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Statement of extension programming 

As an applicant for the position of Assistant Professor of Agricultural Water Management at the 
Everglades Research and Education Center (EREC), University of Florida, I bring a comprehensive 
background in soil hydrology, climate change, and fertility management. My goal is to lead innovative, 
research-based extension programs that address Everglades Agricultural Area and South Florida’s 
unique agricultural and environmental challenges. By supporting UF’s faculty and Extension agents. I 
will contribute to improving soil health and climate resilience in South Florida’s diverse farming systems. 

In this role, I will deliver practical, research-driven information and resources to farmers, land managers, 
and other stakeholders, ensuring that my programs are responsive to their needs. Key aspects of my 
extension programming will include: 

• Leadership in Extension Programs: I will provide leadership in water management and soil 
health initiatives at the state and regional levels, collaborating with Extension agents and other 
partners to deliver targeted, impactful programs. I will ensure that programs align with the needs 
of federal, state, and county stakeholders, integrating their priorities to maximize effectiveness 
and resource allocation. 

• Client-Centered Program Development: My programs will directly address Best 
Management Practices including soi hydrology study, nutrient management, and soil erosion, 
particularly under changing climatic conditions. I will engage with stakeholders to identify and 
address specific water challenges and provide research-based solutions through workshops, 
webinars, on-farm demonstrations, and other outreach formats. 

• Innovative Educational Methods: I will utilize diverse, innovative platforms such as decision 
support tools, mobile apps, webinars, workshops, and field demonstrations to deliver relevant 
information on soil amendments, irrigation, and conservation practices. Additionally, I will 
produce educational materials including fact sheets, peer-reviewed extension publications, and 
social media content to reach a broader audience. 

• Collaborative Partnerships: Building strong partnerships with local and regional stakeholders, 
including farmers, advisory groups, government agencies, and private industry, will be central 
to my extension efforts. I will work closely with Florida Agricultural Experiment Station and 
Florida Cooperative Extension Service. Through these collaborations, I will identify emerging 
needs and co-develop solutions that promote sustainable agricultural practices and improve soil 
health outcomes. 

• Pursuing Funding and Resources: I will seek external and internal funding to support and 
sustain my extension programs, prioritizing grants from USDA-NIFA, NRCS, USAID, and 
private foundations that align with water management and sustainable agriculture objectives. 
Securing financial resources will be crucial to scaling up initiatives that directly benefit South 
Florida’s farming community. 

• Documenting and Measuring Impact: I will establish clear benchmarks for BMPs for 
improved water and nutrient use efficiency. Monitoring and documenting behavioral, financial, 
and environmental impacts will ensure that my programs contribute measurable benefits to 
South Florida’s agricultural landscapes. Program impacts will be shared through peer-reviewed 
publications and at professional conferences. 
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• Extension Scholarship: My work will emphasize scholarly contributions to irrigation 
management extension through original research, curriculum development, and applied 
programming. I will seek external validation for these efforts through peer-reviewed journals, 
professional presentations, and adoption by other Extension personnel nationwide. 

• Budget and Personnel Management: I will effectively manage program resources, including 
staff and volunteers, to ensure the efficient use of financial and human resources. By recruiting 
and training volunteers, I will extend the reach and impact of my soil health programs. 

• Commitment to Diversity and Inclusion: I am committed to serving diverse audiences and 
ensuring that all programs comply with civil rights mandates. Extension efforts will actively 
include underrepresented and minority groups, ensuring equitable access to resources, education, 
and opportunities in soil health and sustainable agriculture. 

This approach will foster resilient, healthy soils that support sustainable agricultural practices across 
South Florida while contributing to the long-term success of UF’s extension mission. 
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Research Statement 

Achieving sustainability in agri-food systems demands transdisciplinary research, integrating soil health, water 
and carbon cycle, and natural resources management. I employ field, lab, and simulation experiments/models, 
develop survey tools, and analyze geospatial, environmental, and climate data to better understand soil health, 
water and carbon cycles as influenced by climate change and land use management. There is a critical need to 
understand the hydrological cycle, carbon cycle, and land surface-climate interactions at the field-, regional- to 
continental scales to improve policy and decision-making for sustainable ecosystem management and improved 
environmental quality. 
 
PhD Research: Ecosystem Modeling (University of Wisconsin-Madison): The five chapters of my doctoral 
dissertation, which together form the basis of four scientific papers published in peer-reviewed journals, are 
derived from a series of experiments in farmers’ fields in Wisconsin and India, and the conterminous US 
(CONUS). The major works involved were: 

1. Soil water modeling using microwave remote sensing: Utilizing Sentinel-1 microwave backscatter, soil 
property databases (e.g., POLARIS, SSURGO), and digital elevation model (DEM), I trained a few machine 
learning (ML) models (e.g., Random Forests, Cubist) to retrieve surface soil moisture (~5 cm) across diverse 
land cover types in the US Climate Reference Networks (USCRN) (published in the Remote Sensing). This 
research improves our understanding of the role of soil and terrain properties in soil moisture retrieval using 
remote sensing and AI/ML modeling. 
 

2. Predictive soil mapping and multi-sensor fusion: I developed a digital soil mapping framework using a 
multi-sensor fusion experiment in a grower’s field in Wisconsin that explored the potential of a stepwise 
fusion of proximally sensed portable X-ray fluorescence (pXRF) soil spectra and electromagnetic induction 
(EMI) with remote Sentinel-2 bands and a DEM for predicting soil physicochemical properties across a 
heterogeneous 80-ha crop field (published in the CATENA). This framework offers a novel framework for 
delineating soil management zones to optimize resource use, including irrigation, manure, and fertilizers. 
 

3. Drought forecasting framework using remote sensing data: This work evaluated the efficacy of root-
zone soil moisture-based drought indices for agricultural 
drought forecasting across diverse climate regimes, land 
cover, soil texture, and irrigation management (irrigated vs. 
rainfed) in the CONUS (published in the Remote Sensing of 
the Environment –RSE). This work informs regional and 
national drought mitigation strategies by assessing the 
performance of satellite-derived drought indices across 
diverse climate regimes and land cover types. 
 

4. Evapotranspiration and crop coefficient for irrigation scheduling: I developed a methodology for 
computing evapotranspiration (ET) and crop coefficients for wetland paddy using eddy covariance systems 
and multiple reference ET models (published in the Theoretical & Applied Climatology). The findings 
suggest revisions to FAO's crop coefficient guidelines, offering improved irrigation scheduling in tropical 
climates. 
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5. Wildfire-soil-climate causality and feedback: This work is focused 

on a wildfire-soil-climate causality study using Empirical Dynamic 
Model (EDM) in the global boreal biome using multiple remote 
sensing products (e.g., MODIS, TRMM, GRIDMET) for forest fire, 
land cover, ET, albedo, land surface temperature, precipitation, snow 
cover data, and vegetation health parameter. This study aims to explain 
the feedback mechanisms between wildfire incidence and 
environmental conditions including soil types in the global boreal 
biome. 

Postdoctoral Research: Regenerative Agriculture (USDA Hydrology and Remote Sensing Lab, Beltsville)  
During my postdoctoral tenure with Drs. Martha Anderson and Feng Gao, I focused on evaluating the resilience 
of regenerative agricultural systems in the US. My major contributions include: 

1. Water use and drought resilience in regenerative farms: I employed physical models (e.g., ALEXI, 
disALEXI) and satellite data (ECOSTRESS, Landsat, VIIRS) to assess water use (i.e., ET) and develop a 
drought monitoring framework for regenerative farms in Wyoming, Michigan, and Oklahoma. 

2. Soil and crop health assessment: I analyzed multi-sensor satellite data to monitor vegetation and soil health 
across diverse regenerative farms, contributing to a national database on soil health as part of the FFAR 
project. We sampled soil and biophysical properties from different regenerative ag. farms and analyzed those 
to make a national database under the FFAR project 

 
Experience as ARS Scientist at Indian Council of Agricultural Research (ICAR), India: 
At ICAR, I worked in the areas of wetland soil health, land use/land cover, water management, climate change, 
greenhouse gas (GHG) measurement, and crop simulation modeling. The projects I lead are: 
•Project 1: Vulnerability analysis, LU/LC mapping, digital soil mapping, and assessment of climate-smart 
agricultural technologies for enhancing resilience in stress-prone agro-ecologies 
•Responsibilities: digital soil mapping, LU/LC change detection, drought forecasting, and vulnerability metric 
development under climate change scenarios (RCPs, SSPs). 
• Project 2: Energy balance, ET, and GHG flux measurement using eddy covariance and gas chambers. 
•Responsibilities: Net Ecosystem Exchange of CO2, CH4, flux partitioning, ET and GHG modeling. 
•Project 3: Enhancing water use efficiency (WUE) in rice-based cropping system in eastern India. 
•Responsibilities: AI/ML algorithms for crop yield prediction, soil moisture estimation, and greenhouse gases 
(GHG) modeling under water stress conditions 
•Project 4: Crop simulation modeling (e.g., APSIM, DSSAT) for crop yield under changing climate scenarios. 
•Responsibilities: Biophysical, soil, and weather data collection from field trials, scenario generation, and 
statistical analysis. 
 
Current Work: Faculty Research Assistant, University of Maryland, College Park 
As a Faculty Assistant at the University of Maryland, I support the Precision Sustainable Agriculture (PSA) 
team in developing web-based decision tools for water and nitrogen management. My work focuses on soil-
landscape analysis and geospatial modeling, integrating SSURGO data, remote sensing, and terrain attributes 
to improve the PSA cover crop nitrogen calculator. Key tasks include calibrating AI/ML models to predict 
cover crop biomass and nitrogen content, integrating COMET-Planner to estimate GHG emissions, and 
automating data acquisition from diverse sources. This interdisciplinary effort enhances decision-making tools 
for sustainable agriculture. 
 
Future research directions and themes 
For the Assistant Professor position (Agricultural Water Management) at University of Florida, I propose a 
focused research agenda centered on innovative approaches to study hydrology and water resources 
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management, land-climate interactions, and soil carbon and nutrient cycle. My overall research will comprise 
three main themes as below: 
 
Theme 1. Characterizing crop water use under climate change and management using sensor and remote 
sensing based metrics, geospatial analysis, hydrological models and AI/ML algorithms 
An integrative approach that integrates tools (remote sensing, cloud based geospatial platforms, in situ 
observations, laboratory analyses, and modeling) and a system approach is required to understand the complex 
interactions between soil, water, climate, and crops. I will examine the underlying relationship between the soil-
plant-water-climate nexus and then scale from the variation in field scale to the variation to regional or 
continental scale exposed to contrasting climate, irrigation management, and land use. To do this, I will assess 
crop responses to climate extremes (e.g., drought, heat waves) by exploring soil-plant-atmosphere interactions.  
 
Theme 2. Assessing the impacts of management (e.g., irrigation, fertilizer) and climate on soil health, soil 
nutrient (i.e., C, N, P) dynamics and crop health 
I aim to develop sensor and AI/ML based data driven models to assess and predict soil water availability, 
nutrient transport and how conservation practices impact water availability during drought or extreme climate 
events. By integrating real-time climate data, soil moisture sensors, and carbon flux observations (from eddy 
covariance network), this research would support precision irrigation, input, and carbon management practices, 
aiming to enhance water-use efficiency, optimize carbon sequestration, and maintain soil health under varying 
climate conditions and management. I will study the transport of N and P in soil system and in sediment which 
is important to understand N leaching, P transport, and soil erosion processes. 
 
Theme 3. Developing an integrated AI-based smart digital farming system for soil health monitoring and 
mapping 
Food demand is increasing with the fast growth of the world population. Toward the Industry 4.0 era, smart 
digital farming with autonomous robotic technologies, the Internet of Things (IoT), and AI play a crucial role 
in enhancing crop productivity. Despite great benefits, smart farming is facing multiple challenges in integrating 
cutting-edge technologies, standardizing and scaling data between different platforms, processing and storing 
large data sets, and simplifying and distributing data to farmers for timely decision-making. I aim to develop 
an integrated smart sensing system for crop and soil health monitoring. The system would comprise a ground-
based sensor (e.g., soil sensors, nutrient sensors, gas exchange sensors) network to record crop and soil health 
metrics, an airborne and ground-based imaging system for collecting images, a wireless connected computing 
system for real-time data receiving, processing, and storage, and online crop health and soil map sharing. 
Advanced AI/ML algorithms will be developed in the system to assess crop health, soil nutrient status, and 
estimate yield. This system provides farmers with a real-time decision support framework to help them decide 
when to cultivate, how much water and how frequently irrigation is needed, how much fertilizer is needed, how 
to detect environmental stress, when to harvest, etc. Integrating with global spaceborne imaging data, this 
system can be upscaled and applied to large geographic regions. 
 
Broader impact: My interdisciplinary research will greatly contribute to the methodological advancements of 
geospatial and earth observation technologies in digital farming. My research can be upscaled to a large scale 
to provide unprecedented capacity not only to understand the impacts of climate change on water use and crop 
production, but also to better understand how multiple factors influence those responses across crops, soils, and 
management. I look forward to establishing fruitful collaborations with colleagues at the UF to achieve these 
goals. 
 
Sumanta Chatterjee 
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Teaching Statement 

As an applicant for the Assistant Professor of Water Management position at the University of Florida, 
I bring a unique background and a strong commitment to teaching hydrology and soil science. Growing 
up in a farming family in India, I developed a deep passion for understanding the complexities of 
agriculture. Moving to the United States presented challenges, but it also solidified my desire to pursue 
a career in teaching and research. 

During my graduate studies, I served as a teaching assistant for the ‘Physical Principles of Soil 
and Water Management’ and ‘Advanced Soil Physics’ courses at the University of Wisconsin-Madison. 
I taught two courses- ‘Remote Sensing and GIS Technique for Soil, Water and Crop Studies’ and ‘Soil 
Resource Management’ at ICAR, India. These experiences allowed me to refine my teaching perspective 
and engage students in the fascinating world of soil science and ecosystem modeling. In teaching soil 
physics, my main objective is to cultivate understanding and problem-solving skills among students. I 
firmly believe that critical thinking, empirical and physical models, and intuition are the foundations of 
soil-water theory. To achieve this, I strive to help students develop a conceptual framework for analyzing 
the causal structure of soil water flow. Real-world examples play a crucial role in this process, as they 
provide an overview of the topic and help students isolate the physical forces at play. 

Collaboration is essential for effective learning. Recognizing that students learn and understand 
concepts differently, I promote collaboration through group work, discussions, and projects. By creating 
a collaborative learning environment, I foster peer learning, deepen analysis, and encourage critical 
thinking. This collaborative approach enables students to explore different perspectives and develop a 
broader understanding of the subject matter. 

Curiosity is the driving force behind scientific exploration. To foster curiosity, I incorporate 
challenging assignments and encourage collaboration among students. By creating anticipation and 
interest, I inspire students to actively engage in the learning process and delve deeper into the subject 
matter. 

Transparency and organization are key aspects of my teaching approach. I work closely with 
course instructors to develop detailed syllabi and supporting materials that provide clarity and structure. 
In lectures, I ensure that demonstrations of physical principles are precise yet concise. Additionally, I 
provide students with additional references for further exploration, catering to their diverse learning 
needs and fostering deeper understanding. 

My teaching interests span a range of topics in soil mapping, soil-climate interactions, hydrology, 
water and carbon cycles, and ecosystem modeling. At the undergraduate level, I am particularly excited 
about teaching courses that incorporate sensors and geospatial applications in digital soil mapping and 
soil health, soil physics and pedology fundamentals, hydrology, and climate change. On the graduate 
level, I am eager to teach advanced topics related to land use-climate interactions and hydrological 
theory, providing students with the knowledge and skills to contribute to soil-water interactions and 
geospatial analysis. 

In conclusion, my teaching statement embodies my journey and commitment to teaching soil 
science and ecosystem modeling. Through my teaching approach, which focuses on understanding, 
collaboration, and curiosity, I aim to inspire students to become critical thinkers, problem solvers, and 
lifelong learners. If given the opportunity, I will bring my passion, expertise, and dedication to UF, 
shaping the next generation of scientists and contributing to the advancement of knowledge in the field 
of soil, plant, and water resources. 
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A B S T R A C T   

Drought is a recurring, complex, and extreme climatic phenomenon characterized by subnormal precipitation for 
months to years triggering negative impacts on agriculture, energy, tourism, recreation, and transportation 
sectors. Agricultural drought assessment is based on a deficit of soil moisture (SM) during the plant-growing 
season, whereas meteorological drought corresponds to subnormal precipitation over months to years. How-
ever, satellite-derived agricultural and meteorological drought indices (including those comprising root-zone 
SM) have not been comprehensively compared to evaluate their ability for drought delineation and particu-
larly forecasting across climate regimes, land cover and soil types, and irrigation management (irrigated vs. 
rainfed) in the contiguous USA (CONUS). Here, we did so from 2015 to 2019 within the CONUS. In most regions 
except the US Midwest and Southeast, SM-based indices (e.g., Palmer Z, SMAP, SWDI) delineated agricultural 
drought better than meteorological (e.g., SPI, SPEI) and hybrid (Comprehensive Drought Index, CDI) drought 
indices. In contrast, the SPI and SPEI showed strong correlation with the aridity index in most part of the CONUS 
except the Midwest. SM-based and hybrid indices also demonstrated skills for agricultural drought forecasting 
(represented by end-of-year cumulative GPP), predominantly in the early growing season and particularly in 
irrigated rather than rainfed croplands. These findings indicate the leading role of SM in controlling ecosystem 
dryness and confirm “drought memory”, possibly due to SM-memory in land-atmosphere coupling. Proper 
application of meteorological and agricultural drought indices and their contrasting spatial-temporal controls on 
plant growth and ecosystem dryness has the potential to improve our understanding of drought evolution and 
provide early drought forecasting across large regions with diverse climate regimes, land cover types, soil 
textural classes, and irrigation management.   

