INVESTIGACIÓN DE UN SUELO INDUSTRIAL DEL VALLES (BARCELONA) CONTAMINADO POR COMPUESTOS HALÓGENOS VOLÁTILES Y SU DESCONTAMINACIÓN MEDIANTE LA TÉCNICA DE EXTRAICIÓN DE GASES DEL SUELO

W. HOLZWARIN**, P. BERAÑA*** y M. B. MUSA

Director de GEYSER HPC, S.A.*
Jefe de proyectos de GEYSER HPC, S.A.***

RESUMEN

La actividad industrial y en concreto determinadas operaciones desarrolladas durante años en el emplazamiento han originado la contaminación del suelo y de las aguas subterráneas con compuestos halogenados volátiles. La empresa a la que pertenece este suelo contaminado se dedica a la fabricación de componentes para grupos electrógenos utilizando perchloroetileno y tricloroetileno como disolventes en la operación de desengrase de piezas.

Una vez estudiada la situación y consideradas las alternativas posibles se decidió proceder a la descontaminación de este suelo mediante la técnica de recuperación in situ de extracción de gases.

PALABRAS CLAVE

Descontaminación, saneamiento, extracción de gases (SVF), compuestos halogenados.

ABSTRACT

As a result of historical operations associated with an industrial facility, soil and groundwater underlying the property have been contaminated with volatile halogenated compounds. The operator of the facility is active in the
production of electrical components using perchloroethylene and trichloroethylene in degreasing processes. Upon completion of a feasibility study, a soil vapor extraction technology was selected for the remediation of the contaminated soil.

KEY WORDS

Remediation, Soil Vapor Extraction (SVE), Halogenated Compounds.

1. INTRODUCCIÓN

A lo largo de un período de tiempo cercano a los dos años, GEYSER HPC, S.A. llevó a cabo diferentes actuaciones en el emplazamiento estudiado examinadas básicamente hacia la descontaminación de los terrenos afectados por las actividades desarrolladas en él. La contaminación detectada estaba en su mayoría constituida por hidrocarburos halogenados volátiles cuyo origen viene ligado a las diferentes operaciones de desengrase que se llevaban a cabo en el lugar. Previamente a la elección de la mejor tecnología disponible para llevar a cabo el saneamiento de los terrenos se convino que realizar una serie de estudios dirigidos primero a verificar la existencia de contaminación, posteriormente a delimitarla y cuantificarla y finalmente a realizar ensayos de comportamiento con el fin de observar la reacción del terreno ante una extracción piloto se procede a construir toda la instalación que permitirá llevar a cabo la descontaminación del terreno.

2. ANTecedentes

2.1. Auditoria medioambiental

Fue la primera de las investigaciones que GEYSER HPC, S.A. llevó a cabo en el emplazamiento. Consistió básicamente en la obtención de información referente a las diferentes actividades desarrolladas en el área, identificación de materiales utilizados, localización de las áreas en las cuales eran utilizados los diversos compuestos, etc.

A partir de las conclusiones obtenidas de esta investigación se señalaron algunas áreas como sospechosas de existir contaminación. Estas se correspondían en general con las zonas destinadas a almacenar de productos químicos, estación de desengrase y almacén de residuos, principalmente. Las recomendaciones de esta auditoría estuvieron dirigidas a la realización de investigaciones invasivas mediante el muestreo del suelo utilizando para ello sondesos ligeros y realizando mediciones semiquantitativas del gas del suelo, así como al muestreo del agua subterránea existente en el emplazamiento.

2.2. Investigación preliminar

Se procedió a la realización de nueve (9) sondesos ligeros en las áreas clasificadas como sospechosas, tomando muestras de suelo y gas del suelo. Asimismo se procedió al muestreo del agua subterránea utilizando los pozos existentes en el emplazamiento. Este último apartado se consideró de gran importancia debido a que el agua de estos pozos estaba destinada tanto para el abastecimiento los procesos como para consumo humano.

