Advanced Robotic Systems Design

ABE 4932 Section 28287 Class Periods: Tuesdays, Periods 7-8, 1:55pm - 3:50pm Location: Frazier Rogers Hall 106

ocation: Frazier Rogers Hall 10 Academic Term: Spring 2026

Instructor:

Henry Medeiros hmedeiros@ufl.edu 352-294-6706

Office Hours: Mondays, 3:00pm – 4:00pm (or by appointment), Frazier Rogers Hall 275

Teaching Assistant/Peer Mentor/Supervised Teaching Student: N/A

Course Description

This course provides students foundational skills for the design, implementation, and performance assessment of agricultural robotic systems. Students will learn how to design and implement modules for robotic navigation, perception, and manipulation using the Robot Operating System. They will also be introduced to best design practices and project management techniques for integrated hardware/software development teams. Students who successfully complete this course will be encouraged to participate in the Robotics Competition held at the Annual International Meeting of the American Society of Agricultural and Biological Engineering (2 credits).

Course Pre-Requisites / Co-Requisites

ABE 4171C or equivalent for undergraduate students or ABE 6005 or equivalent for graduate students. Both pre-requisite courses can be taken concurrently with this course.

Course Objectives

Students should leave the course with knowledge of how to conceive and manage an integrated hardware/software development project, as well as hands-on experience on the design, implementation, and evaluation of the main components of a fully functional specialized robotic system.

Materials and Supply Fees

N/A

Relation to Program Outcomes (ABET):

	iteome	Coverage
Outcome		<u> </u>
1.	An ability to identify, formulate, and solve complex	Medium
	engineering problems by applying principles of	
	engineering, science, and mathematics	
2.	An ability to apply engineering design to produce	High
	solutions that meet specified needs with	
	consideration of public health, safety, and welfare, as	
	well as global, cultural, social, environmental, and	
	economic factors	
3.	An ability to communicate effectively with a range of	Medium
	audiences	
4.	An ability to recognize ethical and professional	Medium
	responsibilities in engineering situations and make	
	informed judgments, which must consider the	
	impact of engineering solutions in global, economic,	
	environmental, and societal contexts	
5.	An ability to function effectively on a team whose	High
	members together provide leadership, create a	
	collaborative environment, establish goals, plan	

	tasks, and meet objectives	
6.	An ability to develop and conduct appropriate	High
	experimentation, analyze and interpret data, and use	
	engineering judgment to draw conclusions	
7.	An ability to acquire and apply new knowledge as	Medium
	needed, using appropriate learning strategies	

Required Textbooks and Software

• Readings assigned on Canvas.

Recommended Materials

• N/A

•

Course Schedule

Weeks 1-2: Robot Operating System (ROS) Architecture

Weeks 3-4: ROS Robot Specification

Weeks 5-6: Navigation, Perception, and Manipulation Nodes Weeks 7-8: Project Specification, Scheduling, and Management

Week 9:Project Documentation and Versioning

Weeks 10-11: Module Design

Week 12: Module Design PresentationsWeek 13: Software Testing and AssessmentWeek 14: Hardware Testing and Assessment

Week 15: Prototype Proof of Concept Implementation and Performance Evaluation Presentation

Evaluation of Grades

Assignment	Percentage of Final Grade
Attendance and Participation	15%
Mini-projects and homework	20%
Module Design Presentation	20%
Prototype Proof of Concept Presentation	20%
Prototype Testing and Performance Assessment Presentation	25%
	100%

Grading Policy

Percent Grade Grade				
rercent	Grade			
		Points		
93.4 - 100	A	4.00		
90.0 - 93.3	A-	3.67		
86.7 - 89.9	B+	3.33		
83.4 - 86.6	В	3.00		
80.0 - 83.3	B-	2.67		
76.7 - 79.9	C+	2.33		
73.4 - 76.6	С	2.00		
70.0 - 73.3	C-	1.67		
66.7 - 69.9	D+	1.33		
63.4 - 66.6	D	1.00		
60.0 - 63.3	D-	0.67		
0 - 59.9	Е	0.00		

More information on UF academic policies may be found at: https://go.ufl.edu/syllabuspolicies

Commitment to a Positive Learning Environment

The Herbert Wertheim College of Engineering values varied perspectives and lived experiences within our community and is committed to supporting the University's core values.

If you feel like your performance in class is being impacted, please contact your instructor or any of the following:

- Your academic advisor or Undergraduate Coordinator
- HWCOE Human Resources, 352-392-0904, student-support-hr@eng.ufl.edu
- Pam Dickrell, Associate Dean of Student Affairs, 352-392-2177, pld@ufl.edu