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Extension Philosophy 

Extension is one of the important pillars of land-grant universities, bridging the gap between research and 
practice by providing non-formal education to farmers, agricultural producers, and other stakeholders. I 
believe that an impactful extension program successfully creates a critical link between scientific research 
and actionable practices, empowering agricultural stakeholders to address pressing challenges. My 
extension philosophy centers on four pillars: 

1. Stakeholder Engagement and Need Assessment: Extension begins with actively engaging with 
farmers, county and regional extension agents, and stakeholders to understand their needs and challenges. 
At UF, I participated in various Potato Field Days at the Hastings Agricultural Extension Center, FL and 
in-service trainings (IST) conducted by UF/IFAS. While interacting with farmers at field days, I observed 
that while Florida farmers are aware of the risks associated with extreme weather events, yet many lack in 
implementing appropriate preventive strategies to counter these impacts. Similarly, at UIUC, I worked with 
stakeholders to develop the CoverCrop Analyzer, a web-based decision-support tool for cover crop 
management. Meetings with various Illinois farmers, I identified barriers to adopting cover crops, such as 
concerns about costs, labor requirements, and limited knowledge of cover crop management. These insights 
guided my research to ensure its alignment with farmers' needs and expectations. As a faculty member, I 
plan to expand stakeholder engagement by conducting regular needs assessments through surveys, focus 
groups, and field visits. By creating trust-based relationships, I aim to bridge gaps in understanding climate 
change and facilitate the adoption of climate-resilient practices. 

2. Demonstration and Knowledge Transfer: Field demonstrations are essential for showcasing the 
practicality of sustainable practices and tools. At UF, I assessed the impact of different combinations of 
nitrogen fertilizers and irrigation practices on potato agroecosystem by incorporating field trials with crop 
modeling. These results were shared with farmers during various field days. Similarly, my involvement in 
cover crop project at UIUC helped promote the environmental and agronomical benefits of adopting cover 
crops in Midwestern cropping systems. I envision expanding these efforts by designing collaborative field 
trials and tools on climate-resilient irrigation and nutrient management practices. Partnering with growers 
to test these solutions will provide real-world evidence of their efficacy, encouraging broader adoption. 

3. Educational Outreach: Effectively disseminating knowledge is at the heart of extension work. At UF, 
I co-authored an extension publication on “Assessing Nitrate Leaching in Crop Production through the 
Application of Crop Simulation Models with Experimental Data from Florida” (Sharma et al., 2024) to 
provide farmers and extension agents with actionable insights for mitigating nutrient loss. Additionally, I 
contributed to multiple extension articles at UIUC to introduce farmers with the cover crop management 
tool (Coppess et al. 2020, 2021a, and 2021b). These extension publications allowed me to address specific 
stakeholder concerns and provide accessible, practical solutions. My future outreach efforts will prioritize 
developing educational content and extension articles along with disseminating information through 
bulletins, social media, seminars, and workshops in state/local growers’ meetings and conferences.  

4. Program Evaluation: Continuous improvement in extension programs relies on robust assessment and 
feedback mechanisms. While developing the CoverCrop Analyzer, I actively sought feedback from 
stakeholders to refine the tool’s usability and relevance. This iterative approach ensured the tool met farmer 
expectations and increased its adoption. Moreover, interacting with farmers and answering their questions 
during the field days or during break time in workshops provides us an opportunity to evaluate the efficacy 
of the extension program. I plan to institutionalize a feedback loop in all my extension programs, employing 
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surveys, focus groups, and digital analytics to measure effectiveness. By analyzing adoption rates and 
environmental outcomes, I aim to quantify the impact of my initiatives. This data will guide program 
refinement, ensuring relevance and efficacy over time. 

 
Future Vision 
Looking forward, my extension philosophy will evolve to address emerging challenges in agriculture, 
particularly climate change and sustainability. I aim to establish a comprehensive Climate-Smart Extension 
Program focused on the following objectives: 1) Enhancing Climate Literacy: Developing training 
programs to improve farmers’ understanding of climate change and its implications, 2) Promoting 
Regenerative Practices: Conducting research and extension activities on soil, nutrient, and water 
conservation, 3) Farmer Oriented Decision Support Tools: Expanding the use of AI, remote sensing, and 
crop modeling in decision support systems to provide stakeholders with precise, actionable 
recommendations by developing web-based decision-supported irrigation and nutrient management tools, 
and 4) Fostering Collaboration: Building networks between researchers, farmers, extension agents, and 
policymakers to collectively solve agricultural challenges. My extension philosophy is rooted in the belief 
that effective stakeholder engagement, practical demonstrations, accessible educational outreach, and 
rigorous program evaluation are essential for driving sustainable agricultural practices. By leveraging these 
pillars, I aim to bridge the gap between research and practice, fostering climate-resilient farming practices 
and empowering communities to adapt to evolving challenges. Through innovative tools, collaborative field 
trials, and strategic outreach, I am committed to creating a lasting, positive impact in agriculture. 
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Research Statement 

Agriculture accounts for approximately 72% of freshwater consumption and is a major contributor to non-
point source pollution. Without improved water use efficiency, rising food demand and climate change 
could push freshwater withdrawals beyond current levels, causing immense pressure on water resources. 
Additionally, intensifying agricultural practices to boost productivity and increasing extreme weather 
events may worsen freshwater contamination and exacerbate water scarcity. Addressing these challenges 
requires innovative strategies to enhance food security while minimizing environmental impact—an 
urgency that drives my commitment to advancing agricultural sustainability.  

My research focuses on developing climate-resilient, sustainable farming systems by integrating 
cutting-edge technologies in digital agriculture, including agroecological and hydrological models, remote 
sensing, GIS, and AI/ML, to improve its water and nutrient use efficiency. Over the past decade, I have 
contributed to interdisciplinary projects that deepened my expertise in watershed hydrology, crop modeling, 
soil nutrient cycling, agricultural water management, and climate change adaptation.  

Currently, I am leading a multidisciplinary state legislature-backed project entitled ‘Using AI for 
improved crop nutrient recommendations’ [funded by: FDACS] with Dr. Zotarelli, collaborating with Drs. 
Zare and Harley from Department of Electrical and Computer Engineering at UF. I am leading a 
transdisciplinary team to develop a uniform data collection framework, crop model-guided AI algorithms, 
and machine learning model to provide crop nutrient recommendations, while balancing productivity and 
environmental impact. Earlier, I developed a crop model-guided long short-term memory (LSTM)-based 
machine learning approach to estimate soil mineral nitrogen in seepage irrigation using data-sparse field 
observations (Gupta et al. 2024). Currently, I am leading my team to integrate unmanned arial vehicles- 
(UAVs) and satellite-derived multi-/hyperspectral imageries with crop model-integrated ML methods to 
provide site-specific fertilizer and irrigation application recommendations. Additionally, I participate in the 
DSSAT Development Sprint led by Prof. Gerrit Hoogenboom to contribute to the development and 
advancement of DSSAT by creating a tool (DSSAT-SoilPro) to optimize the soil hydraulic properties using 
soil moisture and water table observations. Moreover, I assessed the impact of irrigation (overhead 
sprinkler) and nitrogen management on potato performance under varying Florida climate conditions (da 
Silva et al., 2024). I am developing AI-based methodologies for site-specific irrigation scheduling 
maintaining optimum soil moisture based on crop water demand and soil mechanical impedance. While 
working on these projects, I developed key skills required to successfully lead interdisciplinary projects 
such as team management-supervision-mentorship, networking, and collaboration skills. Additionally, I 
gained extensive grant writing experience, drafted four grant proposals with Dr. Zotarelli (PI), one accepted 
(FDACS) and others pending (USDA-NIFA, SCBGP-FDACS, IFAS-UF). 

As a graduate research assistant at UIUC, I worked on a project entitled- ‘CoverCrop Analyzer: a 
web-based decision support tool for cover crop management’ [funded by: Illinois Nutrient Research and 
Education Council] with Dr. Bhattarai. To develop CoverCrop Analyzer, I developed the CERES-Wheat 
model of DSSAT as a proxy model for simulating the growth cereal rye as a winter cover crop (Gupta et 
al., 2022) and investigated its long-term impact and sustainability on tile drainage, water quality, and corn-
soybean growth using Regional Climate Models at state scale (Gupta et al., 2023a;  2023b). My dissertation 
concluded that the cover crops might not be able to completely mitigate climate change impact by 2060 in 
a few climate divisions of Illinois. During my doctoral research, I also collaborated on a side project to 
assess the global climate change impact on stream low flows of the Great Miami River watershed, Ohio 
(Shrestha et al., 2019) using Soil and Water Assessment Tool (SWAT) hydrological model. During my 
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master’s at IIT-KGP, I assessed the climate change-induced impact and uncertainty of the rice yield over 
the agroecological zones of India using various Global Climate Models future projections and warming 
scenarios (Gupta and Mishra, 2019). Additionally, I developed various agroclimatic tools such as ‘Climate 
Data Bias Corrector’ (Gupta et al., 2019) and ‘Weather Data Interpolator’ to remove statistical bias and 
downscale climate model projections. While working on these projects, I gained foundational knowledge 
on subject matter such as soil water hydrology, irrigation and drainage, soil nitrogen cycling, water quality, 
cover crops, crop modeling, watershed hydrology, geospatial modeling, and climate change, which boosted 
my confidence and solidified my aspirations of becoming a prominent researcher in the field. 

With profound expertise in agricultural water management, physical modeling, and integrating 
ML/AI techniques to provide data-driven computational solutions, I am well-equipped to develop 
competitive research and extension programs aimed at improving the climate resilience of farming systems 
regionally and globally by optimizing fertilizer and water use efficiency. In the next few years as a faculty 
member, my research program will focus on four primary areas: 1) develop and evaluate site- and crop-
specific irrigation and drainage systems for sandy soils with shallow water-table condition to improve 
agricultural production and soil-nutrient-water conservation, 2) advance AI-integrated scalable crop, 
hydrological, and nutrient transport modeling approaches to enhance crop water-nutrient use efficiency 
while reducing  nutrient losses and soil erosion amid water table management, 3) develop web-based 
decision support system to improve the state climate resilience by data sciences, remote sensing, and 
geospatial modeling approaches, and 4) implement and deliver these strategies by collaborating with 
growers/extension agents/stakeholders to improve drainage water quality preventing nutrient/sediment 
loads to water bodies while improving crop yield. Moreover, I plan to deliver my latest findings by actively 
writing extension articles and creating educational programs for extension agents, producers, and clienteles.  

As I seek to define my own research and extension program to advance process-based modeling, 
data science driven computational approach and their application to improve water-nutrient use efficiency 
and climate resilience of the system, I plan to collaborate with faculties in various departments/schools/ 
colleges, such as Agricultural and Biological Engineering, Agronomy, Horticultural Sciences, Soil, Water, 
and Ecosystem Sciences Departments, College of Agricultural and Life Sciences, School of Natural 
Resources and Environment along with various research/extension centers and advisory groups. Moreover, 
I plan to collaborate with various departments in the Herbert Wertheim College of Engineering such as 
Electrical and Computer Engineering, Environmental Engineering Sciences, and Civil & Coastal 
Engineering Departments to develop technologies and methods required for my research vision. To support 
my research program, I am well-equipped to secure competitive external funding from government entities 
such as USDA, NIFA, United States Geological Survey (USGS), National Science Foundation (NSF), 
Sustainable Agriculture Research and Education (SARE), Environmental Protection Agency (EPA), and 
other federal funding agencies. Additionally, I plan to secure state fundings from various programs and 
grant opportunity provided by FDACS and USDA-backed state Specialty Crop Block Grant Program. 
Moreover, I am fully prepared to serve as a principal investigator on USDA-NIFA Multistate Hatch 
projects. Through my research program, I aim to generate peer-reviewed journal articles to showcase my 
research activities and engage in regional/national/international recognition conferences and professional 
societies. I am committed to advising and mentoring undergraduate/graduate students, postdoctoral 
researchers, extension agents, biological scientists, and research technicians. With my research program, I 
aim to provide practical and actionable solutions to farmers, policymakers, and other stakeholders, 
optimizing agroecosystems while promoting climate change-resilient water and nutrient use practices.  

https://doi.org/10.1016/j.agsy.2019.01.009
https://github.com/AgroClimaticTools/CDBC
https://github.com/AgroClimaticTools/CDBC
https://doi.org/10.3390/w11051102
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Extension Philosophy 

Extension is one of the important pillars of land-grant universities, bridging the gap between research and 
practice by providing non-formal education to farmers, agricultural producers, and other stakeholders. I 
believe that an impactful extension program successfully creates a critical link between scientific research 
and actionable practices, empowering agricultural stakeholders to address pressing challenges. My 
extension philosophy centers on four pillars: 

1. Stakeholder Engagement and Need Assessment: Extension begins with actively engaging with 
farmers, county and regional extension agents, and stakeholders to understand their needs and challenges. 
At UF, I participated in various Potato Field Days at the Hastings Agricultural Extension Center, FL and 
in-service trainings (IST) conducted by UF/IFAS. While interacting with farmers at field days, I observed 
that while Florida farmers are aware of the risks associated with extreme weather events, yet many lack in 
implementing appropriate preventive strategies to counter these impacts. Similarly, at UIUC, I worked with 
stakeholders to develop the CoverCrop Analyzer, a web-based decision-support tool for cover crop 
management. Meetings with various Illinois farmers, I identified barriers to adopting cover crops, such as 
concerns about costs, labor requirements, and limited knowledge of cover crop management. These insights 
guided my research to ensure its alignment with farmers' needs and expectations. As a faculty member, I 
plan to expand stakeholder engagement by conducting regular needs assessments through surveys, focus 
groups, and field visits. By creating trust-based relationships, I aim to bridge gaps in understanding climate 
change and facilitate the adoption of climate-resilient practices. 

2. Demonstration and Knowledge Transfer: Field demonstrations are essential for showcasing the 
practicality of sustainable practices and tools. At UF, I assessed the impact of different combinations of 
nitrogen fertilizers and irrigation practices on potato agroecosystem by incorporating field trials with crop 
modeling. These results were shared with farmers during various field days. Similarly, my involvement in 
cover crop project at UIUC helped promote the environmental and agronomical benefits of adopting cover 
crops in Midwestern cropping systems. I envision expanding these efforts by designing collaborative field 
trials and tools on climate-resilient irrigation and nutrient management practices. Partnering with growers 
to test these solutions will provide real-world evidence of their efficacy, encouraging broader adoption. 

3. Educational Outreach: Effectively disseminating knowledge is at the heart of extension work. At UF, 
I co-authored an extension publication on “Assessing Nitrate Leaching in Crop Production through the 
Application of Crop Simulation Models with Experimental Data from Florida” (Sharma et al., 2024) to 
provide farmers and extension agents with actionable insights for mitigating nutrient loss. Additionally, I 
contributed to multiple extension articles at UIUC to introduce farmers with the cover crop management 
tool (Coppess et al. 2020, 2021a, and 2021b). These extension publications allowed me to address specific 
stakeholder concerns and provide accessible, practical solutions. My future outreach efforts will prioritize 
developing educational content and extension articles along with disseminating information through 
bulletins, social media, seminars, and workshops in state/local growers’ meetings and conferences.  