Los resultados del laboratorio pusieron de manifiesto la existencia de una contaminación por hidrocarburos halogenados volátiles en el gas del suelo y en el agua subterránea. El componente mayoritario de esta contaminación fue el percloroetileno (PCE), compuesto que había sido utilizado en el pasado como agente desengrasante.

Se alcanzaron concentraciones de 1.800 mg/m³ en los sondesos SL 2 y SL 3 y de 2.500 mg/l en la muestra de agua subterránea tomada en el Pozo 1. Otro componente que destacó también en el Pozo 1 fue el freón.

El hecho de detectar tales concentraciones hizo necesario la ampliación de la campaña de muestreo tanto de suelo y gas del suelo como del agua subterránea.

2.3. Ampliación de las investigaciones

Con el fin de localizar y delimitar los posibles fuentes de contaminación existentes en el emplazamiento, así como obtener información acerca del funcionamiento del acuífero, se llevó a cabo esta ampliación de investigación.

En esta investigación se realizaron 37 sondesos ligeros que permitieron la obtención de muestras. Básicamente se muestreó el gas del suelo, aunque en algunas áreas en que así se indicaba se muestreó también el suelo. Asimismo y con el fin de obtener información sobre el comportamiento del acuífero se realizaron tres (3) ensayos de bombeo, dos en el Pozo 1 y uno en el Pozo 2.

El programa analítico, en función de los resultados de las investigaciones previas, estuvo dirigido principalmente hacia la detección de hidrocarburos halogenados volátiles, así como el freón.

Los resultados de estas investigaciones confirmaron la existencia en el emplazamiento de una fuerte contaminación por compuestos halogenados, principalmente percloroetileno, tricloroeteno y freón. Asimismo, también se pudo concluir que la contaminación estaba relacionada con tres áreas fuentes diferentes:

- Antigua zona de almacenaje de residuos
- Zona de desengrase, desalzado et mecanizado de piezas metálicas
- Zona de desengrase por freón
production of electrical components using perchloroethylene and trichloroethylene in degreasing processes. Upon completion of a feasibility study, a soil vapor extraction technology was selected for the remediation of the contaminated soil.

Key words

Remediation, Soil Vapor Extraction (SVE), Halogenated Compounds.

1. **Introducción**

A lo largo de un período de tiempo cercano a los dos años, GEYSER HPC, S.A. llevó a cabo diferentes actuaciones en el emplazamiento estudiado examinadas básicamente hacia la descontaminación de los terrenos afectados por las actividades desarrolladas en él. La contaminación detectada estaba en su mayoría constituida por hidrocarburos halogenados volátiles cuyo origen viene ligado a las diferentes operaciones de desengrase que se llevaban a cabo en el lugar. Previamente a la elección de la mejor tecnología disponible para llevar a cabo el saneamiento de los terrenos se tuvieron que realizar una serie de estudios dirigidos primero a verificar la existencia de contaminación, posteriormente a delimitarla y cuantificarla y finalmente a realizar ensayos de comportamiento con el fin de observar la reacción del terreno ante una extracción piloto. Se procede a construir toda la instalación que permitirá llevar a cabo la descontaminación del terreno.

2. **Antecedentes**

2.1. **Auditoría medioambiental**

Fue la primera de las investigaciones que GEYSER HPC, S.A. llevó a cabo en el emplazamiento. Consistió básicamente en la obtención de información referente a las diferentes actividades desarrolladas en el área, identificación de materiales utilizados, localización de las áreas en las cuales eran utilizados los diversos compuestos, etc.

A partir de las conclusiones obtenidas de esta investigación se señalaron algunas áreas como sospechosas de contaminación. Estas se correspondían en general con las zonas destinadas a almacén de productos químicos, estación de desengrase y almacén de residuos, principalmente. Las recomendaciones de esta auditoria estuvieron dirigidas a la realización de investigaciones inmersas mediante el muestreio del suelo utilizando para ello sondas ligeras, y realizando mediciones semiquantitativas del gas del suelo, así como al muestreo del agua subterránea existente en el emplazamiento.