1. Introduction 

Drought is a recurring, complex, and extreme climatic phenomenon 
characterized by subnormal precipitation for months to years triggering 
negative impacts on agriculture, energy, tourism, recreation, and 
transportation sectors (Mishra and Singh, 2010; Dai, 2011; Azmi et al., 
2016; Cammalleri et al., 2017). Droughts caused annual economic 
damage of nearly $6–8 billion worldwide on average (Keyantash and 
Dracup, 2004; Yagci et al., 2013) and an estimated $30 billion across the 
US (NCEI, 2017). Droughts have several definitions that are based on 
different schools of thought (Heim Jr, 2002), thus making it more 
difficult to quantify their impacts in terms of their magnitude, duration, 

intensity, and spatial extent (Vicente-Serrano et al., 2010). 
Drought is often categorized into four types, namely meteorological, 

agricultural, hydrological, and socio-economic drought (Wilhite and 
Glantz, 1985). Meteorological drought is caused by sub-normal precip-
itation for months to years (Carrão et al., 2014) and is triggered by 
persistent anomalies in a high-pressure system in large-scale atmo-
spheric circulation patterns (Giannini et al., 2003; Schubert et al., 2004; 
Seager and Hoerling, 2014). Agricultural drought occurs due to lack of 
soil moisture (SM) to support crop production (Wilhite and Glantz, 
1985; Keyantash and Dracup, 2004) and it can occur at any crop growth 
stages (e.g., early, mid, and late) resulting in a reduction in crop yield 
(Narasimhan & Srinivasan, 2005; Rhee et al., 2010; Martínez-Fernández 
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et al., 2015; Leng and Hall, 2019). Hydrological drought takes place 
when river streamflow and water storages in water bodies (e.g., aquifers, 
lakes, or reservoirs) drop below long-term average levels (Van Loon, 
2015). Socio-economic drought occurs when there is an excess demand 
for economic goods owing to a lack of water supply resulting in negative 
impacts on society, economy, and the environment (Eklund and Sea-
quist, 2015; Mehran et al., 2015; Guo et al., 2019). 

Drought monitoring, assessment, and forecasting are challenging 
because no single method or index can effectively characterize all types 
of drought due to its distinct causes and vast spatial and temporal 
variability (Brown et al., 2008). There are over 150 drought indices that 
are commonly accepted as tools for monitoring drought events (Quiring, 
2009; Zargar et al., 2011). Conventional drought assessment and 
monitoring often focus on the meteorological aspects of drought and 
precipitation and/or evapotranspiration data are often used to build 
meteorological drought indices for monitoring over space and time 
(Heim Jr, 2002). The Palmer Drought Severity Index (PDSI; Palmer, 
1965), the Standardized Precipitation Index (SPI; McKee et al., 1993), 
and the US Drought Monitor (USDM; Svoboda et al., 2002a) are exam-
ples of popular meteorological drought indices. The PDSI relies on a 
water balance method that combines precipitation, evapotranspiration 
(ET), and SM (Heim Jr, 2002). The SPI is exclusively based on precipi-
tation data (McKee et al., 1993; Guttman, 1998; Sadri et al., 2018), 
whereas the Standardized Precipitation Evapotranspiration Index (SPEI) 
combines the features in PDSI and SPI and is able to depict the effects of 
temperature variability on drought assessment (Vicente-Serrano et al., 
2010; Beguería et al., 2014). 

Agricultural drought assessment is based on a deficit of SM during 
plant/crop growing season (Sheffield et al., 2004; Krueger et al., 2019). 
The Palmer Z index and Crop Moisture Index are used to estimate short- 
term changes in SM volume (Palmer, 1968). Other notable agricultural 
drought indices incorporating SM include the Soil Moisture Anomaly 
Index (Bergman et al., 1988), Soil Moisture Deficit Index (Narasimhan 
and Srinivasan, 2005), Normalized Soil Moisture (Dutra et al., 2008), 
Soil Moisture Index (Sridhar et al., 2008), and Soil Water Deficit Index 
(Martínez-Fernández et al., 2015). In addition to the indices that rely on 
SM stress, vegetation-based indices have also been proposed for delin-
eation agricultural drought based on the interaction between SM and 
plant health as inferred by satellite-based Vegetation Condition Index, 
Normalized Difference Vegetation Index, or Gross Primary Production 
(GPP) (Kogan, 1995; Brown et al., 2018; Anderson et al., 2013, 2015; 
Otkin et al., 2013, 2014, 2016). 

A number of research gaps exist for monitoring and forecasting 
drought using meteorological and agricultural drought indices. First, 
although there are many drought indices based on precipitation data, 
there is limited research on the role of root-zone soil moisture in 
delineating agricultural and meteorological drought within the CONUS 
(e.g., Otkin et al., 2016; Sadri et al., 2018). This is mainly due to the 
insufficient SM monitoring satellites, which have not been widely 
available until recent decades (e.g., SMAP data is available only from 
2015). In addition, most of the previous studies used surface SM (i.e., 
0–0.05 m), which is not sufficient to delineate crop water demands or 
soil moisture stress. Recent studies showed that belowground SM con-
tributes to the transpiration of woody plants; hence, the contribution of 
belowground SM should be accounted for drought assessment (McCor-
mick et al., 2021). 

Second, there is limited research on comprehensive comparison and 
investigation of the performance of different meteorological and agri-
cultural drought indices at a continental scale in delineating (monitoring 
and assessing) impacts of drought to plant growth (indicated by GPP) 
and water demand in the atmosphere (indicated by the aridity index) in 
different climatic regimes and land cover and soil texture types within 
the CONUS. This knowledge could help the growers and land managers 
to identify suitable drought indicators for specific climate, vegetation, 
and soil type and efficient water resource management and mitigation of 
drought effects on agricultural lands, in particular. 

Third, only a few researchers have studied the vast spatial and 
temporal variations of meteorological and agricultural drought and 
different drought indices across large spatial extent, which is important 
for understanding drought onset and development, and early forecasting 
(Wang et al., 2016; Basara et al., 2019). Fourth, although some studies 
have reported SM stress effects on vegetation growth under climate 
change (e.g., Jung et al., 2017; McColl et al., 2019; Jiao et al., 2021), few 
studies have used and compared different drought indices and their 
seasonal patterns (“drought memories”) for forecasting cumulative 
vegetation response (e.g., end-of-year GPP) to root-zone SM availability 
across different climate regimes, land cover, and irrigation management 
at the continental scale. This empirical evidence is essential for 
improved parameterization of earth system models across diverse 
climate regimes, land cover, and irrigation management types and over 
the plant growing seasons. 

Lastly, among the current operational drought monitoring and 
forecasting programs, including USDM (Svoboda et al., 2002b), USDA- 
NRCS National Water and Climate Center report (https://www.wcc. 
nrcs.usda.gov/), NOAA-NIDIS drought report (NIDIS Annual Report 
2019), soil moisture information (particularly root-zone SM or soil 
water deficit/availability derived from soil moisture and soil hydraulic 
property maps) is still not widely used for delineating and forecasting 
drought (Cosh et al., 2021). It is worth conducting a comprehensive 
evaluation of different drought indices across the CONUS for identifying 
the most suitable areas and plant growing seasons for implementing SM 
information for drought delineation and forecasting. 

In this study, we compare two meteorological drought (i.e., SPI, 
SPEI) and three agricultural drought indices (i.e., Palmer Z, SMAP sat-
ellite passive soil moisture product based index – SMAP, and Soil Water 
Deficit Index – SWDI), as well as a hybrid index of meteorological and 
agricultural drought, named Comprehensive Drought Index (CDI). The 
objectives of the study are: 

1) To evaluate the performance of different drought indices in delin-
eating the spatial and temporal variations of agricultural drought 
(using GPP as a proxy) and meteorological drought (using aridity 
index as a proxy) across different climate regimes and land cover and 
soil texture types from 2015 to 2019 within the CONUS.  

2) To evaluate the ability of different drought indices and their seasonal 
patterns (“drought memories”) for early warning and forecasting of 
agricultural drought (cumulative annual GPP) across different 
climate regimes, land cover types, and irrigation management 
(rainfed vs. irrigation) across the CONUS. 

Two hypotheses will be tested in the study: 
1) Root-zone SM-based drought indices outperform meteorological 

drought indices in delineating the spatial and temporal anomalies of 
GPP in all climate regimes and land cover and soil texture types within 
the CONUS while meteorological drought indices have better perfor-
mance in characterizing aridity index in all conditions. 2) Root-zone SM- 
based drought indices have a better performance in forecasting drought 
impacts to cumulative plant growth than meteorological drought indices 
in all climate regimes, land cover, and irrigation types and display early 
warning ability (using early plant growing season index to forecast end- 
of-year GPP) due to “drought memories” and possibly the effects of SM 
memory on land-atmosphere coupling. 

2. Material and methods 

2.1. Remote sensing data and conventional drought indices 

A detailed description of the remote sensing data products and 
drought indices used in this study is described in Supplementary infor-
mation and listed in Tables 1 and 2. These include TRMM precipitation, 
MODIS ET, GPP, aridity index, and conventional drought indices such as 
SPI, SPEI, Palmer Z, SMAP index and SWDI. Climate classification from 

S. Chatterjee et al.                                                                                                                                                                                                                              
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Köppen-Geiger climate classification system and land cover types from 
MODIS product were also included for interpretation of the results. 

2.2. Hybrid drought index 

SM and atmospheric evaporative demand (e.g., vapor pressure 
deficit, VPD) are crucial for agricultural and meteorological drought 
assessment and monitoring. To test whether a combined index would 
outperform SM or atmospheric only indices, we combined these two 
factors using a simple Comprehensive Drought Index (CDI) that cannot 
only address the SM balance but also the atmospheric demand of that 
area. In addition, it is different from the traditional SM-based indices, 
which only account for crop stress. Instead, it draws information about 
the climate balance to indicate the water cycle of a region, which is 
important for irrigation and water resources management. The CDI was 
calculated as below: 

CDI = SWDIscaled ×CBscaled (1)  

CB = (P − ET) (2)  

CBscaled =
CB − CBmin

CBmax − CBmin
(3)  

where CDI ranged from 0–1 (0 means dry soil, close to the wilting point 
and 1 means wet soil, close to the field capacity); SWDIscaled, scaled 
SWDI; CB, climate balance; CBscaled, scaled CB; CBmax and CBmin denote 
maximum and minimum CB values; P, precipitation from TRMM; ET, 
actual evapotranspiration from MODIS. 

2.3. Mapping temporal correlation between drought indices with GPP and 
aridity index 

Drought is often associated with a significant decline in GPP (Ciais 
et al., 2005; Huang et al., 2017). For this reason, we leveraged GPP data 
as a proxy to measure vegetation health as a function of moisture 
availability and assess impacts of drought on plant growth (e.g., “agri-
cultural drought)”. Note that the term “agricultural drought” in this 

Table 1 
Remote sensing and environmental covariates used to assess drought across the 
CONUS.  

Dataset Variables Original 
spatial 
resolution 

Original 
temporal 
resolution 

TRMM Precipitation ~28 km 3 hourly 
MODIS ET Actual evapotranspiration 500 m 8 day 
MODIS PET Potential evapotranspiration 500 m 8 day 
MODIS GPP Gross primary productivity 250 m 8 day 
MODIS Land 

Cover Land cover maps 500 m – 

GFSAD 
Cropland 
Extent map 

Irrigated and rainfed cropland 
maps 1 km – 

NASA-SMAP 

Level-4 root-zone soil moisture 
(0–1 m, modelled using a one- 
dimensional water balance 
model with ensemble Kalman 
filter) 

9 km 2–3 day 

gridMET Palmer Z Index ~4 km 1 day 

SoilGrids Field capacity and witling point 
(averaged to 0–1 m) 

250 m – 

Climate Köppen-Geiger climate 
classification map 

– – 

Note: All the spatial data were aggregated to 9-km and all the temporal data 
were aggregated to 16 days. TRMM, Tropical Rainfall Measuring Mission; 
MODIS, Moderate Resolution Imaging Spectroradiometer; GFSAD, Global Food- 
Support Analysis Data; NASA-SMAP, National Aeronautics and Space 
Administration-Soil Moisture Active Passive; gridMET, Gridded Surface Meteo-
rological dataset. 

Table 2 
Summary of the meteorological and agricultural drought indices used in the 
study.  

Drought 
indices 
categories 

Input data Advantages Disadvantages References 

Meteorological drought indices 
SPI Precipitation i) Can 

characterize 
both drought 
and pluvial 
conditions 
ii) Provide 
information 
about 
anomalies in 
precipitation 
iii) Comparable 
across different 
climatic 
regions 
iv) Can be 
computed for 
multiple 
simultaneous 
timescales 

i) Does not 
account for 
atmospheric 
evaporative 
demand 
ii) Cannot 
capture the 
effect of 
increasing 
temperature on 
drought 
iii) Sensitive to 
the quantity of 
the data used 
iv) Does not 
consider the 
intensity of 
precipitation 
and how it 
impacts on 
runoff and 
streamflow 

McKee 
et al., 1993; 
Sadri et al., 
2018 

SPEI Precipitation, 
PET, 
temperature 

i) Account for 
atmospheric 
evaporative 
demand 
ii) Comparable 
across different 
climatic 
regions 
iii) Can be 
calculated at 
different time 
scales 

Does not 
include SM 
information 

Vicente- 
Serrano 
et al., 2010; 
Beguería 
et al., 2014 

Agricultural drought indices 
Palmer Z 

index. 
Precipitation 
and 
temperature 

Can track 
agricultural 
drought, as it 
responds 
quickly to 
changes in SM 
values 

Does not 
consider the 
antecedent 
conditions that 
characterize 
the PDSI 

Palmer, 
1968; Karl, 
1986 

SMAP Root zone SM 
product- 
SPL4SMAUP 
(0–100 cm) 

i) Large-scale 
drought 
monitoring 
from surface 
and sub- 
surface SM is 
important in 
agricultural 
management 
ii) Finer 
temporal 
resolution 
enables to 
observe the 
effect of 
fluctuations in 
hydrological 
variables, such 
as 
precipitation. 
iii) Can be 
retrieved and 
maps can be 
generated in 
near-real time, 
it is very 
promising that 
a SMAP 

Coarse spatial 
resolution 
makes it 
difficult to 
study field- 
scale drought 
variability 

(O’Neill 
et al., 2018; 
Entekhabi 
et al., 2010 

(continued on next page) 
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study does not explicitly refer to Croplands and Pastures but also con-
tains other LC types (e.g., Forests). Similarly, we used aridity index to 
evaluate the impacts of drought on atmospheric dryness (“meteorolog-
ical drought”). The temporal correlation between all the drought indices 
and GPP and aridity index were analyzed to assess the similarity and 
difference among drought indices in their capability to rank the severity 
of agricultural and meteorological drought in time as a function of 
location across four broad climate regimes and six LC types within the 
CONUS and to picture spatial patterns in index consistency. We call this 
correlation temporal correlation as they reflect the long-term correlation 
between the drought indices with GPP and aridity index. 

For this study, we only considered the growing season (i.e., early 
May to mid-October) to avoid frozen conditions. The time series of all 
the indices (composited to 16-days temporal scale) were extracted from 
maps of 11-dates per year (i.e., 55 dates for five years); producing a total 
of 5 × 11 = 55 data pairs at each spatial location for the correlation 
analysis. Then we mapped the Pearson correlation coefficients (r) as a 
function of location across the CONUS. Similar analyses have been re-
ported by Anderson et al. (2011). As we know the SM availability varies 
at a shorter temporal scale, we leveraged a shorter interval (i.e., 16- 
days) time series of drought indices to assess the impacts of short- 
range SM variation on drought development. 

2.4. Spatial correlation between drought indices with GPP and aridity 
index 

We also analyzed the spatial correlation between each drought index 
and GPP or aridity index to find out how the correlation evolved over 
time for certain climate regimes and LC types and how similar are the 
drought indices in classifying drought events across the CONUS at 
different points in time. The Pearson’s r for each date (i.e., two dates for 
each month from May–October) for 2015–2019 were computed for all 
the grid pixels from pairs of indices maps, GPP, and aridity index within 
a climate regime or LC type. This analysis shows how the strength of 
spatial correlation differs between months and years based on climatic 

regimes and LC types across the CONUS. Anderson et al. (2011) have 
performed similar studies. Here, we did not perform a causality analysis 
using lagged time series of drought indices (e.g., Vicente-Serrano et al., 
2013; Wu et al., 2015; Peng et al., 2019) between the drought indices 
with GPP and aridity index because we were interested in the ability of 
drought indices on delineating/characterizing the current states of 
ecosystem dryness (agricultural drought) and meteorological drought. 

2.5. Forecasting framework 

Forecasting agricultural drought based on recent and previous 
drought events is crucial for drought preparedness and managing water 
resources in agriculture (Mishra and Singh, 2011; Hao et al., 2017). 
Multiple linear regression (MLR) models were evaluated for the pre-
diction of end-of-year GPP, which was made monthly twice from May to 
October using data up until the predicting date. The first 16-day forecast 
was early in the month (around the 9th day) and the second was late in 
the month (around the 25th day). We fitted the models using six drought 
indices (that are available twice a month) from an individual month (e. 
g., May, June, July, August, September, October) and a combination of 
different months (e.g., May+June, May+June+July, 
May+June+July+August, May+June+July+August+September, and 
May+June+July+August+September+October). Here, the drought 
indices and their monthly combinations were used as predictor variables 
and the end-of-growing season GPP was the response variable. We have 
used individual month’s indices along with monthly combinations to 
partially understand if there is any possible role of SM memory in the 
forecasting or lag effects of soil moisture on plant growth (i.e., GPP). To 
remove the collinearity between two dates within a month, we per-
formed a principal component analysis (PCA) transformation to our six 
drought indices data. To assess the performance of MLR models for 
different climate regimes and LC types we used the coefficient of 
determination (R2) and Akaike’s Information Criteria (AIC; Akaike, 
1970) using the following formula: 

R2 =

(

1 −
∑n

i=1(yi − ŷ)2
∑n

i=1(yi − ȳ)2

)

(4)  

AIC = − 2ln(L)+ 2k (5)  

where yi and ŷ are observed and fitted values and, respectively, and ȳ 
denotes the sample mean of the observed values, and n is the number of 
observations. L = likelihood; k = number of parameters used in the 
model. 

