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A B S T R A C T

An agricultural system is a complex combination of many different components that require different types of
data for analysis and modeling. Remote sensing information is an alternative source of data for areas that only
have a small amount of ground truth data. The goal of this study was to evaluate whether remotely sensed data
can be used for calibration of genetic specific parameters (GSPs) with the ultimate goal of yield estimation. This
study used the Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) from
Moderate Resolution Imaging Spectroradiometer (MODIS) with measured Leaf Area Index (LAI) for soybean
fields in Paraná, Brazil and Iowa, USA, to calibrate the cultivar parameters of the CSM-CROPGRO-Soybean
model. Three calibration methods were performed including field-measured LAI, remotely sensed derived LAI,
and remotely sensed derived Light Interception. The cultivar parameters sensitive to LAI and LI were calibrated
for yield with a mean error of -4.5 kg/ha (0.1%) and with a R2 of 0.89 for Parana. The availability of crop growth
measurements for Iowa resulted in an average RMSE of 895 kg/ha (average nRMSE of 6%), and Willmott
agreement index of 0.98 for time-series biomass, and an average RMSE of 941 kg/ha (average nRMSE of 15%)
for pod weight. This study showed that remotely sensed LAI and LI from NDVI data can be used for calibration of
GSPs with the ultimate goal of improving yield predictions based on local dynamic temporal and spatial
variability.

1. Introduction

Soybean is a major agricultural commodity for Brazil and US in
terms of acreage, production, and export. Understanding and esti-
mating how this crop responds to different environmental conditions
and crop management practices requires a complex system with com-
binations of various components that contain a number of interacting
biological, physical, and chemical processes (Jones et al., 2017; Tsuji
et al., 1998). The Decision Support System for Agrotechnology Transfer
(DSSAT) is a suite of software models that simulate such complexity, as
it encompasses models for different crops including the CROPGRO
model for soybean and other grain legumes (Boote et al., 1998b; Jones
et al., 2003; Hoogenboom et al., 2015). For the accurate use of the
CROPGRO model for yield prediction, determining the cultivar para-
meters is essential. Nevertheless, calibration of individual parameters of
a crop model may require many experimental datasets and other re-
sources (Fukui et al., 2015; Hoogenboom et al., 2015; Jégo et al., 2010;

Jones et al., 2003; Kajumula Mourice et al., 2014; Boote et al., 1998b;
Tsuji et al., 1998). Obtaining region- and site-specific in situ data that
can be used for regional yield estimation is normally challenging be-
cause the observed information usually not available, especially for
large areas.
Indirect data collection can be conducted to fill possible in situ gaps.

Because remote sensing data possess a significant potential for mon-
itoring vegetation dynamics (Kasampalis et al., 2018) due to their sy-
noptic coverage and frequent temporal sampling (Atzberger, 2013),
such data can be used for modeling purposes. Li et al. (2015) stated that
a combination of remote sensing and crop growth models can be an
effective tool for grain yield estimation. For example, Chakrabarti et al.
(2014) assimilated downscaled remote sensing soil moisture from the
Soil Moisture and Ocean Salinity (SMOS) mission into the DSSAT-
CROPGRO model using an Ensemble Kalman filter-based augmented
state-vector technique that estimates states and parameters simulta-
neously. This framework was implemented in La Plata basin in Brazil
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for two years and the root mean square error (RMSE) between the as-
similated and observed soybean yield were 16.8% during the first
growing season and 4.4% during the second season. Fang et al. (2011)
integrated the Cropping System Model‐CERES‐Maize with the MODIS
LAI products for estimating corn yield in the state of Indiana, USA, and
concluded that the inversion of a crop simulation model facilitates
several different user input modes and outputs a series of agronomic
and biophysical variables, including crop yield. Campos et al. (2018)
developed an operational remote sensing approach to assist crop
growth models in reproducing actual processes in the field by relating
satellite-based remote sensing data and key canopy biophysical para-
meters. They proposed a relation-based crop coefficient using field data
obtained from 11 years of irrigated and rainfed soybean and maize
grown in eastern Nebraska. They concluded that the relationship be-
tween biomass production and the reflectance is strong, indicating that
the use of remote sensing data for a quantitative analysis of crop bio-
mass production and yield is reliable. Therefore, integrating biophysical
data from remotely sensed data could improve the yield prediction of
crop simulation models (Doraiswamy et al., 2005). The main ad-
vantages from incorporating remote sensing data into crop models are
the representation of the missing spatial information and the more
accurate description of the crop’s actual conditions during various
stages of the growing season (Kasampalis et al., 2018). However, re-
mote sensing-based techniques to calibrate crop growth models such as
CROPGRO are not fully understood, especially for GSPs, that are critical
for predicting crop development and growth and ultimately yield cor-
rectly. Using remote sensing to calibrate the model can be an asset for
applying the model for gridded applications for large areas and making
the use of the model viable when limited observational data are
available.
LAI and LI are strong links between remote sensing and the