2.2. **Investigación preliminar**

Se procedió a la realización de nueve (9) sondos ligeros en las áreas clasificadas como sospechosas, tomando muestras de suelo y gas del suelo. Asimismo se procedió al muestreo del agua subterránea utilizando los pozos existentes en el emplazamiento. Este último apartado se consideró de gran importancia debido a que el agua de estos pozos estaba destinada tanto para el abastecimiento como para consumo humano.

Los resultados del laboratorio pusieron de manifiesto la existencia de una contaminación por hidrocarburos halogenados volátiles en el gas del suelo y en el agua subterránea. El componente mayoritario de esta contaminación fue el percloroetileno (PCE), compuesto que había sido utilizado en el pasado como agente desengrasante.

Se alcanzaron concentraciones de 1.800 mg/m³ en los sondos SL 2 y SL 3 y de 2.500 mg/l en la muestra de agua subterránea tomada en el Pozo 1. Otro componente que destacó también en el Pozo 1 fue el fluor.

El hecho de detectar tales concentraciones hizo necesario la ampliación de la campaña de muestreo tanto de suelo y gas del suelo como del agua subterránea.

2.3. **Ampliación de las investigaciones**

Con el fin de localizar y delimitar los posibles fuentes de contaminación existentes en el emplazamiento, así como obtener información acerca del funcionamiento del acuífero, se llevó a cabo esta ampliación de investigación.

En esta investigación se realizaron 37 sondos ligeros que permitieron la obtención de muestras. Básicamente se muestreó el gas del suelo, aunque en algunas áreas en que así se indica se muestreó también el suelo. Asimismo, y con el fin de obtener información sobre el comportamiento del acuífero se realizaron tres (3) ensayos de bombeo, dos en el Pozo 1 y uno en el Pozo 2.

El programa analítico, en función de los resultados de las investigaciones previas, estuvo dirigido principalmente hacia la detección de hidrocarburos halogenados volátiles, así como el fluor.

Los resultados de estas investigaciones confirmaron la existencia en el emplazamiento de una fuerte contaminación por compuestos halogenados, principalmente percloroetileno, tricloroetileno y fluor. Asimismo, también se pudo concluir que la contaminación estaba relacionada con tres áreas fuentes diferentes.

- Antigua zona de almacenaje de residuos
- Zona de desengrase, destilación y mezclado de piezas metálicas
- Zona de desengrase por freón
En la Figura 1 se muestra un plano del emplazamiento con la situación de todos los sondeos realizados, así como las concentraciones detectadas.

![Diagrama de localización de sondeos y concentraciones](image)

Fig. 1. Localización de los sondeos realizados con las concentraciones detectadas.

Dado el carácter volátil de estas sustancias contaminantes se han formado alrededor de las zonas de infiltración, aureolas, donde el gas presente en los poros del suelo está saturado de estos compuestos.

Una vez confirmada y delimitada la extensión de la contaminación el siguiente paso desarrollado consistió en la elección de la mejor alternativa de saneamiento. Así atendiendo a las características específicas del emplazamiento, así como a una relación óptima calidad de saneamiento-precio de saneamiento, se decidió que la metodología idónea para este era la extracción de gases.

La técnica de la extracción de gases consiste básicamente en la instalación de unos pozos de extracción en los focos de contaminación (utilizando únicamente tobera fóttro en el espesor de la zona no saturada), y acopiando posteriormente bombas de vacío o ventiladores que sean capaces de producir vacío.

El gas extraído es reemplazado por aire limpio procedente de las zonas colindantes, lo que acerca la volatilización de los compuestos, facilitando de esta manera la extracción de importantes cantidades de materiales volátiles en fase gaseosa. El gas extraído pasa a continuación a un sistema de depuración consistente en filtros de carbón activo donde quedan retenidos los compuestos halogenados.

