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Shaft Design

Chapter 12

Material taken from Mott, 2003, Machine Elements in Mechanical Design

Shaft Design

• A shaft is the component of a 
mechanical device that transmits 
rotational motion and power.

• It is integral to any mechanical 
system in which power is transmitted 
from a prime mover, such as an 
electric motor or an engine, to other 
rotating parts of the system.

Shaft Design Procedure

• Because of the simultaneous 
occurrence of torsional shear and 
normal stresses due to bending, the 
stress analysis of a shaft virtually 
always involves the use of a 
combined stress approach.

• The recommended approach for shaft 
design and analysis is the distortion 
energy theory of failure.
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Shaft Design Procedure

• Vertical shear stresses and 
direct normal stresses due to 
axial loads may also occur.

• On very short shafts or on 
portions of shafts where no 
bending or torsion occurs, such 
stresses may be dominant. 

Procedure

1. Determine the rotational speed of 
the shaft.

2. Determine the power or the torque 
to be transmitted by the shaft.

3. Determine the design of the 
power-transmitting components or 
other devices that will be mounted 
on the shaft, and specify the 
required location of each device.

Procedure con’t
4. Specify the location of bearings to 

support the shaft. Normally only 
two bearings are used to support a 
shaft. The reactions on bearings 
supporting radial loads are 
assumed to act at the midpoint of 
the bearings.

• Bearings should be placed on either 
side of the power-transmitting 
elements if possible to provide stable 
support for the shaft and to produce 
reasonably well-balanced loading of the 
bearings.
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Procedure con’t

5. Propose the general form of the 
geometry for the shaft, 
considering how each element 
on the shaft will be held in 
position axially and how power 
transmission from each 
element to the shaft is to take 
place.

Intermediate Shaft

Mott, 2003, Machine Elements in Mechanical Design

Procedure con’t

6. Determine the magnitude of 
torque that the shaft sees at all 
points. 

• It is recommended that a torque 
diagram be prepared.

7. Determine the forces that are 
exerted on the shaft, both 
radially and axially.
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Procedure con’t

8. Resolve the radial forces into 
components in perpendicular 
directions, usually vertically and 
horizontally.

9. Solve for the reactions on all support 
bearings in each plane.

10. Produce the complete shearing 
force and bending moment diagrams 
to determine the distribution of 
bending moments in the shaft.

Procedure con’t
11. Select the material from which the 

shaft will be made, and specify its 
condition: cold-drawn, heat-treated, 
etc

• Plain carbon or alloy steels with medium 
carbon content are typical, such as AISI 
1040, 4140, 4340, 4660, 5150, 6150, and 
8650.

• Good ductility with percent elongation 
above about 12% is recommended.

• Determine the ultimate strength, yield 
strength, and percent elongation of the 
selected material. 

Procedure con’t

12. Determine an appropriate 
design stress, considering the 
manner of loading 

• Smooth
• Shock
• Repeated and reversed
• Other
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Procedure con’t

13. Analyze each critical region of the 
shaft to determine the minimum 
acceptable diameter of the shaft to 
ensure safety under the loading at 
that point.

• In general, the critical points are several 
and include those where a change of 
diameter takes place, where the higher 
values of torque and bending moment 
occur, and where stress concentrations 
occur.

Procedure con’t

14. Specify the final dimensions 
for each point on the shaft.

• Design details such as 
tolerances, fillet radii, shoulder 
heights, and keyseat dimensions 
must also be specified.

• Sometimes the size and the 
tolerance for a shaft diameter are 
dictated by the element to be 
mounted there.

Forces Exerted on Shafts

• Gears, belt sheaves, chain 
sprockets, and other elements 
typically carried by shafts exert 
forces on the shaft that cause 
bending moments.
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Spur Gears

• The force exerted on a gear tooth 
during power transmission  acts 
normal (perpendicular) to the 
involute-tooth profile.

• It is convenient for the analysis of 
shafts to consider the rectangular 
components of this force acting in 
the radial and tangential directions.

Spur Gears con’t

• It is most convenient to 
compute the tangential force, Wt 
, directly from the known torque 
being transmitted by the gear.
– T = 63000 (P)/n

Forces on Teeth of 
Driven Gear

Mott, 2003, Machine Elements in Mechanical Design
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Tangential Force

• Wt = T / (D/2)
• Where P = power being 

transmitted in hp
• n = rotational speed in rpm
• T = Torque on the gear in lb*in
• D = pitch diameter of the gear in 

inches

Tangential Force con’t
• The angle between the total 

force and the tangential 
component is equal to the 
pressure angle, φ, of the tooth 
form.