High R2 and low AIC values indicate that the index has a better 
capability for forecasting. The “r.squared”, “extractAIC”, and “prcomp” 
functions in R version 3.6.1 (R Core Team, 2019) were used to get the R2 

and AIC values and principal components. This forecasting analysis is 
similar to any machine learning-based forecasting application (e.g., 
Long Short-Term Memory) used in previous studies (e.g., Zhang et al., 
2018; Dikshit et al., 2021). 

3. Results 

3.1. Spatial and temporal distribution of drought indices and correlations 
with GPP and aridity index across the CONUS 

In general, the spatial and temporal distribution of meteorological 
drought indices (SPI, SPEI) and their spatial and temporal correlations 
with GPP and aridity index differed from those of the SM-based indices 
(Palmer Z, SMAP, and SWDI) (See Figs. 1 and 2). In addition, these 
drought indices showed distinct patterns across different climate re-
gimes and land cover types across the CONUS (See Figs. 3− 6). Detailed 
description of these patterns are provided in Supplementary 
Information. 

Table 2 (continued ) 

Drought 
indices 
categories 

Input data Advantages Disadvantages References 

drought index 
product can be 
implemented 
operationally 

SWDI FC, WP, and 
SMAP soil 
moisture 
content 

Useful to 
identify start/ 
end, duration. 
And intensity 
of drought 

FC and WP data 
for large scale is 
scarce 

Martínez- 
Fernández 
et al., 2015 

Hybrid 
drought 
Index     

CDI Soil moisture 
at FC, PWP, 
SMAP root 
zone SM, 
precipitation, 
PET 

i) Account for 
SM and climate 
balance 
ii) Comparable 
across different 
climatic 
regions and 
land cover 
types 
iii) Can be 
calculated on 
different time 
scales 

More sensitive 
towards 
climate balance 

Current 
study 

Note: SPI, Standardized Precipitation Index; SPEI, Standardized Precipitation 
Evapotranspiration Index; SMAP, Soil Moisture Active Passive; SWDI, Soil Water 
Deficit Index; CDI, Comprehensive Drought Index; PDSI, Palmer Drought 
Severity Index; PET, Potential Evapotranspiration, SM, Soil Moisture; FC, Field 
Capacity; WP, Wilting Point. 
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3.2. Forecasting agricultural drought 

3.2.1. Forecast skill by climate regimes 
For the Tropical climate regime, in the early-season (e.g., May) the 

SPI performed the best (R2 = 0.12; AIC = − 112) in forecasting end-of- 
year GPP followed by CDI (R2 = 0.12; AIC = − 111), SPEI (R2 = 0.12; 
AIC = − 110), SWDI (R2 = 0.10; AIC = − 105), Palmer Z (R2 = 0.09; AIC 
= − 103), and SMAP (R2 = 0.06; AIC = − 95) (Appendix Table). As the 
seasons progressed and the previous season information came into the 
MLR, models the SMAP outperformed all other indices in terms of 
forecasting skill (Fig. 7a). For example, in the late-season (i.e., October) 
where all previous months’ indices data (May–September) were 
included for late-season forecast, the SMAP performed the best (R2 =

0.56; AIC = − 211) followed by SWDI (R2 = 0.48; AIC = − 179), SPI (R2 

= 0.47; AIC = − 175), SPEI (R2 = 0.37; AIC = − 143), CDI (R2 = 0.35; 
AIC = − 136), and Palmer Z (R2 = 0.32; AIC = − 129). Similar pattern (i. 
e., SMAP outperformed others) was observed for mid-seasons forecasts. 

In the Arid climate regime, for the early season (i.e., May) the SPEI 
performed the best (R2 = 0.11; AIC = − 74,207) in forecasting end of 
year GPP followed by SMAP (R2 = 0.11; AIC = − 74,143), CDI (R2 =

0.09; AIC = − 73,605), Palmer Z (R2 = 0.08; AIC = − 73,068), SWDI (R2 

= 0.07; AIC = − 72,806), and SPI (R2 = 0.06; AIC = − 72,744) (Appendix 
Table). The trend remained almost similar as for the mid-season and 
late-season forecast (i.e., SPEI outperformed others) in this climate 
regime (Fig. 7b). 

For the Temperate climate regime, in the early season (i.e., 
May–June) the SWDI performed the best (R2 = 0.17; AIC = − 52,682) 
followed by CDI (R2 = 0.14; AIC = − 51,804), SMAP (R2 = 0.14; AIC =
− 51,776), SPI (R2 = 0.14; AIC = − 51,736), SPEI (R2 = 0.11; AIC =
− 50,959), and Palmer Z (R2 = 0.09; AIC = − 50,446) (Appendix Table). 
The trend reversed in the mid- and late-season (e.g., August–October) 
forecast where the SPEI predominantly performed better than that of 
other indices (Fig. 7c). 

In the Cold climate regime, for the early season forecast (e.g., May) 
the SMAP performed the best (R2 = 0.16; AIC = − 61.921) followed by 
CDI (R2 = 0.16; AIC = − 61,811), Palmer Z (R2 = 0.10; AIC = − 59,662), 
SPI (R2 = 0.09; AIC = − 59,265), SPEI (R2 = 0.07; AIC = − 58,764), and 
SWDI (R2 = 0.06; AIC = − 58,180) (Appendix Table). However, as the 

seasons progressed (e.g., mid- to late-season) and the previous season’s 
data were included the SPEI outperformed (R2 = 0.54; AIC = − 69,067) 
all other indices (Fig. 7d). 

The performance of drought indices and models for different season 
forecasts in Fig. 7 and Appendix Fig. 10 further demonstrates that 
depending upon the climate regime and time of forecast (i.e., early-, 
mid-, and late-season or monthly) the indices performance diverges 
dramatically. In addition, as we included more previous season’s data 
for forecasting end-of-growing season GPP, the power of forecasting 
increased from early-season to late-season. We also evaluated the fore-
casting skill of individual month drought indices to see if “drought 
memory” could influence the results in different climate types (Appen-
dix Fig. 10) and found mostly similar patterns as with the combination of 
different month’s indices. However, we also found some contrasting 
results. For example, in Arid climate, SPEI outperformed other indices 
for all the months except for October where SMAP performed the best 
(Appendix Fig. 10b). Similarly, in Cold climate, SPEI again performed 
the best except in July, September, and October months where SMAP 
outperformed others (Appendix Fig. 10d). 

3.2.2. Forecast skill by land cover types 
In the Croplands, for the early season forecast (i.e., May) the SMAP 

performed the best (R2 = 0.28; AIC = − 37,403) followed by SWDI (R2 =

0.15; AIC = − 34,637), CDI (R2 = 0.13; AIC = − 34,336), Palmer Z (R2 =

0.09; AIC = − 33,505), SPI (R2 = 0.07; AIC = − 33,097), and SPEI (R2 =

0.06; AIC = − 32,842) (Appendix Table). The SMAP also outperformed 
all other indices for the mid-seasons (i.e., June–August) forecasting 
ability, however, the SPEI performed the best in late-seasons forecast (i. 
e., September–October) (Fig. 8a). The performances of these indices 
over irrigated and rainfed Croplands were also assessed. It was found 
that in the irrigated Croplands, for the early season forecast (i.e., May) 
the SMAP again performed the best (R2 = 0.40; AIC = − 10,569) fol-
lowed by CDI (R2 = 0.18; AIC = − 8750), SWDI (R2 = 0.18; AIC =
− 8739), Palmer Z (R2 = 0.11; AIC = − 8157), SPEI (R2 = 0.09; AIC =
− 8054), and SPI (R2 = 0.09; AIC = − 8026) (Appendix Table). For the 
mid- and late-season forecast, the SMAP again outperformed other 
indices in the irrigated Croplands (Fig. 8b). The SPEI also performed 
better than other indices (except SMAP) in the mid- and late-season 

Fig. 1. Boxplots of temporal correlation between drought indices with the GPP and aridity index across the CONUS. Note: GPP, Gross Primary Production; and AI, 
Aridity Index. Note: SPI, Standardized Precipitation Index; SPEI, Standardized Precipitation Evapotranspiration Index; Z, Palmer-Z index; SWDI, Soil Water Deficit 
Index; SMAP, Soil Moisture Active Passive; and CDI, Comprehensive Drought Index. 
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forecast. Contrasting results were observed in case of rainfed Croplands 
where SPEI out performed other indices for mid- and late-season forecast 
except for the early season forecast where SMAP performed the best 
(Fig. 8c). 

In the Forests, the SMAP performed the best (R2 = 0.10; AIC =
− 35,097) for the early season forecast (e.g., May) followed by SPEI (R2 

= 0.09; AIC = − 34,973), SWDI and SPI (R2 = 0.09; AIC = − 34,933), 
Palmer Z (R2 = 0.09; AIC = − 33,898), and CDI (R2 = 0.08; AIC =
− 34,858) (Appendix Table). The SMAP also outperformed all other 
indices for the mid-seasons (i.e., June–August) as well as in late-season 
(i.e., October) (Fig. 8d). In general, the SM-based indicators (e.g., SMAP, 

SWDI) performed better than meteorological drought indices (e.g., SPI, 
SPEI) in the Forests. The performances of these indices over Evergreen, 
Deciduous, and Mixed Forests were also assessed (Supplementary In-
formation; Appendix Fig. 13). 

In the Grasslands, the SMAP performed the best (R2 = 0.15; AIC =
− 69,070) for the early season forecast (e.g., May) followed by CDI (R2 =

0.11; AIC = − 67,396), SWDI (R2 = 0.09; AIC = − 66,853), SPEI (R2 =

0.09; AIC = − 66,651), Palmer Z (R2 = 0.07; AIC = − 65,885), and SPI 
(R2 = 0.06; AIC = − 65,838) (Appendix Table). However, the SPEI 
outperformed all other indices for mid-seasons (e.g., June–August) and 
late-seasons forecast (e.g., September–October) (Fig. 8e). The order of 
performance for mid- and late-seasons forecast: SPEI > SMAP > Z >
SWDI > CDI > SPI. 

In the Savannas, the SMAP performed the best (R2 = 0.11; AIC =
− 36,784) for the early-season forecast (e.g., May) followed by CDI (R2 

= 0.10; AIC = − 36,613), SWDI (R2 = 0.10; AIC = − 36,607), Palmer Z 
(R2 = 0.10; AIC = − 36,600), SPI (R2 = 0.08; AIC = − 36,100), and SPEI 
(R2 = 0.08; AIC = − 36,099) (Appendix Table). However, the SPEI 
outperformed all other indices for mid-seasons (i.e., June–August) and 
late-seasons forecast (i.e., September–October) (Fig. 8f). The meteoro-
logical drought indices (e.g., SPEI, SPI) performed better in the mid- and 
late-seasons as compared to SM-based indices (e.g., SMAP, SWDI). 

In the Shrublands, the SMAP performed the best (R2 = 0.10; AIC =
− 23,788) for the early season forecast (e.g., May) followed by Palmer Z 
(R2 = 0.03; AIC = − 23,380), SPEI (R2 = 0.03; AIC = − 23,359), SPI (R2 

= 0.02; AIC = − 23,287), CDI (R2 = 0.02; AIC = − 23,286), and SWDI 
(R2 = 0.01; AIC = − 23,213) (Appendix Table). The SMAP also out-
performed all other indices in terms of forecasting ability for the mid- 
seasons (i.e., June–August) as well as in late-season (i.e., October) 
(Fig. 8g). The order of performance for mid-seasons is SMAP > SPEI > Z 
> SWDI > SPI > CDI, and late-seasons: SMAP > SPEI > SWDI > Z > SPI 
> CDI. The performances of these indices over Closed and Open 
Shrublands were also assessed (Supplementary section; Appendix 
Fig. 14). 

In the Wetlands, the SWDI performed the best (R2 = 0.22; AIC =
− 226) for early season forecast (e.g., May) followed by SPEI (R2 = 0.14; 
AIC = − 204), SPI (R2 = 0.13; AIC = − 199), Palmer Z (R2 = 0.09; AIC =
− 188), CDI (R2 = 0.09; AIC = − 186), and SMAP (R2 = 0.07; AIC =
− 180) (Appendix Table). However, during the mid- and late-season the 
SMAP and SWDI outperformed other indices in terms of forecasting 
ability (Fig. 8h). The order of performance for mid- and late-season 
forecast: SMAP > SWDI > Z > SPI > SPEI > CDI. 

The performance of drought indices and MLR models for different 
season forecasts in Fig. 8 further demonstrate that predominantly the 
SM-based indicator (e.g., SMAP) performed the best for early season 
forecast across all the LC types (except in the Wetlands), for mid-season 
forecast in Croplands (irrigated), Forests, Savannas, and Wetlands and 
late-season forecast in rainfed Croplands, Forests, Shrublands, and 
Wetlands. However, the meteorological drought indices (e.g., SPEI) 
dominated late-season forecasting across the Croplands (rainfed), 
Grasslands, and Savannas. Overall, SMAP dominated early and mid- 
season forecasts; however, SPEI dominated late-season forecasts. In 
addition, as we included more previous season’s index information for 
forecasting end-of-year GPP, the power of forecasting increased from 
early to late-season across all the LC types within CONUS. We also 
evaluated the forecasting skill of individual month drought indices to 
see if “drought memory” could influence the forecasting performance in 
different land cover types (Appendix Figs. 11, 13, 14) and found a 
mostly similar pattern as with the combination of different month’s 
indices. 

However, we like to note some contrasting results here. For example, 
in Forests, Palmer Z outperformed other indices for June and October 
forecast, SWDI outperformed others for July and August, and SPEI 
outperformed other indices for September (Appendix Fig. 11d). Simi-
larly, in Wetland, SPEI outperformed others for the October forecast 
(Appendix Fig. 11 h). In addition, when we disaggregated Forests into 

Fig. 2. Maps of coefficient of temporal correlation between GPP and aridity 
index and other drought indices included in the intercomparison for 
2015–2019. For the abbreviation of drought indices, refer to Fig. 1. 
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Fig. 3. Time series of the spatial correlation of drought indices with the GPP over four broad climate regimes: (a) Tropical; (b) Arid; (c) Temperate; and (d) Cold 
across the CONUS. Note: For the abbreviation of drought indices, refer to Fig. 1. 
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Fig. 4. Time series of the spatial correlation of drought indices with the aridity index over four broad climate regimes: (a) Tropical; (b) Arid; (c) Temperate; and (d) 
Cold across the CONUS. Note: For the abbreviation of drought indices, refer to Fig. 1. 
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Fig. 5. Time series of the spatial correlation of drought indices with the GPP over six broad land cover types: (a) Croplands; (b) Forests; (c) Grasslands; (d) Savannas; 
(e) Shrublands; and (f) Wetlands across the CONUS. Note: For the abbreviation of drought indices, refer to Fig. 1. 
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Fig. 6. Time series of the spatial correlation of drought indices with the aridity index over six broad land cover types: (a) Croplands; (b) Forests; (c) Grasslands; (d) 
Savannas; (e) Shrublands; and (f) Wetlands across the CONUS. Note: For the abbreviation of drought indices, refer to Fig. 1. 
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Evergreen, Deciduous, and Mixed Forests types and Shrublands into 
Closed and Open Shrublands (Appendix Fig. 12) we found some inter-
esting results. For example, in Evergreen and Deciduous Forests, the 
SPEI outperformed other indices throughout the growing season when 
monthly combinations of indices were considered, however SMAP per-
formed the best in all the months when forecasting only considered in-
dividual month indices (Appendix Table, Appendix Fig. 13). In mixed 
Forests, SPI performed the best in early and mid-season whereas SPEI 
performed the best in the late-season forecasting when both monthly 
and combinations of monthly indices were used. In the Closed Shrub-
lands, when monthly combinations of drought indices were considered, 
the SPEI followed by SPI outperformed other indices for mid- and late- 
season forecasting (Appendix Table, Appendix Fig. 14). Contrastingly, 
in case of Open Shrublands, irrespective of individual month or monthly 
combinations of indices, the SMAP outperformed other indices for all the 
months and seasons. 

4. Discussion 

4.1. Evaluation of drought delineation performance 

SM-based and meteorological drought indices delineate different 
features of drought. Meteorological-based indices delineate atmospheric 
dryness, which is asserted by their strong positive correlation with the 
aridity index (Fig. 1). Our findings are consistent with those of Otkin 
et al. (2016) who found that precipitation largely controlled ET demand 
depending on the climate type and time of growing seasons across the 
CONUS. For example, meteorological drought indices (e.g., SPI, SPEI) 

capture the east-west gradient of moderate to severe drought conditions 
from 2015–2019 due to increased atmospheric demand caused by a 
deficit in precipitation offset by tropical storm precipitation later in the 
spring for eastern CONUS (Stewart, 2016). This general pattern of the 
drought is attributed to the patterns of precipitation (delineated by SPI) 
and atmospheric evaporative demand (delineated by SPEI) (Heim Jr, 
2002). In a similar study, Anderson et al. (2011) compared the spatial 
similarity between different indices (e.g., SPI, US Drought Monitor, 
PDSI) at various time scales and found a similar east-west gradient of 
drought across the CONUS. 

The SM-based agricultural drought indices (e.g., Palmer Z, SMAP, 
SWDI) had a mostly similar and strong relationship to GPP anomalies. 
The Palmer Z index mostly reflects the departure in precipitation (sup-
ply) with respect to expected demand (deficit) for a certain period, as it 
is estimated from a two-layer soil water balance model (Palmer, 1965). 
As a result, Palmer Z can effectively delineate short-term meteorological 
droughts, which tend to not be influenced by previous moisture condi-
tions (Karl, 1986). It showed a slightly different drought pattern as 
compared to SPI and SPEI in terms of its spread and severity, however, it 
showed a similar pattern with SMAP. This general pattern is mostly 
attributed to the soil properties (e.g., clay content) (McColl et al., 2017), 
SM availability (Sheffield et al., 2004; Dai, 2011), and precipitation 
anomaly (Palmer, 1965). Anderson et al. (2011) also used Palmer Z to 
delineate drought across the CONUS and found similar patterns. How-
ever, it is worth noting that Palmer Z has some limitations related to the 
method of calculation of PET (Van der Schrier et al., 2011; Dai, 2011) 
and assumption with fixed water holding capacity of top two soil layers 
(Alley, 1984; Sheffield et al., 2012). 