3. Saneamiento de los terrenos afectados

En toda operación de saneamiento de este tipo, es decir, utilizando la metodología de la extracción de gases, previo a la realización de cualquier obra de acondicionamiento para la instalación del sistema de descontaminación, se hace necesario comprobar la idoneidad del sistema elegido mediante la realización de ensayos de extracción y posterior modelización.

3.1. Investigación de saneamiento

Con el objetivo de obtener información del comportamiento del terreno se procedió a la realización de diversos estudios. Para ello fue necesaria la instalación en el emplazamiento de cinco pozos de extracción de gases (Vapor Extraction Wells, VEW) cuya construcción requirió la utilización de un equipo especial de sondeos, de reducidas dimensiones, que pudiese acceder y ejecutar los pozos dentro de las naves de la empresa.

![Diagrama de extracción de gases](image)

Fig. 2. Esquema de extracción de gases.
En la Figura 1 se muestra un plano del emplazamiento con la situación de todos los sondeos realizados, así como las concentraciones detectadas.

Concentraciones de hidrocarburos halogenados volátiles en gas del suelo no analizado. O: 10 mg/m³, ●: 100 mg/m³, ▲: 500 mg/m³, □: >500 mg/m³

Fig. 1. Localización de los sondeos realizados con las concentraciones detectadas.

Dado el carácter volátil de estas sustancias contaminantes se han formado alrededor de las zonas de infiltración, aureolas, donde el gas presente en los poros del suelo está saturado de estos compuestos.

Una vez confirmada y delimitada la extensión de la contaminación el siguiente paso desarrollado consistió en la elección de la mejor alternativa de saneamiento. Así atendiendo a las características específicas del emplazamiento, así como a una relación óptima calidad de saneamiento-precio de saneamiento, se decidió que la metodología idónea para este era la extracción de gases.

La técnica de la extracción de gases consiste básicamente en la instalación de unos pozos de extracción en los focos de contaminación (utilizando únicamente tubería filtrado en el espesor de la zona no saturada), y acopiando posteriormente bombas de vacío o ventiladores que sean capaces de producir vacío.

El gas extraído es reemplazado por aire limpio procedente de las zonas colindantes, lo que acelerará la volatilización de los compuestos, facilitando de esta manera la extracción de importantes cantidades de materiales volátiles en fase gaseosa. El gas extraído pasa a continuación a un sistema de depuración consistente en filtros de carbón activo donde quedan retenidos los compuestos halogenados.

3. SANEAMIENTO DE LOS TERRENOS AFECTADOS

En toda operación de saneamiento de este tipo, es decir, utilizando la metodología de la extracción de gases, previo a la realización de cualquier obra de acondicionamiento para la instalación del sistema de descontaminación, se hace necesario la comprobación de la idoneidad del sistema elegido mediante la realización de ensayos de extracción y posterior modelización.

3.1. Investigación de saneamiento

Con el objetivo de obtener información del comportamiento del terreno se procedió a la realización de diversos estudios. Para ello fue necesaria la instalación en el emplazamiento de cinco pozos de extracción de gases (Vapor Extraction Wells, VEW) cuya construcción requirió la utilización de un equipo especial de sondeos, de reducidas dimensiones, que pudiese acceder y ejecutar los pozos dentro de las naves de la empresa.

Fig. 2. Esquema de extracción de gases
El diámetro de perforación fue de 200 mm, y el de la tubería utilizada en el revestimiento de los pozos fue de 115 mm.

Para controlar el funcionamiento del sistema fue necesaria la construcción de unos piezómetros de control permanentes (PVM) que permitieran obtener información sobre los rangos de rendimiento y el radio de acción de la extracción.

La localización de los pozos de extracción de gases (VEW), los piezómetros de control (PVM), así como de los pozos de control del agua subterránea se muestra en la Figura 3.