4. Program Evaluation: Continuous improvement in extension programs relies on robust assessment and 
feedback mechanisms. While developing the CoverCrop Analyzer, I actively sought feedback from 
stakeholders to refine the tool’s usability and relevance. This iterative approach ensured the tool met farmer 
expectations and increased its adoption. Moreover, interacting with farmers and answering their questions 
during the field days or during break time in workshops provides us an opportunity to evaluate the efficacy 
of the extension program. I plan to institutionalize a feedback loop in all my extension programs, employing 
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surveys, focus groups, and digital analytics to measure effectiveness. By analyzing adoption rates and 
environmental outcomes, I aim to quantify the impact of my initiatives. This data will guide program 
refinement, ensuring relevance and efficacy over time. 

 
Future Vision 
Looking forward, my extension philosophy will evolve to address emerging challenges in agriculture, 
particularly climate change and sustainability. I aim to establish a comprehensive Climate-Smart Extension 
Program focused on the following objectives: 1) Enhancing Climate Literacy: Developing training 
programs to improve farmers’ understanding of climate change and its implications, 2) Promoting 
Regenerative Practices: Conducting research and extension activities on soil, nutrient, and water 
conservation, 3) Farmer Oriented Decision Support Tools: Expanding the use of AI, remote sensing, and 
crop modeling in decision support systems to provide stakeholders with precise, actionable 
recommendations by developing web-based decision-supported irrigation and nutrient management tools, 
and 4) Fostering Collaboration: Building networks between researchers, farmers, extension agents, and 
policymakers to collectively solve agricultural challenges. My extension philosophy is rooted in the belief 
that effective stakeholder engagement, practical demonstrations, accessible educational outreach, and 
rigorous program evaluation are essential for driving sustainable agricultural practices. By leveraging these 
pillars, I aim to bridge the gap between research and practice, fostering climate-resilient farming practices 
and empowering communities to adapt to evolving challenges. Through innovative tools, collaborative field 
trials, and strategic outreach, I am committed to creating a lasting, positive impact in agriculture. 
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Research Statement 

Agriculture accounts for approximately 72% of freshwater consumption and is a major contributor to non-
point source pollution. Without improved water use efficiency, rising food demand and climate change 
could push freshwater withdrawals beyond current levels, causing immense pressure on water resources. 
Additionally, intensifying agricultural practices to boost productivity and increasing extreme weather 
events may worsen freshwater contamination and exacerbate water scarcity. Addressing these challenges 
requires innovative strategies to enhance food security while minimizing environmental impact—an 
urgency that drives my commitment to advancing agricultural sustainability.  

My research focuses on developing climate-resilient, sustainable farming systems by integrating 
cutting-edge technologies in digital agriculture, including agroecological and hydrological models, remote 
sensing, GIS, and AI/ML, to improve its water and nutrient use efficiency. Over the past decade, I have 
contributed to interdisciplinary projects that deepened my expertise in watershed hydrology, crop modeling, 
soil nutrient cycling, agricultural water management, and climate change adaptation.  

Currently, I am leading a multidisciplinary state legislature-backed project entitled ‘Using AI for 
improved crop nutrient recommendations’ [funded by: FDACS] with Dr. Zotarelli, collaborating with Drs. 
Zare and Harley from Department of Electrical and Computer Engineering at UF. I am leading a 
transdisciplinary team to develop a uniform data collection framework, crop model-guided AI algorithms, 
and machine learning model to provide crop nutrient recommendations, while balancing productivity and 
environmental impact. Earlier, I developed a crop model-guided long short-term memory (LSTM)-based 
machine learning approach to estimate soil mineral nitrogen in seepage irrigation using data-sparse field 
observations (Gupta et al. 2024). Currently, I am leading my team to integrate unmanned arial vehicles- 
(UAVs) and satellite-derived multi-/hyperspectral imageries with crop model-integrated ML methods to 
provide site-specific fertilizer and irrigation application recommendations. Additionally, I participate in the 
DSSAT Development Sprint led by Prof. Gerrit Hoogenboom to contribute to the development and 
advancement of DSSAT by creating a tool (DSSAT-SoilPro) to optimize the soil hydraulic properties using 
soil moisture and water table observations. Moreover, I assessed the impact of irrigation (overhead 
sprinkler) and nitrogen management on potato performance under varying Florida climate conditions (da 
Silva et al., 2024). I am developing AI-based methodologies for site-specific irrigation scheduling 
maintaining optimum soil moisture based on crop water demand and soil mechanical impedance. While 
working on these projects, I developed key skills required to successfully lead interdisciplinary projects 
such as team management-supervision-mentorship, networking, and collaboration skills. Additionally, I 
gained extensive grant writing experience, drafted four grant proposals with Dr. Zotarelli (PI), one accepted 
(FDACS) and others pending (USDA-NIFA, SCBGP-FDACS, IFAS-UF). 

As a graduate research assistant at UIUC, I worked on a project entitled- ‘CoverCrop Analyzer: a 
web-based decision support tool for cover crop management’ [funded by: Illinois Nutrient Research and 
Education Council] with Dr. Bhattarai. To develop CoverCrop Analyzer, I developed the CERES-Wheat 
model of DSSAT as a proxy model for simulating the growth cereal rye as a winter cover crop (Gupta et 
al., 2022) and investigated its long-term impact and sustainability on tile drainage, water quality, and corn-
soybean growth using Regional Climate Models at state scale (Gupta et al., 2023a;  2023b). My dissertation 
concluded that the cover crops might not be able to completely mitigate climate change impact by 2060 in 
a few climate divisions of Illinois. During my doctoral research, I also collaborated on a side project to 
assess the global climate change impact on stream low flows of the Great Miami River watershed, Ohio 
(Shrestha et al., 2019) using Soil and Water Assessment Tool (SWAT) hydrological model. During my 
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master’s at IIT-KGP, I assessed the climate change-induced impact and uncertainty of the rice yield over 
the agroecological zones of India using various Global Climate Models future projections and warming 
scenarios (Gupta and Mishra, 2019). Additionally, I developed various agroclimatic tools such as ‘Climate 
Data Bias Corrector’ (Gupta et al., 2019) and ‘Weather Data Interpolator’ to remove statistical bias and 
downscale climate model projections. While working on these projects, I gained foundational knowledge 
on subject matter such as soil water hydrology, irrigation and drainage, soil nitrogen cycling, water quality, 
cover crops, crop modeling, watershed hydrology, geospatial modeling, and climate change, which boosted 
my confidence and solidified my aspirations of becoming a prominent researcher in the field. 

With profound expertise in agricultural water management, physical modeling, and integrating 
ML/AI techniques to provide data-driven computational solutions, I am well-equipped to develop 
competitive research and extension programs aimed at improving the climate resilience of farming systems 
regionally and globally by optimizing fertilizer and water use efficiency. In the next few years as a faculty 
member, my research program will focus on four primary areas: 1) develop and evaluate site- and crop-
specific irrigation and drainage systems for sandy soils with shallow water-table condition to improve 
agricultural production and soil-nutrient-water conservation, 2) advance AI-integrated scalable crop, 
hydrological, and nutrient transport modeling approaches to enhance crop water-nutrient use efficiency 
while reducing  nutrient losses and soil erosion amid water table management, 3) develop web-based 
decision support system to improve the state climate resilience by data sciences, remote sensing, and 
geospatial modeling approaches, and 4) implement and deliver these strategies by collaborating with 
growers/extension agents/stakeholders to improve drainage water quality preventing nutrient/sediment 
loads to water bodies while improving crop yield. Moreover, I plan to deliver my latest findings by actively 
writing extension articles and creating educational programs for extension agents, producers, and clienteles.  

As I seek to define my own research and extension program to advance process-based modeling, 
data science driven computational approach and their application to improve water-nutrient use efficiency 
and climate resilience of the system, I plan to collaborate with faculties in various departments/schools/ 
colleges, such as Agricultural and Biological Engineering, Agronomy, Horticultural Sciences, Soil, Water, 
and Ecosystem Sciences Departments, College of Agricultural and Life Sciences, School of Natural 
Resources and Environment along with various research/extension centers and advisory groups. Moreover, 
I plan to collaborate with various departments in the Herbert Wertheim College of Engineering such as 
Electrical and Computer Engineering, Environmental Engineering Sciences, and Civil & Coastal 
Engineering Departments to develop technologies and methods required for my research vision. To support 
my research program, I am well-equipped to secure competitive external funding from government entities 
such as USDA, NIFA, United States Geological Survey (USGS), National Science Foundation (NSF), 
Sustainable Agriculture Research and Education (SARE), Environmental Protection Agency (EPA), and 
other federal funding agencies. Additionally, I plan to secure state fundings from various programs and 
grant opportunity provided by FDACS and USDA-backed state Specialty Crop Block Grant Program. 
Moreover, I am fully prepared to serve as a principal investigator on USDA-NIFA Multistate Hatch 
projects. Through my research program, I aim to generate peer-reviewed journal articles to showcase my 
research activities and engage in regional/national/international recognition conferences and professional 
societies. I am committed to advising and mentoring undergraduate/graduate students, postdoctoral 
researchers, extension agents, biological scientists, and research technicians. With my research program, I 
aim to provide practical and actionable solutions to farmers, policymakers, and other stakeholders, 
optimizing agroecosystems while promoting climate change-resilient water and nutrient use practices.  
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A B S T R A C T

Sandy soils are susceptible to excessive nitrogen (N) leaching under intensive crop production which is linked 
with the soil’s low nutrient holding capacity and high-water infiltration rate. Estimating soil mineral nitrogen 
(SMN) at the daily time-step is crucial in providing fertilizer recommendations balancing plant nitrogen use 
efficiency (NUE) and N losses to the environment. Crop models [e.g., Decision Support System for Agro-
technology Transfer (DSSAT)] can simulate SMN trend under varied fertilizer application rates and timings but 
struggle with accuracy in high-water table conditioned sub-irrigated soil. Alternatively, time-series deep learning 
(DL) models based on a long short-term memory (LSTM) are promising in understanding nonlinearity among 
complex variables. Yet, purely data-driven DL models for crops are challenging to develop due to limited field 
data availability and the excessive costs to collect more field data. Hence, a hybrid model (hybrid-LSTM) was 
developed by leveraging both the DSSAT and LSTM models to estimate daily SMN primarily using daily weather, 
applied fertilizer rates-timings, and the SMN sparse observations. This study used the observations from field 
trials conducted between 2011–2014 in Hastings, FL. The first step was to calibrate the DSSAT-SUBSTOR-Potato 
model to produce reliable SMN of the topsoil for treatments with varied N applied fertilizer rates split among the 
pre-planting, emergence, and tuber-initiation stages of the potato. Thereafter, the hybrid-LSTM model was 
trained on the calibrated DSSAT simulated SMN time-series and fine-tuned its predictions using the observed 
SMN to improve DSSAT simulated SMN. The hybrid-LSTM model was then tested on both calibrated and un-
calibrated DSSAT SMN simulations where it outperformed the DSSAT model (improvement ranged ~18–30 % on 
comparing the normalized root mean squared error) in providing reliable estimates of SMN across most of the 
farms and years. This novel hybrid modeling approach could guide stakeholders and farmers to build sustainable 
N management with improved crop NUE and yield and help in minimizing environmental losses.

1. Introduction

Florida is a significant off-season contributor of fresh potatoes (So-
lanum tuberosum L.) consistently producing approximately 30 % of the 
total spring production of the United States (NASS - Quick Stats, 2021). 
Most of the potatoes are grown in the northeastern region of the state, 
which is dominated by uncoated fine sand soil-type (USDA-NASS, 2019). 
These soils are highly vulnerable to excessive N leaching due to rapid 
water infiltration (Zotarelli et al., 2007). Moreover, there is an imper-
meable soil layer below the surface, which allows subirrigation by 
maintaining a high-water table throughout the growing season (da Silva 

et al., 2018; Dukes et al., 2010). At the same time, it also poses chal-
lenges in effectively draining excess water during heavy rainfall. The 
field relies on irrigation furrows to distribute fresh ground water into the 
fields, connected to surrounding drainage ditches. Under heavy rainfall 
conditions, the water table level in the field is receded and excess water 
is moved off-site by gravity carrying soluble nutrients, especially N, from 
the top layer of the soil. Hence, multiple N fertilizer applications are 
required to compensate for the excess N leaching (Errebhi et al., 1998; 
Scholberg et al., 2013; Simonne et al., 2010).

Several studies have tried to estimate ideal fertilizer application rates 
and timings for potatoes in Florida (da Silva et al., 2023; Rens et al., 
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2018, 2016b, 2016a, 2015b, 2015a; Zotarelli et al., 2015, 2014). Typi-
cally, the N fertilizer applications should synchronize with the potato 
growth and N uptake. The N uptake rates are higher between mid- 
vegetative growth to mid-tuber initiation; hence, N applications be-
tween emergence and tuber-initiation are crucial to maximize tuber 
yield (Rens et al., 2018, 2016a; Zotarelli et al., 2015). Zotarelli et al. 
(2015) and Rens et al. (2018) reported that N application at pre-planting 
could be highly prone to leaching particularly in cases of heavy rainfall 
projections before plant emergence. Hence, they recommended applying 
N fertilizer close to planting rather than at pre-planting. Another finding 
by Zotarelli et al. (2014) suggests keeping N application rates 224–280 
kg-N ha− 1 to maximize tuber yield under heavy rainfall conditions. Rens 
et al. (2018) found that tuber yield peaked when N application specif-
ically at emergence varied from 128-168 kg-N ha− 1 under the same 
circumstances. Similarly, N application at tuber-initiation was observed 
to be crucial with ~62 % NUE and found to have no significant increase 
in tuber yield when applied above 56 kg-N ha− 1 (Rens et al., 2016a; 
Zotarelli et al., 2014). Therefore, it becomes crucial to adaptively 
manage fertilizer application rates and timings in highly uncertain 
rainfall conditions to minimize N leaching and maximize the potato 
yield and NUE.

Estimating SMN at a higher frequency is crucial for making informed 
decisions for fertilizer applications to aid growers and stakeholders in 
improving tuber yield/NUE without harming the environment. How-
ever, in-situ measurement of SMN is time-consuming, labor-intensive, 
and highly expensive. Consequently, there is a need to develop a reliable 
framework and methodology to estimate SMN at a higher frequency 
using the limited experimental data. Previous research employed 
process-based cropping system models, such as DSSAT (Hoogenboom 
et al., 2019; Jones et al., 2003), Agricultural Production Systems 
sIMulator (APSIM) (Holzworth et al., 2014; Keating et al., 2003), and 
other agroecological models to replicate the interaction between soil, 
water, and crop under different environmental and geographical setting 
(Gupta et al., 2022; Liu et al., 2011; Moriasi et al., 2013; Salmerón et al., 
2014; Saseendran et al., 2007). However, these models may not capture 
the variability of SMN in the sandy soils. This variability is particularly 
difficult to capture when caused by uncertain rainfall events and water 
table fluctuations as these models could not simulate three-dimensional 
movement of N dynamics in the soil layers, necessary for precise esti-
mation of SMN (Archontoulis et al., 2014; Raymundo et al., 2017; 
Wallach and Thorburn, 2014). Hence, these models may not provide 
accurate estimates of SMN required for narrowing weather-specific crop 
nutrient recommendations. Additionally, calibrating these models could 
be tedious and time-consuming as it would require fine-tuning the 
extensive list of parameters (Akhavizadegan et al., 2021; Seidel et al., 
2018). Furthermore, one would need to re-calibrate these models for 
different climate and soil conditions. Therefore, current circumstances 
call for devising new approaches and modeling frameworks that possess 
transferable learning, reducing the need for repeated calibration.