Fig. 7. Performances of drought indices for different time steps in predicting end-of-year GPP across different climate regimes within the CONUS. Note: Regression 
models were trained with MLR algorithms. For the abbreviation of drought indices, refer to Fig. 1. Note: AIC = Akaike Information Criteria; M = May; MJ =
May–June; MJJ = May–June-July; MJJA = May–June-July-August; MJJAS = May–June-July-August-September; and MJJASO = May–June-July-August- 
September-October. 
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Fig. 8. Performances of drought indices for different time steps in predicting end-of-year GPP across different land cover types within the CONUS. Note: Regression 
models were trained with MLR algorithms. For the abbreviation of drought indices and months combinations, refer to Figs. 1 and 7, respectively. 
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The SMAP index, based on root-zone SM, delineated most of the 
western part including Florida as dry regions consistently throughout 
the study period during mid-May and the severity of dryness increased 
during mid-July (Appendix Figs. 5 and 7). This effect may be attributed 
to the actual SM conditions as reflected by SMAP root-zone SM which is 
regulated by soil texture (reflected from the low FC and WP moisture 
contents, and thus a low available soil water storage (Appendix Fig. 1) 
for this short-term duration (e.g., 16-days). The SWDI calculated from 
SMAP data also showed a similar pattern as SMAP. Overall, these two 
indices showed a strong correlation with vegetation growth (i.e., GPP) 
(Fig. 1, Table 3). 

In addition, SM-based agricultural drought indices show realistic 
estimates of plant-available water in the critical zone (Seneviratne et al., 
2010; Stocker et al., 2019). The SMAP and SWDI consistently classified 
Florida as a drought-prone region which might be attributed to the soils 
in that region which are mostly sandy soils characterized with low 
available water content (Jacobs et al., 2002; Watts and Collins, 2008; 
Bockheim et al., 2020; Huang et al., 2021). Furthermore, the general 
pattern of SM-based drought indices might be attributed to the hydraulic 
properties of the soils (e.g., FC, WP, and AWC) and other soil properties 
(e.g., soil texture and organic matter) that influence SM availability 
(Panciera et al., 2009; Crow et al., 2012; Chatterjee et al., 2016, 2018, 
2019, 2021a). 

We also compared a new hybrid index (i.e., CDI) with the other 
indices, which have not been extensively studied at the continental 
scale. It was observed that the CDI showed a good correlation with the 
aridity index (Table 3) indicating its importance in the delineation of 
meteorological drought. However, it showed only moderate perfor-
mance with GPP anomalies (Fig. 1). The CDI showed some similarities 
with SM-based indices (e.g., mid-May of 2015 and 2017; Appendix 
Fig. 5) indicating its moderate performance for agricultural drought 
monitoring as well. This is mainly due to its joint properties from soil 
and climate balance, which enabled it to capture the variation in SM and 
atmospheric dryness together. However, there exists a complex rela-
tionship between SM and land-atmosphere coupling, and it appears it is 
not straightforward to represent plant water stress and atmospheric 
dryness together (Keyantash and Dracup, 2004; Heim Jr, 2002; Miralles 
et al., 2019). 

Overall, most of the drought indices included in this study were 
consistent with the studies by others at the CONUS scale (Anderson 
et al., 2011; Sheffield and Wood, 2011; Sadri et al., 2018). SM-based 
agricultural drought indices could capture recent precipitation events 
and antecedent SM conditions (Sheffield and Wood, 2011). In addition, 
SM represents the water balance of all hydrological processes (e.g., 
precipitation, ET, drainage) (Entekhabi et al., 1996). Some researchers 
have used remotely sensed SM for drought monitoring. For example, 
Martínez-Fernández et al. (2016) compared performance between in situ 
and satellite-based (e.g., SMOS) based SM data to calculate SWDI in 

Spain (REMEDHUS) for agricultural drought monitoring and found that 
SMOS based SWDI was able to identify the drought dynamics and 
reproduced the soil water balance adequately to track agricultural 
drought development. Similar studies were done where researchers used 
SM from SMAP to delineate agricultural droughts (e.g., Velpuri et al., 
2016; Mishra et al., 2017; McColl et al., 2017; Sadri et al., 2018; Mla-
denova et al., 2020). 

In this study, the strong correlation among the SMAP-based indices 
(e.g., SMAP, SWDI) and GPP might be due to the strong relationship 
between the water cycle (i.e., soil water balance) and carbon cycle (i.e., 
GPP) and the soil hydraulic response of the plants to water stress affects 
carbon assimilation. Likewise, Jung et al. (2017) showed that water 
availability was the dominant driver in the interannual variability of 
GPP and ecosystem respiration at the local scales. Humphrey et al. 
(2021) showed that SM–atmosphere feedback dominates land carbon 
uptake. Stocker et al. (2018) reported that impacts of SM variability 
alone could substantially reduce GPP by up to 40% in semi-arid, arid, 
and sub-humid regions. Green et al. (2019), van Schaik et al. (2018), and 
He et al. (2017) have reported similar studies. Our study also corrobo-
rates the previous findings implying that SM potentially may be used to 
forecast crop conditions (Table 4) (see Section 4.4). 

4.2. Development of drought by climate regimes, land cover, and soil 
texture 

A detailed assessment of indices is provided in the Supplementary 
section for three contrasting regions: a) Florida, b) Iowa, and c) 
Nebraska. The overall results demonstrate meteorological and agricul-
tural drought do not always coincide with each other. For example, 
Florida showed agricultural drought during mid-July, however, there 
was no meteorological drought. These contrasting findings might be 
attributed to the soil types of that region, which is dominated by sandy 
soils (Bockheim et al., 2020; NASA, 2019). SM-based indices reflect the 
soil water balance in the root-zone, which is strongly influenced by the 
soil properties (e.g., FC, WP, sand content) which in turn controls the 
development of agricultural drought. 

4.3. Relationship of drought indices to GPP and aridity index 

Relationships of drought indices to GPP varied strongly by region, 
reflecting differing roles of SM and precipitation coupling. Meteoro-
logical drought indices (e.g., SPI, SPEI) had a strong positive correlation 
with GPP (r = 0.3–0.5) in the Croplands and Shrublands (e.g., mid-Great 
Plains, Midwest, and Southwest regions) while the rest of the eastern 
part of the CONUS showed an intermediate positive correlation (r =
0.1–0.2) (Fig. 2). These regions may also be called as “vegetation water 
deficit regions” as the plant growth is mostly constrained by water 
limitation and GPP increased with wetting and decreased with drying 

Table 3 
Median spatial correlation coefficients between six drought indices with the GPP and aridity index. Note: the number of grid pixels are different for different land cover 
types and climate regimes. For abbreviations, refer to Tables 1–2.   

Correlation with GPP Correlation with aridity index 

Climate regimes SPI SPEI Z SMAP SWDI CDI SPI SPEI Z SMAP SWDI CDI 

Tropical (A) − 0.00 − 0.03 0.07 − 0.12 0.03 0.06 0.56* 0.51* − 0.09 − 0.02 − 0.02 0.27* 
Arid (B) 0.02 0.20 0.17 0.29* 0.21 0.16 0.64* 0.75* 0.06 − 0.00 − 0.03 0.69* 
Temperate (C) 0.02 0.01 0.16 0.24 0.25 0.15 0.70* 0.79* 0.07 − 0.06 0.04 0.67* 
Cold (D) − 0.04 0.20 0.26* 0.36* 0.21 0.22 0.65* 0.71* 0.05 0.12 0.06 0.62* 
Land cover types             
Croplands 0.01 0.06 0.19 0.36* 0.20 0.11 0.67* 0.70* 0.02 0.05 0.04 0.57* 
Forests 0.10 0.04 0.24 0.19 0.19 0.12 0.67* 0.70* 0.08 0.00 0.05 0.65* 
Grasslands 0.01 0.22 0.19 0.28* 0.18 0.18 0.64* 0.75* 0.11 0.10 0.00 0.68* 
Savannas 0.11 0.16 0.23 0.24 0.20 0.22 0.69* 0.73* 0.06 0.00 0.02 0.62* 
Shrublands 0.03 0.12 0.05 0.31* 0.18 0.09 0.69* 0.80* 0.10 0.09 0.02 0.73* 
Wetlands − 0.07 0.06 0.08 − 0.13 − 0.13 0.01 0.66* 0.66* 0.01 − 0.08 − 0.12 0.51*  

* signifies the statistical significance of correlation at α = 0.05 level. 
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(Jiao et al., 2021). However, a strong negative correlation (r − 0.4 to 
− 0.7) was found in the western part (e.g., Northwest and West Coast) of 
the CONUS. These regions may be considered as “vegetation water 
surplus regions” as the plant growth is mostly constrained by other 
factors (e.g., temperature, solar radiation) and plant growth affected 
with excess water supply resulting in waterlogging (Jiao et al., 2021). In 
addition, these regions (e.g., Northwest) are mostly characterized by 
Grasslands and Arid climate (Appendix Figs. 2–3). Anderson et al. 
(2011) used correlation analysis between US Drought Monitor and other 
drought indices (e.g., SPI, PDSI, Palmer Z, ESI) across the CONUS for 
2000–2009 and found a similar pattern of correlation. 

In contrast, SM-based indices (e.g., SMAP, SWDI) showed a strong 
positive correlation (r = 0.7–0.8) with GPP in the western part of the 
CONUS, moderate correlation (r = 0.5–0.7) in the southern parts, and 
only a weak positive correlation (r = 0.2–0.5) in eastern part and 
negative correlation in the northern Great Plains (r − 0.2 to − 0.6), 
eastern parts (e.g., Carolinas, r = − 0.6 to − 0.8), and Florida region (r 
− 0.2 to − 0.4). The findings are consistent with other studies where a 
feedback mechanism between dryland productivity and SM supply 
through land-atmosphere coupling has been suggested in the Arid 
climate regions in the northern hemisphere (Jiao et al., 2021). The 
negative correlation of SM-based indices (e.g., Palmer Z, SMAP, SWDI) 
with GPP in the US Midwest (Fig. 2) confirms the deteriorating rela-
tionship between plant growth and SM (fading drought signal) under 
current pluvial conditions (Maxwell et al., 2016). The hybrid index CDI, 
which has both the SM and climate balance terms had an intermediate 
response to SM and climate balance, poses a challenge to understand its 
role in the land-atmosphere coupling mechanisms. 

Previous studies (e.g., Sridhar et al., 2008; Krueger et al., 2015; Li 
et al., 2020; Huang et al., 2021) have shown that it is the SM in terms of 
available water content rather than precipitation that controls the 
ecosystem production (i.e., GPP) and deficit of SM leads to agricultural 
drought. Krueger et al. (2016) also showed that in Oklahoma, low SM 
conditions are strongly correlated with large wildfires in the crop- 
growing season. In a recent study on drivers of global GPP trend, Cai 
and Prentice (2020) emphasized the contribution of SM on GPP in the 
arid western US. 

SM-based drought indices could be useful to assess crop physiolog-
ical responses (e.g., GPP, ET). ET can be used as a proxy for yield if the 
water use efficiency (WUE) remains constant. From the recent plant 
physiological perspective, it has been found that the plant stomatal 
conductance is mainly controlled by SM/soil hydraulics instead of VPD 
(Carminati and Javaux, 2020). At the continental scale, Huang et al. 
(2021) showed that it is the available soil water storage rather than 
precipitation that determines the yields of major field crops (e.g., maize, 
soybean, and winter wheat) from the long-term (1958–2019) county- 

level yield data across the CONUS. 
Now, we investigate the correlation of drought indices with aridity 

index, which is more related to atmospheric dryness and climate bal-
ance. Meteorological drought indices (e.g., SPI and SPEI) had a strong 
positive correlation (r = 0.7–0.9) with aridity index across most parts of 
the CONUS. A strong positive correlation occurred in the southwestern 
part of the CONUS as it is a water-limited region; therefore ET is pri-
marily controlled by precipitation and not by SM. Previous studies (e.g., 
Cane et al., 1997; Wetherald and Manabe, 1999; Cook et al., 2004) also 
suggested the role of hydroclimatic variables (e.g., precipitation, tem-
perature) in the western CONUS to persistence aridity and projected that 
an increasing trend in temperatures and deficit in precipitation could 
lead to more aridity over western North America. 

However, some regions (e.g., US Midwest and particularly the 
northern Great Lakes, climate ~ Cold, major LC type ~ Croplands) 
showed a negative correlation with SPI and SPEI, probably due to the 
decoupling between precipitation and atmospheric dryness. Previous 
studies (e.g., Gerken et al., 2018; Gerken et al., 2019) also reported land- 
atmosphere decoupling in the Great Lakes region and attributed it to the 
increased precipitation due to strong mesoscale convection system and 
active moisture-transporting jet stream over this region. These findings 
are important in view of climate change and future study of drought 
evolution in the Midwest where a wetting trend has been observed and 
the relationship between plant growth and moisture supply was re-
ported to be deteriorating due to decoupling mechanisms (Maxwell 
et al., 2016; Ponce-Campos et al., 2013). Therefore, drought forecasting 
in Midwest using only drought indices is challenging and needs to 
consider other controlling factors (e.g., sea-surface temperature anom-
aly, decadal climate variability, cyclonic activities, atmospheric subsi-
dence, etc.) (Hoerling et al., 2014). 

On the other hand, the SM-based drought indices (e.g., SMAP, SWDI, 
Z) showed an overall negative correlation trend with aridity index for 
most of the parts with a strong negative correlation exhibited in the 
northeastern (climate ~ Cold, LC ~ Forests) and western part (climate ~ 
Arid and Cold, LC ~ Forests and Grasslands) of the CONUS. Previous 
studies on SM and precipitation coupling showed that regions of strong 
land-atmosphere coupling are mainly located in the transition zones 
between arid to semiarid climate regime or semi-humid forest to 
grassland land cover types (e.g., Zhang et al., 2008). 

The hybrid index CDI, which includes both the SM and climate bal-
ance terms, showed a strong positive correlation with aridity index in 
the eastern and mid-west region within CONUS, suggesting its suitability 
to delineate meteorological drought in those regions. In a recent study, 
Klein and Taylor (2020) demonstrated that at a large scale (≥ 200 km) 
the mesoscale convective systems could be intensified by dry soils that 
can feedback on rainfall. Previous studies (e.g., Seneviratne et al., 2010, 

Table 4 
Preferences of drought indices with respect to spatial and temporal correlation with the GPP and aridity index and forecasting ability with GPP for 2015–2019 across 
four climate regimes and six land cover types within CONUS. For abbreviations, refer to Tables 1–2.   

Spatial correlation  Temporal correlation  Forecasting ability 

Climate regimes SPI SPEI Z SMAP SWDI CDI  SPI SPEI Z SMAP SWDI CDI  SPI SPEI Z SMAP SWDI CDI 

Tropical (A) *   × **  ×× ×× § +#   
Arid (B)  *  × **  ×× ×× § + #     
Temperate (C)  *  × × **  ×× ×× +#   §

Cold (D)    × **  ×× ×× +#  §

Land cover types 
Croplands  *  × **  ×× ×× #  §+

Forests  * × **  ×× ×× § + #   
Grasslands  *  × **  ×× ×× +#  §

Savannas  *  × **  ×× ×× +#  §

Shrublands  *  × **  ×× ×× § + #   
Wetlands * *  × × **  ×× ×× +# §

Note: × = highest median spatial correlation with GPP; * = highest median spatial correlation with aridity index; × × = highest temporal correlation with GPP; ** =
highest temporal correlation with aridity index; § = forecasting ability with GPP in early season; += forecasting ability with GPP in mid-season; # = forecasting ability 
with GPP in the late season. 
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2013; Dirmeyer, 2011; Dirmeyer et al., 2012; Zhou et al., 2021) showed 
that weak feedback of SM to temperature greatly reduces the frequency 
and intensity of atmospheric aridity. They also suggested that under dry 
conditions, SM affects precipitation to amplify SM deficits resulting in 
high chances of concurrent SM drought and atmospheric aridity. 

4.4. Forecasting plant productivity using drought indices: does drought 
have memory? 

SM-based and the hybrid drought indices generally performed better 
than meteorological drought indices in the forecasting of the end-of-year 
GPP. This indicates the dominant role of SM in controlling the evolution 
of ecosystem dryness and plant phenological response in most of the 
CONUS, regardless of the performance of drought indices in delineation 
or correlation. Similar studies suggest that SM plays an important role in 
precipitation and ET feedbacks via return of SM through ET and parti-
tioning of available energy at the land surface (e.g., Santanello Jr et al., 
2011; Seneviratne et al., 2010; Koster et al., 2004; Dirmeyer, 2011; Wei 
and Dirmeyer, 2012; Ford et al., 2015; Gerken et al., 2019; Dong et al., 
2020). Particularly, Koster and Suarez (2001) discussed the impacts of 
SM memories and found autocorrelation of SM with the variation of in 
ET and temperature, variation of runoff with, and the atmospheric 
forcing which is mostly caused by land-atmosphere feedback. Further-
more, we could argue that due to the memory of SM (lagged of SM 
change in response to rapid changes in meteorological forcing), these 
SM-derived indices (e.g., SMAP, SWDI) can detect the autocorrelation of 
SM over time (e.g., antecedent SM) and thus achieved better perfor-
mance for forecasting end-of-year GPP using early- to mid-growing 
season observations (Appendix Table). In this regard, and considering 
the good forecasting power of early-season SM-based drought indices to 
forecast end-of-year GPP, we argue that agricultural drought and its 
impacts on plant growth have a “memory” effect. 