Las siguientes tablas recogen los resultados obtenidos en los diferentes ensayos realizados en los distintos pozos, así como las afecciones provocadas en los piezómetros de control permanentes.

Tabla 1
Resultados de las mediciones semicuantitativas del gas extraído

<table>
<thead>
<tr>
<th>Percloroenilo (ppm)</th>
<th>VEW 1</th>
<th>VEW 2</th>
<th>VEW 3</th>
<th>VEW 4</th>
<th>VEW 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>300</td>
<td>500</td>
<td>>>500</td>
<td>400</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 2
Resultados de los ensayos de extracción

<table>
<thead>
<tr>
<th>Caudal de extracción (m³/h)</th>
<th>VEW-1</th>
<th>VEW-2</th>
<th>VEW-3</th>
<th>VEW-4</th>
<th>VEW-5</th>
</tr>
</thead>
<tbody>
<tr>
<td>49</td>
<td>12</td>
<td>12</td>
<td>46</td>
<td>196</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Presión diferencial (mbar)</th>
<th>VEW-1</th>
<th>VEW-2</th>
<th>VEW-3</th>
<th>VEW-4</th>
<th>VEW-5</th>
</tr>
</thead>
<tbody>
<tr>
<td>-94,5</td>
<td>-94,9</td>
<td>-94,9</td>
<td>-92,5</td>
<td>-97,8</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 3
Presiones diferenciales obtenidas en los piezómetros de control permanentes (PVM)

<table>
<thead>
<tr>
<th>Pozo de control</th>
<th>Profundidad (m)</th>
<th>Extracción en VEW-1</th>
<th>Extracción en VEW-2</th>
<th>Extracción en VEW-3</th>
<th>Extracción en VEW-4</th>
<th>Extracción en VEW-5</th>
<th>Presión diferencial (mbar)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>2,7</td>
<td>-1,56</td>
<td>-0,18</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-94,5</td>
</tr>
<tr>
<td>P2</td>
<td>5</td>
<td>-0,06</td>
<td>-0,02</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-94,9</td>
</tr>
<tr>
<td>P3</td>
<td>3</td>
<td>-0,03</td>
<td>-0,05</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-94,9</td>
</tr>
<tr>
<td>P4</td>
<td>5</td>
<td>-0,45</td>
<td>-0,57</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-92,5</td>
</tr>
<tr>
<td>P5</td>
<td>2,3</td>
<td>-0,39</td>
<td>-0,65</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-97,8</td>
</tr>
<tr>
<td>P7</td>
<td>5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0,77</td>
</tr>
<tr>
<td>P8</td>
<td>3,2</td>
<td>-</td>
<td>-0,45</td>
<td>-0,96</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>P9</td>
<td>4,7</td>
<td>-</td>
<td>-0,15</td>
<td>-2,41</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>P10</td>
<td>3,1</td>
<td>-</td>
<td>-0,06</td>
<td>-0,02</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
El diámetro de perforación fue de 200 mm, y el de la tubería utilizada en el revestimiento de los pozos fue de 115 mm.

Para controlar el funcionamiento del sistema fue necesaria la construcción de unos piezómetros de control permanentes (PVMP) que permitieran obtener información sobre los rangos de rendimiento y el radio de acción de la extracción.

La localización de los pozos de extracción de gases (VEW), los piezómetros de control (PVMP), así como de los pozos de control del agua subterránea se muestra en la Figura 3.

Fig. 3. Localización de los VEW y PVMP

3.1.1. Ensayos de extracción

Con el fin de extrapolar la reacción del subsuelo ante la situación de una extracción más intensa, se procedió a realizar ensayos de extracción de una hora de duración cada uno. Para ello se utilizó un aspirador tipo compresor a canal lateral, con un caudal nominal de 280 m³/h y un vacío de 220 mbar.