CROPGRO model (Boote et al., 1998a; Hoogenboom et al., 2015). Both
can be derived from remote sensing data. As described by Boote et al.
(1998a), LAI and LI are state variables because the model simulates LAI
over time and uses the LI and subsequent prediction of leaf-to-canopy
assimilation, which affects biomass and final yield. Because both LAI
and LI are outputs of the model, one can use observed data with model
inversion techniques to solve for model parameters that affect LAI and
LI. The goal of the study was to understand the utility of remote sensing
observations to improve yield predictions from crop growth models.
Specific objectives were (1) to test three methods to calibrate the GSPs
using field-measured LAI, remote-sensing-derived LAI, and remote-
sensing-derived Light Interception (LI), and (2) to compare results with
field data to evaluate the feasibility and accuracy of these methods.

2. Materials and methods

2.1. Study area and field data

There were two study areas with an average of 50 ha for each field,
including a commercial farm in the western region of Paraná state
(southern Brazil) and a commercial farm in the center of Iowa (northern
USA). In Brazil, there were two rainfed and two irrigated soybean
fields. Crop management for all fields was based on a row spacing of
30 cm for one rainfed and one irrigated field and 45 cm for the other
fields. The Brazilian farm is located at 24°42'25.2"S 53°28'48.0”W with
humid subtropical climate - Cfa (Aparecido et al., 2016). For the Bra-
zilian fields, weather data were obtained from the European Centre for
Medium-Range Weather Forecasts (ECMWF) ERA-Interim data
(European Union, 2014), including daily total rainfall, maximum and
minimum temperature, dew point temperature, wind speed, and solar
radiation. The soil profile was a Latossolo Vermelho soil already present
in DSSAT. LAI was measured every 16 days using the LI-COR - LAI-
2200C Plant Canopy Analyzer during the 2016–2017 growing season
(Fig. 1). LAI is the leaf area per unit of land area (Chang, 1968). LAI is
used as an indicator of plant growth and for evaluating assimilation and

transpiration rates in plant physiological studies. LAI measurements
provide indices of plant growth over time and are customarily used as
data for calibrating crop simulation models (Hoogenboom et al., 1999).
For each field, LAI measurements with six replicates were taken on
seven sampling dates. The highest value of LAI occurred in the irrigated
field with 45-cm row spacing on December 12, 2016 (75 days after
planting). Final yield for each field was measured. Soybean was sown
on October 2, 2016 and harvested on February 4, 2017.
The US field was under rainfed conditions with a 45 cm row spacing.

The US farm is located at 42°55'49.9"N 93°22'50.1"W with a humid
continental climate – Dfa (Kottek et al., 2006). For this field, the daily
weather data were obtained from the Tropical Rainfall Measuring
Mission (TRMM) for rainfall, from the Geostationary Operational En-
vironmental Satellite (GOES) for temperature, dew point and wind
speed, and from NASA-Prediction of Worldwide Energy Resource
(NASA-Power) for solar radiation. The soil was a loam soil already
present in DSSAT. Destructive sampling was used to determine the LAI
approximately every 6 days with three replicates for each sampling date
(Fig. 1). LAI was measured by taking two representative plants in the
sampling area and separating the leaves for leaf area determination.
The leaves and the rest of the plants were dried at 60 °C for one week to
determine the dry weight of the leaf and the dry biomass of the sample
that were used to determine LAI. With the specific leaf area and the
total dry biomass, LAI was determined (Boote, 1994; Bongiovanni et al.,
2015). The highest LAI value was observed on August 26, 2016 (75
days after planting). Sowing and harvest dates, pod weight, and total
dry biomass were measured for the USA field. Seed yield was estimated
from the final pod mass sampling that was multiplied by published
seed-to-pod mass ratio (Dracup and Kirby, 1996; Schobeck et al., 1986;
Spaeth and Sinclair, 1985; Batchelor et al., 1994). Soybean was sown on
June 12, 2016 and harvested on September 10, 2016.