Our next question is whether this “drought memory” remains con-
stant across the climate regimes, land cover and irrigation management 
and over time? This can be explained by the varying performances of 
drought indices in different climate regimes and LC types. Compared to 
meteorological drought indices, the relatively poor predictive perfor-
mance of SM-based indices for forecasting GPP in certain climate re-
gimes (e.g., Cold, Temperate) and LC types (e.g., Savannas, Grasslands) 
(Figs. 7–8 and Appendix Figs. 10–11) are consistent with the previous 
studies (Seneviratne et al., 2010; Koster et al., 2004; Dirmeyer, 2011; 
Wei and Dirmeyer, 2012; Ford et al., 2015) (Table 4). As reported by 
these researchers, the coupling between SM and ET (which affects GPP 
via WUE) is strongest in transitional SM regimes or wet years of arid 
climatic regimes and dry years of humid climatic regimes. This is 
because, at SM saturation condition, the rate-limiting factor for ET is 
energy while at the dry condition, there is little SM for evapotranspi-
ration, hence soil becomes the major controlling factor for ET rates 
(Veihmeyer and Hendrickson, 1927; Chatterjee et al., 2021b). As such, 
we could argue that “drought memory” is weak under these conditions. 
This could also be associated with the varying SM memory for different 
LC and climate regimes. For example, in a recent global study, McColl 
et al. (2019) proposed short-term and long-term SM memory to denote 
the persistence of SM in soil system (days) and observed that short-term 
SM memory was higher in the eastern part of the CONUS whereas, the 
western part had a higher long-term SM memory. This finding suggests 
that the long-term SM memory is more useful for positive feedbacks 
between SM and precipitation at weekly to seasonal time scales. 

The seasonality in “drought memory” could be possibly due to the 
seasonality in “SM memory”. Orth and Seneviratne (2012) reported that 
SM memory varied across different seasons and found maximum in late 
summer and minimum in spring in Europe. They also have reported that 
SM memory increased when the soil is either extremely dry or wet, 
suggesting the potential of SM memory to predict drought events. Based 
on the continental-scale flux tower measurements, Wolf et al. (2016) 
found that warming-induced earlier vegetation activity (particularly the 

early phenological development in the Eastern Temperate Forests) could 
increase GPP during spring and compensate for the decreased GPP 
during the summer drought in 2012. This short-term SM-GPP interaction 
may partly explain why including drought indices from the late-growing 
seasons did not further improve GPP forecasts compared to early and 
mid- season forecasts in Temperate climate regime and in Forests and 
Shrublands (Figs. 7–8 and Appendix Table) as the potential reduction of 
GPP during the mid- and late- seasons due to drought may have been 
compensated during the early seasons. Several other studies (e.g., Koster 
et al., 2000; Koster and Suarez, 2001) also highlighted the role of SM 
memory in predicting the summer precipitation in the mid-latitude 
continents as a higher SM might lead to higher precipitation via 
enhanced evaporation rates. 

In terms of different LC types, we also note that the forecasting 
performance of drought indices differed in different types of Forests and 
Shrublands (Fig. 8d, g and Appendix Fig. 13 and 14). These contrasting 
findings between Forests and Shrublands might be attributed to the 
climate, location, and soil moisture regimes of these two broad LC types 
within the CONUS (Cartwright et al., 2020). Detailed interpretation of 
the contrasting forecasting performance of various drought indices in 
different LC types are provided in Supplementary Information. 

4.5. Implications for drought forecasting and water resource management 

Our findings can help identify optimal indices and input forcing for 
drought delineation and forecasting. Drought classification based on one 
index might lead to an adverse impact on crop yield, significant eco-
nomic loss to the growers and stakeholders, and confusion for policy-
makers. For example, in California, during mid-July of 2015–2017 the 
SPI failed to show drought events, however, the SMAP and SWDI 
delineated California as a dry region (Appendix Fig. 7) suggesting that 
drought classification in this region might be problematic if we use only 
meteorological drought indices (e.g., SPI). Although experienced 
drought experts are unlikely to rely on one type of drought index for 
decision-making, there is still a need to incorporate root-zone SM-based 
indices into the current drought operational monitoring and forecasting 
programs (e.g., USDM, NOAA, and NRCS automated drought reports) in 
this region and other similar conditions for effective communication of 
drought events to the general public and stakeholders and evidence- 
based policy-making related to irrigation water management, cross- 
basin river water transfer, utilization of water reservoirs, and dam- 
building activities. 

Similarly, drought forecasting also demands consideration of goals, 
location, and season. Overall, the meteorological drought indices (e.g., 
SPEI) performed better in mid- and late-seasons forecasting in Arid, 
Temperate, and Cold climate regimes and Mixed Forests, Closed 
Shrublands, Grassland, Savannas, and rainfed Croplands LC types within 
the CONUS. However, for early-season forecast, SM-based indices (e.g., 
SMAP, SWDI) outperformed meteorological drought indices across all 
the LC types (except Deciduous and Mixed Forests where SPI performed 
the best) and certain climate regimes (e.g., Temperate, Cold) (Figs. 7–8). 
In addition, the SMAP outperformed the other indices for mid- and late- 
season forecasts in the Tropical climate regime and irrigated Croplands, 
Evergreen Forest, Open Shrublands, and Wetlands land cover types 
across the CONUS. This emphasizes the important role of SM in early 
and mid-season forecasting of plant productivity (here GPP) which is 
very crucial for optimizing resource allocation (e.g., water, nutrients) 
and maximizing farm profit vis-à-vis resilient and sustainable crop 
production. 

However, for mid- and late-season forecast, the meteorological 
drought indices (e.g., SPEI) performed better in certain climate regimes 
(e.g., Arid, Temperate, and Cold) and LC types (e.g., rainfed Croplands, 
Mixed Forests, Closed Shrublands, Grasslands, and Savannas) because 
SM depletes at the root-zone at later growing phase and atmosphere 
dryness controls the overall plant growth. Our study suggests that 
“drought memory” helps in forecasting in-season agricultural drought 
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that can be used to improve the parameterization of existing models for 
agricultural drought forecasting. Previous studies also emphasized that 
SM information improved seasonal drought forecasting skills of different 
mechanistic and stochastic models (AghaKouchak, 2014; Bolten et al., 
2009; Ceppi et al., 2014; Mo and Lettenmaier, 2014; Liu et al., 2017; Yan 
et al., 2017; Esit et al., 2021). 

4.6. Caveats of the study 

This study assumed that the short-term (e.g., 16-day) drought indices 
can capture ecosystem dryness and drought memory that is important 
for in-season yield forecasting. However, indices for larger time scales 
(e.g., 30-days, 60-days) were not considered in this study. In addition, 
several other indices are not considered here for the brevity of this study, 
and the duration of the study is short (five years) constrained by the 
availability of the SMAP-SM data. Furthermore, we did not perform a 
causality analysis using lagged time series of drought indices with GPP 
and aridity index as this is beyond the scope of this study and needs 
further research. 

5. Conclusions 

This study assesses the performance of five commonly used meteo-
rological and agricultural drought indices along with a simple hybrid 
index based on their spatial and temporal patterns and their spatial and 
temporal correlations with plant productivity (using GPP as a proxy) and 
atmospheric dryness (using aridity index as a proxy) across diverse 
climate regimes, land cover and soil texture types and irrigation man-
agement across the CONUS. The ability to use early, mid-, and late- 
season drought indices to forecast end-of-growing season GPP as an 
early warning framework has also been compared for different drought 
indices in different conditions. We conclude that:  

• All the drought indices delineated the eastern part of the CONUS as 
mostly wet and the western part as moderate to severe drought while 
the SMAP and SWDI delineated Florida as a chronic drought-affected 
region. 

• SM-based drought indices (e.g., SMAP, SWDI, Palmer Z) out-
performed other indices in delineating agricultural drought across 
the CONUS except for the US Midwest while meteorological drought 
indices (e.g., SPI, SPEI) proved better in terms of delineating atmo-
spheric dryness or climate balance but fail to acknowledge the water 
availability in the soil system that is most crucial for crop growth and 
important for agricultural drought delineation. 

• SM-based drought indices (e.g., SMAP, SWDI) outperformed mete-
orological drought indices (e.g., SPI, SPEI) across all major LC types 
(e.g., irrigated Croplands, Grasslands, Evergreen Forests, Open 
Shrublands) and climate regimes (e.g., Temperate, Cold) in terms of 
early and mid-season forecasting ability, most likely due to the 
“drought memory” that is associated with “soil moisture memory” in 
soil-plant-atmosphere interactions. The SPEI outperformed other 
indices in late-seasons forecasting in Arid, Temperate, and Cold 
climate regimes and rainfed Croplands, Mixed Forests, Closed 
Shrublands, Grasslands, and Savannas LC types within the CONUS. 
The hybrid index CDI performed moderately as compared to SM- 
based indices in terms of agricultural drought delineation however, 
it performed well for meteorological drought delineation.  

• A strong positive correlation between GPP and SM-based indices (e. 
g., SMAP, SWDI) suggests potential land-atmosphere coupling in the 
western part of the CONUS. SM and GPP are anticorrelated in the 
Midwest and Southeast and SM and aridity index are anticorrelated 
in the northeastern (climate ~ Cold, land cover ~Forests) and 
western part (climate ~ Arid and Cold, LC ~ Forests and Grasslands) 
of the CONUS, suggesting possible decoupling in these regions.  

• Agricultural drought forecasting is better achieved using SM-based 
indices in irrigated than rainfed Croplands for most parts of the 

CONUS, and SMAP dominated early and mid-season forecasts while 
SPEI dominated late-season forecasts. This suggests the importance 
of root-zone SM in controlling “drought memory”. 
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Sumanta Chatterjee, Ph.D. 
Faculty Research Assistant, College of Agriculture and Natural Resources, University of Maryland  

E-mail: schatt24@umd.edu 
 

Statement of extension programming 

As an applicant for the position of Assistant Professor of Agricultural Water Management at the 
Everglades Research and Education Center (EREC), University of Florida, I bring a comprehensive 
background in soil hydrology, climate change, and fertility management. My goal is to lead innovative, 
research-based extension programs that address Everglades Agricultural Area and South Florida’s 
unique agricultural and environmental challenges. By supporting UF’s faculty and Extension agents. I 
will contribute to improving soil health and climate resilience in South Florida’s diverse farming systems. 

In this role, I will deliver practical, research-driven information and resources to farmers, land managers, 
and other stakeholders, ensuring that my programs are responsive to their needs. Key aspects of my 
extension programming will include: 

• Leadership in Extension Programs: I will provide leadership in water management and soil 
health initiatives at the state and regional levels, collaborating with Extension agents and other 
partners to deliver targeted, impactful programs. I will ensure that programs align with the needs 
of federal, state, and county stakeholders, integrating their priorities to maximize effectiveness 
and resource allocation. 

• Client-Centered Program Development: My programs will directly address Best 
Management Practices including soi hydrology study, nutrient management, and soil erosion, 
particularly under changing climatic conditions. I will engage with stakeholders to identify and 
address specific water challenges and provide research-based solutions through workshops, 
webinars, on-farm demonstrations, and other outreach formats. 

• Innovative Educational Methods: I will utilize diverse, innovative platforms such as decision 
support tools, mobile apps, webinars, workshops, and field demonstrations to deliver relevant 
information on soil amendments, irrigation, and conservation practices. Additionally, I will 
produce educational materials including fact sheets, peer-reviewed extension publications, and 
social media content to reach a broader audience. 

• Collaborative Partnerships: Building strong partnerships with local and regional stakeholders, 
including farmers, advisory groups, government agencies, and private industry, will be central 
to my extension efforts. I will work closely with Florida Agricultural Experiment Station and 
Florida Cooperative Extension Service. Through these collaborations, I will identify emerging 
needs and co-develop solutions that promote sustainable agricultural practices and improve soil 
health outcomes. 

• Pursuing Funding and Resources: I will seek external and internal funding to support and 
sustain my extension programs, prioritizing grants from USDA-NIFA, NRCS, USAID, and 
private foundations that align with water management and sustainable agriculture objectives. 
Securing financial resources will be crucial to scaling up initiatives that directly benefit South 
Florida’s farming community. 

• Documenting and Measuring Impact: I will establish clear benchmarks for BMPs for 
improved water and nutrient use efficiency. Monitoring and documenting behavioral, financial, 
and environmental impacts will ensure that my programs contribute measurable benefits to 
South Florida’s agricultural landscapes. Program impacts will be shared through peer-reviewed 
publications and at professional conferences. 
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• Extension Scholarship: My work will emphasize scholarly contributions to irrigation 
management extension through original research, curriculum development, and applied 
programming. I will seek external validation for these efforts through peer-reviewed journals, 
professional presentations, and adoption by other Extension personnel nationwide. 

• Budget and Personnel Management: I will effectively manage program resources, including 
staff and volunteers, to ensure the efficient use of financial and human resources. By recruiting 
and training volunteers, I will extend the reach and impact of my soil health programs. 

• Commitment to Diversity and Inclusion: I am committed to serving diverse audiences and 
ensuring that all programs comply with civil rights mandates. Extension efforts will actively 
include underrepresented and minority groups, ensuring equitable access to resources, education, 
and opportunities in soil health and sustainable agriculture. 

This approach will foster resilient, healthy soils that support sustainable agricultural practices across 
South Florida while contributing to the long-term success of UF’s extension mission. 
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Sumanta Chatterjee, Ph.D. 
Faculty Research Assistant, College of Agriculture and Natural Resources, University of Maryland  

E-mail: schatt24@umd.edu 
 

Research Statement 

Achieving sustainability in agri-food systems demands transdisciplinary research, integrating soil health, water 
and carbon cycle, and natural resources management. I employ field, lab, and simulation experiments/models, 
develop survey tools, and analyze geospatial, environmental, and climate data to better understand soil health, 
water and carbon cycles as influenced by climate change and land use management. There is a critical need to 
understand the hydrological cycle, carbon cycle, and land surface-climate interactions at the field-, regional- to 
continental scales to improve policy and decision-making for sustainable ecosystem management and improved 
environmental quality. 
 
PhD Research: Ecosystem Modeling (University of Wisconsin-Madison): The five chapters of my doctoral 
dissertation, which together form the basis of four scientific papers published in peer-reviewed journals, are 
derived from a series of experiments in farmers’ fields in Wisconsin and India, and the conterminous US 
(CONUS). The major works involved were: 

1. Soil water modeling using microwave remote sensing: Utilizing Sentinel-1 microwave backscatter, soil 
property databases (e.g., POLARIS, SSURGO), and digital elevation model (DEM), I trained a few machine 
learning (ML) models (e.g., Random Forests, Cubist) to retrieve surface soil moisture (~5 cm) across diverse 
land cover types in the US Climate Reference Networks (USCRN) (published in the Remote Sensing). This 
research improves our understanding of the role of soil and terrain properties in soil moisture retrieval using 
remote sensing and AI/ML modeling. 
 

2. Predictive soil mapping and multi-sensor fusion: I developed a digital soil mapping framework using a 
multi-sensor fusion experiment in a grower’s field in Wisconsin that explored the potential of a stepwise 
fusion of proximally sensed portable X-ray fluorescence (pXRF) soil spectra and electromagnetic induction 
(EMI) with remote Sentinel-2 bands and a DEM for predicting soil physicochemical properties across a 
heterogeneous 80-ha crop field (published in the CATENA). This framework offers a novel framework for 
delineating soil management zones to optimize resource use, including irrigation, manure, and fertilizers. 
 

3. Drought forecasting framework using remote sensing data: This work evaluated the efficacy of root-
zone soil moisture-based drought indices for agricultural 
drought forecasting across diverse climate regimes, land 
cover, soil texture, and irrigation management (irrigated vs. 
rainfed) in the CONUS (published in the Remote Sensing of 
the Environment –RSE). This work informs regional and 
national drought mitigation strategies by assessing the 
performance of satellite-derived drought indices across 
diverse climate regimes and land cover types. 
 

4. Evapotranspiration and crop coefficient for irrigation scheduling: I developed a methodology for 
computing evapotranspiration (ET) and crop coefficients for wetland paddy using eddy covariance systems 
and multiple reference ET models (published in the Theoretical & Applied Climatology). The findings 
suggest revisions to FAO's crop coefficient guidelines, offering improved irrigation scheduling in tropical 
climates. 
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5. Wildfire-soil-climate causality and feedback: This work is focused 

on a wildfire-soil-climate causality study using Empirical Dynamic 
Model (EDM) in the global boreal biome using multiple remote 
sensing products (e.g., MODIS, TRMM, GRIDMET) for forest fire, 
land cover, ET, albedo, land surface temperature, precipitation, snow 
cover data, and vegetation health parameter. This study aims to explain 
the feedback mechanisms between wildfire incidence and 
environmental conditions including soil types in the global boreal 
biome. 

Postdoctoral Research: Regenerative Agriculture (USDA Hydrology and Remote Sensing Lab, Beltsville)  
During my postdoctoral tenure with Drs. Martha Anderson and Feng Gao, I focused on evaluating the resilience 
of regenerative agricultural systems in the US. My major contributions include: 

1. Water use and drought resilience in regenerative farms: I employed physical models (e.g., ALEXI, 
disALEXI) and satellite data (ECOSTRESS, Landsat, VIIRS) to assess water use (i.e., ET) and develop a 
drought monitoring framework for regenerative farms in Wyoming, Michigan, and Oklahoma. 