Tabla 1. Resultados de las mediciones semicuantitativas del gas extraído

<table>
<thead>
<tr>
<th>Percloroetileno (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VEW 1</td>
</tr>
<tr>
<td>VEW 2</td>
</tr>
<tr>
<td>VEW 3</td>
</tr>
<tr>
<td>VEW 4</td>
</tr>
<tr>
<td>VEW 5</td>
</tr>
</tbody>
</table>

Las siguientes tablas recogen los resultados obtenidos en los diferentes ensayos realizados en los distintos pozos, así como las afecciones provocadas en los piezómetros de control permanentes.

Tabla 2. Resultados de los ensayos de extracción

<table>
<thead>
<tr>
<th>Pozo</th>
<th>Caudal de extracción (m³/h)</th>
<th>Presión diferencial (mbar)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VEW-1</td>
<td>49</td>
<td>-94,5</td>
</tr>
<tr>
<td>VEW-2</td>
<td>12</td>
<td>-94,9</td>
</tr>
<tr>
<td>VEW-3</td>
<td>12</td>
<td>-94,9</td>
</tr>
<tr>
<td>VEW-4</td>
<td>46</td>
<td>-92,5</td>
</tr>
<tr>
<td>VEW-5</td>
<td>19,8</td>
<td>-97,6</td>
</tr>
</tbody>
</table>

Tabla 3. Presiones diferenciales obtenidas en los piezómetros de control permanentes (PVMP)

<table>
<thead>
<tr>
<th>Pozo</th>
<th>Profundidad (m)</th>
<th>Extracción en VEW-1</th>
<th>Extracción en VEW-2</th>
<th>Extracción en VEW-3</th>
<th>Extracción en VEW-4</th>
<th>Extracción en VEW-5</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>2,7</td>
<td>-1,56</td>
<td>-0,18</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>P2</td>
<td>3</td>
<td>-0,06</td>
<td>-0,02</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>P3</td>
<td>3</td>
<td>-0,03</td>
<td>-0,05</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>P4</td>
<td>3</td>
<td>-0,45</td>
<td>-0,57</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>P5</td>
<td>2,3</td>
<td>-0,39</td>
<td>-0,65</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>P7</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0,77</td>
</tr>
<tr>
<td>P9</td>
<td>3,2</td>
<td>-</td>
<td>-0,65</td>
<td>-0,06</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>P9</td>
<td>4,7</td>
<td>-</td>
<td>-0,15</td>
<td>-2,41</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>P10</td>
<td>3,1</td>
<td>-</td>
<td>-0,06</td>
<td>-0,02</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
3.1.2. Modelización

Simultáneamente a la instalación de los pozos de extracción y de los piezómetros de control, se llevó a cabo una modelización del flujo de gases con el fin de comprobar si el número de pozos de extracción y su localización garantizaban el saneamiento completo de la zona no saturada, pudiendo realizar en caso negativo los pozos adicionales necesarios dentro de la misma campaña de sondeos.

Con el fin de llevar a cabo la citada modelización, se hizo uso del modelo "HAIR" (HPG AIR INDUCED REMEDIATION) introduciendo en él todos los datos obtenidos a partir de los ensayos previamente realizados. Este modelo permite descifrar incógnitas tales como:

- Número de pozos de extracción necesarios.
- Localización de estos pozos de extracción.
- Diámetro (Profundidad de los pozos, localización de la zona con tubería filtrante).
- Rangos de extracción.
- Interacción entre los diferentes pozos de extracción.
- Selección del aspirador más adecuado.
- Modo de operación (continuo/descontinuo).

Al aplicar el modelo se presentan dos límites, uno inferior y otro superior. El límite inferior viene impuesto por el nivel del agua subterránea. Con respecto al límite superior podemos disponer de un límite que posibilita el intercambio de aire con el subsuelo (zonas no cubiertas), o de un límite que no permite el intercambio (zonas cubiertas).

