 0.96).
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algorithms. In their research, Bansal et al. (2013) used an average
of centers of overlapped fruit, and Sengupta and Lee (2014)
selected the largest radius circles among overlapped circles. How-
ever, averaging the center location or using the maximum size of
circles resulted in failures in the proper selection of fruit areas
(Fig. 9b).

Therefore, an applied canny edge density (ACED) algorithm was
proposed to choose the most appropriate citrus-containing circles
among the repeated ones. The motivation of the ACED was that
circles containing more objects have more edges. A canny edge
detection algorithm was used to find edges and a morphological
close operation was applied with a disc-shaped filter. By the oper-
ations, regions that have more edges were filled. Other regions
without edges were left as empty spaces. Then, the circle images
were complemented. Densities were calculated by dividing a num-
ber of white pixels in the complemented region by area of the
detected circle to be used as the ACED values. The ACED value is
close to 1 when it contained a single fruit within a circle. Fig. 10
shows the process of calculating the ACED value of the detected
circles. In Fig. 10, RGB images of the detected circles, canny edge
images, and complement images of filtered circles are shown in
the first, the second, and in the last column, respectively. Fig. 10a
shows the circle that contained more than two objects (soil, dried
grass and leaves) and many edges were detected. After the filtering
and complementing, the most region within the circle was emptied
(ACED = 0.24). Fig. 10b shows the circle that contained a fruit with
some of the background objects. The ACED value in Fig. 10b is
larger (0.76) than the circle in Fig. 10a since it contained fewer
objects and edges. Lastly, the circle in Fig. 10c was much higher
(0.96) since it contained only single fruit within the circle. All over-
lapped circles were removed and a circle that has the highest ACED
value was chosen.



Fig. 11. Histogram of saturation values of the recently dropped fruit and rotten fruit.

Table 2
List of selected features that were used in the second classification step according to
the three patch sizes.

Patch size Number of
selected features

Description of selected features

10 by 10 10 S, a, Cr, canny edge, gradient, H, entropy,
B in RGB, R, and b in Lab color space

20 by 20 4 S, a, canny edge, and gradient
30 by 30 5 S, Cr, canny edge, a, and gradient
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2.3.4. Evaluating decaying stages of fruit
The detected circle was then divided into smaller patches (10 by

10, 20 by 20 and 30 by 30 pixels) and classified again using another
RF classifier into three categories: background, recently dropped
75.8 (a) 

 127.4 

152.8

(c) 

(e) 

Fig. 12. Comparison of different image enhancement method: standard histogram equali
on the images represent average image brightness of the images. (a) and (b) original imag
the CLAHE.
fruit and rotten fruit. To train the second classification, saturation
values in the HSV color space were used to label the two fruit
stages, recently dropped fruit and rotten fruit. Fig. 11 shows the
histogram of manually cropped images of the recently dropped
and the rotten oranges from the 210 training images. Two his-
tograms were intersected each other at 101, and this value was
used as the threshold to divide two classes for the training images.

For feature selection, a subset of the 18 features in Table 1 was
created according to the feature importance using the out-of-bag
(OOB) errors in the RF (Breiman, 2001). During the training pro-
cess, each tree in the RF uses only 2/3 of data, and the rest was
tested to estimate the error (OOB error). Creation of a subset was
started with the most important feature, and more features were
added until the OOB error of the subset had less than 1% difference
with the original OOB error with full features in Table 1.
(b) 100.3 

127.5 

153.1

(d) 

(f) 

zation (HE) and contrast limited adaptive histogram equalization (CLAHE). Numbers
es, (c) and (d) enhanced images using the HE, and (e) and (f) enhanced images using
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Table 2 shows the list of selected features for the different patch
sizes. A total of ten, four, and five features were selected for the 10
by 10, 20 by 20, and 30 by 30 patch size, respectively. Then, amajor-
ity voting was conducted for the final class decision. If the fruit
areas did not exceed 50% of the entire region, the circle was classi-
fied as the background. Non-background circles were selected
based upon calculated percentages of rotten fruit areas to estimate
the stages of the detected fruit. After the estimation of the stages of
the detected fruit, the number of the recently dropped fruit and the
rotten fruit were counted. The results were combined with GPS
Fig. 13. Additional examples of the CLAHE enhancement for images that had more brigh
images using the CLAHE.