2.2. Remote sensing data

The EVI and NDVI from the MODIS, products MOD13Q1 (from
Terra platform) and MYD13Q1 (from Aqua platform) have a spatial
resolution of 250m and a temporal resolution of 8 days (NASA LP
DAAC, 2015). These 8-day composite images are generally very reliable
for tracking the changes in vegetation conditions (Kouadio et al., 2014).
In addition, LAI from the LAI from the MODIS/Terra+Aqua Leaf Area
Index/FPAR 4-Day L4 Global 500m SIN Grid V006 (MCD15A3H) with a
500m spatial resolution and a 4-day temporal resolution were used.
MODIS products were extracted for each field, thus creating an EVI,
NDVI, and LAI time series for each field. The MODIS products were
retrieved online from the Application for Extracting and Exploring
Analysis Ready Samples (AρρEEARS), courtesy of the NASA EOSDIS
Land Processes Distributed Active Archive Center (LP DAAC), USGS/
Earth Resources Observation and Science (EROS) Center (https://
lpdaac.usgs.gov).

Fig. 1. Measured LAI (m²/m²) for the soybean fields in Brazil (solid circles) and
US (triangles).
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2.3. Sensitivity analysis of the CSM-CROPGRO-Soybean model

The CSM-CROPGRO-Soybean model computes canopy photosynth-
esis at hourly time steps using leaf-level photosynthesis parameters,
LAI, and hedgerow light interception calculations. Mechanistic re-
sponses to weather factors and plant physiological factor-related ana-
lysis are possible because of the hourly leaf-level photosynthesis cal-
culations, and realistic responses to row spacing and plant density are
due to the hedgerow approach (Boote et al., 1998a). The LAI is part of
the canopy architecture and is an important state variable in the
CROPGRO module. The module predicts LAI and uses this predicted
information for further calculations such as canopy photosynthesis,
potential plant transpiration and potential soil water evaporation
(Boote et al., 1998a). The CROPGRO-Soybean model has 18 cultivar
parameters. A sensitivity analysis was conducted that found five para-
meters to which LAI and LI were the most sensitive. Subsequently,
another analysis was performed to assess the impacts of these five
parameters on grain yield. The default Maturity Group 5 was used for
Brazil and the default Maturity Group 3 was used for the USA as a
starting point for the sensitivity analysis. This was based on the fact that
these maturity groups are typical types for the two study areas. We used
the DSSAT Cropping System Model Version 4.6.5.001 (Hoogenboom
et al., 2015) that includes the CROPGRO-Soybean module.

2.4. Leaf area index and light interception estimations

Based on the Beer–Lambert equation of light extinction (Monsi,
1953) the relationship between remotely sensed MODI EVI, NDVI and
LAI with measured LAI was tested. The information from the vegetation
indices was used to obtain the remotely sensed derived LAI (RSD-LAI,
Eq. (1)) with the extinction coefficient (k) function based on days after
planting (DAP). Remotely sensed derived LI (RSD-LI, Eq. (2)) uses RSD-
LAI and a single k value to compute LI.

=RSD LAI VI
k

ln(1 ( ))
(1)

=RSD LI exp k RSD LAI1 ( * ) (2)

The effect of drought is presumed to cause a decrease in the ex-
tinction coefficient of the canopy because of leaflet tilting and
drooping. Similarly, the vegetation indexes decreases under drought
effect.