Al aplicar el modelo HAIR se deben de asumir la serie de puntos:

- Principio de continuidad.
- Validez de la Ley General de Gases.
- Existencia de un régimen de flujo laminar y que se cumple la Ley de Darcy.
- La masa molar del gas es constante.

Con el fin de proceder al estudio de los terrenos se dividió el emplazamiento en dos subáreas A y B. La subárea A que comprende el VIEW 1 y VIEW 2 y la subárea B que comprende el VIEW 3, VIEW 4 y VIEW 5.

En el área B, a pesar de estar previsto en un principio la realización del pozo de extracción VIEW 3, la construcción de este estaba condicionada a los resultados obtenidos de las evaluaciones realizadas in situ (a partir de los ensayos de extracción), mostrando finalmente la conveniencia de su construcción.

Después de la evaluación realizada a partir de los ensayos de extracción se determinaron las siguientes permeabilidades de gas:

Área A: 3,5 x 10^-11 m²
Área B: 2,9 x 10^-10 m²

Durante la simulación final, en el modelo se introdujeron los actualizados pozos de extracción con el fin de confirmar la validez de los mismos. Si durante la simulación se hubiese observado que estos pozos no son suficientes, se habría podido introducir nuevos pozos y examinar su influencia en el modelo resultante.

![Diagrama de la simulación](image)

Fig. 4. Rango de afectación obtenido a partir de la modelización realizada.

Con los rangos de flujo obtenidos durante los ensayos de extracción y que se encuentran recogidos en la Tabla 2, se consigue cubrir todo el área que se quiere recuperar sin necesidad de construir más pozos de extracción.

Esta quinta recogida en la Figura 4 en la cual se puede observar el radio de acción obtenido al introducir los valores resultado de los ensayos de extracción realizados.

Así las concentraciones de compuestos halogenados en el gas de emisión extruido durante estos ensayos alcanzaron en ocasiones los 16 g/m³. El caudal de extracción del gas fue de 100 m³/h contabilizando una cantidad de 1 Kg/h de compuestos halogenados extraídos.

3.2. Saneamiento de los terrenos afectados

Actualmente no encontramos en la fase de saneamiento de los terrenos. La modelización realizada confirma la elección de la tecnología a aplicar. El siguiente paso consistió en el diseño de la instalación de saneamiento.
3.1.2. Modelización

Simultáneamente a la instalación de los pozos de extracción y de los piezómetros de control, se llevó a cabo una modelización del flujo de gases con el fin de comprobar si el número de pozos de extracción y su localización garantizaban el saneamiento completo de la zona no saturada, pudiendo realizar en caso negativo los pozos adicionales necesarios dentro de la misma campaña de sondajes.

Con el fin de llevar a cabo la citada modelización, se hizo uso del modelo “HAIR” (HPC AIR INDUCED REMEDIATION) introduciendo en él todos los datos obtenidos a partir de los ensayos previamente realizados. Este modelo permite descifrar incógnitas tales como:

- Número de pozos de extracción necesarios.
- Localización de estos pozos de extracción.
- Densidad (Profundidad de los pozos, localización de la zona con tubería filtrada).
- Rangos de extracción.
- Interacción entre los diferentes pozos de extracción.
- Selección del aspirador más adecuado.
- Modo de operación (continuo/discontinuo).

Al aplicar el modelo se presentan dos límites, uno inferior y otro superior. El límite inferior viene impuesto por el nivel del agua subterránea. Con respecto al límite superior podemos disponer de un límite que posibilita el intercambio de aire con el subsuelo (zonas no cubiertas), o de un límite que no permite el intercambio (zonas cubiertas).

Al aplicar el modelo HAIR se deben de asumir una serie de puntos:

- Principio de continuidad.
- Validez de la Ley General de Gases.
- Existencia de un régimen de flujo laminar y que se cumple la Ley de Darcy.
- La masa molar del gas es constante.