2. Soil and crop health assessment: I analyzed multi-sensor satellite data to monitor vegetation and soil health 
across diverse regenerative farms, contributing to a national database on soil health as part of the FFAR 
project. We sampled soil and biophysical properties from different regenerative ag. farms and analyzed those 
to make a national database under the FFAR project 

 
Experience as ARS Scientist at Indian Council of Agricultural Research (ICAR), India: 
At ICAR, I worked in the areas of wetland soil health, land use/land cover, water management, climate change, 
greenhouse gas (GHG) measurement, and crop simulation modeling. The projects I lead are: 
•Project 1: Vulnerability analysis, LU/LC mapping, digital soil mapping, and assessment of climate-smart 
agricultural technologies for enhancing resilience in stress-prone agro-ecologies 
•Responsibilities: digital soil mapping, LU/LC change detection, drought forecasting, and vulnerability metric 
development under climate change scenarios (RCPs, SSPs). 
• Project 2: Energy balance, ET, and GHG flux measurement using eddy covariance and gas chambers. 
•Responsibilities: Net Ecosystem Exchange of CO2, CH4, flux partitioning, ET and GHG modeling. 
•Project 3: Enhancing water use efficiency (WUE) in rice-based cropping system in eastern India. 
•Responsibilities: AI/ML algorithms for crop yield prediction, soil moisture estimation, and greenhouse gases 
(GHG) modeling under water stress conditions 
•Project 4: Crop simulation modeling (e.g., APSIM, DSSAT) for crop yield under changing climate scenarios. 
•Responsibilities: Biophysical, soil, and weather data collection from field trials, scenario generation, and 
statistical analysis. 
 
Current Work: Faculty Research Assistant, University of Maryland, College Park 
As a Faculty Assistant at the University of Maryland, I support the Precision Sustainable Agriculture (PSA) 
team in developing web-based decision tools for water and nitrogen management. My work focuses on soil-
landscape analysis and geospatial modeling, integrating SSURGO data, remote sensing, and terrain attributes 
to improve the PSA cover crop nitrogen calculator. Key tasks include calibrating AI/ML models to predict 
cover crop biomass and nitrogen content, integrating COMET-Planner to estimate GHG emissions, and 
automating data acquisition from diverse sources. This interdisciplinary effort enhances decision-making tools 
for sustainable agriculture. 
 
Future research directions and themes 
For the Assistant Professor position (Agricultural Water Management) at University of Florida, I propose a 
focused research agenda centered on innovative approaches to study hydrology and water resources 
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management, land-climate interactions, and soil carbon and nutrient cycle. My overall research will comprise 
three main themes as below: 
 
Theme 1. Characterizing crop water use under climate change and management using sensor and remote 
sensing based metrics, geospatial analysis, hydrological models and AI/ML algorithms 
An integrative approach that integrates tools (remote sensing, cloud based geospatial platforms, in situ 
observations, laboratory analyses, and modeling) and a system approach is required to understand the complex 
interactions between soil, water, climate, and crops. I will examine the underlying relationship between the soil-
plant-water-climate nexus and then scale from the variation in field scale to the variation to regional or 
continental scale exposed to contrasting climate, irrigation management, and land use. To do this, I will assess 
crop responses to climate extremes (e.g., drought, heat waves) by exploring soil-plant-atmosphere interactions.  
 
Theme 2. Assessing the impacts of management (e.g., irrigation, fertilizer) and climate on soil health, soil 
nutrient (i.e., C, N, P) dynamics and crop health 
I aim to develop sensor and AI/ML based data driven models to assess and predict soil water availability, 
nutrient transport and how conservation practices impact water availability during drought or extreme climate 
events. By integrating real-time climate data, soil moisture sensors, and carbon flux observations (from eddy 
covariance network), this research would support precision irrigation, input, and carbon management practices, 
aiming to enhance water-use efficiency, optimize carbon sequestration, and maintain soil health under varying 
climate conditions and management. I will study the transport of N and P in soil system and in sediment which 
is important to understand N leaching, P transport, and soil erosion processes. 
 
Theme 3. Developing an integrated AI-based smart digital farming system for soil health monitoring and 
mapping 
Food demand is increasing with the fast growth of the world population. Toward the Industry 4.0 era, smart 
digital farming with autonomous robotic technologies, the Internet of Things (IoT), and AI play a crucial role 
in enhancing crop productivity. Despite great benefits, smart farming is facing multiple challenges in integrating 
cutting-edge technologies, standardizing and scaling data between different platforms, processing and storing 
large data sets, and simplifying and distributing data to farmers for timely decision-making. I aim to develop 
an integrated smart sensing system for crop and soil health monitoring. The system would comprise a ground-
based sensor (e.g., soil sensors, nutrient sensors, gas exchange sensors) network to record crop and soil health 
metrics, an airborne and ground-based imaging system for collecting images, a wireless connected computing 
system for real-time data receiving, processing, and storage, and online crop health and soil map sharing. 
Advanced AI/ML algorithms will be developed in the system to assess crop health, soil nutrient status, and 
estimate yield. This system provides farmers with a real-time decision support framework to help them decide 
when to cultivate, how much water and how frequently irrigation is needed, how much fertilizer is needed, how 
to detect environmental stress, when to harvest, etc. Integrating with global spaceborne imaging data, this 
system can be upscaled and applied to large geographic regions. 
 
Broader impact: My interdisciplinary research will greatly contribute to the methodological advancements of 
geospatial and earth observation technologies in digital farming. My research can be upscaled to a large scale 
to provide unprecedented capacity not only to understand the impacts of climate change on water use and crop 
production, but also to better understand how multiple factors influence those responses across crops, soils, and 
management. I look forward to establishing fruitful collaborations with colleagues at the UF to achieve these 
goals. 
 
Sumanta Chatterjee 
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December 31, 2024 

Dear Members of the Search Committee, 
 
I am writing to apply for the Assistant Professor of Agricultural Water Management position at the Everglades 
Research and Education Center (EREC), University of Florida. I am currently a faculty research assistant at the 
Department of Environmental Science and Technology, University of Maryland (with Prof. Brian Needelman) 
and the USDA Precision Sustainable Agriculture lab, Beltsville, Maryland (with Dr. Steven Mirsky). I earned a 
Ph.D. degree in Soil Science from the University of Wisconsin-Madison. My research integrates multi-scale 
remote sensing, geospatial science, digital soil mapping, ecosystem modeling, and machine learning to 
understand soil-crop-climate interactions in diverse land cover, climate regimes, and irrigation management. I 
believe my research experience and future research and extension goals make me a strong candidate for this 
position. 

My current research as a faculty research assistant at the University of Maryland and USDA Beltsville focuses 
on the impact of climate and management (e.g., irrigation, nitrogen) on cover crop yield and quality, soil health, 
and cover crop biomass estimation using remote sensing and AI/ML. To investigate climate and management 
(e.g., Nitrogen and irrigation) responses, I integrate satellite remote sensing data (e.g., Planet, Sentinel-2, HLS) 
with field observation (e.g., soil health parameters, crop biomass). I leverage AI/ML models for biomass 
estimation using the Normalized Difference Vegetation Index (NDVI) as a proxy for cover crop health. I 
support the Precision Sustainable Agriculture (PSA) team in developing web-based decision tools (e.g., Cover 
Crop N-Calculator, CCNCALC) for water and nitrogen management. My work focuses on soil-landscape 
analysis and geospatial modeling, integrating SSURGO data, remote sensing, and terrain attributes to improve 
the PSA cover crop nitrogen calculator tool. Key tasks include calibrating AI/ML models to predict cover crop 
biomass and nitrogen content, integrating COMET-Planner to estimate greenhouse gas (GHGs) emissions, and 
automating data acquisition from diverse sources. This interdisciplinary effort enhances decision-making tools 
for sustainable agriculture.  

During my time as postdoctoral research in the USDA-Hydrology and Remote Sensing Lab, Beltsville, Maryland 
(with Drs. Martha Anderson and Feng Gao), I worked on the Foundation for Food & Agriculture Research 
(FFAR) project on a regenerative agricultural research program in the USA and worked in the farm-scale 
adaptation of ground observations (e.g., NEON, AmeriFlux, FLUXNET) and remote sensing applications (e.g., 
VIIRS, HLS, ECOSTRESS) for rangelands and croplands water use monitoring under climate change. This 
work also helped to monitor land cover change over historical time series and changes in ecosystem productivity 
in rangeland across the USA. 

My Ph.D. research at the University of Wisconsin-Madison focused on soil moisture modeling, seasonal drought 
forecasting, digital soil mapping, and wildfire-soil-climate interactions. My dissertation research contributed to 
calibrating machine learning (ML) models (e.g., Cubist, Random Forests) for the retrieval of surface soil 
moisture (~top 5 cm) using Sentinel-1 microwave backscatter, soil properties maps (e.g., POLARIS), and digital 
elevation models (DEM) as co-determinants of soil moisture across diverse land cover types (e.g., croplands, 
grasslands) in the conterminous USA (CONUS). I also developed a digital soil mapping (DSM) framework, to 
develop predictive models for soil physicochemical properties (e.g., SOC, N, Clay, soil depth) at field scale and 
different soil depths using a multi-sensor fusion approach. In addition, I developed a methodology for soil 
moisture drought forecasting using root-zone soil moisture from SMAP and drought indices across climate 
regimes, land cover, soil types (e.g., sandy vs. clayey), and irrigation management (e.g., irrigated vs. rainfed) in 
the CONUS. This study is important for regional and national level drought mitigation planning and 
policymaking for agricultural drought delineation. The last chapter of my Ph.D. dissertation focused on a 
wildfire-soil-climate causality study in the global boreal biome using multiple remote sensing products (e.g., 
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MODIS, TRMM, GRIDMET) and SoilGrid250m database. I have published my Ph.D. chapters in peer-
reviewed journals (e.g., CATENA, Remote Sensing of Environment, Remote Sensing). 

In addition, I worked as an ARS Scientist for 9-years at the Indian Council of Agricultural Research-National 
Rice Research Institute (ICAR-NRRI), India on developing methodologies to quantify ecosystem services, 
drought, GHG emission from wetlands, eddy covariance, and AI/ML based water use monitoring in wetland 
rice-paddies, land degradation mapping, and climate vulnerability assessment in eastern India. 

I am passionate about teaching and mentoring undergraduate and graduate students. My training in college 
teaching at the University of Wisconsin-Madison, USA, and ICAR, India instilled in me the three mantras of 
effective teaching: active learning, co-learning, and engagement. My teaching experience includes teaching 
assistantships (i.e., TA) in courses entitled ‘Physical Principles of Soil and Water Management’ and ‘Advanced Soil 
Physics’ at the University of Wisconsin-Madison and course instructor in ‘Remote Sensing and GIS Technique for 
Soil, Water and Crop Studies’ and ‘Soil Resource Management’ courses at ICAR, India. I am interested in teaching 
courses related to but not limited to hydrology, remote sensing, ecohydrology, and spatial data science. 

In addition, I have extension experience in engaging with diverse groups of farmers and stakeholders throughout 
my career journey, which would be a valuable addition to this position. During my PhD at UW-Madison, I 
organized farmers’ field days to demonstrate my research output and how they could implement my findings to 
improve crop yield estimation before harvest and use soil moisture maps for irrigation planning. During my 
postdoc at USDA, Beltsville, I visited farmers who were practicing regenerative farming and disseminated my 
research on water use estimation using remote sensing data. In addition, I have organized farmers’ fairs in the 
eastern part of India and taught soil health and best management practices to the farmers in India during my 
time as ARS at the Indian Council of Ag. Research (ICAR). 

Building upon my current and previous experiences in soil and agroecosystems I will build a research group that 
focuses on water management, hydrology, geospatial applications including nutrient cycle modeling using 
multiple data sources, geospatial analysis, and AI/ML models. My overall research will comprise three main 
themes, including 1) Characterizing crop water use under climate change and management using sensor and 
remote sensing based metrics, geospatial analysis, hydrological models and AI/ML algorithms, 2) Assessing the 
impacts of management (e.g., irrigation, fertilizer) and climate on soil health, soil nutrient (i.e., C, N, P) dynamics 
and crop health, crop health, and productivity, and 3) Developing an integrated AI-based smart digital farming 
system for crop growth and soil health monitoring and mapping. In addition, I intend to lead an innovative and 
research-based extension program that addresses Everglades Agricultural Area and South Florida’s unique 
agricultural and environmental challenges. By supporting UF’s faculty and extension agents, as well as the 
cooperative extension system of UF, I will contribute to improving water management and climate resilience in 
EAA and South Florida’s diverse farming systems. In this role, I will deliver practical, research-driven 
information and resources to farmers, land managers, and other stakeholders, ensuring that my programs are 
responsive to their needs. I envision developing a diverse collaborative team of researchers and students to find 
better solutions for stakeholder problems with a focus on meeting the goals and working according to the 
strategic plan of the Everglades Research and Education Center (EREC). I would expect my research to take a 
systems approach to understand irrigation management, conservation practices, BMPs, soil-crop-climate 
interactions, and nutrient cycling. My research approach would include both laboratory and field experiments 
and would integrate these findings with data-driven meta-modeling using advanced computing tools. To achieve 
these goals, I would solicit funding support from the NRCS, USDA-NIFA, USGS, NASA-ECOSTRESS (Water 
management), USAID (global challenges through discovery and innovation), etc. depending on the scale of 
research. 

Thank you very much for your time and consideration. I look forward to hearing from you. 

 
Sincerely, 

 

Sumanta Chatterjee 



Sumanta Chatterjee, Ph.D. 
                                                                        Phone: +1-240-353-0812 

schatt24@umd.edu | Google Scholar | LinkedIn | Twitter 

 
EDUCATIONAL PROFILE 

01/2019 - 05/2022  Ph.D. (Soil Science) Dept. of Soil Science, University of Wisconsin-Madison, USA 
• Major: Soil Science  
• Minor: Geography, Remote Sensing 

08/2012 - 08/2014 M.Sc. (Agricultural Physics), Indian Agricultural Research Institute, Delhi, India 
• Major: Soil Physics, Physics, Meteorology  
• Minor: Soil Science and Agricultural Chemistry, Statistics  

07/2008 - 06/2012   B.Sc. (Agriculture Honors), Bidhan Chandra Krishi Vishwavidyalaya, Nadia, India  
• Electives: Agronomy, Soil Science, Meteorology, Water Management 

RESEARCH EXPERIENCE PROFILE 

07/2024 – present Faculty Assistant at the Department of Environmental Science and Technology, College 
of Agriculture and Natural resources, University of Maryland, College Park, USA 

• Project: “Implementing a climate-smart precision cover crop and nitrogen 
management decision support tool”. 

• P.I. Dr. Brian Needelman (bneeed@umd.edu), 
       Dr. Steven Mirsky (steven.mirsky@usda.gov) 

06/2023 – 06/2024 Indian Council of Agricultural Research-ARS Scientist at ICAR-National Rice 
Research Institute, Cuttack, Odisha, India 

07/2022 – 06/2023 USDA-ARS ORISE Postdoctoral Research Fellow, USDA-Hydrology and Remote    
                                           Sensing Lab, Beltsville, Maryland, USA  

• Project: “To investigate applications for multi-scale/multi-sensor satellite 
retrievals of evapotranspiration (ET), vegetation index (VI) and derived 
phenology and yield products in monitoring response of range, forest, and 
croplands to management and climate”. 

• P.I. Dr. Martha Anderson (Martha.Anderson@usda.gov) 
 

05/2022 - 06/2022 Research Technician at the Dept. of Soil and Environmental Sciences, University of     
                                           Wisconsin-Madison, USA  

• Project: “Wildfire-land-climate causality study in the North American Boreal   
Forests using long term remote sensing data and causality models”.  

• P.I. Dr. Jingyi Huang (jhuang426@wisc.edu) 
 

01/2019 - 05/2022 Graduate Research Assistant at Department of Soil Science, University of Wisconsin-
Madison, USA  

• Project: “Role of Soil and Land Surface Conditions in Agricultural and 
Ecosystem Modeling”.  

• Advisor: Dr. Jingyi Huang (jhuang426@wisc.edu) 
Responsibilities: Organizing field trials (crop rotation, soil health parameters, 
soil moisture, spectroscopic-Vis-NIR/XRF data), remote sensing data processing 
(e.g., ECOSTRESS, MODIS, SMAP, Sentinel-1/2, Landsat, TRMM), soil (e.g., 
SoilGrid, Polaris, SSURGO), climate data (e.g., TerraClimate, GRIDMET), 
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image processing (using R, ENVI, GEE, ArcGIS), modeling (e.g., 
ML/DL/Causality/process-based), and publications in peer-reviewed journals. 

• Website: https://soilsensingmonitoring.soils.wisc.edu/lab-members/ 

01/2016 – 12/2018 ICAR-ARS Scientist at ICAR-National Rice Research Institute, Cuttack, Odisha, India 

08/2014 - 12/2015 Senior Research Fellow at ICAR-Indian Agricultural Research Institute New Delhi, India  
• Project: Regional-scale root-zone soil moisture estimation from satellite-derived 

near-surface moisture. 
Responsibilities: Taking data from field trials (soil moisture data by TDR, 
Neutron Moisture Meter, and gravimetric method), satellite remote sensing data 
collection (e.g., SMAP), data processing and analysis, and project report writing. 

07/2012 - 08/2014            Graduate Research Assistant at Division of Agricultural Physics, Indian agricultural 
Research Institute, New Delhi, India 

• Project: “Effects of irrigation, mulch and nitrogen on soil structure, carbon 
pools, and input use efficiency in maize (Zea mays L)”.  

• Advisor: Dr. K.K. Bandyopadhyay (kk.bandyopadhyay@gmail.com) 
• Responsibilities: Soil physical and chemical carbon pools estimation including 

aggregate associated carbon and water-soluble carbon fractionations. Soil 
physical and chemical properties including aggregate stability, soil moisture 
characteristics curve fitting, infiltration and hydraulic conductivity measurements 
under different cover crop management including mulching. 

EMPLOYMENT HISTORY 

01/2016 – 06/2024 ICAR-ARS Scientist at ICAR-National Rice Research Institute, Cuttack, Odisha, India. 
Past projects -   

• Project 1: Energy and water balance, Evapotranspiration and Greenhouse Gas 
(GHG) flux measurement from a wetland rice field using eddy covariance tower  
Responsibilities: Net Ecosystem Exchange (NEE) of CO2 and CH4, flux 
partitioning, ET and GHG modeling, eddy covariance data processing 

• Project 2: Vulnerability analysis and assessment of climate smart agricultural 
technologies for enhancing resilience in stress prone rice ecologies  
Responsibilities: Drought forecasting, vulnerability metric development under 
climate change scenarios (RCP 2.6, 4.5), and land degradation mapping and 
modeling. 