• So, if the tangential force is 
known, the radial force can be 
found from:
– Wr = Wt tan φ

Tangential Force con’t

• There is no need to compute the 
normal force.

• For gears, the pressure angle is 
typically 14 ½ o, 20o, or 25o.
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Directions for Forces

• Representing the forces on 
gears in their correct directions 
is essential to an accurate 
analysis of forces and stresses 
in the shafts that carry the 
gears.

• The force system, shown next, 
represents the action of the 
driving gear A on the driven gear 
B.

Mott, 2003, Machine Elements in Mechanical Design

Directions for Forces 

• The tangential force, Wt, 
pushes perpendicular to the 
radial line causing the driven 
gear to rotate.

• The radial force, Wr, exerted by 
the driving gear A, acts along 
the radial line tending to push 
the driven gear B away.
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Directions for Forces

• ACTION:
• Driver pushes on 

driven gear
– Wt: Acts to the 

left
– Wr: acts 

downward

• REACTION:
• Driven gear 

pushes back on 
driver
– Wt: acts to the 

right
– Wr: acts upward

Directions for Forces

• Whenever you need to determine 
the direction of forces acting on 
a given gear, first determine 
whether it is a driver or driven 
gear.

• Then visualize the action forces 
of the driver.

Mott, 2003, Machine Elements in Mechanical Design
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Directions for Forces

• If the gear of interest is the 
driven gear, these are the forces 
on it.

• If the gear of interest is the 
driver gear, the forces on it act 
in the opposite directions to the 
action forces.

Shows a pair of chain sprockets 
transmitting power

Mott, 2003, Machine Elements in Mechanical Design

Chain Sprockets

• The upper part of the chain is in 
tension and produces the torque 
on either sprocket.

• The lower part of the chain, or 
the slack side, exerts no force 
on either sprocket.

• Therefore, the total bending 
force on the shaft carrying the 
sprocket is equal to the tension 
in the tight side of the chain.
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Chain Sprockets con’t

• If the torque on a certain 
sprocket is known,
– Fc = T / (D/2)
– Where D = pitch diameter of that 

sprocket.
• Notice that the force, Fc, acts 

along the direction of the tight 
side of the chain.

Chain Sprockets con’t

• Because of the size difference 
between the two sprockets, that 
direction is at some angle from the 
centerline between the shaft 
centers.

• A precise analysis would call for the 
force, Fc, to be resolved into 
components parallel to the centerline 
and perpendicular to it.

Chain Sprockets con’t

• Fcx = Fc cos θ
• Fcy = Fc sin θ

– Where the x-direction is parallel to 
the centerline

– The y-direction is perpendicular to 
it

– The angle θ is the angle of 
inclination of the tight side of the 
chain with respect to the x-
direction
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Chain Sprockets con’t

• These two components of the 
force would cause bending in 
both the x-direction and the y-
direction.

• Alternatively, the analysis could 
be carried out in the direction of 
the force, Fc, in which single 
plane bending occurs.

Chain Sprockets con’t

• If the angle is small, little error 
will result from the assumption 
that the entire force, Fc, acts 
along the x-direction.
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V-Belt Sheaves

• The general appearance of the 
V-belt drive system looks similar 
to the chain drive system.

• There is one important 
difference: both sides of the V-
belt are in tension, as shown in 
the next slide.

Mott, 2003, Machine Elements in Mechanical Design

V-Belt Sheaves con’t

• The tight side tension, F1, is greater 
than the “slack”side tension, F2, and 
there is a net driving force on the 
sheaves equal to:
– FN = F1 – F2

• The magnitude of the net driving 
force can be computed from the 
torque transmitted:
– FN = T / (D/2)
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V-Belt Sheaves con’t

• Notice that the bending force on the 
shaft carrying the sheave is 
dependent on the sum, F1 + F2 = FB. 

• To be more precise, the components 
of F1 and F2 parallel to the line of 
centers of the two sprockets should 
be used.

• But unless the two sprockets are 
radically different in diameter, little 
error will result from FB = F1 + F2.