DL, a subfield of machine learning (ML) based on artificial neural 
network, have been extensively embraced by researchers for interpret-
ing intricate agroecological systems due to their ability to effectively 
learn complex relationships between plants, soil, and climate (Kamilaris 
and Prenafeta-Boldú, 2018). A significant advantage of DL is their 
transfer learning ability to adapt to completely new scenarios (Weiss 
et al., 2016), such as, for different crop, soil, or climate conditions. Most 
research in the field of agriculture used remote-sensing data (multi-
spectral/hyperspectral dataset or satellite imageries) for building DL 
models to estimate the crop growth stages (Wang et al., 2022; Yue et al., 
2020), detect pests/diseases (Hadipour-Rokni et al., 2023; Mohanty 
et al., 2016), predict leaf area indices (Ilniyaz et al., 2023), soil prop-
erties (Padarian et al., 2019; Zhang et al., 2022), and evapotranspiration 
(Sharma et al., 2022). A deep recurrent neural network-based LSTM 
(Hochreiter and Schmidhuber, 1997) has significant popularity and 
proven its effectiveness in capturing the temporal variations in the high- 
frequency time series data in the agricultural domain (Datta and 

Faroughi, 2023; Gauch et al., 2021; Zhang et al., 2022). For instance, 
Saha et al. (2023) built an LSTM model to estimate daily stream nitrate 
concentration for 42 sites in data-sparse watersheds in Iowa, U.S.A., 
with a Nash-Sutcliffe efficiency of ~75 %. Similarly, Datta and Faroughi 
(2023) successfully predicted the soil moisture content for the next hour, 
a day, a week, and a month in advance, achieving a R-squared value of 
~0.95, developing a multiheaded-LSTM model, training the model using 
15-minute interval field measurements.

Nevertheless, time-series DL models like LSTM necessitate daily, or 
at least, discrete long-term observations of SMN at a higher frequency, to 
effectively learn the temporal variation caused by weather, irrigation, 
and N applications (Hua et al., 2019). Building an effective time-series 
DL model like LSTM with limited observations (5–6 sampling per sea-
son) could not be possible. Hence, the DSSAT model was employed to 
accompany the LSTM model to accurately predict the response of 
weather and N application (rates/timings) on daily SMN values during 
the crop cycle (Fig. 1). Numerous studies have affirmed that ML could 
serve as a companion to crop models rather than a competitor 
(Everingham et al., 2016; van Klompenburg et al., 2020; Zhang et al., 
2023). Feng et al. (2020) asserted that comprising ML-based models 
with biophysical agroecosystem models has the potential to provide an 
improved evaluation of the changing climate on wheat yield in 
Australia. Similarly, Shahhosseini et al. (2021) found promising results 
in adding APSIM model simulated features in the ML models for corn 
yield prediction in the U.S. Corn Belt. In the present study, a novel 
method was developed to integrate the DSSAT and LSTM models 
(hybrid-LSTM) to precisely estimate the SMN between the soil sampling 
dates. Integrating DSSAT simulations with LSTM could allow LSTM to 
learn the SMN dynamics in limited field data conditions and later, its 
prediction could be fine-tuned using field observations. Past studies 
mentioned earlier developed various such hybrid models incorporating 
different crop growth indicators with weather data for yield forecasting. 
However, to the authors’ knowledge, there is no such hybrid model 
developed to improve the daily estimates of cropping system dynamics 
like SMN in sparse field observations. The hypothesis of this research 
was that the hybrid-LSTM model could reduce the gap between the 
DSSAT simulated and observed SMN to provide accurate estimates of 
SMN. The overall goal of this integration was to leverage the strengths of 
the DSSAT model (ability to simulate dynamics of the cropping system) 
and mitigate its weaknesses (inability to capture soil nutrients and water 
dynamics in a sub-irrigated high water-table conditioned cropping sys-
tems) to produce the daily SMN fluctuations with rainfall variability. 
The objective of this study was to develop the hybrid-LSTM model that 
accurately estimate daily SMN throughout a potato crop growing season 
using limited SMN field observations. The outcomes of this study can be 
further used to support informed decisions on fertilizer application rates 
and timings recommendations to improve the tuber yield and reduce the 
environmental impacts.

2. Materials and methods

2.1. Field experiments overview

A series of field experiments were conducted on several commercial 
potato fields in Hastings, FL, U.S. from 2011 to 2014. Experiments 
carried out in the spring of 2011 and 2012 used the ‘FL 1867’ potato 
cultivar in Farm 1 (F1), Farm 2 (F2), and Farm 3 (F3), and the ‘Atlantic’ 
potato cultivar in Farm 4 (F4). Field trials conducted in 2013 and 2014, 
used the ‘FL 1867’ potato cultivar in F1 and the ‘Atlantic’ potato cultivar 
in F4. Each experiment was comprised of eight treatments combining 
three application timings and N fertilizer rates (Table 1). All the treat-
ments of 2011–2012 experiments received a fixed application (56 kg-N 
ha− 1) of granular ammonium nitrate during pre-plant followed by the 
combination of four different rates of liquid urea ammonium nitrate (0, 
56, 112, and 168 kg-N ha− 1) at the plant emergence and two different 
rates of liquid urea ammonium nitrate (56, 112 kg-N ha− 1) as side-dress 
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at the tuber initiation. The treatments of 2013–2014 experiments 
received N fertilizer rates of 0 and 56 kg-N ha− 1 at the pre-plant followed 
by N rates of 0, 56, 112, and 168 kg-N ha− 1 at the plant emergence and a 
fixed rate of 56 kg-N ha− 1 at the tuber initiation. All the treatments in 
the last two years of experiments received granular ammonium nitrate. 
The predominant soil types in F1, F2, F3, and F4 are Ultic Alaquod, 
Arenic Glossaqualf, Arenic Endoaqualf, and Aeric Alaquod, respectively. 
All the field trails from 2011 to 2014 were conducted under seepage 
irrigated maintaining the water table at around 55 cm below the top of 
the raised soil bed for potato planting. More details of the experimental 
design and results can be found in (Rens et al., 2018, 2015a; Zotarelli 
et al., 2015, 2014).

2.2. Data description and preparation

This study uses weather-soil-crop management information to use 
the DSSAT and DL models for estimating daily SMN. Daily weather data 
of Hastings, FL (29.6933

◦

N, 81.4449
◦

W), comprised of rainfall, average, 
minimum, maximum air temperatures (at 60 cm height), solar radiation, 
dew point, relative humidity, and wind speed, was collected from the 
Florida Automated Weather Network data access portal (FAWN, 2022) 
from 2010 to 2014. Daily soil temperatures (average, minimum, 
maximum) were also collected from the FAWN data access portal for the 
same period. Field management information such as potato planting/ 
emergence/tuber initiation/harvesting dates, details of fertilizer appli-
cation (rates and timings), initial soil condition, previous cropping his-
tory, and other relevant information was collected from the earlier 
studies (mentioned in section 2.1). Soil surface information, such as soil 
albedo, slope, drainage class, runoff potential, and soil layered infor-
mation, for instance, soil wilting point and field capacity, saturated 
water content, bulk density, organic matter content, and soil root 
growth factor were collected from previous studies and Soil Survey 
Geographic Database (da Silva et al., 2018, 2024; Rens et al., 2022; 
Reyes-Cabrera et al., 2016; SSURGO Database, 2018). The DSSAT model 
was set up using the weather-soil-crop information collected from 
various sources by creating its weather, soil, and experiment files. The 
observed datasets from the field trials such as SMN, potato aboveground 
biomass/N accumulation, and tuber weight (dry and fresh)/N accumu-
lation was used to evaluate the performance of the DSSAT model for 
replicating the potato cropping system.

Likewise, daily weather information (rainfall, average air tempera-
ture), soil average temperature, applied N fertilizer rate-timing, and the 
DSSAT simulated daily SMN were considered in developing the hybrid- 
LSTM model. Later, all the dataset was arranged into different samples, 
where every sample corresponds to a specific farm and a specific year 
with all the N applied rates-timings treatments. Every sample contained 
training input of a specific farm-year (farm-year represents the data of a 
specific farm and a specific year), which includes data for all the input 
features and a target vector for the same. Since the hybrid-LSTM was 
first trained with the DSSAT simulated data and then with the observed 
SMN, we had two sets of training data, the difference being the number 
of data points per sample. The first training set with DSSAT simulated 
data had daily data of all the features for the whole crop cycle, while the 
second training set contained only those points when the SMN was 

Fig. 1. Block diagram to demonstrate the integration of two models (DSSAT and LSTM), input features, and the workflow of the hybrid-LSTM model.
LSTM picture source: LSTM architecture, 2021

Table 1 
Nitrogen fertilizer application rates and timings (at pre-planting, plant emer-
gence, and tuber initiation) along with total N applied during potato season for 
the two set of field experiments. One set of experiments was conducted in 2011 
and 2012 (on F1, F2, F3, and F4), while other set of experiments was conducted 
in 2013 and 2014 (on F1 and F4).

Experiment 
Year

Treatments N fertilizer rate applied (kg-N ha¡1) 
at

Total N 
applied 
(kg-N 
ha¡1)Pre- 

planting
Plant 

Emergence
Tuber 

Initiation

2011 and 
2012

1 56 0 56 112
2 56 0 112 168
3 56 56 56 168
4 56 56 112 224
5 56 112 56 224
6 56 112 112 280
7 56 168 56 280
8 56 168 112 280

2013 and 
2014

1 0 0 56 56
2 56 0 56 112
3 0 56 56 112
4 56 56 56 168
5 0 112 56 168
6 56 112 56 224
7 0 168 56 224
8 56 168 56 280
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sampled at the experiment site for fine-tuning the model (more detail 
provided in section 2.4.2).

2.3. Model description

2.3.1. DSSAT model
The process-based cropping system model DSSAT v4.8 can simulate 

soil water-nutrient dynamics and the growth and development of more 
than 42 crops (Hoogenboom et al., 2023, 2019; Jones et al., 2003). It 
employs the SUBSTOR-Potato model (Griffin et al., 1993; Ritchie et al., 
1995) of DSSAT to simulate daily phenological development, biomass 
accumulation, and tuber yield in a climate-soil varied setting. SUBSTOR- 
Potato model of DSSAT has five cultivar-type parameters listed and 
explained in Table 2. It also has two radiation use efficiency (RUE) pa-
rameters- RUE1 (3.5 g plant dry matter per MJ photosynthetically active 
radiation) and RUE2 (4.0 g plant dry matter per MJ photosynthetically 
active radiation) to represent before and after tuber initiation, respec-
tively. We used Ritchie water balance, FAO-56, soil conservation ser-
vice, and Suleiman-Ritchie methods to estimate soil hydrology, 
evapotranspiration, soil infiltration, and soil evaporation, respectively 
(Ritchie et al., 1998). Active, intermediate, and passive soil organic 
matter pools were determined using the CENTURY model in DSSAT 
(Gijsman et al., 2002).

The DSSAT model was calibrated for plant/tuber biomass/N accu-
mulation and SMN. The soil parameters listed in Table 3, initial soil 
conditions were adjusted carefully to closely match with the real field 
conditions based on previous literatures (da Silva et al., 2018; Rens 
et al., 2022; Reyes-Cabrera et al., 2016) and Soil Survey Geographical 
Database (SSURGO Database, 2018) to simulate SMN for the topsoil 
layer. Genotype coefficients of the potato cultivar were also calibrated to 
replicate tuber/plant biomass and N accumulation (Table 2). Other 
parameters, for example, sprout length and irrigation depth were also 
found sensitive to plant/tuber growth, hence these parameters were also 
adjusted accordingly for modeling purposes. The DSSAT model was 
calibrated using field observations of four farms (F1-F4) from 2011 to 
2012; while the model was evaluated using field observations of two 
farms (F1, F2) from 2013 to 2014.

2.3.2. LSTM model
A long short-term memory (LSTM) is a type of recurrent neural 

network designed to process sequential (or time-series) data by effec-
tively capturing long-term dependencies (Hochreiter and Schmidhuber, 
1997). The structure of each LSTM cell is the fundamental block of the 
network. It consists of a memory state along with a gating mechanism to 
selectively store, forget, and process the output information 
(Staudemeyer and Morris, 2019). Whenever a new input sequence is 
passed through an LSTM cell, the input and forget gates within its cell 
determine what information is needed to be stored in and forgotten from 
the cell state, respectively, at a particular timestep. The output gate 
processes information from the cell state, which is the output of LSTM at 
the consecutive time step. This process is repeated for each time step to 
produce a time series output. Sequence length is one of the crucial pa-
rameters of LSTM architecture. The sequence length refers to the num-
ber of time steps or observations considered as input to predict the 

consecutive time step (Hua et al., 2019). It affects the computational 
complexity, memory requirements, and the model’s ability to capture 
long-term dependencies. While longer sequences may lead to vanishing 
gradients, overfitting, and increased computational demands, shorter 
sequences offer computational efficiency at the cost of reduced context 
(Hua et al., 2019). Every input that goes into the LSTM network is a 
sequence of data which is represented as an input feature matrix and a 
target vector, fed into the model one after the other while training.

2.3.3. The hybrid-LSTM model – An integration of the DSSAT and LSTM 
model

The main goal of the hybrid-LSTM model development was to esti-
mate the daily time-series of the SMN using weather, soil and air tem-
peratures, and fertilizer applications (rates, timings). However, training 
a DL model exclusively on experimental SMN data was infeasible due to 
the lack of observed data available (only 5–6 soil samplings per crop 
cycle per experiment) to effectively capture the complex relationships 
and estimate daily SMN. Hence, the DSSAT model was used, which could 
simulate daily SMN throughout the crop cycle along with other input 
features to train a time-series (LSTM) model. However, the current 
version of DSSAT (v4.8) is unable to replicate a sub-irrigated cropping 
system in a high-water table condition. Hence, the study was aimed to 
improve over DSSAT simulated SMN in such data-sparse, sub-irrigated, 
and high-water table conditioned potato cropping system in north-
eastern Florida using hybrid-LSTM model. The key concept was to train 
a time-series DL model (LSTM) on the DSSAT simulated SMN to learn the 
interaction between the features and the simulated SMN. The DL model 
(LSTM) then trained again with these features but with experimental 
SMN on those days experimental data is available, which is called as 
fine-tuning process. This integration of DSSAT and LSTM was called the 
hybrid-LSTM model for ease of explanation.

2.4. Setup and training of the hybrid-LSTM model

2.4.1. Feature engineering and parameterization
Identifying the right features for the ML/DL model, known as feature 

engineering, is crucial for efficient model training. As a part of the study, 
a comprehensive list of potential features was prepared to subsequently 
conduct a feature importance test using wrapper method, identifying the 
features that exhibited a strong correlation with the experimental SMN 
values. In this method, a linear regression model was trained consid-
ering all possible subsets of the potential features and the features subset 
with the best performance was chosen to be the optimal feature set. The 
comprehensive list of potential features included daily rainfall, mini-
mum–maximum-average air and soil temperatures, evapotranspiration, 
and applied N fertilizer rate-timing. The list also included the DSSAT 
simulated data- daily SMN and plant N, in the feature selection process. 
Furthermore, a feature to capture the interaction of rainfall and applied 
N fertilizer rates (multiplying their normalized values only when rainfall 
occurred on the N application day) was also included in the potential 
features list to supplement the model understanding of potential N 
leaching. We also considered features such as antecedent soil moisture 
condition (it was assumed dry when last 5 days of rainfall accumulation 
was less than 35 mm, and wet in vice versa) (Gray et al., 1982) and 
growing degree days of potato crop (Hristine et al., 2005). After per-
forming feature importance testing, the selected features were rainfall, 
average air temperatures, soil average temperatures, applied N fertilizer 
rate-timing, rainfall and applied N fertilizer rate interaction feature, and 
the DSSAT simulated SMN.