• Project 3: Enhancing water use efficiency in rice-based cropping system in eastern 
India  
Responsibilities: Machine Learning for crop yield prediction and GHG modeling 
under water stress conditions 

• Project 4: Simulation modeling (e.g., APSIM, DSSAT, CROPWAT) for crop yield 
under changing climatic scenario. 
Responsibilities: Monitoring phenological, soil, and weather data from field trials, 
scenario generation, and statistical analysis. 

• Project 5: Land use/land cover (LU/LC) change detection and associated 
Ecosystem Services quantification under climate change in the eastern part of 
India. 
Responsibilities: LU/LC change detection, ecosystem service quantification, and 
geostatistical analysis. 

• Website: https://icar-nrri.in/scientific-staff/#1528185596634-
8d689ee1-df36 

https://soilsensingmonitoring.soils.wisc.edu/lab-members/
mailto:kk.bandyopadhyay@gmail.com
https://icar-nrri.in/scientific-staff/#1528185596634-8d689ee1-df36
https://icar-nrri.in/scientific-staff/#1528185596634-8d689ee1-df36


TEACHING EXPERIENCE: 
 

1. University of Wisconsin-Madison, USA 
Two-semester teaching assistantship (3+3 credits) experience at the Department of Soil Science, University of 
Wisconsin-Madison, USA for two courses - 

I.Physical Principles of Soil and Water Management (Soil Sci. 322) 
II.Advanced Soil Physics (Soil Sci. 622) 

 
2. Indian Council of Agricultural Research (ICAR), India 

Two-semester teaching (3+3 credits) experience as an ICAR-ARS scientist at the ICAR-National Rice Research 
Institute, Cuttack, Odisha, India for two advance level courses - 

I.Remote Sensing and GIS Technique for Soil, Water and Crop Studies (Soil 509) 
II.Soil Resource Management (Soil 606) 

MENTORING EXPERIENCE  
Mentored two undergraduate and graduate students at the University of Wisconsin-Madison, USA with their mini 
projects related to soil health assessment and environmental modeling using remote sensing data and machine learning 
models. 

EDITORIAL EXPERIENCE  
1. Associate Editor (Jan 2024-present) of the Agrosystems, Geosciences & Environment journal 
(https://acsess.onlinelibrary.wiley.com/journal/26396696/editorial-board/editorial-board) 
2. Sectional Editor (Crop Production) (Jan 2022-present) of ORYZA-An International Journal on Rice 
(https://arrworyza.com/journal/editorialboard.aspx) 

GRANTS 
 

1. FLUXNET Secondment Travel Grant 2025 ($6000) by FLUXNET to conduct research on AI/ML based 
evapotranspiration partitioning using eddy covariance data at University College Dublin, Ireland 

2. Conference Travel Grant 2019 ($1000) by Department of Soil Science, UW-Madison for attending 
PEDOMETRICS conference in Canada 

3. Ecohydrology Early Career Tiny Grant ($250) to support attendance at the 2022 AGU Fall Meeting. 
4. Conference Travel Grant 2021 ($1000) by Department of Soil Science, UW-Madison for attending AGU 

Fall Meeting 2021 conference in New Orleans, USA. 
5. Student Research Grants Competition–Conference Presentation Grant 2021 ($1000) by UW-Madison 

for attending AGU Fall Meeting 2021 conference in New Orleans, Louisiana, USA. 
6. GA Harris Honorable Mention Instrument Grant ($5000) in 2021 by METER Group, Inc. USA to 

purchase soil moisture sensors for research 
7. ESIIL workshop Grant ($2500) in 2023 for participating in data science workshop at University of 

Colorado, Boulder, USA 

AWARDS 
 

1. Outstanding Agricultural Postdoc Award 2024 by the Association of Agricultural Scientists of Indian 
Origin (AASIO), USA during the 2024 ASA-CSA-SSSA Annual Meeting in San Antonio, Texas. 

2. Best Poster Presentation Award (3rd position, $250) at University of Maryland Systems-Postdoctoral 
Research Symposium 2024, College Park, Maryland, USA. 

3. Netaji Subhas-ICAR International Fellowship 2018-19 for PhD study at University of Wisconsin-
Madison, USA. 

4. University of Maryland postdoctoral fellowship 2024 for pursuing research at University of Maryland, 
USA. 

https://acsess.onlinelibrary.wiley.com/journal/26396696/editorial-board/editorial-board
https://arrworyza.com/journal/editorialboard.aspx


5. ORISE-USDA Postdoctoral Fellowship 2022 for pursuing research at USDA Hydrology and Remote 
Sensing Lab, Beltsville, Maryland, USA. 

6. FLUXNET Scholarship 2022 for attending the Flux Course training at the University of Colorado, USA. 
7. New Frontiers Scholarship 2021 by CORTEVA Agriscience, USA  
8. Richard D. Powell Memorial Scholarship 2021 from Department of Soil Science, UW-Madison, USA for 

outstanding performance in graduate studies. 
9. Richard D. Powell Memorial Scholarship 2020 from Department of Soil Science, UW-Madison, USA for 

outstanding performance in graduate studies. 
10. Best Reviewer Award for the journal Current World Environment in 2020. 
11. Graduate Research Assistantship for pursuing PhD studies at the University of Wisconsin-Madison, USA. 
12. Best Oral Presentation award at International Conference on Climate Change, Biodiversity and Sustainable 

Agriculture (ICCBSA-2018), Assam Agricultural University, Assam, India. 
13. ICAR-Junior Research Fellowship 2012 by Indian Council of Agricultural Research in Physical Sciences 
14. Merit Fellowship Awards for Secondary Examination (2006), Higher Secondary Examination (2008), and 

undergrad (2008-2012) by govt. of West Bengal, India. 
15. Qualified ICAR-National Eligibility Test (ICAR-NET) in Agrometeorology in 2015. 
16. Qualified ICAR-Agricultural Research Service (ICAR-ARS) in Agrometeorology in 2015. 

PUBLICATIONS: IN PEER-REVIEWED JOURNALS 
1. Maiti, A., Hasan, M.K., Sannigrahi, S., Bar, S., Chakraborti, S., Mahto, S.S., Chatterjee, S., et al., 2024. 

Optimal rainfall threshold for monsoon rice production in India varies across space and time. Communications 
Earth & Environment, 5(1), p.302. https://doi.org/10.1038/s43247-024-01414-7 

2. Swain, C.K., Nayak, A.K., Chatterjee, D., Pattanaik, S., Shanmugam, V., Chatterjee, S., et al., 2024. 
Quantifying Climate Influence on Net Ecosystem Exchange in Lowland Tropical Rice: A Five-Year Eddy 
Covariance Study. Agricultural Research, pp.1-17. https://doi.org/10.1007/s40003-024-00755-1 

3. Chatterjee, S., Desai, A. R., Zhu, J., Townsend, P., Huang, J. (2022). Soil moisture as an essential component 
for delineating and forecasting agricultural rather than meteorological drought. Remote Sensing of 
Environment, Vol. 269, 112833, ISSN 0034-4257, https://doi.org/10.1016/j.rse.2021.112833.  

4. Chatterjee, S., Stoy, P. C., Debnath, M., Nayak, A. K., Swain, C. K., Tripathi, R., ... & Pathak, H. (2021). 
Actual evapotranspiration and crop coefficients for tropical lowland rice (Oryza sativa L.) in eastern India. 
Theoretical and Applied Climatology, 1-17. https://doi.org/10.1007/s00704-021-03710-0 

5. Chatterjee, S., Hartemink, A. E., Triantafilis, J., Desai, A. R., Soldat, D., Zhu, J., ... & Huang, J. (2021). 
Characterization of field-scale soil variation using a stepwise multi-sensor fusion approach and a cost-benefit 
analysis. CATENA, 201, 105190. https://doi.org/10.1016/j.catena.2021.105190 

6. Debnath, M., Tripathi, R., Chatterjee, S. et al. (2021). Long-Term Yield of Rice–Rice System with Different 
Nutrient Management in Eastern India: Effect of Air Temperature Variability in Dry Season. Agric Res. 
https://doi.org/10.1007/s40003-021-00541-3 

7. Chatterjee, S., Huang, J., Hartemink, A.E., 2020. Establishing an Empirical Model for Surface Soil Moisture 
Retrieval at the U.S. Climate Reference Network Using Sentinel-1 Backscatter and Ancillary ata. Remote 
Sensing 12, 1242. https://doi.org/10.3390/rs12081242 

8. Chatterjee, S., Swain, C.K., Nayak, A.K., et al., 2020. Partitioning of eddy covariance-measured net 
ecosystem exchange of CO2

 in tropical lowland paddy. Paddy and Water Environment. 
https://doi.org/10.1007/s10333-020-00806-7 

9. Chatterjee, D., Swain, C.K., Chatterjee, S., et al., 2020. Is energy balance in a tropical lowland rice perfectly 
closed? Atmosfera. https://doi.org/10.20937/ATM.52734 

10. Chatterjee, D., Tripathi, R., Chatterjee, S., et al., 2018. Characterization of land surface energy fluxes in a 
tropical lowland rice paddy. Theor. Appl. Climatol. doi: https://doi.org/10.1007/s00704-018-2472-y 

https://doi.org/10.1038/s43247-024-01414-7
https://doi.org/10.1007/s40003-024-00755-1
https://doi.org/10.1016/j.rse.2021.112833
https://doi.org/10.1007/s00704-021-03710-0
https://doi.org/10.1016/j.catena.2021.105190
https://doi.org/10.1007/s40003-021-00541-
https://doi.org/10.3390/rs12081242
https://doi.org/10.1007/s10333-020-00806-7
https://doi.org/10.20937/ATM.52734
https://doi.org/10.1007/s00704-018-2472-y


11. Chatterjee, S., Bandyopadhyay, K.K., Pradhan, S., Singh, R. and Datta, S.P.  2018. Effects of irrigation, crop 
residue mulch and nitrogen management in maize (Zea mays L.) on soil carbon pools in a sandy loam soil of 
Indo-gangetic plain region. CATENA 165, 207-216. doi:  https://doi.org/10.1016/j.catena.2018.02.005 

12. Swain, C.K., Nayak, A.K., Bhattacharyya, P., Chatterjee, D., Chatterjee, S., et al., 2018 Greenhouse gas 
emissions and energy exchange in wet and dry season rice: eddy covariance-based approach. Environ. Monit. 
Assess. 190: 423. https://doi.org/10.1007/s10661-018-6805-1 

13. Chatterjee, S., Bandyopadhyay, K.K., Pradhan, S., Singh, R. and Datta, S.P.  2017. Yield and Input Use 
Efficiency of Maize (Zea mays L.) as Influenced by Crop Residue Mulch, Irrigation and Nitrogen 
Management. J. Indian Soc. Soil Sci. 65 (2): 199-209. doi: https://doi.org/10.5958/0974-0228.2017.00023.8 

14. Chatterjee, S., Bandyopadhyay, K.K., Pradhan, S., Singh, R. and Datta, S.P. 2016. Influence of Irrigation, 
Crop Residue Mulch and Nitrogen Management Practices on Soil   Physical Quality. J. Indian Soc. Soil Sci. 
64 (4): 351-367. doi: https://doi.org/10.5958/0974-0228.2016.00048.7 

15. Chatterjee, D., Nayak, A.K., Vijaykumar, S., Debnath, M., Chatterjee, S., et al., 2019. Water vapor flux in 
tropical lowland rice. Environ. Monit. Assess. 191 (9), 550. https://doi.org/10.1007/s10661-019-7709-4 

16. Shahid, M., Goud, B.R., Nayak, A.K., Tripathi, R., Mohanty, S., Bhaduri, D., Chatterjee, D., Debnath, M., 
Chatterjee, S., et al., 2022. Simulation of rice yield with resource conserving technologies for early, mid and 
end centuries under changing climatic conditions using DSSAT model. ORYZA- An International Journal on 
Rice 59(3):359-369. DOI: 10.35709/ory.2022.59.3.12 

17. Vijayakumar, S., Rajpoot, SK., Manikandan, N., Varadan, RJ., Singh, JP., Chatterjee, D., Chatterjee, ., et S
al., 2023. Extreme temperature and rainfall event trends in the Middle Gangetic Plains from 1980 to 2018. 

1307-124(11). doi: 10.18520/cs/v124/i11/1300 Current Science  
18. Al Zihad, S.R., Islam, A.R.M.T., Siddique, M.A.B., Mia, M.Y., Islam, M.S., Islam, M.A., Bari, A.M., Bodrud-

Doza, M., Ibrahim, S.M., Senapathi, V. and Chatterjee, S., 2023. Fuzzy logic, geostatistics, and multiple 
linear models to evaluate irrigation metrics and their influencing factors in a drought-prone agricultural 
region. Environmental Research, p.116509. https://doi.org/10.1016/j.envres.2023.116509 

19. Mahapatra, S.S., Parameswaran, C., Chowdhury, T., Senapati, A., Chatterjee, S., et al., 2024. Unraveling the 
Efficient Cellulolytic and Lytic Polysaccharide Monooxygenases Producing Microbes from Paddy Soil for 
Efficient Cellulose Degradation. Journal of Advances in Biology & Biotechnology, 27(3), pp.47-56. 
https://doi.org/10.9734/jabb/2024/v27i3720 
 

REVIEW PAPERS 
1. Meena, M.D., Dotaniya, M.L., Meena, B.L., Rai, P.K., Antil, R.S., Meena, H.S., Meena, L.K., Dotaniya, 

C.K., Meena, V.S., Ghosh, A., Meena, K.N.,..Chatterjee, S., et al., 2023. Municipal solid waste: 
Opportunities, challenges and management policies in India: A review. Waste Management Bulletin, 1(1), 
pp.4-18. https://doi.org/10.1016/j.wmb.2023.04.001 

2. Raza, T., Qadir, M.F., Khan, K.S., Eash, N.S., Yousuf, M., Chatterjee, S., Manzoor, R., ur Rehman, S. and 
Oetting, J.N., 2023. Unrevealing the potential of microbes in decomposition of organic matter and release of 
carbon in the ecosystem. Journal of Environmental Management, 344, p.118529. 
https://doi.org/10.1016/j.jenvman.2023.118529 

BOOK CHAPTERS 
1. Bhaduri, D., Chatterjee, D., Chakraborty, K., Chatterjee, S., Saha, A. (2018). Bioindicators of Degraded 

Soils. In book: Sustainable Agriculture Reviews 33: Climate Impact on Agriculture (Editor: Eric Lichtfouse) 
Publisher: Springer Switzerland. p.p 231-257.doi: 10.1007/978-3-319-99076-7_8 

2. Tripathi, R., Debnath, M., Chatterjee, S., et al. (2018). Assessing Energy and Water Footprints for Increasing 
Water Productivity in Rice-based Systems. In: H. Pathak, AK. Nayak, M. Jena, ON. Singh, P. Samal and SG. 
Sharma, ed., Rice Research for Enhancing Productivity, Profitability and Climate Resilience, 1st ed. Cuttack, 
Odisha, India: ICAR-National Rice Research Institute, Cuttack 753006, Odisha, India, p.p x+542. 

https://doi.org/10.1016/j.catena.2018.02.005
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3. Saha, S., Munda, S., Patra, B.C., Adak, T., Satapathy, B.S., Paneerselvam, P., Guru. P., Borkar, N.T., 
Chatterjee, S. (2018). Dynamics and Management of Weeds in Rice. In: H. Pathak, AK. Nayak, M. Jena, 
ON. Singh, P. Samal and SG. Sharma, ed., Rice Research for Enhancing Productivity, Profitability and 
Climate Resilience, 1st ed. Cuttack, Odisha, India: ICAR-National Rice Research Institute, Cuttack 753006, 
Odisha, India, p.p x+542 

4. Mohapatra, S.D., Raghu, S., Prasanthi, G., Baite, M.S., Prabhukarthikeyan, S.R., Yadav, M.K., Basana 
Gowda, G., Pandi G, G.P., Banerjee, A., Aravindan, S., Patil, N.B., Chatterjee, S., et al. (2018). Bio-ecology 
of Rice Insects Pests and Diseases: Paving the way to Climate-smart Rice Protection Technologies. In: H. 
Pathak, AK. Nayak, M. Jena, ON. Singh, P. Samal and SG. Sharma, ed., Rice Research for Enhancing 
Productivity, Profitability and Climate Resilience, 1st ed. Cuttack, Odisha, India: ICAR-National Rice 
Research Institute, Cuttack 753006, Odisha, India, p.p x+542 

RESEARCH BULLETINS 
1. Chatterjee, D., Nayak, A. K., Swain, C. K., Tripathi, R., Chatterjee, S., Pradhan, A., ... & Mohanty, S. 2021. 

Eddy Covariance Technique for Measurement of Mass and Energy Exchange in Lowland Rice. ICAR-
National Rice Research Institute, Cuttack, Odisha, 753006, India. pp 34 + vi 

DISSERTATION/THESIS 
1. Chatterjee, S., 2022. Investigating the Role of Soil and Land Surface Properties in Agricultural and 

Ecosystem Modeling. The University of Wisconsin-Madison. (Ph.D. dissertation) 
2. Chatterjee, S., 2014. Effects of Irrigation, Mulch and Nitrogen on Soil Structure, Carbon Pools and Input 

Use Efficiency in Maize (Zea mays L.). Indian Agricultural Research Institute. (Master’s thesis) 

ORAL PRESENTATION IN CONFERENCES/ WORKSHOPS/ SYMPOSIUMS 
1. On “Integrating Satellite Imagery and Weather Variables for Enhanced Cover Crop Biomass Estimation”, 

at AGU Fall Meetings 2024, 9-13 December 2024, in Washington, D.C., USA.  
2. On “Modeling Growth Dynamics of Cereal Cover Crops Using Satellite Imagery and Weather Indices", at 

ASA-CSSA-SSSA International Annual Meetings 2024, 9-13 Nov 2024, in San Antonio, Texas, USA. 
3. On “Can Soil Properties Explain the Causality Strength of Wildfire with Environmental Factors in the North 

American Boreal Forests?", at ASA-CSSA-SSSA International Annual Meetings 2022, Baltimore, Maryland 
held during 6-9 Nov 2022. 