2.5. Calibration methods

In order to evaluate how remotely sensed data can be used for
model calibration, three methods were used (Fig. 2). The first calibra-
tion (Calibration I) used field-measured LAI as unique temporal data for
calibrating the CROPGRO-Soybean cultivar parameters. The second
calibration (Calibration II) used RSD-LAI. The third calibration (Cali-
bration III) used RSD-LI. Each calibration was performed using the
DSSAT sensitivity analysis tool, which allows for changing a given
parameter with small increments, and subsequently computing the
statistics of the comparison between simulated and observed data. The
following parameters were calibrated; Critical Short Day Length (CSDL
- [hours]), which is the day length below which reproductive devel-
opment progresses with no day length effect for short day plants; time
between first flower (R1) and end of leaf expansion (FL-LF – [photo-
thermal days]); maximum size of full leaf (three leaflets) (SIZLF –
[cm²]); maximum leaf photosynthesis rate at 30 °C, 350 vpm CO2, and
high light (LFMAX – [mg CO2 m−2s-1]); the time required for cultivar
to reach final pod load under optimal conditions (PODUR – [photo-
thermal days]). First, CSDL was targeted to the harvest date. Then FL-
LF, SIZLF, and LFMAX were targeted to the measured LAI (for Cali-
bration I), RSD-LAI (for Calibration II), and RSD-LI (for Calibration III).
Then PODUR was targeted to observed final yield. The mean error

(ME), mean absolute error (MAE), root mean square error (RMSE),
normalized root mean square error (nRMSE) and coefficient of de-
termination (R²) were used to assess the different yield estimations. In
addition, the Willmott agreement index (d; Willmott, 1981) was used
for determining the accuracy of pod weight and biomass time series
simulations.

3. Results and discussion

3.1. LAI and LI estimations

The extinction coefficient (k) was either based on a function of days
after planting (DAP) or on a single fixed value as discussed in the
methods. From the vegetation indices that were tested, including
MODIS NDVI, EVI and MODIS LAI vs measured data, the best results
were obtained with RSD-LAI from NDVI. Field measured LAI and NDVI
were used to solve k values for each date with Eq. (1). Because the k
values changed with time, Eqs (3) and (4) represent k value as a
function of DAP, for Brazil and USA, respectively. Both equations had
R² above 0.7 and were used to estimate LAI dependent on NDVI without
the need for field data. Slightly different coefficients may result from
slower rate of LAI development, associated with cooler weather in
Iowa, USA.

= =k DAP68.623 * (R² 0.71)1.170 (3)

= =k DAP52.062* (R² 0.75)1.215 (4)

Similarly, the remotely sensed derived LI (RSD-LI) was estimated
using a type of light interception equation (Eq. (2)). For RSD-LAI and
RSD-LI the extinction coefficient value (k) was tested based on the days
after planting function and on a single value. However, for the RSD-LI
estimations a fixed extinction coefficient value (k=0.7063, derived
from CROPGRO-Soybean) gave better results than using variable ex-
tinction coefficient equations as was used for RSD-LAI.

3.2. Crop model cultivar parameter calibration

The measured LAI, RSD-LAI, and RSD-LI were added to the DSSAT
software as time-series data for a comparison between simulations and
observations. A sensitivity analysis was performed comparing the si-
mulated LAI or LI with the measured LAI, RSD-LAI, or RSD-LI. The
RMSE and d were used to define the best values for the cultivar para-
meters. Because CSDL is sensitive to crop cycle and the harvest date was
the same for all Brazilian fields (Feb 4), all calibration methods pre-
sented similar harvest date simulations. Using LAI as target, FL-LF,
SIZFL, and LFMAX were calibrated, obtaining the same results for

Fig. 2. Study flowchart showing that MODIS NDVI, EVI, and LAI were tested
with extinction coefficient (k) based on days after planting (DAP) and single
averaged k value for Calibration II and III. By the end and error assessment was
performed for 6 remotely sensed derived leaf area index (LAI), namely: RSD-LAI
from NDVI with k = f(DAP); RSD-LAI from NDVI with single k; RSD-LAI from
EVI with k = f(DAP); RSD-LAI from EVI with single k; RSD-LAI from MODIS
LAI. Same for remotely sensed derived light interception (LI). This process was
performed for each studied field.
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calibration I and II (measured LAI and RSD-LAI from NDVI, respec-
tively), but different results were obtained for calibration III (with RSD-
LI from EVI). To determine the sensitivity to the initial values for the
cultivar parameters, the Generic Maturity Group 6 cultivar was used as
a starting point. However, the values for the cultivar parameters FL-LF,
SIZLF, and LFMAX converged to similar values (Table 1).
The solved parameters indicate that the cultivar used in Parana is an