The sequence length of the hybrid-LSTM model was optimized to ten 
days by conducting a grid search through experimental runs to effec-
tively capture meaningful patterns between input features and the target 
variable. The architecture of the LSTM model developed had one hidden 
layer with five hidden units and the hyperbolic tangent function (Tanh) 
was used as an activation function. The hidden units and the number of 
layers were chosen such that the total number of the hybrid-LSTM 

Table 2 
Calibrated genotype coefficients to simulate the growth and development of 
‘Atlantic’ and ‘FL1867’ potato cultivar.

Coefficients Definitions Values

G2 Leaf area expansion rate after tuber initiation (cm2 m− 2 

d− 1)
1000

G3 Potential tuber growth rate (g m− 2 d− 1) 25.0
PD Index that suppresses tuber growth during the period that 

immediately follows tuber induction
0.9

P2 Tuber initiation sensitivity to long photoperiods 0.6
TC Upper critical temperature for tuber initiation (◦C) 17.0
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parameters did not exceed the total number of input data points, mini-
mizing the model complexity. A specific optimizer and learning rates 
were used for training (Adam optimizer) and fine-tuning (stochastic 
gradient descent optimizer) the hybrid-LSTM model. The L2 regulari-
zation (weight decay of 0.01) was applied to the weights of the hybrid- 
LSTM model. Moreover, air and soil temperatures were detrended (to 
remove seasonality from winter to summer) to avoid any temporal de-
pendencies in the hybrid-LSTM model.

2.4.2. Training procedure
The training procedure was divided into two parts. The first part 

included the training of the LSTM model on the calibrated DSSAT sim-
ulations of SMN. This part of the training allowed LSTM model to un-
derstand the relationship between input features and DSSAT simulated 
SMN. The second part of the training procedure involved refining the 
SMN estimated by the LSTM model further using sparsely available 
observed SMN (the training procedure are elaborated in Table S2 in the 
supplementary material). This integration of LSTM being trained on the 
DSSAT simulated SMN and later, fine-tuned using observed SMN to 
refine SMN estimates was referred to as the hybrid-LSTM model (Fig. 1). 
The developed hybrid-LSTM model’s performance was tested against 
SMN observations on the sampling days while feeding the unseen- 
calibrated and -uncalibrated DSSAT simulations of different farm-year 
combinations in the hybrid-LSTM model.

The hybrid-LSTM model, trained using continuous DSSAT simulated 
data and subsequently, fine-tuned using sparsely observed ground truth 
data, could be prone to significant noise in its predictions during the 
fine-tuning process. This noise in SMN predictions could be attributed to 
the mismatch in trends and an offset between the DSSAT simulated SMN 
curve and field observed SMN in certain farm-years. Since the soil pa-
rameters of the DSSAT model were not adjusted for specific farm during 
calibration, assuming similar soil properties among all the farms, the 
performance and trend of the DSSAT simulated SMN was not consistent 
for all the farm-years compared to the observed SMN. These discrep-
ancies could force the hybrid-LSTM model to learn new patterns during 
fine-tuning process with ground truth data which differed from those 
learned during initial training with the DSSAT simulations. To address 
this issue, the farm-years were qualitatively classified into “good”, 
“bad”, and “uncertain” categories based on the agreement between the 
DSSAT-simulated and observed SMN trends before the model training. 
This classification was performed based on the coefficient of determi-
nation (R2, Section 2.5) and visual interpretation as it was difficult to 
only rely on R2 to compare trends between two quantities which are not 
distributed similarly over time (DSSAT simulated SMN is continuous, 
daily data is available, but observed SMN is sparsely distributed over 
time). The good farm-years exhibited consistent trends and had lower 
offsets (e.g. Fig. S1 in the supplementary), while the bad farm-years 
showed contrasting patterns with higher offsets between the DSSAT 
simulated and field observed SMN (e.g. Fig. S2 in the supplementary). 
The uncertain farm-years had incomplete agreement across all sampling 
stages (e.g. Fig. S3 in the supplementary).

From the initial training stages of the hybrid-LSTM, it was 

understood that these bad and uncertain farm-years could influence the 
overall model performance and induce unexplainable uncertainty in the 
predictions. Moreover, given the limited data to train the hybrid-LSTM 
model, excluding these problematic farm-years would have further 
reduced the already scarce dataset. Hence, to obtain an upper bound of 
performance, a slightly different approach was adopted to develop an 
optimal hybrid model to improve SMN estimates at and between sam-
pling days over the DSSAT simulations. This strategy involved training 
the hybrid-LSTM model on multiple sets of farm-year combinations, 
identifying the model with best farm-year combinations, and finally, 
confirming its performance on unseen calibrated as well as uncalibrated 
DSSAT data. Table S1 demonstrates how the hybrid-LSTM performance 
could be affected by training it on a randomly selected combination of 
farm-years. When the hybrid-LSTM model was trained with random 
combination of farm-years, the outcomes usually surpassed the DSSAT 
simulations, but fall shorted compared to those obtained with the 
optimal farm-years combination (Table S1). These results emphasize the 
significance of the (modified) training procedure explained in the sub-
sequent paragraph.

For training hybrid-LSTM model, multiple combinations of farm- 
years were generated at random, emphasizing more on good farm- 
years followed by bad and uncertain farm-years. This process allowed 
us to assess the model’s ability to handle variations introduced by 
challenging farm-years (bad and uncertain farm-years) simulations for 
effective learning. By incorporating this approach, we ensured that the 
hybrid-LSTM model effectively captured the complexities of different 
categories (good/bad/uncertain), leading to accurate predictions of 
SMN. For each farm-years combination, the hybrid-LSTM model was 
trained and fine-tuned using DSSAT simulations and field observations, 
respectively, applying a k-fold cross-validation approach, and evaluated 
on the field observations of remaining farm-years. This process was 
repeated several times (please refer to Table S2 for more detail on 
training process). The need of multiple iterations for training the hybrid- 
LSTM model stemmed from the SMN observations scarcity, posing a 
formidable challenge in estimating a precise SMN line curve for each 
crop cycle. Later, SMN predictions from multiple iterations were aver-
aged to get a smooth line curve with reduced noise. The SMN area curve 
was derived using the standard deviation across all the iterations.

Finally, the combination of farm-years yielded the best model per-
formance was selected and tested on unseen uncalibrated DSSAT sim-
ulations using the performance metrics mentioned in section 2.5. This 
approach produced the least noise in the prediction during model testing 
to determine whether the hybrid-LSTM model could improve the cali-
brated and uncalibrated DSSAT daily SMN simulations using field 
sampled SMN. The final set of farm-years used for training were F1- 
2011, F2-2011, F3-2011, F2-2012, F3-2012, F4-2012, F4-2013, and 
F4-2014 (50.0 %, 25.0 %, and 25.0 % of “good”, “bad”, and “uncertain” 
farm-years, respectively). The testing set with unseen calibrated DSSAT 
farm-years (Testing-1) included F4-2011, F1-2012, F1-2013, and F1- 
2014 (75 % “good” and 25 % “bad” farm-years) for all treatments (F3- 
2011 and F4-2013 were uncertain farm-years, and F1-2012, F3-2012, 
and F4-2012 were bad farm-years, rest are good farm-years) Later, the 

Table 3 
Soil layered parameters were used for all the farms to calibrate the DSSAT model..

Soil Depth (cm) Wilting Point 
(cm3 cm¡3)

Field Capacity 
(cm3 cm¡3)

Saturated water content 
(cm3 cm¡3)

Root growth factor 
(fraction)

Bulk Density 
(g cm¡3)

Organic Carbon (%)

5 0.055 0.128 0.456 1.00 1.53 0.65
15 0.055 0.125 0.456 1.00 1.53 0.65
30 0.047 0.123 0.429 0.44 1.54 0.63
45 0.036 0.122 0.419 0.02 1.57 0.44
60 0.036 0.119 0.419 0.01 1.57 0.44
90 0.036 0.110 0.407 0.00 1.61 0.18
120 0.036 0.110 0.407 0.00 1.61 0.18
150 0.033 0.108 0.401 0.00 1.63 0.08

Source: da Silva et al., 2018, 2024; Rens et al., 2022; Reyes-Cabrera et al., 2016; SSURGO Database, 2018
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developed hybrid-LSTM model was tested on unseen uncalibrated 
DSSAT simulations (Testing-2) on F1-2011, F2-2011, F3-2011, F1-2012, 
F2-2012, F3-2012, F1-2013, F1-2014, and F4-2014..

2.5. Statistical approaches for the model evaluation

The hybrid-LSTM and DSSAT model performances were assessed by 
comparing the estimated or simulated SMN line and area curves from 
these models against the scarce observations. Since there were four 
replicates of the SMN observed and we estimated the SMN line/area 
curve using the hybrid-LSTM and DSSAT models, it was challenging to 
evaluate the model performance by comparing the line/area curve with 
the observed replicates. Hence, a metric was formulated to evaluate the 
model estimated SMN line/area curve considering the observed repli-
cant bounds (standard deviation) of SMN. The metric calculates the 
absolute error using the lower (LB) and upper bounds (UB) of observed 
replicates given if the SMN predicted values at the sampling stages were 
closer to the lower and upper bounds of replicates, respectively (Eq. (1)). 
This error was called the passing error (pE). Later, the root mean square 
of pE was calculated and normalized (nRMSpE) using average range of 
LB and UB of observed replicates for respective farm-years (Eq. (2)). 
Lower nRMSpE values are better and nRMSpE = 0 would be an ideal case 
when the estimated SMN line curve passed through the replicant bounds 
of the observed SMN on all the sampling dates. This metric was used to 
compare the performance of the hybrid-LSTM and the DSSAT models. 

pE =

{
0; ifSMNLB≤ SMNpred≤ SMNUB

min
(
|SMNpred − SMNLB|, |SMNpred − SMNUB|

)
; else (1) 

nRMSpE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(pEi)

2

√

(SMNLB − SMNUB)
(2) 

Other statistical performance metrics- normalized- root mean square 
error (nRMSE, Eq. (3)), and R2 (Eq. (4)) were used to assess the simu-
lated results from the DSSAT and the hybrid-LSTM models (Laperre 
et al., 2020; Moriasi et al., 2007). R2 values above 0.5 and nRMSE/ 
nRMSpE values below 30 % were considered indicative of satisfactory 
model performance. Moreover, a percentage of improvement (PI) was 
calculated by comparing nRMSE (PInRMSE) and nRMSpE (PInRMSpE) of 
both models to find out which model performed better (Eq. (5)). Due to 
the inadequate observed data (such as tuber and plant dry weights and N 
accumulation, tuber fresh weight, and SMN), the simulated outputs were 
also evaluated based on visual interpretations (randomly picking graphs 
and manually checking if the simulated/estimated values aligned with 
observed data) to ensure the coherence of the model. 

nRMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(yobs

i − ypred
i )

2
√

yobs
(3) 

R2 = 1 −

∑n
i=1(y

pred
i − yobs)

2

∑n
i=1(yobs

i − yobs)
2 (4) 

PInRMSE/nRMSpE =
nRMSE/nRMSpEDSSAT − nRMSE/nRMSpEhybrid− LSTM

nRMSE/nRMSpEDSSAT

× 100 (5) 

3. Results and discussion

The hybrid-LSTM model, an integration of a process-based crop 
simulation model- DSSAT and a time-series DL model- LSTM, was able to 
learn the complexity between the input features (e.g., rainfall, average 
air temperature, average soil temperature, and applied N rates) and the 

temporal variability in the SMN. The generalized hybrid-LSTM model 
trained on various experimental sites in Hastings, FL was able to predict 
the SMN daily values with the improvement of 22.2 % (PInRMSE) and 
27.2 % (PInRMSpE) compared to the DSSAT simulated SMN estimates 
across all the farms and years. These improvements indicate the effec-
tiveness of the hybrid modeling approach used in this study. In the 
subsequent sections, the detailed performance analysis of the DSSAT 
model (calibration and evaluation) and the hybrid-LSTM model 
(training and testing) is provided.

3.1. DSSAT model performance

3.1.1. Potato growth simulation by DSSAT
To evaluate the performance of the SUBSTOR-potato model of 

DSSAT for potato growth and development, the simulated results on 
tuber dry weight (DW), plant DW, tuber N, plant N, and tuber yield fresh 
weight (FW) were compared against observed values (Fig. 2). The R2 and 
nRMSE values for plant/tuber growth/N ranged from 0.75 to 0.92 and 
26.3–32.0 % during the DSSAT model calibration. The DSSAT model 
performance during the evaluation was also similar to calibration with 
the R2 and nRMSE values for plant/tuber growth/N ranging from 0.51 to 
0.92 and 29.1–51.3 %, respectively. However, the DSSAT model 
underperformed in simulating tuber yield during calibration (R2 =

− 0.08, nRMSE = 14.6 %), caused specifically due to consistent poor 
performance in all four farms in 2011. The DSSAT model under-
estimated the tuber yield in 2011 (average observed yield = 46.2 Mg 
ha− 1, average simulated yield = 23.9 Mg ha− 1). In contrast, the DSSAT 
model performance was satisfactory (R2 = 0.56, nRMSE = 8.1 %) during 
evaluation in 2013 and 2014 for two farms (F1, F2). Raymundo et al. 
(2017) also simulated similar results using the SUBSTOR-potato model 
of DSSAT with nRMSE of 21.0 %, 37.2 %, 85.3 %, 40.4 %, and 86.3 %, 
respectively, for tuber FW, tuber DW, aboveground DW, tuber N update, 
and above ground N. Similarly, Wang et al. (2023) observed nRMSE 
ranging between 12.3 and 69.7 % when simulating tuber DW using the 
same model from a two-year experiment in China with different irri-
gation and fertigation levels.

A possible reason behind the DSSAT model’s poor performance in 
2011 could be attributed to the atypical rainfall distribution in that year 
(Fig. 3). The 2011 season received less rainfall (80 mm, average of all 
farms) compared to other years (130, 401, and 145 mm in 2012, 2013, 
and 2014, respectively) after tuber-initiation when there is a rapid in-
crease in the plant N uptake due to tuber bulking. The reduced rainfall 
after tuber initiation in 2011 and the upward soil water flux from the 
subirrigation could have induced less N leaching from the topsoil 
compared to other years. Moreover, poor drainage conditions due to an 
impermeable layer below the surface require minimal irrigation to 
maintain a high-water table in dry conditions. In contrast, the current 
version of the DSSAT model could not replicate such a complex high- 
water table system in the sub-irrigated potato fields. Moreover, the 
model treats the subsurface irrigation as surface irrigation, and hence, 
the model might have overestimated the N leaching by applying more 
than needed irrigation water amid dry conditions (not considering the 
impermeable layer to hold the water table level) which could have 
underestimated the simulated tuber yield. Overall, the DSSAT perfor-
mance in simulating the potato growth was satisfactory well.

