Multiple Plant Tracking for Precision Agriculture Applications
Byron Hernandez and Henry Medeiros
Department of Agricultural and Biological Engineering
University of Florida

Introduction

Motivation:
- The steadily increasing global population.
- The decreasing availability of agricultural workers.
- Fertilization and yield prediction are critical tasks in agriculture.
- Plants and fruits should be sprayed or counted exactly once.

Context:
- The use of agricultural robots is still under-explored.
- Great part of the perception systems rely on computer vision.
- Modern computer vision makes use of deep learning models.
- Tracking in agricultural scenarios imposes additional challenges such as homogeneity of objects.

Case Study Dataset

LettuceMOT [1]
- Sequences: 8
- Navigation types: 3
- Instances: 707
- Frames: 5466
- Annotations: 42735

Baseline & Experiments

LettuceMOT [1]: Training with straight1 and straight3. Testing on the remaining sequences.
LettuceTrack [2]: Training with straight3 and straight4. Testing on the remaining sequences.

Approach

Quantitative Results

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Method</th>
<th>HOTA</th>
<th>IDF1</th>
<th>Dataset</th>
<th>Method</th>
<th>HOTA</th>
<th>IDF1</th>
</tr>
</thead>
<tbody>
<tr>
<td>O&I</td>
<td>98.1 98.6</td>
<td>98.1 98.4</td>
<td>O&I</td>
<td>98.1 98.4</td>
<td>98.1 98.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>straight1</td>
<td>Best in LettuceMOT [1]</td>
<td>63.6 58.7</td>
<td>63.6 58.7</td>
<td>straight1</td>
<td>Best in LettuceMOT [1]</td>
<td>63.6 58.7</td>
<td>63.6 58.7</td>
</tr>
<tr>
<td>time</td>
<td>74.11 61.3</td>
<td>74.11 61.3</td>
<td>time</td>
<td>74.11 61.3</td>
<td>74.11 61.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>straight2</td>
<td>Best in LettuceMOT [1]</td>
<td>87.2 94.7</td>
<td>87.2 94.7</td>
<td>straight2</td>
<td>Best in LettuceMOT [1]</td>
<td>87.2 94.7</td>
<td>87.2 94.7</td>
</tr>
<tr>
<td>O&I</td>
<td>98.5 98.5</td>
<td>98.5 98.5</td>
<td>O&I</td>
<td>98.5 98.5</td>
<td>98.5 98.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>straight3</td>
<td>Best in LettuceMOT [1]</td>
<td>84.4 92.7</td>
<td>84.4 92.7</td>
<td>straight3</td>
<td>Best in LettuceMOT [1]</td>
<td>84.4 92.7</td>
<td>84.4 92.7</td>
</tr>
<tr>
<td>time</td>
<td>97.1 95.5</td>
<td>97.1 95.5</td>
<td>time</td>
<td>97.1 95.5</td>
<td>97.1 95.5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Conclusions

- The tracking-by-detection paradigm is well-suited for related agricultural tracking problems.
- The novel method for spatial association improves tracking performance as long as at least one object remains visible to the camera.
- The tracking paradigm offers a framework to convert detection datasets into tracking datasets.

References