

Modelling experiments with vegetated filter strips with a new version of VFSMOD

August 26, 2019

Robin Sur, Stefan Reichenberger, Carolin Kley, Stephan Sittig, Sebastian Multsch

Function of Vegetated Filter Strips

- // Reduction of run-off, erosion, and pesticide load to surface water due to dense vegetation and high vertical hydraulic conductivity slowing down flow and leaving time for
 - // Infiltration of Water/Pesticides
 - // Trapping of Sediment/Pesticides
 - // Sorption of Pesticides

knoell

USDA, NRCS

Regulatory Landscape for the Use of VFS

O EU ,FOCUS Landscape & Mitigation (2007)⁴

- // Fixed empirical reduction factors for water and sediment from field studies
- // Pesticide retention then calculated from phase distribution (dissolved/particle-bound)
- No dependence on event magnitude or other environmental conditions
- // Broad regulatory acceptance in EU-28

VFSMOD

- Mechanistic model to predict VFS efficiency
 - Physically-based overland flow (kinematic wave) and infiltration (Green-Ampt)
 - Physically-based sediment trapping (University of Kentucky sediment filtration algorithm)
 - Empirical or mechanistic pesticide retention
- Reduction efficiency depends on event magnitude and environmental conditions
- Interest in EU-28 regulatory use but limited acceptance yet

(MAgPIE report)

Buffer Width (m)	10	20
Reduction in volume of runoff water (%)	60	80
Reduction in mass of pesticide transported in aqueous phase (%)	60	80
Reduction in mass of eroded sediment (%)	85	95
Reduction in mass of pesticide transported in sediment phase (%)	85	95

Munoz-Carpeña and Parsons (2014)

SANCO/10422/2005, ver. 2.0, Sep. 2007

Automated FOCUS Step 4 Calculation

knoell

4

FOCUS R3-Stream Scenario with 20 m VFS

VFSMOD - Regulatory Opportunities and Challenges

Why do we need VFSMOD?

- // Most critical for VFS efficiency is the hydraulic load (volume of water per area)
 - // Fixed reduction fractions (FOCUS L&M) will underestimate efficiency for small and overestimate it for large runoff events
 - // To model the reduction of runoff, erosion and pesticide into surface water by VFS for risk assessment, an event-based, dynamic model is needed

knoell

What are the regulatory obstacles?

- // The pesticide trapping equation (Sabbagh) has not been widely accepted, as its reliability had not been sufficiently demonstrated (too little calibration data)
- // Too little validation data available for the whole model with real-world studies
- // Testing of VFS scenarios (SWAN) against real-world studies lacking

Pesticide Trapping Equations in VFSMOD

knoell

Sabbagh Equation

$$\Delta P = a + b \ \Delta Q + c \ \Delta E + d \ \ln(\frac{Q_i}{K_d E_i} + 1) + e \ \% C$$

- // Empirical multiple-regression equation
- // 6 Independent variables/5 regression parameters

- ΔQ : Relative reduction of total inflow Qi (rainfall + run-on) (%)
- ΔE : Relative reduction of incoming sediment load E_i (%)
- Q_i: Total water inflow into the VFS (run-on + rainfall) (L)
- E_i: Incoming sediment load (kg)
- V_i: Incoming run-on volume (L)
- %C: Clay content of incoming sediment (%)
- K_d: Linear adsorption coefficient (L/kg)

Mass Balance Equation

$$\Delta \mathbf{P} = \frac{\min[(V_i + K_d E_i); (\Delta Q V_i + \Delta E K_d E_i)]}{(V_i + K_d E_i)}$$

- // Mechanistic, process-based equation
- 5 independent variables/0 regression parameters
- // Key Assumptions
 - // Instantaneous and complete mixing of run-on and rainfall on the VFS
 - Constant particle-bound pesticide concentration in runoff during the typically relatively short events
 - // Infiltration and sedimentation are the only relevant pesticide trapping mechanisms in the VFS (negligible sorption of dissolved pesticide to soil or plants in the VFS)