3.1.2. SMN simulation by DSSAT
Figs. 3 and 4 show the comparison of the DSSAT simulated and 

observed SMN values to illustrate the model performance during cali-
bration and evaluation on F3-2011 and F1-2013, respectively, for all the 
N fertilizer rate and timing treatments. The DSSAT model performance 
was satisfactory during calibration and evaluation for simulating the 
daily SMN values. The nRMSE and nRMSpE for the observed vs. DSSAT 
simulated SMN values were 16.0 % and 8.0 %, respectively in calibra-
tion (Table 4). Whereas the nRMSE and nRMSpE for the observed vs. 
DSSAT simulated SMN values were 12.8 % and 9.3 %, respectively in the 
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model evaluation (Table 4). These results reveled an improvement in 
simulating SMN (nitrate-N and ammonium-N) over previous study by 
Raymundo et al. (2017) who observed nRMSE of 95.5 % and 140.1 % 
using the earlier version of the DSSAT model. Overall, the current 
version of DSSAT model (calibrated in this study) was able to simulate 
the daily variation of SMN, however, not the order of magnitude of 
variation of SMN. For example, in Fig. 3, the DSSAT simulated SMN 
curve followed the pattern closely in most of the treatments (Fig. 3). 
However, DSSAT simulated SMN values were consistently under-
estimated in all the treatments. The possible reason for such perfor-
mance of the DSSAT model could be attributed to its inability to 
replicate SMN in a high-water table condition maintained by the sub- 
irrigation of the fields. The daily high-water table level oscillation 
might have influenced the dynamics of water and N movement in the 
sandy soil in the observed conditions (da Silva et al., 2018). In contrast, 
the DSSAT model performance in simulating the SMN trend was 

reasonably well in heavy and more uniformly distributed rainfall con-
ditions (Figs. 3 and 4). For instance, the rainfall was more frequent and 
heavier after the tuber initiation (compared to before the tuber initia-
tion) in F1-2013, and correspondingly, the DSSAT simulated SMN values 
also followed the same trend with observed SMN values after the tuber 
initiation N application (Fig. 4). This could be attributed due to limited 
need of irrigation in such conditions and the irrigation furrow would 
have been kept open to drain the excessive rainfall water. Overall, the 
DSSAT model was able to simulate the daily SMN values satisfactorily 
well given the continuous oscillation of the water table level and the 
presence of the sub-surface irrigation which is not supported as of the 
current version of the DSSAT model.

3.2. Performance of the hybrid-LSTM model in estimating SMN

Once the calibrated DSSAT model was evaluated, the hybrid-LSTM 

Fig. 2. Scatter plots comparing the observed and DSSAT – SUBSTOR Potato model simulated (a, b) tuber dry weight (DW), (c, d) plant DW, (e, f) tuber N, (g, h) plant 
N, and (i, j) tuber yield fresh weight (FW) while calibrating (first row, model calibrated using observations from four farms for 2011 and 2012) and evaluating 
(second row, model evaluated using observations from two farms for 2013 and 2014) the DSSAT model. [Note: Different colors of markers represent different farms 
whereas different shapes of markers represent different years, R2 = Coefficient of determination, nRMSE=Normalized root mean squared error].

Fig. 3. Comparison of the observed (black error bars, error bar represents the standard deviation within the replicates), DSSAT simulated (red line) and hybrid-LSTM 
estimated (green line, green area curve) soil N concentration (0–15 cm) in F3-2011 for different fertilizer N rates and timing of application treatments (subplot title of 
(a) is 56-0-56 which means Npp = 56 kg-N ha− 1, Nem = 0 kg-N ha− 1, and Nti = 56 kg-N ha− 1, the solid blue triangles below x-axis are the days after planting (DAP) 
when N fertilizer was applied for Npp, Nem, and Nti) while training the hybrid-LSTM model [Sim = Simulated, Obs = Observed; Npp, Nem, and Nti = N fertilizer applied 
at planting, emergence, and tuber initiation, respectively].

R. Gupta et al.                                                                                                                                                                                                                                   



Computers and Electronics in Agriculture 225 (2024) 109355

8

model was developed using the calibrated DSSAT model simulated SMN 
and observed SMN samplings for the combination of various fertilizer N 
rate and timing of application treatments, and farm-years of datasets to 
improve the SMN estimates. The hybrid-LSTM model performance was 
then analyzed by feeding both unseen calibrated (section 3.2.1) and 
uncalibrated DSSAT simulated SMN (section 3.2.2) to determine 
whether it could improve the calibrated and uncalibrated DSSAT daily 
SMN simulations using field sampled SMN. Based on the analysis, as the 
developed hybrid-LSTM model had the knowledge about both the esti-
mates given from the DSSAT model (daily estimates) and the ground 
truths (sampled estimates), it was able to provide improved estimate of 
the SMN over DSSAT simulated SMN on daily (Figs. 3 and 4) as well as 
on the sampling days (Fig. 5, Table 4).

3.2.1. The hybrid-LSTM model performance with unseen calibrated DSSAT 
simulated SMN

Figs. 3 and 4 demonstrate the comparison of the SMN values simu-
lated from the hybrid-LSTM and the DSSAT model with observed SMN 
values for F3-2011 and F1-2013 farm-year combinations, respectively, 
while training and testing the hybrid-LSTM model (Please see supple-
mentary Figs. S4 and S5 for the results of 2012 and 2014, respectively). 
Table 4 represents the performance comparison over two metrics of 
DSSAT simulated SMN and hybrid-LSTM predicted SMN for various 
farms and years (see section 2.5). As per the results, the hybrid-LSTM 
model was able to improve the daily SMN estimates over the DSSAT 
simulated SMN daily values in most of farm-years. The nRMSE and 
nRMSpE for SMN values estimated using the hybrid-LSTM model 
[nRMSE/nRMSpE = 11.3/5.5 % (training), nRMSE/nRMSpE = 11.6/6.8 
% (testing)] were lower compared to the DSSAT simulated SMN values 
[nRMSE/nRMSpE = 12.3/11.3 % (training), nRMSE/nRMSpE = 14.2/ 
11.6 % (testing)], both in training and testing the hybrid-LSTM model. 
Based on these metrics, the hybrid-LSTM model estimated the SMN with 
26.1/32.5 % (PInRMSE/PInRMSpE) and 18.3/21.8 % improvement in 
training and testing farm-years over DSSAT simulations, respectively. In 
some years farm-years, the nRMSE and nRMSpE of the hybrid-LSTM 
model were higher compared to the DSSAT model. For instance, the 
nRMSE/nRMSpE increased from 6.1/3.8 % (DSSAT) to 10.0/6.6 % 
(hybrid-LSTM) and 4.7/2.4 % (DSSAT) to 7.8/5.7 % (hybrid-LSTM), for 
F4 in 2012 and 2014 used for training the DL model, respectively. 
Similarly, the nRMSE remained almost the same for DSSAT (14.4 %) and 
hybrid-LSTM models (14.5 %) while the nRMSpE increased slightly from 

Fig. 4. Comparison of the observed (black error bars, error bar represents the standard deviation within the replicates), DSSAT simulated (red line) and hybrid-LSTM 
estimated (green line, green area curve) soil N concentration (0–15 cm) in F1-2013 for different fertilizer N rates and timing of application treatments (subplot title of 
(a) is 0–0-56 which means Npp = 0 kg-N ha− 1, Nem = 0 kg-N ha− 1, and Nti = 56 kg-N ha− 1, the solid blue triangles below x-axis are the days after planting (DAP) when 
N fertilizer was applied for Npp, Nem, and Nti) while testing the hybrid-LSTM model [Sim = Simulated, Obs = Observed; Npp, Nem, and Nti = N fertilizer applied at 
planting, emergence, and tuber initiation, respectively].

Table 4 
Comparing the performance of the hybrid-LSTM (h-LSTM) and calibrated DSSAT 
model using the statistical metrics- nRMSE and nRMSpE for individual farms and 
years while hybrid-LSTM training and testing for estimating SMN daily time 
series.

Farm-years nRMSE (%) nRMSpE (%)

h-LSTM* DSSAT h-LSTM DSSAT

Training F1-2011 13.0 17.7 8.8 12.0
F2-2011 10.1 12.2 3.1 4.8
F3-2011 12.8 21.4 6.2 12.5
F2-2012 9.8 19.8 1.4 6.7
F3-2012 15.0 23.7 5.4 12.2
F4-2012 10.0 6.1 6.6 3.8
F4-2013 11.9 16.5 7.2 11.7
F4-2014 7.8 4.7 5.7 2.4
Average 11.3 15.3 5.6 8.3

PI 26.1 32.5

Testing-1** F4-2011 7.6 9.4 2.7 3.7
F1-2012 12.4 17.6 4.3 8.0
F1-2013 14.5 14.4 9.8 8.6
F1-2014 12.1 15.6 10.5 14.6
Average 11.6 14.2 6.8 8.7

PI 18.3 21.8

Testing-2*** F1-2011 9.7 19.1 4.6 11.5
F2-2011 15.0 23.5 5.4 13.2
F3-2011 16.5 26.5 8.2 15.2
F1-2012 26.9 37.0 17.3 26.3
F2-2012 26.5 38.7 13.9 23.5
F3-2012 28.4 40.1 15.2 25.9
F1-2013 20.6 25.2 15.5 19.1
F1-2014 9.1 13.9 7.1 11.9
F4-2014 11.4 11.9 8.5 8.4
Average 18.2 26.2 10.6 17.2

PI 30.5 38.3

* h-LSTM means the hybrid-LSTM model.
** Testing-1 corresponds to testing results when the hybrid-LSTM was fed with 

unseen calibrated DSSAT simulated SMN.
*** Testing-2 corresponds to testing results when the hybrid-LSTM was fed 

with uncalibrated DSSAT simulated SMN.
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8.6 % (DSSAT) to 9.8 % (hybrid-LSTM) for F1 in 2013 used for testing 
the DL model. In all these farm-years (F4-2012, F1-2013, and F4-2014), 
the hybrid-LSTM model was unable to improve over the DSSAT simu-
lated SMN daily estimates at the sampling stages. Later, the hybrid- 
LSTM estimated and DSSAT simulated SMN values were compared 
against those observed on only sampling day for all the farm-years 
(Fig. 5a). The comparison in Fig. 5a clearly illustrates that the hybrid- 
LSTM could outperform the DSSAT model in estimating SMN.

3.2.2. The hybrid-LSTM model performance with uncalibrated DSSAT 
simulated SMN

The hybrid-LSTM model was also evaluated for if the model could 
enhance the uncalibrated DSSAT simulated SMN for different farm- 
years. These farm-years were similar to what the model was already 
informed with while training/testing, the only difference being instead 
of inputting the calibrated DSSAT SMN simulations, the uncalibrated 
DSSAT SMN simulations were fed into the model. The hybrid-LSTM was 
able to improve the SMN estimates by 38.3 % (PInRMSpE) and 30.5 % 
(PInRMSE) over uncalibrated DSSAT simulated SMN, as seen in Table 4. 
The hybrid-LSTM outperformed the DSSAT model in estimating SMN in 
most farm-years except F4-2014 (please refer to the supplementary 
Fig. S6 comparing daily SMN estimated using the DSSAT and the hybrid- 
LSTM models against observed SMN). Fig. 5 illustrates a comparison 
between the hybrid-LSTM estimated and DSSAT simulated SMN against 
the observed SMN when feeding calibrated (Fig. 5a) and uncalibrated 
(Fig. 5b) DSSAT simulated SMN in the hybrid-LSTM model for all sam-
pling stages, treatments, and farm-years. With these results, it can be 
interpreted that the hybrid-LSTM model could improve the DSSAT 
simulated SMN time-series even when uncalibrated DSSAT model 
simulated SMN values were fed in the hybrid-LSTM.

3.3. Discussion on the overall performance of the hybrid-LSTM model in 
estimating SMN

Overall, the hybrid-LSTM model outperformed across most farm- 
years compared to DSSAT. The hybrid-LSTM model improved on the 
DSSAT simulated SMN daily values regardless of whether the calibrated 
or uncalibrated DSSAT simulated SMN were fed into it. However, there 
were a very few exceptions where DSSAT simulations appeared slightly 
better.

These exceptions could be attributed to the limited SMN observa-
tions available for fine-tuning hybrid-LSTM model hyperparameters. 
Another reason for these exceptions could be due to generalized (same 

soil properties for all the farms) DSSAT calibration for all the farms 
which could have led to a distribution shift between both the datasets 
(DSSAT simulated and the observed SMN data). The generalized DSSAT 
model did not produce a similar trend for every farm compared to the 
observed SMN, especially in the case of F1-2011, F3-2012, and F4-2012. 
In these farms, the DSSAT simulated daily SMN did not align with the 
patterns observed SMN, despite the DSSAT model sometimes accurately 
predicted the daily SMN on a few sampling dates. It could be challenging 
to get a consistent performance with a generalized model in each farm 
with different soil properties (such as soil textural properties, soil water 
retention curve, soil organic matter content) (da Silva et al., 2018) under 
fluctuating water table level and irrigation water distribution in the root 
zone across the field. In this study, sandy soils were the predominant soil 
textural class with low soil organic matter. Even a small difference in 
their texture and organic matter content can change the soil water 
retention curve affecting the N movement in the soil. da Silva et al. 
(2018) reported different soil water retention curves due to sand content 
ranging from 81.9-91.6 % in nearby areas. In addition, a great variation 
in soil moisture is also expected due to the irrigation and drainage cycles 
during the crop season (Rens et al., 2022). These generalizations in using 
the DSSAT model generated a trend gap in the datasets (DSSAT simu-
lated vs observed SMN) which might have hampered the overall hybrid- 
LSTM training. The hybrid-LSTM model trained on such an aberrated 
dataset would not always give consistent results. Consequently, refining 
these predictions with fine-tuning might bring the predictions closer to 
the experimental SMN values for that specific farm-year, but it could 
affect the overall learning for other farm-years.

Similarly, with cover crop inclusion every year, the soil organic 
matter from the cover crop residue could also vary among the farm-years 
and could cause differences in the SMN values with the changes in the 
net mineralization. Since there was no feature used to track these soil 
properties variations and cover crop growth dynamics among the farm- 
years, the hybrid-LSTM model could not incorporate the effect of these 
changes. Hence, these could be a few of the reasons that the hybrid- 
LSTM model could not improve the SMN daily estimates over DSSAT 
simulated SMN while being trained on the generalized DSSAT model 
simulations. The hybrid-LSTM model outperforms the DSSAT model for 
F1-2011 and F3-2012, while falling slightly short in the case of F4-2012.