Fig. 14. Histogram of average brightness levels in enhanced im

Fig. 15. Illustration of finding potential areas. (a) multiple detection of a single fruit after
coordinates to create a geo-referenced fruit drop map. Two volun-
teers participated in evaluating results of the algorithm. The volun-
teers identified the numbers of actual fruits, missed fruits (fruit not
detected by the algorithm), correctly identified fruit, and false pos-
itives (backgrounds detected as the citrus by the algorithm) in the
images. The fruit stage classification (the recently dropped, and
the rotten fruits) was then evaluated among the correctly identified
fruit. The average of saturation value was calculated and compared
with the threshold decided in Fig. 11. The fruits that did not meet
the threshold were counted as the false classification of the stages.
tness gaps within the images. (a) and (b) original images and (c) and (d) enhanced

ages. All images had the constant brightness near to 152.

the CHT and the RF classifier and (b) circle removing process using the ACED values.



Fig. 16. Example images from final classification result of the fruit stages (red
circle: recently dropped fruit, and blue circle: rotten fruit). (a) Correctly identified
fruits, (b) missed fruit in the center due to the similarity with the background, and
(c) false positive of the leaves due to the similarity of the color with the citrus. (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)
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3. Results and discussion

3.1. Result of image enhancement using CLAHE

Fig. 12 shows a comparison of original images (Fig. 12a and b),
enhanced images using the standard histogram equalization
(Fig. 12c and d), and enhanced images using the CLAHE
(Fig. 12e and f). Average brightness levels of the original images
Table 3
Result of fruit detection rate by the number of correctly identified fruit and false positive

Actual number of fruit Manual counting 1: 926 Manual

Patch
size

Count by
algorithm

Correctly identified fruit
(%)

False positives
(%)

Correctly
(%)

10 by 10 1032 876 (94.6) 156 (16.8) 885 (93.
20 by 20 886 836 (90.3) 50 (5.4) 843 (89.
30 by 30 786 759 (82.0) 27 (2.9) 764 (80.
were in different ranges, 75.8 and 100.3. After the image enhance-
ment using the HE, the brightness levels became similar, about 127
for both images. However, the center of the images was excessively
contrasted, changing many pixels to a darker color. The enhanced
images using the CLAHE (Fig. 12e and f) restrained the over-
contrasting, and the images preserved its details. The average
brightness levels were adjusted to have a brighter and desired level
(153 in scaled value component in HSV), which was not possible
when using the standard HE. Also, Fig. 13 shows that the CLAHE
was able to enhance the images that had bigger gaps in brightness
levels between dark and bright regions.

Enhanced images of all 553 images, including the training and
validation sets, had the constant brightness levels around 152
with a standard deviation of 1.0. Fig. 14 shows a distribution of
average brightness levels after the enhancement. Compared to
the distribution of original images in Fig. 4, brightness levels of
the images were greatly improved and had almost the same
brightness values.
3.2. Result of finding potential fruit areas using shape, color and
texture

The potential fruit areas were detected using the CHT and the
RF classifier with color and texture (Fig. 15a). In the image in
Fig. 15a, the fruits are detected multiple times, and some of the
detected areas included backgrounds. The repeatedly detected cir-
cles were removed, and the circle that had the highest ACED value
remained. Fig. 15b shows that the circles were chosen correctly
without containing other background objects.

After the circle removal, the second classification by patch using
the RF was conducted within the detected circles. The background
objects were identified during this process. Also, the stages of
dropped fruit were decided by the majority voting. Fig. 16 shows
final decision by majority voting. Red circles represent recently
dropped citrus, and blue circles represent rotten ones. Most of
the fruit were detected correctly. However in Fig. 16b, the fruit in
the center was not detected due to the similarity of color and tex-
ture with background. Fig. 16c shows an example of false positive;
a leaf was detected as a citrus due to the similarity of the color and
texture with the citrus. Table 3 shows a summary of results from
fruit detection algorithm validated by two volunteers. The highest
average rate of correctly identified fruit was 94.6% when the
patch size was 10 by 10. However, the classifier with the 10 by
10 patch size generated the highest rate of false positives since
the patch was too small to capture the texture of the fruit properly.
On the other hand, a 30 by 30 patch was larger than the minimum
size of the smallest fruit resulting in many missed fruits. Consider-
ing both the false positives and the correctly identified fruit rates
together, it was concluded that the 20 by 20 patch (1.7 cm by
1.2 cm) was the most appropriate size for the fruit detection appli-
cation. In a previous study for detecting citrus fruit drop using out-
door RGB images, Choi et al. (2015) reported 88.1% of the correctly
identified fruit. Compared to the previous article, this study
showed improved performance to detect dropped fruits.
s.

counting 2: 947 Average: 936.5

identified fruit False positives
(%)

Correctly identified fruit
(%)