V-Belt Sheaves con’t
• To determine the bending force, FB, a 

second equation involving the two 
forces F1 and F2 is needed. For V-belt 
drives, the ratio is:
– F1 / F2 = 5

• It is convenient to derive a 
relationship between FN and FB of the 
form:
– FB = CFN
– Where C = constant to be determined

V-Belt Sheaves con’t

• But from F1 = 5F2, 

5.1
4
6

5
5

2

2

22

22

21

21
==

−
+

=
−
+

=
F
F

FF
FF

FF
FFC

21

21

FF
FF

F
FC

N

B

−
+

==



15

V-Belt Sheaves con’t

• Then, for V-belt drives:

• It is customary to consider the 
bending force, FB, to act as a 
single force in the direction 
along the line of centers of the 
two sheaves.

2/
5.15.1

D
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Flat-Belt Pulleys
• The analysis of the bending force 

exerted on shafts by flat-belt pulleys is 
identical to that for V-belt sheaves 
except that the ratio of the tight side 
to the slack side tension is typically 
taken to be 3 instead of 5. 

• Using the same logic as with V-belt 
sheaves, compute the constant C to be 
2.0.

• Then, for flat-belt drives,
– FB = 2.0FN = 2.0T / (D/2)

Stress Concentrations

• In order to mount and locate the 
several types of machine 
elements on shafts properly, a 
final design typically contains 
several diameters, keyseats, 
ring grooves, and other 
geometric discontinuities that 
create stress concentrations.
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Stress Concentrations

• These stress concentrations 
must be taken into account 
during the design analysis.

• But  a problem exists because 
the true design values of the 
stress concentration factors, Kt, 
are unknown at the start of the 
design process.

Stress Concentrations

• Most of the values are 
dependent on the diameters of 
the shaft and on the fillet and 
groove geometries, and these 
are the objectives of the design.

Preliminary Design 
Values for Kt

• Considered here are the types of 
geometric discontinuities most often 
found in power-transmitting shafts: 
keyseats, shoulder fillets, and 
retaining ring grooves.

• In each case, a suggested design 
value is relatively high in order to 
produce a conservative result for the 
first approximation to the design.

• Again it is emphasized that the final 
design should be checked for safety.
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Keyseats

• A keyseat is a longitudinal 
groove cut into a shaft for the 
mounting of a key, permitting 
the transfer of torque from the 
shaft to a power-transmitting 
element, or vice versa.

• Two types of keyseats are most 
frequently used: profile and sled 
runner.

Mott, 2003, Machine Elements in Mechanical Design

Keyseats con’t

• The profile keyseat is milled into the 
shaft, using an end mill having a 
diameter equal to the width of the 
key.

• The resulting groove is flat-bottomed 
and has a sharp, square corner at its 
end.

• The sled runner keyseat is produced 
by a circular milling cutter having a 
width equal to the width of the key.
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Keyseats con’t

• As the cutter begins or ends the 
keyseat, it produces a smooth 
radius.

• For this reason, the stress 
concentration factor for the sled 
runner keyseat is lower than 
that for the profile keyseat.

Keyseats con’t

• Normally used design values 
are:
– Kt = 2.0 (profile)
– Kt = 1.6 (sled runner)

Shoulder Fillets

• When a change in diameter 
occurs in a shaft to create a 
shoulder against which to locate 
a machine element, a stress 
concentration dependent on the 
ratio of the two diameters and 
on the radius in the fillet is 
produced.
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Mott, 2003, Machine Elements in Mechanical Design

Shoulder Fillets con’t

• It is recommended that the fillet 
radius be as large as possible to 
minimize the stress 
concentration, but at times the 
design of the gear, bearing, or 
other element affects the radius 
that can be used.

Shoulder Fillets con’t

• The term ‘sharp’ here does not 
mean truly sharp, without any 
fillet radius at all. 

• Such a shoulder configuration 
would have a very high stress 
concentration factor and should 
be avoided.

• Instead, sharp describes a 
shoulder with a relatively small 
fillet radius.
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Shoulder Fillets con’t

• When an element with a large 
chamfer on its bore is located 
against the shoulder, or when 
nothing at all seats against the 
shoulder, the fillet radius can be 
much larger (well-rounded), and 
the corresponding stress 
concentration factor is smaller.
– Kt = 2.5 (sharp fillet)
– Kt = 1.5 (well-rounded fillet)

Retaining Ring Grooves

• Retaining rings are used for 
many types of locating tasks in 
shaft applications.

• The rings are installed in 
grooves in the shaft after the 
element to be retained is in 
place.

• The geometry of the groove is 
dictated by the ring 
manufacturer.