4. On “Determination of Actual Evapotranspiration and Crop Coefficients of Tropical Indian Lowland Rice 
(Oryza sativa) Using Eddy Covariance Approach”, at AGU Fall Meetings 2021, New Orleans, Louisiana 
held during 13-17 Dec 2021. 

5. On “Machine learning models for surface soil moisture retrieval using Sentinel-1 backscatter, soil and 
terrain data” at New Frontiers Artificial Intelligence in Agriculture Scholars: conference organized by 
CORTEVA Agriscience, USA (31 July–Sept 2, 2021). 

6. On “Characterization of Field-Scale Soil Variation Using a Stepwise Multi-Sensor Fusion Approach and a 
Cost-Benefit Analysis” at ASA-CSSA-SSSA International Annual Meetings 2020 (9-13 Nov 2020) 
VIRTUAL. 

7. On “Actual evapotranspiration and crop coefficients for tropical lowland rice: Eddy Covariance approach” 
at PEDOMETRICS2019, held during 2–6 June 2019, University of Guelph, Ontario, Canada. 

 On “Actual evapotranspiration and crop coefficients for tropical lowland paddy by Eddy Covariance 
approach” in International Conference on Climate Change, Biodiversity and Sustainable Agriculture 
(ICCBSA-2018) held during 13-16 Dec 2018 at Assam Agricultural University, Jorhat, Assam, India. 

9. On “Influence of Irrigation, Crop Residue Mulch and Nitrogen Management Practices on Soil Physical 
Quality” in an international symposium on “New-Dimensions in Agrometeorology for Sustainable 
Agriculture” conducted by Association of Agrometeorologists during 16-18 Oct 2014 at GB Pant University 
of Agriculture and Technology (GBPUAT), Pantnagar, India. 



POSTER PRESENTATION IN CONFERENCES/ WORKSHOPS/ SYMPOSIUMS 
1. Poster presentation at ASA-CSSA-SSSA International Annual Meetings (9-13 Nov 2024) on “Rapid 

Urbanization Leads to Decline in Forest Cover and Ecosystem Services in India: Insights from 10-m ESA 
Sentinel-2 Product” in San Antonio, Texas, USA. 

2. Poster presentation at the 8th Annual Postdoctoral Research Symposium, September 27, 2024, hosted by the 
University of Maryland, on “Do Land-Wildfire-Environment Causal Links Exist in North American Boreal 
Forests?”. 

3. Poster presentation at AGU Fall Meetings 2022, Chicago on “Do Land Surface, Vegetation, and Climate 
have Causality with Wildfire in Boreal Forests?” In AGU Fall Meeting Abstracts (Vol. 2022, pp. GC25G-
0755). 

4. Poster presentation at AGU Fall Meetings 2021, New Orleans, Louisiana on “Soil Moisture Plays Crucial 
Role in Delineating and Forecasting Agricultural and Meteorological Drought”, held during 13-17 Dec 
2021. 

5. Poster presentation at ASA, CSSA and SSSA International Annual Meetings (9-13 Nov 2020) VIRTUAL on 
“Agricultural and Meteorological Drought Assessment across the CONUS Using SMAP Soil Moisture and 
Ancillary Data”.  

6. Presented a poster at Spring–2020 Climate Change Symposium, Reid Bryson poster session & Reception on 
“Establishing an empirical model for surface soil moisture retrieval at the U.S. Climate Reference Network 
using Sentinel-1 and ancillary data” on 13 Feb 2020. 

7. Poster presentation at AGU, San Francisco, California on “Mapping Surface Soil Moisture at the 30-m 
Resolution at the U.S. Climate Reference Network Stations Using Sentinel-1 and Ancillary Data”, held during 
8-13 Dec 2019. 

8. Poster presentation on “Mapping Surface Soil Moisture at the 30-m Resolution at the U.S. Climate Reference 
Network Stations Using Sentinel-1 and Ancillary Data” at ‘Water@UW-Madison Fall 2019 Poster Session 
& Reception’, on 20th Nov 2019 at University of Wisconsin-Madison, USA. 

9. Poster presentation on “Global mapping of soil water at fine spatio-temporal resolutions using deep learning 
and big data” in College of Agriculture & Life Sciences (CALS) Go-Global Spring Symposium, on 9th April 
2019 at University of Wisconsin-Madison, USA, which has the theme “Advancing the United Nations 
Sustainable Goals through University Engagement.” 

10. Poster presentation on “Comparison of two Flux Partitioning Models for Net Ecosystem Exchange of CO2 in 
lowland rice ecology of tropical India” in 3rd ARRW International Symposium on “Frontiers of Rice 
Research for Improving Productivity, Profitability and Climate Change” organized by Association of Rice 
Research Workers & ICAR-National Rice Research Institute during 6-9 Feb 2018 at ICAR-NRRI, Cuttack, 
India. 

GUEST LECTURES/INVITED TALKS 
1. Invited talk on “Career Development and Learning Opportunities in International Institutes” at a webinar 

organized by the University of Agricultural and Horticultural Sciences, Shivamogga, India (12–14 July 
2021).https://www.youtube.com/watch?v=dqUt2NqmJMo&list=PLyd1fFRivRh8u7qnXMUjYh3zOeWaa
M0dZ&index=11 

2. Invited talk at Carbon Climate Collaborative Network forum organized by Society of Young Agri. and Hydro. 
Scholar of India (SYAHI) on “Roles of Soil and Climate in Ecosystem Modeling”, July 30, 2023, USA 
(https://twitter.com/syahindia/status/1681634897478455298) 

WORKSHOPS/ SYMPOSIUMS/ WINTER SCHOOL/ TRAINING ATTENDED/CERTIFICATES 
1. NCAR-NEON workshop on data science at NCAR Mesa lab, Colorado during May 31-June 2, 2023. 
2. 2023 Innovation Summit workshop by ESIIL (Environmental Data Science Innovation & Inclusion Lab) on 

Environmental Data Science at University of Colorado, Boulder during May 23-25, 2023. 

https://www.youtube.com/watch?v=dqUt2NqmJMo&list=PLyd1fFRivRh8u7qnXMUjYh3zOeWaaM0dZ&index=11
https://www.youtube.com/watch?v=dqUt2NqmJMo&list=PLyd1fFRivRh8u7qnXMUjYh3zOeWaaM0dZ&index=11
https://twitter.com/syahindia/status/1681634897478455298


3. AGU2022 workshop on “Large-scale Geospatial Data Analysis and Visualization in R (SCIWS30)” on 
Dec11, 2022. 

4. AGU2022 workshop on “Python for Remote Sensing: Analysis, Visualization, and Workflow for Earth 
Scientists (SCIWS3)” on Dec 06, 2022. 

5. Online Training Program on “Analysis of Experimental Data in R” Organized by ICAR-National Academy 
of Agricultural Research Management, Hyderabad, India, during 19-28 Dec 2022. 

6. Certificate on “Creating Maps with R” from Linked Learning completed on Nov 13, 2022, 
(https://www.linkedin.com/learning/certificates/58545a6e31351e2789f438cb124071854aa0ae17aa22e3f3d
beaff0e3e4f3b98?u=56745513) 

7. Attended “How to Write Your Research Statement for an R1/R2 Tenure Track professorship in the USA”, 
Oct 28, 2022, organized by American Society of Plant Biologists. 

8. Flux Course (July 25-Aug 5, 2022) training (www.fluxcourse.org) at the University of Colorado Mountain 
Research Station at Niwot Ridge in Colorado on novel flux corrections and gap filling techniques, insights 
on carbon and energy cycles, and basic understanding of land surface models. 

9. Fundamentals of Deep Learning Workshop (July 13-14, 2022) by NIVDIA. 
10. Online seminar on “Big data Analytics in Agriculture” Organized by ICAR-National Academy of 

Agricultural Research Management, Hyderabad, India, during 10-11 Dec 2020. 
11. Participated “Young Professional and Student Consortium Summer school” on Geospatial Data Analysis 

organized by IEEE GRSS & ISPRS during Oct 16 – Dec 10, 2020. 
12. Participated in the International Webinar on “Building Climate Resilience in Agriculture through 

Agrometeorology and other Technological Interventions” organized by Centre for Advance Studies on 
Climate Change, Dr. Rajendra Prasad Central Agricultural University, Pusa, India during 15 - 17 Dec 2020. 

13. Certificate of completion on “Modeling in Microwave and Optical Remote Sensing”, online, 14 July 2020 
Beijing, China organized by The Institute of Electrical and Electronics Engineers, INC (IEEE), New York. 

14. Certificate of completion on “Multidimensional Analysis: Change, Predictions, and Change Detection”, Aug 
5, 2020, organized by DirectionsMag. 

15. Webinar on “Are you measuring the soil moisture correctly”, June 10, 2020, organized by Satyukt Analytics 
Pvt. Ltd., India. 

16. Workshop on “MACHINE LEARNING AS A FRAMEWORK FOR PREDICTIVE SOIL MAPPING: 
incorporating distances and spatial connectivity into machine learning-based modeling” during Pedometrics 
2019, 2–6 June 2019, Guelph, Ontario, Canada. 

17. Off campus Outreach Certificate program on “Application of Remote Sensing and GIS for Natural 
Resources” from January 27 to March 27, 2015, sponsored by National Resource Management System 
(NNRMS) of Indian Institute of Remote Sensing, Indian Space Research Organization (ISRO), Department 
of Space, Government of India. 

18. Off-Campus Outreach Certificate program on “Remote Sensing, Geographical Information System & Global 
Navigation System” from Aug 10 to Nov 27, 2015, sponsored by National Resource Management System 
(NNRMS) of Indian Institute of Remote Sensing, Indian Space Research Organization (ISRO), Department 
of Space, Government of India. 

19. The 103rd Foundation Course for Agricultural Research Service (FOCARS) for newly recruited scientists 
(ARS) during January 01-31st March 2016 organized by ICAR-National Academy of Agricultural Research 
Management, Hyderabad, India. 

https://www.linkedin.com/learning/certificates/58545a6e31351e2789f438cb124071854aa0ae17aa22e3f3dbeaff0e3e4f3b98?u=56745513
https://www.linkedin.com/learning/certificates/58545a6e31351e2789f438cb124071854aa0ae17aa22e3f3dbeaff0e3e4f3b98?u=56745513
http://www.fluxcourse.org/


20. Professional Attachment Training (PAT) during 19th May-18th Aug 2016 on “Eddy Covariance (EC) 
technique for GHG flux determination” organized by Central Research Institute for Jute and Allied Fibers, 
Kolkata, India. 

21. Training on “Application of Multivariate Techniques for Agricultural Research using SAS” during 14-20 
Sept 2016 organized by National Rice Research Institute, Cuttack, India. 

22. Winter School on “Assessing Natural Resource Management, Climate Risk and Environmental Sustainability 
using Simulation Models” during 8-28th Nov 2016 organized by ICAR-Indian Institute of Soil Science, 
Bhopal, India. 

23. Winter School on “Advances in Simulation Modeling and Climate Change Research towards Knowledge-
based Agriculture” during 16 Nov-06 Dec 2017 organized by Centre for Environment Science and Climate 
Resilient Agriculture, ICAR-Indian Agricultural Research Institute, New Delhi, India. 

SKILLS IN LAB AND FIELD RESEARCH 
Instrumentations 

Eddy Covariance systems, LICOR gas sensors, Soil Moisture sensors (e.g., TDR), Weather Stations, 
DUALEM, EM38, Nitrate sensors, Lysimeters, Vis-NIR spectroscopy, X-Ray fluorescence spectrometry, 
SPAD, Tensiometers, Line Quantum Sensor, Canopy Analyzer, Drip emitters, Permeameter, Wick 
Lysimeters, Soil thermometers, PAR and other radiation sensors, Augers, Pressure plate apparatus, Yodder’s 
apparatus, Penetrometer, Spectrophotometer, Spectroradiometer, Flame photometer, Kjeldahl apparatus, pH 
meter, EC meter, Photosynthesis analyzer, TOC analyzer, etc. 

PROGRAMMING LANGUAGES/SOFTWARE/MODELS 
 

• R, JMP, SPSS, SAS, Python, MATLAB, Google Earth Engine (GEE), Perl, IDL 
• MS Windows, MS Office, PowerPoint, Excel, Linux, HPC 
• ENVI, ArcGis10, ArcGISPro, QGIS 
• LoggerNet, EdiRe, EddyPro, Winrhyzo 
• Crop models: APSIM, DSSAT, DNDC, INFOCROP, WOFOST 
• Machine learning models: Random forests, Cubist, K-means Cluster, PLSR etc. 
• Biophysical models: TSEB, ALEXI, DisALEXI 
• Process-based models: EDM, Convergent Cross Mapping, Causality models 
• Hydrus 1D, CROPWAT 

FIELD RESEARCH 
• Faculty Research Assistant (07/2024-present) at University of Maryland – soil health monitoring, cover crop 

biomass modeling and digital soil mapping using remote sensing and proximal sensors and AI/ML models 
•  Postdoc (07/2022-06/2023) - investigating applications for multi-scale/multi-sensor satellite retrievals of 

evapotranspiration (ET), vegetation index (VI) and derived phenology and yield products in monitoring 
response of rangelands (regenerative grazing practices), forests, and croplands to management and climate. 

• PhD (2019-2022) dissertation research on soil health monitoring, soil moisture modeling and digital soil 
mapping using remote sensing and proximal sensors and machine learning technique at Dept. of Soil Science, 
College of Agriculture and Life Sciences (CALS), University of Wisconsin-Madison, USA. 

• Used different soil moisture sensors at different depths. For example, using TDR meters and electromagnetic 
induction (EMI) sensor in Arlington Ag. Research Station and Hancock Ag. Research Station in Wisconsin, 
USA. 

• Disseminated soil health and soil moisture maps to farmers of Wisconsin generated through measured soil 
moisture and fusion of remotely sensed microwave soil moisture backscatter data from Sentinel-1, and 
electromagnetic induction images from DUALEM sensor. 

• Flux observation, partitioning of net ecosystem exchange, and energy balance components and 
evapotranspiration monitoring through eddy covariance flux tower at ICAR-NRRI, Cuttack, India.  



• Conducted research experiments on rice and rice-based cropping system and monitored agro-meteorological 
observatory regularly providing agro-advisory services to local farmers with a team of scientists from another 
subject area while working as a scientist at ICAR-NRRI, Cuttack, India. 

• Conducted research trials on Nitrogen, mulch, and irrigation management on soil health in summer maize 
during 2012-14 during master’s program at the Indian Agricultural Research Institute (IARI), New Delhi, 
India. 

• Setting up experimental designs like CRD, RCBD, LSD, Factorial, Split, Split-split, and Strip plot designs.  
• Advised farmers during Rural Agricultural Work Experience (RAWE) for six months during bachelor’s 

program, 2011-2012. 

MEMBERSHIP IN SCIENTIFIC SOCIETIES/JOURNALS 
• Annual member- American Geophysical Union (AGU) (2019-present) 
• Annual member- ASA-CSSA-SSSA (2019-present) 
• Annual member -American Meteorological Society (AMS) (2021-present) 
• Life member- Association of Agrometeorologists (AAM) (2019-present) 
• Annual member - The Indian Society of Soil Science (ISSS) (2016-present)  
• Life member - ORYZA, National Rice Research Institute, Cuttack (2016-present) 
• Life member of Agricultural Research Service Scientists’ Forum (ARSSF) (2016-present) 
• Annual Member- Association of Agricultural Scientists of Indian Origin (AASIO) (2020, 2024) 

VOLUNTEERING/LEADERSHIP/SRVICE ACTIVITIES 
1. Serving as Chair of the Model Applications in Field Research Community for 2025. 
2. Served as Vice-chair and moderator of three symposiums at ASA-CSA-SSSA Annual Meeting in San 

Antonio, Texas during 9-13 Nov 2024 
3. Served as a Judge for oral and poster competitions by students at ASA-CSSA-SSSA Annual Meeting 2024, 

San Antonio, Texas (9-13 Nov 2024) in the oral and poster session – “Model Applications in Field Research”. 
4. Served as a Judge at ASA-CSSA-SSSA Annual Meeting 2022, Baltimore, Maryland (9-13 Nov 2022) in the 

oral and poster session – “Animal Agriculture and the Environmental Community”. 
5. Selection Committee Member of ‘Gary “Pete” Peterson Dryland Soil Management Scholarship’ award 

committee (Jan 2023-Dec 2024) of American Society of Agronomy. 
6. Serving as an Associate Editor of Agrosystems, Geosciences & Environment Editorial (AGE) journal of 

ASA-CSA-SSA society since January 2024. 
7. Serving as a Sectional Editor of the journal ORYZA An International Journal on Rice since January 2021. 
8. Served as international student representative member at International Student Services (ISS), University 

of Wisconsin-Madison in 2019. 
9. Served as Member Secretary in institute Agro-advisory Services for farmers in ICAR-National Rice 

Research Institute, Cuttack during 2016-2023. 
10. Served as In-charge of institute agrometeorological observatory of India Meteorological Department (IMD) 

at ICAR-NRRI, Cuttack, India for during 2016-2023. 
11. Served as a Farm Advisor in Mera Gaon Mera Gaurav (MGMG) program hosted by ICAR-NRRI, Cuttack, 

India. 
12. Served as a Coordinator in organizing Krishi Mela 2017 held at ICAR-NRRI, Cuttack. 

COMMITTEE SERVICES 

Committee Title Term Start Term End 

AE - Agrosystems, Geosciences & Environment Editorial Board AGE Associate Editor 2024-01-01 2026-12-31 
ASA - Model Applications in Field Research Community Leaders Presiding Leader 2025-01-01 2025-12-31 
SSSA - Gary “Pete” Peterson Dryland Soil Management Scholarship Member 2023-01-01 2024-12-31 
ASA - Model Applications in Field Research Community Leaders Vice Leader 2024-01-01 2024-12-31 
 