Additionally, the influence of interannual factors on the performance 
of the hybrid-SLTM model was also investigated. The hybrid-LSTM 
model found to be performing better in 2011 and 2012 [PInRMSE/ 
PInRMSpE = 30.0/39.4 % (training), PInRMSE/PInRMSpE = 25.9/40.2 % 
(testing)] compared to 2013 and 2014 [PInRMSE/PInRMSpE = 7.1/8.5 % 

Fig. 5. Comparison of the hybrid-LSTM (h-LSTM) estimated and DSSAT simulated SMN against observed SMN at different sampling stages, treatments, and farm- 
years feeding (a) calibrated and (b) uncalibrated DSSAT simulated SMN in the hybrid-LSTM model. [Reg. = Regression, R2 = Coefficient of determination, nRMSE =
Normalized root mean squared error]
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(training), PInRMSE/PInRMSpE = 11.3/12.5 % (testing)], in both training 
and testing. This could be attributed to the data imbalance between 
these two sets of years as 2011 and 2012 data originated from 4 farms 
(F1 to F4) while 2013 and 2014 included only 2 farms (F1 and F4). 
Alternatively, the DSSAT simulations for F2 and F3 in 2013 and 2014 
using N application rates-timings treatments of F1 and F4 could be used 
to minimize the data imbalance that was leading to the interannual 
factors interfering in the simulation, however, the respective ground 
truth data was not available to fine-tune for these farms-years. To build a 
versatile DL model, it is crucial to have the model trained on various 
combinations of distributions of all the features. A limited number of 
farm-years might have restricted the hybrid-LSTM model to perceive 
such distribution variety and combinations among the features. SMN 
daily fluctuation depends on various features, primarily, N fertilizer 
application rates and timings, rainfall, N leaching, plant N uptake, irri-
gation, and water table depth fluctuation. While the features like fer-
tilizer N application rates and timings, rainfall, and an interaction 
feature of rainfall and fertilizer application rates in the hybrid-LSTM 
model could have captured their direct influence on SMN. Average air 
and soil temperatures were included to indirectly capture the plant N 
uptake as plant growth is proportional of these temperatures. However, 
apart from the rainfall as a feature, there was no other feature incor-
porated to capture the anthropogenically managed water table in the 
hybrid-LSTM model. The current version of the DSSAT model did not 
have a water table management routine to simulate water-table condi-
tioned sub-irrigated cropping system. While a manual water table depth 
management could have caused differences between DSSAT simulated 
and field observed SMN which challenged the fine-tuning process during 
the hybrid-LSTM training and hence, could have affected the hybrid- 
LSTM performance interannually. Rainfall distribution could also be 
one of crucial factors, as only four years of weather distribution and its 
interaction with multiple N application and plant growth would not be 
enough to capture its effect on SMN variability. To capture these dy-
namics, more years of field trials dataset would be required for training 
such hybrid models.

In summary, the hybrid modeling approach incorporating a time- 
series DL model and a crop simulation model DSSAT proved to be 
promising in estimating the SMN, especially between the sampling 
dates. While there were a few exceptions and inconsistencies in some 
farms and years generated due to several reasons mentioned above, 
these issues could be rectified with more data and improved data parsing 
approaches. The principal idea of the article was to propose a novel 
method of combining two models to develop the hybrid-LSTM model 
which could provide more accurate estimates of SMN in data-sparse 
agroecosystems. Although the hybrid-modeling approach relied on the 
simulated data from the DSSAT model (which requires field-specific 
configuration) to deliver precise estimates of daily SMN, making it 
inapplicable to different locations, soils, and crops, the approach served 
as a proof-of-concept. It demonstrated the potential to unravel the 
cropping systems with highly complex management practices where 
traditional crop models fail due to the under-representation of such 
practices, such as the high-water table conditioned subirrigation system 
in our case. Therefore, developing field-specific hybrid models could aid 
in understanding the dynamics of other soil nutrients, such as phos-
phorus, potassium, and sulfur in different cropping systems worldwide. 
In the future, the hybrid model developed could be improved by 
continuously training on newly available experiment observations from 
various farms and years. Moreover, encompassing a broader array of 
scenarios and facilitating a more comprehensive understanding of data 
patterns and features’ relationships could further strengthen the 
modeling approach presented in this article.

4. Conclusions

The study was planned to present the novel approach of integrating 
the DSSAT model with the LSTM (hybrid-LSTM) to precisely estimate 

the SMN time series in the data-sparse high-water table conditioned sub- 
irrigated potato agroecosystem. The hybrid-LSTM model was able to 
estimate the daily SMN in such complex agroecosystem with a higher 
accuracy (reducing nRMSE between 18–30 % and nRMSpE between 
21–38 %) than the DSSAT simulated SMN for most of the farms and 
years. However, there were a few farms and years where the hybrid- 
LSTM model could not outperform the DSSAT model. The possible 
reasons could be the limited experimental observations, incorporating a 
generalized modeling approach for the farms with slightly different 
soils, and inconsistencies in the DSSAT simulated SMN with observa-
tions on which the hybrid-LSTM model was initially trained. The limi-
tation of this approach is its inapplicability for different locations as the 
approach uses simulated data from the DSSAT model which requires 
field-specific configurations. Overall, the hybrid modeling approach 
produced a more reliable SMN time series which could aid in developing 
sustainable N management and provide optimized N fertilizer recom-
mendations minimizing environmental damages for various cropping 
systems around the world. The proposed modeling strategy could be 
adapted to estimate the daily time series of other soil nutrients, such as 
phosphorus, potassium, and sulfur.
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RISHABH GUPTA, Ph.D. 
Postdoctoral Research Associate 

Horticultural Sciences Department (HOS), Institute of Food and Agricultural Sciences (IFAS) 
University of Florida (UF), Gainesville, Florida (FL) 

Email: gupta.rishabh.61@outlook.com, Ph: (217) 904-6041 (c) 

Search Committee Chair Feb 10, 2024 
Department of Agricultural and Biological Engineering (ABE) 
Everglades Research and Education Center (EREC) 
IFAS, UF – Belle Glade, FL 

Dear Search Committee Members, 

I am writing to apply for the position of Assistant Professor – Agricultural Water Management, a 9-
month tenure-track position, with research (60%) and extension (40%) responsibilities at EREC, IFAS-UF. 
Currently, I am working as a Postdoctoral Research Associate at the HOS Department, IFAS-UF with Dr. 
Zotarelli. I graduated with a Ph.D. in Agricultural and Biological Engineering at the University of Illinois 
Urbana-Champaign (UIUC) under the supervision of Dr. Bhattarai. I believe that my expertise in integrating 
various process-based models and artificial intelligence (AI) for effective water table management to 
improve and sustain agricultural production, uniquely qualifies me for this tenure-accruing role. 

The position description emphasizes the key elements of developing internationally recognized, 
extramurally funded research and extension programs to address major challenges towards water resources 
and quality management for long-term agricultural sustainability in the Everglade area by collaborating 
with dynamics researchers and faculties of IFAS-UF. Developing such strong interdisciplinary extension-
focused research programs requires deep foundational knowledge on plant-soil-climate nexus and soil 
nutrients-water management in sandy soils, irrigation and drainage cycles in shallow water table areas to 
effectively address stakeholders' needs. Additionally, expertise in synergizing state-of-the-art modeling 
methods, such as watershed modeling, crop modeling, climate modeling, decision support systems, data 
science, AI, applied machine learning (ML), remote sensing and GIS techniques–is crucial to excel in this 
role. These areas are integral to my professional, educational, and research background.  

As a Postdoctoral Research Associate at UF, I am working on a multidisciplinary collaborative 
project funded by state legislature entitled ‘Using AI for Improved Crop Nutrient Recommendation’ 
collaborating with Drs. Zare and Harley from the Department of Electrical & Computer Engineering. I am 
leading an interdisciplinary team of undergraduate/graduate students with multiple objectives 1) to establish 
a uniform data collection framework for agricultural field trials for future AI efforts, 2) to advance AI 
algorithms merging crop models and drone-/satellite-based multi-/hyperspectral imageries, and 3) to utilize 
AI to provide site-specific nutrient recommendations for potato grown under shallow water table condition, 
balancing productivity and nutrient leaching in uncertain Florida weather. While working as a postdoc, so 
far, I submitted 4 grants (1 accepted in FDACS, 1 pending in USDA-NIFA, 1 pending in SCBGP, FDACS, 
1 pending in IFAS-UF (LIFT-AI), published 2 journal articles, 1 extension article, and 3 conference 
presentations (oral). Recently, I am collaborating to combine advanced AI methods and soil hydraulic 
models to develop site-specific irrigation and drainage scheduling for optimum water table 
recommendations to conserve water resources, reduce nutrient loss, and improve crop production. 
Moreover, I am engaged in developing remote sensing-based AI methods to reduce our dependance on 
destructive soil and plant sampling in a long-term for developing site-specific best management practices 
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(BMPs). Additionally, I actively participate in the DSSAT Development Sprint led by Prof. Hoogenboom 
and developed various tools and libraries such as dssat-pylib and DSSAT-SoilPro. In my role as a postdoc, 
I gained extensive experience in integrating advanced ML and data science methods with process-based 
agroecosystem models, leveraging sparse in-field observations for sustainable development. I developed 
crucial skills required to lead a diverse team that would be invaluable in advancing data-driven water 
resources management approaches for improved site-specific agricultural systems climate resiliency as a 
faculty member to lead BMP programs at EREC. 

For my doctoral research at UIUC, I worked on a research project entitled-‘CoverCrop Analyzer: 
a web-based decision support tool for cover crop management’ for farmers, where I collaborated with 
various software/web developers, agronomists, climatologists, farmers, and stakeholders to deploy the 
DSSAT model in the web application providing field-specific cover crop management for reducing nutrient 
loss and improving water quality in Illinois. My Ph.D. dissertation aimed to investigate the long-term 
sustainability of cereal rye as a winter cover crop in improving drainage water quality with changing climate 
conditions in the Illinois cropping system using a large-scale geospatial crop modeling approach 
accompanied by high-performance computational (HPC) resources. Moreover, I collaborated to investigate 
the impacts of global climate change on stream low flows in the Great Miami River watershed, Ohio using 
a hydrological model- SWAT. During my master’s research, I assessed the climate change-induced impact 
and uncertainty of rice yield in agro-ecological zones of India. From my doctoral and mater’s research, I 
published 6 journal articles, 3 extension articles, 6 conference presentations (1 poster, 5 oral), and 1 
conference proceeding.  Having actively engaged in climate change-focused research projects, I am well-
equipped to collaborate seamlessly with colleagues at UF to lead a constructive research program in 
developing and evaluating various carbon-neutral water resources conservation practices by leveraging my 
experience in HPC resources and large-scale geospatial climate modeling. 

I believe that an effective extension program bridges the gap between research findings and 
practical application in the agricultural community. I actively participated in various extension activities 
such as Potato field days conducted at Hastings Agricultural Extension Center (HAEC), FL and in-service 
trainings (IST). I observed a tendency of farmers to over-drain or over-irrigate their fields which cause 
either excessive nutrient loss or anaerobic conditions in crop root zone, resulting in yield losses. With my 
extension program, I aim to provide practical and actionable site-specific solutions to farmers, 
policymakers, and other stakeholders, to improve agricultural productivity by maintaining optimum soil 
moisture while conserving soil, nutrients, and water (quantity and quality). I aim to drive my research-based 
extension program to educate among farmers, county, and extension agents in four steps approach: 1) 
Stakeholder engagement and need assessment, 2) Demonstration and knowledge transfer, 3) 
Educational outreach and 4) Program Evaluation to improve soil, nutrients, and water conservation 
literacy and agricultural sustainability. My approach would emphasize the transfer of cutting-edge research 
knowledge and technologies to end-users, empowering them to make informed decisions for BMPs. 

In general, I understand rapidly evolving challenges in food production systems including but not 
limited to rising global temperatures, shifting rainfall patterns, increasing greenhouse gas emissions, and El 
Niño-Southern Oscillations phenomenon-driven climate anomalies. Moreover, Florida’s unique 
topography with low-lying landscapes, sandy soils, and surficial aquifer system challenges an effective soil, 
nutrients, and water resources management to improve vegetables production. To address these challenges, 
I envision my research and extension program in four primary areas: 1) develop and evaluate site- and 
crop-specific irrigation and drainage systems for sandy soils with shallow water-table condition to 

https://github.com/AgroClimaticTools/dssat-pylib
https://covercrop.ncsa.illinois.edu/#/
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improve agricultural production and soil-nutrient-water conservation, 2) advance AI-integrated scalable 
crop, hydrological, and nutrient transport modeling approaches to enhance crop water-nutrient use 
efficiency while reducing  nutrient losses and soil erosion amid water table management, 3) develop web-
based decision support system to improve the state climate resilience by data sciences, remote sensing, 
and geospatial modeling approaches, and 4) implement and deliver these strategies by collaborating with 
growers, extension agents, and other stakeholders to improve drainage water quality by reducing nutrient 
and sediment loadings to water bodies while improving crop yield. Addressing these issues requires not 
only cutting-edge research but also equipping future scholars, engineers, and researchers with the 
technological expertise necessary to meet these demands. I am committed to building an internationally 
recognized research program and generating peer-reviewed journal/extension articles and scholarships to 
showcase my research activities and integrate my research case studies into the extension programs. I am 
well-equipped to secure competitive external funding to support my research and educational programs.  

Apart from my technical expertise, I have a strong track record of leadership in academic and 
professional settings. I have presented at numerous national/international conferences and published in 
internationally renowned journals which significantly enhanced my communication, presentation, and 
writing abilities. Moreover, I am committed to chairing and serving on graduate committees, advising, and 
mentoring undergraduate/graduate students, postdoctoral scholars, and research technicians. Additionally, 
I am prepared for any teaching responsibilities to actively contribute to all three components of the land-
grant mission- Research, Teaching, and Extension. In my pursuit of continuous improvement, I have 
actively engaged in professional development. I successfully completed two workshops on ‘Teaching for 
inclusivity and accessibility’ and the ‘Preparing Future Faculty’ program at UF. The insights acquired from 
these workshops extend beyond the realm of teaching and can be effectively integrated into my research 
and extension programs, creating inclusive and accessible learning environment. 

In summary, I believe that I am highly qualified for the position- Assistant Professor – Agricultural 
Water Management. Working seamlessly within multidisciplinary teams has prepared me to excel as a 
researcher and an educator. I planned to incorporate multidisciplinary cutting-edge methodologies by 
collaborating with faculties, students from various departments, and other stakeholders. Given my expertise 
in developing effective nutrient and water management strategies using scalable modeling, data sciences, 
knowledge-guided ML, remote sensing, and GIS techniques, I am confident in my ability to advance high-
impact research, and extension programs for sustainable agricultural developments. I am fully devoted to 
creating meaningful and impactful contributions to the university's academic and research endeavors 
promoting the land-grant missions. 

I have enclosed my curriculum vitae, research statement, extension philosophy, contact information 
for professional references, and unofficial transcripts. I am eager to discuss my qualifications further and 
answer any questions you may have. I look forward to hearing from you. Thank you for your consideration. 
 
Sincerely, 
 
 
Rishabh Gupta 

https://citt.ufl.edu/workshops/online-certificate-of-completion/teaching-for-inclusivity-and-accessibility/
https://citt.ufl.edu/workshops/online-certificate-of-completion/teaching-for-inclusivity-and-accessibility/
https://gradadvance.graduateschool.ufl.edu/programs/preparing-future-faculty/
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RISHABH GUPTA, Ph.D. 
Postdoctoral Research Associate 

Horticultural Sciences Department, Institute of Food and Agricultural Sciences (IFAS) 
University of Florida (UF), Gainesville, Florida (FL) 

Email: gupta.rishabh.61@outlook.com, Ph: (217) 904-6041 (c) 
Google Scholar | ResearchGate | GitHub | LinkedIn 

EDUCATION 

University of Illinois at Urbana-Champaign 
Ph.D. - Agricultural Engineering (Soil and Water Resources Engineering) 2022 

Indian Institute of Technology - Kharagpur 
M.Tech. - Agricultural Engineering (Land and Water Resources Engineering) 2016 

Jawaharlal Nehru Agricultural University 
B.Tech. - Agricultural Engineering  2014 

RESEARCH EXPERIENCE 

Postdoctoral Research Associate, University of Florida 2022 - Present
Horticultural Sciences Department 
Advisor: Prof. Lincoln Zotarelli 
• Spearheaded Florida state legislative-backed and Florida Department of Agriculture and Consumer Services 

(FDACS)-funded best management practices (BMPs) project 
• Managed multi-disciplinary teams from various departments to lead the effort in improving crop nutrient 

recommendations by utilizing crop models-fused artificial intelligence (AI) and remote sensing, leveraging high-
performance computing (HPC) system. 