indeterminate cultivar, because FL-LF and PODUR resulted in higher
values, indicating an extended period of leaf area growth and pod ad-
dition after the beginning of flowering. LAI and LI are sensitive to the
parameters LF-FL, SIZLF, and LFMAX. Other parameters were not ap-
propriate to calibrate against LAI because those parameters either did
not create differences in LAI or LI as the selected output targets or, as in
the case for CSDL, were tightly related to the life cycle which should be
calibrated independently against final harvest or the end-of-season
decline in LAI. This is similar to Dzotsi et al. (2013) who found that the
SALUS crop model in DSSAT was not sensitive to parameters associated
with the prediction of the timing of germination and emergence, but the
most influential parameters were related to LAI growth, crop duration,
and thermal time accumulation. In addition, remote sensing images are
based on light interception, transmission and reflectance characteristics
of crop canopies, thus using such information to determine light in-
terception is conceptually closer to light interception predicted by the
model than to crop LAI (a biological characteristic predicted by the
model). Therefore, CSDL can be calibrated based on development cycle
data, FL-LF, SIZLF, and LFMAX can be calibrated using measured LAI,
RSD-LAI or RSD-LI, and PODUR can be calibrated with final yield. This
means that non-destructive methods can be used for model calibration.

3.3. Evaluating the different calibration approaches for effect on yield

Different calibration methods resulted in different values for simu-
lated yield (Table 992). Since calibration I and II produced the same
parameters, the results were exactly the same. Therefore, using mea-
sured LAI or RSD-LAI from NDVI gave the same results which is a good
outcome indicating the value of estimating LAI and yield from remote
sensing. In the US field, there was no measurement for yield, so the
grain yield was based on the pod weight considering a threshing per-
centage of 69%. The 69% value was determined from the average of
measured threshing percentage from two Iowa experiments (in 1988
and 1990) and two Ohio experiments (in 1988 and 1990) that are in-
cluded in the distribution version of DSSAT (Hoogenboom et al., 2015).
This approach is justified because the seed-to-pod mass ratio is a stable
trait for soybean despite considerable yield variation (Dracup and
Kirby, 1996; Schobeck et al., 1986; Spaeth and Sinclair, 1985; Batchelor
et al., 1994).
Using the calibration methods described previously, the cultivar

parameters sensitive to LAI and LI could be calibrated with a mean
error of −4.5 kg/ha (0.1%), R2 of 0.86, and average RMSE of 206 kg/ha
(nRMSE of 5%) for all studied fields (Table 3). The availability of crop
growth measurements for Iowa, USA, resulted in an average RMSE of
895 kg/ha (average nRMSE of 17.7%), and Willmott agreement index of
0.98 for time-series biomass, and an averaged RMSE of 941 kg/ha
(average nRMSE of 57%), and Willmott agreement index of 0.87 for
time-series pod weight (Table 4). Based on the results from the soybean
fields in Brazil and the USA, using remote sensing data (Calibration II

Table 1
Cultivar parameters determined based on calibration approaches.

cycle - - - -Solving for LAI/LI - - - - Yield -

Calibration CSDLa FL-LFb SIZLFb LFMAXb PODURc

Brazilian field
Default Maturity Group 5 12.83 18 180 1.03 10
Calibration I (Measured LAI) 12.68 34 230 1.20 26
Calibration II (RSD-LAI from

NDVI)
12.68 34 230 1.20 26

Calibration III (RSD-LI from
EVI)

12.68 26 230 1.03 31

Calibration I (from MG 6) 13.14 34 230 1.20 26

US field
Default Maturity Group 3 13.40 26 180 1.03 10
Calibration I (Measured LAI) 13.98 34 230 1.20 28
Calibration II (RSD-LAI from

NDVI)
13.98 34 230 1.20 28

Calibration III (RSD-LI from
EVI)

13.98 26 230 1.03 25

a Targeted to the harvest date.
b Targeted to the LAI or LI.
c Targeted to yield.