Retaining Ring Grooves

• Its usual configuration is a shallow 
groove with straight side walls and 
bottom and a small fillet at the base 
of the groove.

• The behavior of the shaft in the 
vicinity of the groove can be 
approximated by considering two 
sharp-filleted shoulders positioned 
close together.
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Retaining Ring Grooves

• For preliminary design, apply Kt
= 3.0 to the bending stress at a 
retaining ring groove to account 
for the rather sharp fillet radii.

Design Stresses for 
Shafts

• In a given shaft, several 
different stress conditions can 
exist at the same time.

• For any part of the shaft that 
transmits power, there will be a 
torsional shear stress, while 
bending stress is usually 
present on the same parts.

Design Stresses for 
Shafts con’t
• Only bending stresses may occur on 

other parts.
• Some points may not be subjected to 

either bending or torsion but will 
experience vertical shearing stress.

• Axial tensile or compressive stresses 
may be superimposed on the other 
stresses. 

• Then there may be some points 
where no significant stresses at all 
are created.
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Design Stresses for 
Shafts con’t

• The decision of what design 
stress to use depends on the 
particular situation at the point 
of interest.

• In many shaft design and 
analysis projects, computations 
must be done at several points 
to account completely for the 
variety of loading and geometry 
conditions that exist.

Design Stresses for 
Shafts con’t
• The bending stresses will be 

assumed to be completely reversed 
and repeated because of the 
rotation of the shaft.

• Because ductile materials perform 
better under such loads, it will be 
assumed that the material for the 
shaft is ductile and that the 
torsional loading is relatively 
constant and acting in one 
direction.

Design Shear Stress-
Steady Torque
• The best predictor of failure in 

ductile materials due to a steady 
shear stress was the distortion 
energy theory in which the design 
shear stress is computed from:

• We will use this value for steady torsional 
shear stress, vertical shear stress, or 
direct shear stress in a shaft.

N
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Design Shear Stress-
Reversed Vertical Shear

• Points on a shaft where no torque is 
applied and where the bending 
moments are zero or very low are 
often subjected to significant vertical 
shearing forces which then govern 
the design analysis.

• This typically occurs where a bearing 
supports an end of a shaft and where 
no torque is transmitted in that part 
of the shaft.

Design Shear Stress-
Reversed Vertical Shear

• The maximum shearing stress is 
at the neutral axis of the shaft.

• The stress decreases in a 
roughly parabolic manner to zero 
at the outer surface of the shaft.

Mott, 2003, Machine Elements in Mechanical Design
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Design Shear Stress-
Reversed Vertical Shear

• The maximum vertical shearing 
stress for the special case of a 
solid circular cross section can 
be computed from:
– τmax = 4V / 3A
– Where V = vertical shearing force
– A = area of cross section

Design Shear Stress-
Reversed Vertical Shear

• Where stress concentration factors 
are to be considered:
– τmax = Kt (4V / 3A)

• Also note that the rotation of the 
shaft causes any point at the outer 
part of the cross section to 
experience a reversing shearing 
stress that varies from + τmax to zero 
to - τmax to zero in each revolution.

Mott, 2003, Machine Elements in Mechanical Design
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Design Shear Stress-
Reversed Vertical Shear

• Then the stress analysis should be 
completed using a safety factor:
– N = s’sn / τmax

– Where s’sn is the endurance limit in shear
• Using the distortion energy theory. 

Then the endurance strength is:
– s’sn = 0.577s’n
– Where s’n is the endurance limit of the 

material

Design Shear Stress-
Reversed Vertical Shear

• Then the equation can be 
written in the form:
– N = 0.577s’n / τmax

• Expressed as a design stress:
– τd = 0.577s’n / N

• Letting τmax = τd = [Kt(4V)] / 3A 
gives:

N
s

A
VK nt '577.0

3
)4(
=

Design Shear Stress-
Reversed Vertical Shear

• Solving for N gives:

• Solving for the required area:
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Design Shear Stress-
Reversed Vertical Shear

• By substituting:
– A = πD2 / 4

• Solve for D:

nt sNVKD '/)(94.2=

Design Shear Stress-
Reversed Vertical Shear

• This equation should be used to 
compute the required diameter for a 
shaft where a vertical shearing force 
V is the only significant loading 
present.

• In most shafts, the resulting 
diameter will be much smaller than 
that required at other parts of the 
shaft where significant values of 
torque and bending occur.