• Plan, coordinate, and assist with several ongoing nutrient and irrigation management and potato breeding program 
• Wrote several grant proposals targeting various state and federal agencies such as- USDA-NIFA/Data Science 

for Food and Agricultural Systems (DSFAS), FDACS/Specialty Crop Block Grant Program (SCBGP). 
• Collaborated with multiple research teams spearheaded by different PIs for conducting inter-disciplinary research 

to enhance crop productivity with minimal environment impact. 
• Advanced the development of the cropping system model- DSSAT while being part of the DSSAT Development 

Team led by Prof. Gerrit Hoogenboom at UF. 
• Advised and mentored various graduate and undergraduate students in the research group 
• Participated in various extension activities such as growers field days and in-service trainings to interact with 

growers and extension agents 

This work has resulted in 4 grants (3 pending, 1 accepted), 2 journal publications, and 1 extension article. 

Graduate Research Assistant, University of Illinois at Urbana-Champaign 2017 - 2022
Department of Agricultural and Biological Engineering 
Advisor: Dr. Rabin Bhattarai 
• Conceptualized a methodology to understand the behavior of climate-soil-water driven impact on the crops (corn-

soybean-cereal rye) by developing a calibrated/validated process-based decision support system to address the 
soil nutrient loss and drainage water quality issue. 

• Developed CERES-Wheat model of DSSAT as a proxy model to simulate the growth and development of cereal 
rye using field experimental observations. 

https://scholar.google.com/citations?user=txTgLqsAAAAJ&hl=en
https://www.researchgate.net/profile/Rishabh-Gupta-5
https://github.com/AgroClimaticTools
http://www.linkedin.com/in/rishabhgupta61
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• Translated a field scale crop modeling work to large scale (state scale) spatial model using high-resolution soil, 
weather, and cropland data. 

• Investigated the long-term impact of winter cover crop on corn-soybean growth and soil nitrogen-water dynamics 
using spatial modeling approach by leveraging HPC system. 

• Examined the sustainability of cover cropping practices in Illinois climate divisions using future projections from 
Regional Climate Models (RCM). 

• Collaborated with the researchers and scientists to aid them in developing the CoverCropAnalyzer – web 
application for cover crop management (https://covercrop.ncsa.illinois.edu). 

This work resulted in 4 journal publications and 3 extension articles.

Graduate Research Assistant, Indian Institute of Technology - Kharagpur 2014 - 2017
Department of Agricultural and Food Engineering  
Advisor: Prof. Ashok Mishra 
• Analyzed the climate change-induced impact and uncertainty on rice yield of India using spatial crop modeling 

approach at the country-scale using Global Climate Models’ (GCMs) projections. 
• Designed various tools to downscale and bias correct (WDI, CDBC) the climate model historical and future 

projections using a quantile mapping approach. 

This work resulted in 2 journal publications and 2 GitHub repositories. 

Remote Sensing, GIS, Hydrological Modeling - Internship, Indian Institute of Remote 
Sensing, ISRO 

2014

Water Resources Department 
Advisor: Dr. Vaibhav Garg, Co-Advisor: Dr. Bhaskar Nigam 
• Analyzed the hydrological features of a watershed in India, by deploying Remote Sensing and GIS and the Soil 

and Water Assessment Tool (SWAT) modeling technique. 

Natural Resources Management- Internship, Central Soil-Water Conservation Research 
& Training Institute, ICAR 

2013

• Conceptualized the soil erosion controlling practices with several field visits in a highly eroded- ravenous land 
beside Yamuna River, Agra to gain insights on natural resources management. 

TEACHING EXPERIENCE 

Post Doctoral Mentor 2022-Present
Herbert Wertheim College of Engineering, University of Florida 
• EGN 4912 Engineering Undergraduate Research - [1 Undergraduate Student] 

-The primary purpose of this course is to provide the undergraduate student an opportunity for firsthand, 
supervised research experience.  
-Mentored an undergraduate student to develop machine learning models for potato cropping system using 
DSSAT crop model simulations.  

• EEL 9635 Physics-Informed Machine Learning - [20 Graduate Students] 
-Gave a talk on ‘Evapotranspiration and its Modeling’ as a group project idea for graduate students class project. 
-Mentored a group of students (3 graduate students) interested in pursuing their class project to use ML for 
predicting evapotranspiration 

Graduate Teaching Assistant 2018 - 2022
Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign 

https://covercrop.ncsa.illinois.edu/
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• ABE 224 Principles: Soil & Water - [30-40 Students] 
-Instructed all the laboratory classes of the course every Fall semester from 2018-2020. 
-Topics instructed are ‘Field survey and contour mapping’, ‘GIS, Watershed delineation’, ‘Runoff volume 
calculation –SCS methods’, ‘Rainfall simulator and soil erosion’, and ‘Calibration of v-notch in the flume.’ 

-Designed ArcMap training guidelines for ‘GIS, Watershed delineation’ and ‘Contour Mapping’ lab classes.  

• ABE 199 (Campus Honors Program) Water in the Global Environment - [20-30 Students] 
-Teaching assistant every Fall semester from 2019-2022. 
-Graded assignments and solved students’ questions and problems. 
-Led office hours for one-to-one interaction with students. 

SUPERVISING / MENTORING EXPERIENCE 

Post-Doctoral Associate 2022 - Present
Horticultural Sciences Department, University of Florida, Gainesville, FL 

a. Supervised - Research/Student Assistants (6) 
In my role as a Postdoctoral Research Associate, I lead the AI project, focusing on developing several crop 
model-guided machine learning models to offer nutrient recommendations for Florida's cropping systems. I am 
directly overseeing the work of five research and student assistants dedicated to this project.  

Name Designation Project Activity Year 
Prateek K. 
Goel* 

Research Assistant, 
HOS & Department 
of Electrical & 
Computer 
Engineering (ECE) 

Supervised and trained to improve the 
understanding of the DSSAT model and `dssat-
pylib` python scripts to simulate, extract, and plot 
the model output. Guided on developing 
transformer based neural network models for soil 
mineral nitrogen 

2022-Present 

Bhanu P. R. 
Lanka* 

Student Assistant, 
M.S. Student,  
Department of 
Computer & 
Information Science 
& Engineering 
(CISE) 

Mentored and trained to develop XGBoost and 
other machine learning models for estimating 
potential nitrogen leaching while reducing 
dependence on process-based crop model 
simulations 

2024-Present 

Miguel A. 
Barrera 

Student Assistant,  
B.S. student,  
ECE 

Advised and familiarized with the raw data 
collected for the potato trails in Hastings, Florida 
and explained the best way to convert the raw data 
into DSSAT model input files, explained the 
working on the DSSAT model and how to extract 
its output in required format. 

2022-2024 

Lahari 
Kethinedi 

Student Assistant,  
M.S. Student,  
ECE 

Supervised to develop machine learning models 
for potato agroecosystem using DSSAT simulated 
data for the hypothetical scenarios. 

2023-2024 

Geoffrey 
‘Austin’ 
Simon 

Graduate Research 
Assistant,  
M.S. student, 
ECE 

Guided on to use Unmanned Aerial Vehicle 
(UAV)-captured multispectral data for monitoring 
potato growth and developing a XGBoost-based 
machine learning model. 

2024 

John Jack 
Upchurch 

Graduate Research 
Assistant,  

Guiding him with the potato farms so that he could 
use his UAV flying expertise to capture all the 

2024 



Rishabh Gupta – CV 

4 
 

M.S. student,  
ECE 

farms capturing plot level and plant level data by 
mapping the plots and sampling plants in the plot, 
respectively. 

* These students are currently working with me on AI project. 

b. Mentored - Ph.D. and Masters’ Students (4) 
During my postdoctoral training, I am providing mentorship to numerous Ph.D. and Masters students. While I 
was not their official advisor, the students frequently sought my counsel and guidance in formulating their 
thesis objectives. They approached me during moments of uncertainty related to their project, seeking advice 
on navigating challenges and formulating pertinent questions to discuss with their respective advisors. 

Name Designation Project Activity Year 
Satya K. 
Pothapragada* 

Ph.D. student,  
ECE 

Guiding with different aspect and providing 
foundational knowledge of agricultural system to 
develop machine learning models. 

2022-Present 

Rakshya 
Dhakal* 

Ph.D. student,  
HOS 

Provided guidance on how to employ the DSSAT 
model and remote sensing techniques for modeling 
the potato breeding/variety trials. 

2023-Present 

Weihuang Xu Ph.D. student 
[Graduated],  
ECE 

Explained the soil nitrogen volatility in the sandy 
soils to efficiently predict the daily response of 
rainfall and subirrigation on the soil mineral 
nitrogen in the potato field trials using machine 
learning. 

2022-2023 

Ayesha 
Naikodi 

M.S. Student, 
[Graduated], 
ECE 

Enhanced the understanding on the fundamental 
agricultural processes related to potato 
agroecosystem modeling. 

2022 

* These students are currently working with me on AI project. 

c. Mentored – Bachelor’s Student 

Name Designation Research Activity Semester 
Miguel A. 
Barrera 

B.S. student, 
ECE 

EGN-4921 Engineering Undergraduate Research 
(Credit - 3) 
Course objectives were to familiarize 
undergraduate students on how to search literature, 
approach a research problem, write a research 
report, and work in a team environment 

Fall-2023 

GRANT WRITING EXPERIENCE 

1. Developing site-specific irrigation and nutrient prescription maps using 
AI and remote sensing associating soil spatial heterogeneity response 
with potato production.  
[Co-PI with Drs. Zotarelli, Resende, Zare, and Sharma] 

UF/IFAS Dean for Research & Extension Office 

$74,826 2025-2027 
(Pending) 

2. Advancing Precision irrigation for specialty crops: Development of a 
statewide tool for site-specific subirrigation recommendations.  
[Co-PI with Drs. Zotarelli, Oliveira, Nunes, Guzman, Tsouvaltzis, and Agehara] 

Specialty Crop Block Grant Program, USDA 

$249,930 2026-2028 
(Pending) 
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3. DSFAS: AI-driven genomic and crop simulation models for enhancing 
plant breeding using high-throughput phenotyping.  
[Co-PI with Drs Zotarelli, Zare, Resende, Messina, Harley, and Sharma] 

National Institute of Food Agriculture, USDA  

$649,956 2025-2028 
(Pending) 

4. Using artificial intelligence for improved crop nutrient management.  
[Co-PI with Drs Zotarelli, Zare, Resende, Messina, and Harley] 

Florida Department of Agriculture & Consumer Services, FL 

$248,035 2024-2025 

FUNDED PROJECTS 

• Partnership: Integrating crop growth models and genomic prediction to advance 
the development of heat tolerant potatoes.  

National Institute of Food Agriculture, USDA.  

2024-Present 

• Using artificial intelligence for improved crop nutrient management.  
Florida Department of Agriculture & Consumer Services, FL. 

2022-Present 

• Web-based decision support tool for cover crop management.  
Illinois Nutrient Research & Education Council, IL. 

2017-2022 

• Climate change impact and adaptation options for sustaining rice-wheat crop 
production in India.  

Department of Science and Technology, Government of India. 

2015-2017 

PUBLICATIONS 

a. Refereed Journal papers (7)  
1. Gupta, R., Pothapragada, S.K., Xu, W., Goel, P.K., Barrera, M.A., Harley, J., Morgan, K., Zare, A., Zotarelli, 

L. (2024). Estimating soil mineral nitrogen from data-sparse field experiments using crop model-guided deep 
learning approach. Computers and Electronic in Agriculture, 225, 109355. 
https://doi.org/10.1016/j.compag.2024.109355 

2. da Silva, A.L.B.R., Dias, H.B., Gupta, R., Zotarelli, L., Asseng, S., Dukes, M.D., Porter, C.H., Hoogenboom, 
G. (2024). Assessing the impact of irrigation and nitrogen management on potato performance under varying 
climate in the state of Florida, USA. Agricultural Water Management, 295, 108769. 
https://doi.org/10.1016/j.agwat.2024.108769  

3. Gupta, R., Bhattarai, R., Dokoohaki, H., Armstrong, S.D., Coppess, J.W. & Kalita, P.K. (2023b). 
Sustainability of cover cropping practice with changing climate. Journal of Environmental Management, 
339, 117946. https://doi.org/10.1016/j.jenvman.2023.117946 

4. Gupta, R., Bhattarai, R., Kalita, P.K., Dokoohaki, H., Armstrong, S.D. & Coppess, J.W. (2023a). Evaluation 
of long-term impact of cereal rye as a winter cover crop in Illinois. Science of the Total Environment, 887, 
162956. https://doi.org/10.1016/j.scitotenv.2023.162956 

5. Gupta, R., Bhattarai, R., Coppess, J.W., Jeong, H., Ruffatti, M., & Armstrong, S.D. (2022). Modeling the 
impact of winter cover crop on tile drainage and nitrate loss using DSSAT model. Agricultural Water 
Management, 272, 107862. https://doi.org/10.1016/j.agwat.2022.107862 

6. Gupta, R., & Mishra, A. (2019). Climate change induced impact and uncertainty of rice yield of agro-
ecological zones of India. Agricultural Systems, 173, 1-11. https://doi.org/10.1016/j.agsy.2019.01.009 

https://doi.org/10.1016/j.agwat.2024.108769
https://doi.org/10.1016/j.jenvman.2023.117946
https://doi.org/10.1016/j.scitotenv.2023.162956
https://doi.org/10.1016/j.agwat.2022.107862
https://doi.org/10.1016/j.agsy.2019.01.009
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7. Gupta, R., Bhattarai, R., & Mishra, A. (2019). Development of climate data bias corrector (CDBC) tool and 
its application over the agro-ecological zones of India. Water (Switzerland), 11(5), [1102]. 
https://doi.org/10.3390/w11051102 

8. Shrestha, S., Sharma, S., Gupta, R., & Bhattarai, R. (2019). Impact of global climate change on stream low 
flows: A case study of the great Miami river watershed, Ohio, USA. International Journal of Agricultural 
and Biological Engineering, 12(1), 84-95. https://doi.org/10.25165/j.ijabe.20191201.4486 

b. Peer-reviewed Extension Publications (4) 
1. Sharma, L., Gupta, R., Zotarelli, L., & Hoogenboom, G. (2024). Assessing Nitrate Leaching in Crop 

Production through the Application of Crop Simulation Models with Experimental Data from Florida: 
SL514/SS727, 9/2024. EDIS, 2024(5). https://doi.org/10.32473/edis-ss727-2024 

2. Coppess, J., Navarro, C., Naraharisetty, V.V.G., Satheesan, S.P., Gatzke, L., Bhattarai, R., Gupta, R., 
Armstrong, S.D., & Ford, T. (2021) Introducing Further Updates to the Cover Crop Decision Support Tool. 
farmdoc daily (11):148 https://farmdocdaily.illinois.edu/2021/10/introducing-further-updates-to-the-cover-
crop-decision-support-tool.html  

3. Coppess, J., Navarro, C., Satheesan, S.P., Naraharisetty, V.V.G., Bhattarai, R., Armstrong, S.D., &  
Gupta, R. (2021) Introducing an Update to the Cover Crop Decision Support Tool. farmdoc daily (11):18. 
https://farmdocdaily.illinois.edu/2021/02/introducing-an-update-to-the-cover-crop-decision-support-
tool.html  

4. Coppess, J., Navarro, C., Satheesan, S.P., Naraharisetty, V.V.G., Bhattarai, R., Armstrong, S.D., &  
Gupta, R. (2020). Introducing the Cover Crop Decision Support Tool. farmdoc daily, 10(176). 
https://farmdocdaily.illinois.edu/2020/10/introducing-the-cover-crop-decision-support-tool.html 

c. Non-refereed Proceedings (1) 
1. Satheesan, S.P., Bhattarai, R., Bradley, S., Coppess, J., Gatzke, L., Gupta, R., ... & Navarro, C.M. (2019). 