Con el fin de proceder al estudio de los terrenos se dividió el emplazamiento en dos subáreas A y B. La subárea A que comprende el VEW 1 y VEW 2 y la subárea B que comprende el VEW 3, VEW 4 y VEW 5.

En el área B, a pesar de estar previsto en un principio la realización del pozo de extracción VEW 3, la construcción de éste estaba condicionada a los resultados obtenidos de las evaluaciones realizadas in situ (a partir de los ensayos de extracción), mostrando finalmente la conveniencia de su construcción.

Después de la evaluación realizada a partir de los ensayos de extracción se determinaron las siguientes permeabilidades de gas:

Área A: 3,5 x 10^-11 m²
Área B: 2,9 x 10^-11 m²

Durante la simulación final, en el modelo se introdujeron los datos de extracción con el fin de confirmar la validez de los mismos. Si durante la simulación se hubiese observado que estos pozos no son suficientes, se habría podido introducir nuevos pozos y examinar su influencia en el modelo resultante.

Con los rangos de flujo obtenidos durante los ensayos de extracción y que se encuentran recogidos en la Tabla 2, se consigue cubrir todo el área que se quiere recuperar sin necesidad de construir más pozos de extracción. Esto queda recogido en la Figura 4 en la cual se puede observar el radio de acción obtenido al introducir los valores resultado de los ensayos de extracción realizados. Así las concentraciones de compuestos halogenados en el gas de emisión extraído durante estos ensayos alcanzaron en ocasiones los 16 g/m³. El caudal de extracción del gas fue de 100 m³/h contabilizando una cantidad de 1 Kg/h de compuestos halogenados extraídos.

3.2. Saneamiento de los terrenos afectados

Actualmente nos encontramos en la fase de saneamiento de los terrenos. La modelización realizada confirmó la elección de la tecnología a aplicar. El siguiente paso consistió en el diseño de la instalación de saneamiento.
Due to the large distances existing between the distinct foci of contamination, it was decided to install systems of extraction individual in each zone in a manner that would reduce the number of foci of contamination to a unique system of extraction which, however, required the construction of smaller and other facilities that would facilitate the activity of the research team.

In spite of the concentrations obtained during the brief extraction process, these data were not taken into account in the final results. The concentrations obtained during the first three months were notably lower. Also, a recovery was made, which took place after the end of the work period, indicating a drop of about 100 ppm.

Furthermore, it was observed that in the month of June and July, the concentration of hydrocarbons in the soil samples was below the detection limit. In this period, an extraction of hydrocarbons was performed, which showed a significant decrease in concentration. The concentration obtained in this period was below the limit of detection.

Bibliography

Debido a las grandes distancias existentes entre los distintos focos de contaminación, se optó por instalar sistemas de extracción individuales en cada uno en lugar de conectar subterráneamente los focos de contaminación a un sistema único de extracción lo que hubiese requerido construcción de zanjas y otras obras que obstaculizarían la actividad industrial diaria.

A pesar de las concentraciones obtenidas durante los ensayos de extracción realizados, éstas deberán de ser tenidas en cuenta en su justa medida.

Por regla general en una recuperación de suelo aplicando la tecnología de extracción de gases, los rendimientos obtenidos durante los primeros meses son más elevados. Así en una recuperación llevada a cabo a lo largo de un año de duración (ver Figura 5), las concentraciones del gas extraído disminuyeron en los tres primeros meses de 750 ppm de la suma de hidrocarburos halogenados a aproximadamente 100 ppm.

Asimismo también se observa que durante estos tres primeros meses la cantidad de hidrocarburos halogenados volátiles constituye prácticamente el 50% del total de gases extraídos durante un período de un año de duración.

En el caso concreto que nos ocupa se estima en un principio un comportamiento similar al comentado, con una extracción elevada durante los primeros meses.

Fig. 5. Concentraciones obtenidas en un saneamiento por extracción

BIBLIOGRAFÍA

