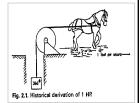
ABE 4171 Power and Machinery Review

Review


- Work = force * distance = lbs * ft
 - English: ft*lbsSI: N*m (Joule)
- Power = (force * distance) / time
 - English: (lbs * ft) / sec
 SI: (N*m) / s = Watt
- Ex: F = 100 N, v = 4 m/s, P = ?
 - 100 N * 4m / 1s * 1W / 1Nm/s = 400 W

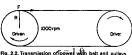
Mechanical Power 2 forms • Linear power – uses linear velocity • Rotary power – uses radial velocity Torque • T = f*d (ft*lbs) or (N*m) Rotary speed

Eng: Rev per min →RPM
SI: Rev per sec → RPS

Rotary Power

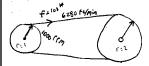
- P = (F * D) / τ (Linear)
- C = distance/revolution = $2\pi r$
- W (Angular Speed) = Rev/Min

Power = F * C * W * (1 HP/33,000 ft*lb/min)


Example

- F = 100 N, R = 0.254 m, w = 2.5 rev/s
- Power =

100 N * (2π * 0.254m)/rev * 2.5 rev/s * 1W/(N*m/s) * 1kW / 1000W = 0.4 kW


Rotary Power Example

 $rac{1}{2}$ Rev = $2\pi r = 6.280 \text{ ft}$

- d/τ = 6.28 ft/rev * 1000 rev/min = 6280 ft/min
- P = (100 lb * 6280 ft/min)/ (33000 ft*lb/min) = 19 HP

Example

- $w_1 = 1000 \text{ rpm}$
- $w_2 = 500 \text{ rpm}$
- $V_1 = 2\pi * 1 \text{ ft/rev} * 1000 \text{ rpm}$
- = 6,280 ft/min
- $V_2 = 2\pi * 2 \text{ ft/rev } * 500 \text{ rpm}$ = 6,280 ft/min
- P₁ = (100 lbs * 6.280 * 1000 RPM) / 33,000 = 19 HP
- P₂ = (100 lbs * 12.56 * 500 RPM) / 33,000 = 19 HP
- T₁ = 100 lbs * 1 ft = 100 ft*lbs
- T₂ = 100 lbs * 2 ft = 200 ft*lbs

Off-Road Vehicle Power

- Pulling power: pulled or towed implements receive power through traction of drive wheels and the draft of the drawbar.
- Rotary power: from power take off shaft (PTO) or belt pulley
- Hydraulic power: can produce linear and rotary power; steering, brakes, implement, and transmission
- Electric power: Battery and alternator; ignition, CD, AC, lights

Drawbar Power

- DBP = FS/C
 - Where DBP = hp
 - F = lbs
 - S = mph (ground speed)
 - C = 375 (constant)

2
J

PTO Power

- PTOP = $(2\pi FRN) / C = (2\pi TN) / C$
 - Where PTOP = hp
 - \bullet F = lbs tangential force
 - R = ft radius of force rotation
 - N = RPM
 - T = lb*ft
 - C = 33,000 for English and 60 for SI Units

Hydraulic Power

- HyP = P*Q / C
 - Where
 - HyP = hydraulic power in hp
 - P = Gauge Pressure in psi
 - Q = Flow rate in gal/min
 - C = 1714

Electric Power

- Power = Voltage * Current
 - P = E*I
 - P = Watts
 - E = Volts
 - I = Amps

-		