Extensible framework for analysis of farm practices and programs. In Proceedings of the Practice and 
Experience in Advanced Research Computing on Rise of the Machines (learning) (pp. 1-8). 
https://doi.org/10.1145/3332186.3337063  

d. Newsletters (1) 
1. Gupta, R., Bhattarai, R., Cooke, R.A. (2018) Characterizing the response of four tile-drained watershed - 

Application of SWAT model. Land Improvement Contractors of America (Illinois Chapter) newsletter. 
Page (14-15): Jan-Feb 2018. 
https://www.illica.net/_files/ugd/f15a8b_e5800588eb414ffc93582efc8382bfd8.pdf  

e. Published Abstracts (5) 
1. Gupta, R., Dias, H.B., Zotarelli, L., Porter, C.H., Hoogenboom, G. (2023) Evaluating the DSSAT-CSM-

SUBSTOR model in sub-irrigated potato-agroecosystem under varied nitrogen fertilizer rates and application 
timings. ASA, CSSA, SSSA International Annual Meeting – 2023. 
https://scisoc.confex.com/scisoc/2023am/meetingapp.cgi/Paper/151749  

2. Dias, H.B., Gupta, R., da Silva, A.L.B.R., Zotarelli, L., Asseng, S., Porter, C.H., Hoogenboom, G. (2023) 
Evaluating and applying the DSSAT-CSM-SUBSTOR model to simulate water and nitrogen responses in 
spring potato in northeast Florida. ASA, CSSA, SSSA International Annual Meeting – 2023. 
https://scisoc.confex.com/scisoc/2023am/meetingapp.cgi/Paper/153900  

3. Oliveira, J.M., Tormena, C.A., Zotarelli, L., Bortolozo, F.R., Gupta, R. (2023) Pedotransfer function to 
estimate soil penetration resistance of sandy soils. ASA, CSSA, SSSA International Annual Meeting – 2023. 
https://scisoc.confex.com/scisoc/2023am/meetingapp.cgi/Paper/149572  

https://doi.org/10.3390/w11051102
https://doi.org/10.25165/j.ijabe.20191201.4486
https://farmdocdaily.illinois.edu/2021/10/introducing-further-updates-to-the-cover-crop-decision-support-tool.html
https://farmdocdaily.illinois.edu/2021/10/introducing-further-updates-to-the-cover-crop-decision-support-tool.html
https://farmdocdaily.illinois.edu/2021/02/introducing-an-update-to-the-cover-crop-decision-support-tool.html
https://farmdocdaily.illinois.edu/2021/02/introducing-an-update-to-the-cover-crop-decision-support-tool.html
https://farmdocdaily.illinois.edu/2020/10/introducing-the-cover-crop-decision-support-tool.html
https://doi.org/10.1145/3332186.3337063
https://www.illica.net/_files/ugd/f15a8b_e5800588eb414ffc93582efc8382bfd8.pdf
https://scisoc.confex.com/scisoc/2023am/meetingapp.cgi/Paper/151749
https://scisoc.confex.com/scisoc/2023am/meetingapp.cgi/Paper/153900
https://scisoc.confex.com/scisoc/2023am/meetingapp.cgi/Paper/149572
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4. Satheesan, S.P., Navarro, C. Lee, J., Naraharisetty, G., Gatzke, L., Gupta, R., Bhattarai, R., Ford, T., 
Armstrong, S.D., Coppess, J. (2022) Development and advancement of CoverCrop Analyzer: A decision 
support web application for cover crop management. American Geophysical Union - Fall Meeting Abstracts 
– 2022. https://agu.confex.com/agu/fm22/meetingapp.cgi/Paper/1090970  

5. Gupta, R., Bhattarai, R. Dokoohaki, H., Coppess, J., Armstrong, S.D. (2022) Analyzing sustainability of 
cover cropping practice with changing climate over Illinois state. Ohio River Basin Consortium for Research 
and Education - Symposium – 2022. https://event.fourwaves.com/orbcre/abstracts/5949b516-09aa-4bed-
8cc7-4e14766462c5  

f. Research Mentions in Media (2) 
1. Top corn producing state to see future drop in yield, cover crop efficiency. ScienceDaily (2023). 

www.sciencedaily.com/releases/2023/07/230706124639.htm  

2. Quinn, L. (2023) Winter cover crops could reduce nitrogen in Illinois drainage water by 30%. NewsWise 
(2023). https://www.newswise.com/articles/winter-cover-crops-could-reduce-nitrogen-in-illinois-drainage-
water-by-30  

SOFTWARES / TOOLS DEVELOPED  
• DSSAT-SoilPro DSSAT-SoilPro – A tool to optimize soil water-related parameters in the DSSAT model 

to calibrate soil moisture content of different soil layers. 

• dssat-pylib DSSAT-Python Library – A Python library to read/extract DSSAT outputs, create/modify 
its soil file, and run the model. 

• TabulateQR TabulateQR- A tool to create customized tables for organizing soil, water, or other 
sampled data linked with QR codes. 

• CDBC Climate Data Bias Corrector – A tool developed in Python to remove the bias from 
daily gridded climate projections of climate models using the probability distributions 
(gamma, gaussian, beta). 

• WDI Weather Data Interpolator – A tool developed in Python to downscale daily weather data 
from lower to higher resolution using linear and inverse distance interpolation techniques. 

INVITED PRESENTATIONS / SEMINARS  

• Presentation invitation by Dr. Joel Harley to give a talk on ‘Evapotranspiration and its Modeling’ as a 
project idea for his class- Physics-Informed Machine Learning at the Department of Computer and 
Electrical Engineering, University of Florida, FL – 2023. 

• Presentation invitation by Dr. Marcio Resende to give a talk on ‘Soil mineral nitrogen modeling in the 
potato cropping system’ to his research group and a visiting professor from Brazil at the Horticultural 
Sciences Department, University of Florida, FL – 2023.  

• Seminar invitation by Prof. Prasanta Kalita to give a talk on my Ph.D. research ‘Modeling the impact 
of winter cover crop on soil water and nitrogen dynamics using DSSAT model’ at the Department of 
Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, IL – 2021.   

 

 

https://agu.confex.com/agu/fm22/meetingapp.cgi/Paper/1090970
https://event.fourwaves.com/orbcre/abstracts/5949b516-09aa-4bed-8cc7-4e14766462c5
https://event.fourwaves.com/orbcre/abstracts/5949b516-09aa-4bed-8cc7-4e14766462c5
http://www.sciencedaily.com/releases/2023/07/230706124639.htm
https://www.newswise.com/articles/winter-cover-crops-could-reduce-nitrogen-in-illinois-drainage-water-by-30
https://www.newswise.com/articles/winter-cover-crops-could-reduce-nitrogen-in-illinois-drainage-water-by-30
https://github.com/AgroClimaticTools/DSSAT-SOILPRO
https://github.com/AgroClimaticTools/dssat-pylib
https://github.com/AgroClimaticTools/TabulateQR
https://github.com/AgroClimaticTools/CBDC
https://github.com/AgroClimaticTools/WDI
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PRESENTATIONS AT PROFESSIONAL CONFERENCES / MEETINGS 

a. Oral Presentations (8) 
1. Gupta, R., Pothapragada, S.K., Goel, P.K., Lanka, B.P.R., Kethinedi, L., Barrera, M.A., Harley, J.B., 

Morgan, K.D., Zare, A., Zotarelli, L. (2024) Exploring crop model-informed machine learning approach for 
interpreting cropping system. ASABE Annual International Meeting – 2024. 

2. Gupta, R., Dias, H.B., Zotarelli, L., Porter, C.H., Hoogenboom, G. (2023) Evaluating the DSSAT-CSM-
SUBSTOR model in sub-irrigated potato-agroecosystem under varied nitrogen fertilizer rates and 
application timings. ASA, CSSA, SSSA International Annual Meeting – 2023. 
https://scisoc.confex.com/scisoc/2023am/meetingapp.cgi/Paper/151749   

3. Gupta, R., Pothapragada, S.K., Xu, W., Goel, P.K., Barrera, M.A., Harley, J.B., Morgan K.D., Zare, A. 
Zotarelli, L. (2023) An effort to couple DSSAT model with machine learning model to estimate soil 
mineral nitrogen in potato fields. ASABE Annual International Meeting – 2023. 

4. Gupta, R., Bhattarai, R., Satheesan, S.P., Navarro, C., Ford, T., Armstrong, S.D., Coppess, J. (2023) 
CoverCrop Analyzer: a decision support web application for cover crop management. ASABE Annual 
International Meeting – 2023. 

5. Gupta, R., Bhattarai, R. Dokoohaki, H., Coppess, J., Armstrong, S.D. (2022) Analyzing sustainability of 
cover cropping practice with changing climate over Illinois state. Ohio River Basin Consortium for Research 
and Education - Symposium – 2022. https://event.fourwaves.com/orbcre/abstracts/5949b516-09aa-4bed-
8cc7-4e14766462c5  

6. Gupta, R., Bhattarai, R., Dokoohaki, H., Coppess, J., Armstrong, S.D. (2022) A nutrient loss prevention 
outlook using extensive cover cropping in the croplands of Illinois. ASABE Annual International Meeting 
– 2022. 

7. Gupta, R., Bhattarai, R., Coppess, J., Roth, R.T., Armstrong, S.D. (2020) Modeling the impact of winter 
cover crop on corn-soybean and soil nitrogen dynamics using DSSAT model. ASABE Annual International 
Meeting – 2020. 

8. Gupta, R., Bhattarai, R., Roth, R.T., Armstrong, S.D. (2019) Analyzing winter cover crop impacts on soil 
nitrogen dynamics using DSSAT model. ASABE Annual International Meeting – 2019. 

b. Poster Presentations (1) 
1. Gupta, R., Bhattarai, R., Mishra, A. (2018) Climate Data Bias Corrector: A tool for bias correction of 

GCM/RCMs outputs. ASABE Annual International Meeting – 2018. 

ACADEMIC SERVICES 

• Served as a manuscript reviewer for the research articles submitted to various journals-  
o Scientific Data (Nature Publishing Group), Journal of Environmental Management, Agricultural and Forest 

Meteorology, Journal of the American Water Resources Association, Agronomy Journal, American Journal of 
Potato Research, Journal of Natural Resources and Agricultural Ecosystems (ASABE), Environmental 
Processes, Agronomy, Climate, Applied Sciences, and Sustainability. 

• Served as a moderator: 
o Natural Resources & Environmental Systems (NRES) Oral Technical Session on ‘Nutrient Transport and 

Cycling: Measurement and Data Synthesis’ at the ASABE AIM – 2024, Anaheim, CA. 
o NRES Oral Technical Session on ‘Nutrient Transport and Cycling: Modeling’ at the ASABE AIM – 2024, 

Anaheim, CA. 

https://scisoc.confex.com/scisoc/2023am/meetingapp.cgi/Paper/151749
https://event.fourwaves.com/orbcre/abstracts/5949b516-09aa-4bed-8cc7-4e14766462c5
https://event.fourwaves.com/orbcre/abstracts/5949b516-09aa-4bed-8cc7-4e14766462c5
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o NRES Oral Technical Session on ‘Nutrient Transport and Cycling: Measurement and Modeling’ at the ASABE 
AIM – 2023, Omaha, NE. 

• Judged the students’ presentations 
o NRES Oral Technical Session on ‘Nutrient Transport and Cycling: Modeling’ at the ASABE AIM – 2024, 

Anaheim, CA. 
o NRES Oral Technical Session on ‘Advances in Agro-EcoSystems Modeling and Data Analytics: Climate 

Impacts’ at the ASABE AIM – 2023, Omaha, NE 
o NRES Oral Technical Session on ‘Advances in Agro-EcoSystems Modeling and Data Analytics: Ecohydrology 

Applications’ at the ASABE AIM – 2023, Omaha, NE 
o NRES Poster Technical Session at the ASABE AIM – 2023, Omaha, NE 

PROFESSIONAL DEVELOPMENT TRAININGS

• Completed the ‘Preparing Future Faculty’ program offered by the Graduate School, the Office of 
Postdoctoral Affairs, and the Center for Teaching Excellence at the University of Florida, FL – 2024. 

• Completed the workshop- ‘Teaching for Inclusivity and Accessibility’ offered by the Center of 
Instructional Technology and Training (CITT) at the University of Florida, FL – 2023. 

• Completed the workshop- ‘Grantsmanship 101: Keys to Writing Effective Proposals’ offered by the 
Office of Graduate Professional Development at the University of Florida, FL – 2023. 

PROFESSIONAL MEMBERSHIPS

• American Society of Agricultural and Biological Engineers (ASABE) (2018-Present) 
o Chair of NRES-224 Water Quality (2024-2026) 
o Vice Chair of NRES-224 Water Quality (2023-2024) 
o Member-at-Large of the Young Professional Community (YPC) (2023-2024) 
o Member-at-Large of the Association of Agricultural, Biological, and Food Engineers of Indian Origin (2023-

2024) 
o Member of NRES -21 Hydrology Group Committee (2022-Present) 
o Member of NRES-23 Drainage Group Committee (2022-Present) 
o Member of NRES-22 Soil Erosion and Water Quality Committee (2022-Present) 

• American Society of Agronomy (ASA) (2023-Present) 

AWARDS / ACHIEVEMENTS / SCHOLARSHIPS

• Postdoctoral Travel Award from the Graduate School, UF, 2024 
• Conference Presentation Award from the Graduate College, UIUC, 2022 
• Graduate College Block Grant from the Graduate College, UIUC, 2018 
• All India Council for Technical Education Postgraduate Scholarship from Govt. of India, 2014-17 
• Editor-in-chief in a wall magazine- ‘AgriNEST’ at JNKVV, India, from 2012-14 
• National Talent Scholarship from the Indian Council of Agricultural Council (ICAR), 2010-14 
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PROFILE LINKS

• Google Scholar: https://scholar.google.com/citations?user=txTgLqsAAAAJ&hl=en 
• ResearchGate: https://www.researchgate.net/profile/Rishabh-Gupta-5 
• LinkedIn: https://www.linkedin.com/in/rishabhgupta61/ 
• GitHub: https://github.com/AgroClimaticTools  
• ORCID: https://orcid.org/0000-0002-8937-1910 

https://www.linkedin.com/in/rishabhgupta61/
https://github.com/AgroClimaticTools