Table 2
Actual yield (kg/ha) and model-simulated yields based on three calibration approaches where the calibration was based on measured LAI (Calibration I), remotely
sensed derived LAI (Calibration II) or remotely sensed derived LI (Calibration III), followed by a yield calibration.

Field Actual Yield Est. Yield
No Calibration*

Est. Yield Calibration I Est. Yield Calibration II Est. Yield Calibration III

Rainfed 30 cm 4166 3795 4127 4127 4136
Rainfed 45 cm 3771 3750 4112 4112 4074
Irrigated 30 cm 4826 4607 4493 4493 4526
Irrigated 45 cm 4473 4562 4470 4470 4460
Iowa field 3295 3919 3304 3304 3318

* No calibration means that the default maturity group 5 was used.

Table 3
Statistics for yield estimations (kg/ha) based on calibration approaches: mea-
sured LAI (Calibration I), remotely sensed derived LAI (Calibration II) or re-
motely sensed derived LI (Calibration III).

No Calibration Calibration I Calibration II Calibration III

ME 20.4 −5.0 −5.0 −3.4
MAE 264.8 145.0 145.0 133.8
RMSE 341.6 213.9 213.9 191.5
nRMSE 8.3% 5.2% 5.2% 4.7%
R2 0.60 0.85 0.85 0.89

*No calibration means that the default maturity group 5 was used.

Table 4
Biomass and pod weight (kg/ha) statistics for each calibration approach:
measured LAI (Calibration I), remotely sensed derived LAI (Calibration II) or
remotely sensed derived LI (Calibration III), in the USA field.

Biomass Pod Weight

No Cal. Cal. I Cal. II Cal. III No Cal. Cal. I Cal. II Cal. III

ME −1082 −553 −553 −684 −870 −604 −604 −556
MAE 1082 573 573 706 870 607 607 559
RMSE 1366 864 864 957 1180 960 960 904
nRMSE 27% 17% 17% 19% 72% 58% 58% 55%
d 0.95 0.98 0.98 0.98 0.81 0.87 0.87 0.89
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and III) had similar results as using measured data (Calibration I) and
better results than the unconstrained model (Table 3). Because Cali-
bration III derives from the same data (RSD-LAI to RSD-LI), it has an
advantage for those modelers who wish to calibrate their model to LI
rather than LAI.
Identifying appropriate experimental and field data for model cali-

bration is a challenge (Hunt et al., 2001; Hoogenboom et al., 2012;
White et al., 2013). Mourice et al. (2014) pointed that the lack of ex-
perimental data has limited some crop model applications with DSSAT
and other modeling platforms. The calibration methods presented in
this study can be used to calibrate the cultivar parameters of the CSM-
CROPGRO-Soybean model and similar models for other grain legumes
easily with RSD-LAI and with less data. This corroborates with Bao et al.
(2017) who compared the performance of the CSM-CERES-Maize and
EPIC models and concluded that limited data sets from maize variety
trials can be used for model calibration when detailed data from growth
analysis studies are not readily available. The Calibration III method
using the RSD-LI gave the lowest errors for yield for the Brazilian field
and lowest errors for biomass and pod weight for the US field. Using
this type of approach will make the models more useful for yield
forecasting for larger regions where on-the-ground field measures are
nonfeasible or not available and remote sensing data can be easily ac-
quired. Effects of calibration methodology can be visualized by evalu-
ating the time course of the simulated biomass and pod mass over time.
There were no biomass and pod weight measurements for the Brazilian
fields, while for the US field it was possible to confirm that using RSD
data such as LAI and LI resulted in achieving good calibration of total
biomass and pod weight compared to observed growth (Fig. 3).
For pod weight and biomass prediction, the use of remote sensing

data (RSD-LAI or RSD-LI) produce results as good as in situ data and
better when compared to the unconstrained model (Table 4).

4. Conclusions

This study showed that remote sensing data is a feasible alternative
when in situ data are not available for model calibration. Using re-
motely sensed derived LAI or LI from vegetation indices presented si-
milar results as the use of measured LAI and better results than the
unconstrained model.
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