Improved Pesticide Trapping Equations

- // Additional experimental VFS data (n = 48 → n = 244) was used to recalibrate the Sabbagh equation and to test the regression-free mass balance approach
- // Sabbagh Equation
 - // OLS regression (full dataset): Pearson $r^2 = 0.819$
 - // Cross-validation confirms good predictive capability
 - // Calibration: Pearson $r^2 = 0.820$ (median)
 - // Prediction: Pearson $r^2 = 0.815$, Q² = 0.81 (median)
 - Maximum-likelihood-based calibration& uncertainty analysis with the DREAM algorithm
 - // Confirms regression parameters obtained with OLS and small confidence bounds

Intercept

- // Mass Balance Equation
 - // Independent of any calibration
 - // Prediction (full dataset): $R^2 = 0.74$

Reichenberger et al. (2019)

Simulate Real Experiments with VFSMOD (Manual Calibration) know

Field Studies

4 studies with 31 combinations of hydrological event and compound

VFSMOD Parameterization

- // Soil water retention and saturated hydraulic conductivity: HYPRES PTF
- // Overland flow and sediment filtration: Defaults from SWAN-VFSMOD
- // Hydrographs:
 - // Use measured rainfall and run-on hydrographs if available
 - // If not: use rectangular hyetograph, triangular run-on hydrograph

Manual Calibration

- // VKS: Vary HYPRES estimate from 0.1- to 15-fold
- // Water table depth: None to 1.5 m

// VFS length = 15 m

knoell

/// Modelling Experiments with Vegetated Filter Strips with a New Version /// August 2019

10

Observed vs. Predicted Infiltration and Sedimentation

- Good match of ∆Q after adjusting vertical hydraulic conductivity (VKS) and water table depth (WTD)
- // The HYPRES Ksat formula performed well in predicting VKS
 - // Geomean calibration factor:0.8 (0.4 1.5)

Observed vs. Predicted Pesticide Trapping

knoell

Sabbagh Equation

- // Performed best
- // But relies on well predicted ΔQ and ΔE

Mass Balance Equation

- // Conservative as it underestimates ΔP
- // Less sensitive to errors in ΔE (for substances with K_{oc} \leq 10000 L/kg)

DREAM Calibration of VFSMOD

- Infiltration/sedimentation: Successful calibration of ΔQ and ΔE
- // Pesticide Trapping (ΔP):
 - // Sabbagh equation
 - // Revised equation performed best
 - // Original equation still performed acceptably well
 - // Mass balance equation
 - Provides conservative estimates
- \rightarrow Consistent with manual calibration for ΔQ
- → ΔE and in turn ΔP well improved

Are the EU VFS scenarios protective for real-world run-off events?

- // Combine 31 run-off events (4 studies) with all 4 EU Run-off-VFS scenarios
- // Parameterization
 - // Defaults from SWAN-VFSMOD (Brown et al., 2012)
 - // Filter medium, overland flow, eroded sediment, VFS hydraulic properties
 - // Study-specific
 - // VFS geometry
 - // Source area related properties
 - // Rainfall and run-on hydrographs

Regulatory VFS Scenarios

- A 1-by-1 match is not intended but a conservative representation of most real-world experiments
- ∥ ∆Q Underestimated
- // ΔP Partly Overestimated
 - // Sabbagh new: 25% of events
 overestimated by > 20 %
 - // Mass balance: 6% of events
- \rightarrow Overestimated ΔE propagates to ΔP

- // Infiltration
 - // HYPRES provides realistic K_{sat} values for the parameterization of the VFS
- // Sedimentation
 - // Defaults overestimate sediment trapping in VFSMOD
- // Pesticide trapping
 - // Considerably widened validation database of the Sabbagh equation
 - // Newly proposed mechanistic mass balance equation
- // Regulatory Performance of EU VFS Scenarios
 - // Pesticide trapping is overestimated for only 6% to 25% of all events
- // Primary recommendation
 - // Improve the parameterization of sediment trapping in VFSMOD

Thank you!

robin.sur@bayer.com