False positives
(%)

5) 147 (15.5) 880.5 (94.0) 151.5 (16.2)
0) 43 (4.5) 839.5 (89.6) 46.5 (5.0)
7) 22 (2.3) 761.5 (81.3) 24.5 (2.6)
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3.3. Result of evaluating stages of fruit using random forest classifier

Among the correctly identified fruits, the result of evaluating
stages of the citrus, the recently dropped and rotten fruit were
validated by comparing the result from the classifier and the
majority voting with the classes decided from the threshold in
Fig. 11. Table 4 shows the false classification rates of fruit stages
which was calculated by dividing the number of the falsely clas-
sified stages by the actual number of each class. The lowest false
classification rates for the recently dropped fruit was 4.2% when
the patch size was 30 by 30. Since the stages of the dropped fruits
were validated using the average of saturation values so the big-
ger size of patch performed more effectively. However, the false
positive rate of the rotten fruit was lowest when the 10 by 10
patch was used (18.5%). For the rotten fruit, most of the fruit
had non-uniform surface including the color and texture, partly
with blemish and different colors. Therefore, the smaller size of
Table 4
Result of evaluating stages of fruit. Each column in manual counting 1&2 and its average rep

Patch size Manual counting 1

Recently dropped fruit Rotten fruit

Actual no. False positives (%) Actual no. False positives (

10 by 10 449 18 (4.0) 427 82 (19.2)
20 by 20 442 22 (5.0) 394 80 (20.3)
30 by 30 439 10 (2.3) 320 107 (33.4)

Average

Recently dropped fruit Rotten fruit

Actual no. False positives (%) Actual no. False positives (

10 by 10 450 19 (4.2) 430.5 79.5 (18.5)
20 by 20 442.5 23 (5.2) 397 78 (19.6)
30 by 30 438.5 10.5 (2.4) 323 104.5 (32.3)

Fig. 17. Example of geo-referenced maps utilizing a satellite image. Number in parenthe
using additional field experiment in University of Florida experimental grove (Gainesvil
the 10 by 10 patch evaluated the rotten fruits more accurately.
Due to the uniqueness of the topic, there are not enough
published studies related to citrus stage evaluation using outdoor
RGB images. However, Fadilah et al. (2012) reported 91.6%
accuracy to evaluate ripeness of oil palm fresh fruit using outdoor
RGB images. However, an image contained only one fruit and the
size of fruit was filled entire of an image. Also, the images did not
involve varying illumination conditions. Considering those
circumstances, the result from this study had meaningful
achievement.

The counts of both stages of the fruit were combined with GPS
coordinates to generate a geo-referenced map. Fig. 17 shows exam-
ple maps created utilizing a satellite image from Google Earth.
Using the fruit drop map, citrus growers can visualize where, and
when the citrus fruit dropping is the most prevalent in their groves
and provide block specific management to have better fertilization
and irrigation of the areas.
resents false classification rate of each classes: recently dropped fruit and rotten fruit.

Manual counting 2

Recently dropped fruit Rotten fruit

%) Actual no. False positives (%) Actual no. False positives (%)

451 20 (4.4) 434 77 (17.7)
443 24 (5.4) 400 76 (19)
438 11 (2.5) 326 102 (31.2)

%)

sis in legend represent the number of events in each category. The map was created
le, Florida) conducted on April 25, 2014.



D. Choi et al. / Computers and Electronics in Agriculture 127 (2016) 109–119 119
4. Conclusion

A machine vision system was developed for counting dropped
citrus fruit under tree canopies and evaluating its stages: recently
dropped fruit or rotten fruit. The contrast limited adaptive his-
togram equalization (CLAHE) enhanced the brightness of all images
to have the constant image brightness levels. The proposed algo-
rithm improved accuracy of the classification compared to previ-
ous studies. The performance of fruit detection algorithm was
the highest (89.6% for correct identification and 5.0% for false pos-
itive rates) when the patch size was 20 by 20 (1.7 cm by 1.2 cm).
This shows that a choice of an appropriate patch size is an impor-
tant task, the patch should be large enough to contain texture
information but not exceed the size of the fruit. However, the clas-
sification of fruit stages showed different patch sizes performed
better depending on the features of each stages. By estimating
citrus fruit drop and creating a fruit drop map, block specific man-
agement can be achieved to provide better fertilization and irriga-
tion programs that can help to treat the HLB-infected trees in order
to delay tree death and prevent infection within a tree (Salifu et al.,
2013). The machine vision system demonstrated here could be fur-
ther developed into a real-time system for use in commercial citrus
groves.
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