Design Shear Stress-
Reversed Vertical Shear

• Implementation of the previous 
equations has the complication 
that values for the stress 
concentration factor under 
conditions of vertical shearing 
stress are not well known.

• As an approximation, use the 
values for Kt for torsional stress 
when using these equations.
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Design Shear Stress-
Fatigue Loading
• For the repeated, reversed bending in 

a shaft caused by transverse loads 
applied to the rotating shaft, the 
design stress is related to the 
endurance strength of the shaft 
material.

• Refer to the discussion in Section 5-4 
in Chapter 5 for the method of 
computing the estimated actual 
endurance strength, s’n, for use in 
shaft design.

Design Shear Stress-
Fatigue Loading

• Note that any stress concentration 
factor will be accounted for in the 
design equation developed later.

• Other factors, not considered here, 
that could have an adverse effect on 
the endurance strength of the shaft 
material are:
– temperatures above 400oF
– variation in peak stress levels above the 

nominal endurance strength for some 
periods of time

Design Shear Stress-
Fatigue Loading

– vibration
– residual stresses
– case hardening
– interference fits
– corrosion
– thermal cycling
– plating or surface coating
– stresses not accounted for in the 

basic stress analysis.
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Design Shear Stress-
Fatigue Loading

• For parts of the shaft subjected 
to only reversed bending, let the 
design stress be:
– σd = s’n / N

Design Factor

• Use N = 2.0 for typical shaft 
designs where there is average 
confidence in the data for 
material strength and loads.

• Higher values should be used for 
shock and impact loading and 
where uncertainty in the data 
exists.

Design Factor con’t
• Examples of shafts subjected to 

bending and torsion only are those 
carrying spur gears, V-belt sheaves, 
or chain sprockets.

• The power being transmitted causes 
the torsion, and the transverse 
forces on the elements cause 
bending.

• In the general case, the transverse 
forces do not all act in the same 
plane.



29

Design Factor con’t

• In such cases, the bending 
moment diagrams for two 
perpendicular planes are 
prepared first.

• Then the resultant bending 
moment at each point of interest 
is determined.

Design Factor con’t
• A design equation is now developed 

based on the assumption that the 
bending stress in the shaft is 
repeated and reversed as the shaft 
rotates, but that the torsional shear 
stress is nearly uniform.

• The design equation is based on the 
principle shown graphically in which 
the vertical axis is the ratio of the 
reversed bending stress to the 
endurance strength of the material.

Mott, 2003, Machine Elements in Mechanical Design
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Design Factor con’t

• The horizontal axis is the ratio 
of the torsional shear stress to 
the yield strength of the 
material in shear.

• The points having value of 1.0 
on these axes indicated 
impending failure in pure 
bending or pure torsion, 
respectively.

Design Factor con’t

• Experimental data show that 
failure under combinations of 
bending and torsion roughly 
follows the curve connecting 
these two points, which obeys 
the following equation:
– (σ / s’n)2 + (τ / sys)2 = 1

Design Factor con’t

• We will use for the 
distortion energy theory.

• Also, a design factor can be 
introduced to each term on the 
left side of the equation to yield 
an expression based on design 
stresses:

3/yys ss =

1)/3()'/( 22 =τ+σ yn sNsN
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Design Factor con’t

• Now we can introduce a stress 
concentration factor for bending in 
the first term only, because this 
stress is repeated.

• No factor is needed for the torsional 
shear stress term because it is 
assumed to be steady, and stress 
concentrations have little or no 
effect on the failure potential:

1)/3()'/( 22 =+ ynt sNsNK τσ

Design Factor con’t
• For rotating, solid, circular shafts, 

the bending stress due to a bending 
moment, M, is:
– σ = M / S
– Where S = πD3 / 32 is the rectangular 

section modulus. 
• The torsional shear stress is:

– τ = T / Zp
– Where Zp = πD3 / 16 is the polar section 

modulus
• Note that Zp = 2S

– τ = T / (2S)

Design Factor con’t

• Substituting these relationships:

• Now the terms N and S can be
factored out, and the terms √3 
and 2 can be brought outside 
the bracket in the torsional 
term:
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Design Factor con’t

• We now take the square root of 
the entire equation: 

• Let S = πD3 / 32 for a solid 
circular shaft:
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Design Factor con’t

• Now we can solve for the diameter D:

• This is used for shaft design in this 
book. It is compatible with the 
standard ANSI B106.1M-1985. Note 
that it can also be used for pure 
bending or pure torsion.
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