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1. Introduction (Overall background, Hypothesis and Objectives) 

The Arenal Tempisque irrigation program in Costa Rica provides several water derived 

benefits for the economics of the country. But this programme also triggered an unexpected 

increase in water withdrawal from groundwater and rivers of the basin, producing changes 

in the hydro period and decrease of discharge intensity of the rivers.  

For proposing appropriate sustainable water management in the basin, a thorough 

understanding of the fluxes (rainfall-runoff fluxes, surface water fluxes, surface-groundwater 

fluxes …) in the catchment is needed. Water fluxes between different compartments of the 

Arenal-Tempisque hydrosystems can be quantified through hydrological modelling.  

Hydrological fluxes into a complex hydro-system like the Arenal-Tempisque catchment can 

be conceptualized by means of a hydrological network. A hydrological network consists of a 

set of nodes and links. Each node corresponds to a location for which a time dynamic 

hydrologic attribute (precipitation, discharge, groundwater depth) is modelled. The links 

allow modelling the fluxes between the nodes. 

Based on the availability of flow observations in the catchment (rainfall stations, discharge 

stations, groundwater stations …), we aim implementing conceptual based hydrological 

transfer function models for modelling the links of a hydrological network. The transfer 

function fitting parameters will be interpreted as indicators of connectivity between the 

different nodes of the network, while the transfer function parameters themselves will be 

interpreted, for the connected nodes, as travel time probability distributions, measuring the 

velocity with which the hydrological signal propagates through the network. 

The specific objective of this work is to identify the structure and type of the conceptual 

hydrological model that can be used in such a context, based on the observations of 

discharge and precipitation at some different locations in the Arenal-Tempisque catchment. 
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2. LITERATURE REVIEW: 

2.1 Hydrological modelling 

2.1.2 The rational for hydrological modelling 

There are many different reasons why rainfall-runoff models are developed in hydrology, 

though the most important reason is the fact that hydrological measurement techniques are 

limited for assessing the rainfall-runoff relationships (Beven, 2001).   

Indeed, despite all the experimental and technological advances made for exploring the 

subsurface like in the area of remote sensing, ground-probing radar, etc., our knowledge of 

the functioning of the hydrological system, in particular in relation to underground processes 

is still very limited.  

The patterns of water movement in hydrological systems are very complex. This complexity 

at the scale of practical interest does not allow reproduce the flow processes with accuracy. 

If we rely on the current measurement techniques, a large part of the hydrosystem is still 

inaccessible. This is particularly the case for the flow in soil and groundwater systems. Since 

soil and groundwater determines the rainfall-runoff relationships, we should be able to 

integrate these subsystems in rainfall-runoff assessments, implying the development of 

alternative assessment techniques that are based on hydrological modelling.   

Hence rainfall-runoff modelling allows the quantitative assessment of the rainfall-runoff 

relationships and plays an important role in water resources assessment, water resources 

management and water resources decision-making. With hydrological models, synthetic 

sequences of hydrologic data can be generated supporting the facility design or forecasting 

of the behavior of water systems. Some of the practical applications are the design of 

engineered channels, flood forecasting, the assessment of the impact of effluents on water 

quality, the prediction of pollution incidents, the evaluation of the potential impacts of 

climate and land use change on hydrology, etc. 

Sometimes we do not need develop the complex predictive model with full details, in fact 

many rainfall-runoff models are very simple and the results are successful.  

 

2.1.3 Approaches developed in hydrological modelling 

An enormous range of hydrological models have been produced. These developments were 

boosted by the variety of uses and applications of hydrological models, the rapid increase in 

scientific understanding of the functioning of the hydrological cycle, the technological 

developments for data collection system and computing technology. Wheater et al., (1993) 

and Wagener et al., (2004) have categorized the models into the following three categories.  
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Empirical (also called metric, data-based or black-box) models.  

These models are based primarily on observational time series and the main aim is to 

characterize the flow response largely on the watershed of these data, generally through 

some form of statistical estimation or optimization.  

These models do not include any prior knowledge about catchment behavior and flow 

processes (Wagener et al., 2004). They are usually spatially lumped and purely based on the 

relationship of a series of input to a series of output data. 

The rational method model, regressive time series models, Artificial Neural Networks (ANN) 

and empirical unit hydrograph methods are examples of such models (Beven, 2001). 

 

Conceptual (also called parametric or gray-box) model.  

These models are the most common class of hydrological models (Wheater, 2008) and vary 

considerably in complexity.  

Conceptual models are normally based on the representation of internal storages. These 

storages are filled through fluxes such as rainfall and emptied through evapotranspiration, 

runoff, drainage, etc (Wagener et al., 2004).  

The essential feature of these models type, is that the model structure is specified a priori, 

based on the modeller’s perception of the relative importance of the component processes 

at work in the catchment. 

These models have three distinguishing characteristics (Wheater et al., 2008): (a) based on 

the modeller’s understanding of the hydrological system, their structure is specified by the 

user prior to their use; (b) hydrological properties of the catchment such as size of the 

storages elements or the distribution of flow between them are described by parameters; 

and (c) as some processes are usually aggregated into a single parameter, these parameters 

have no direct, physical meaning and cannot be derived from field measurement.  

Since some model parameters have no direct physical meaning, model parameters have to 

be assessed through the ‘calibration’, using available rainfall and flow data.  



9 
 

 

Figure 1: Representation of a conceptual model. 

 

Physical-Based Models (also called mechanistic or white-box).  

These models are based on physical principles as conservation of mass, momentum and 

energy. They are explicitly founded on the best available understanding of the physics of the 

hydrological processes (Wheater, 2008). 

These models represent the functioning of components of the hydrosystems using classical, 

mathematical-physics form, such as differential equations for describing continuum 

mechanics. These equations are typically solved in an approximate manner via finite 

difference or finite element spatio-temporal discretization methods.   

Physical based models often suffer from extreme data demand, scale-related problems (the 

measurement scales differ from process scales) and over-parameterization (Wagener et al., 

2004). 

The high-dimensional parameterization makes objective optimization and calibration 

virtually impossible, since the model is normally so over-parameterized that the parameters 

value cannot be uniquely identified and estimated against the available data (Young, 2001). 

They are particularly appropriate when a high level of spatial discretization is important, e.g. 

soil erosion or pollution studies (Wagener et al., 2004).  A clear example of this category of 

models is the Système Hydrologique Européen (SHE) model (Abott et al., 1986). 
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2.1.4 Some conceptual hydrological models  

In this section we will review some conceptual hydrological models, as these model types 

will be used for modelling rainfall-runoff in the Tempisque case study. 

 

The Linear Store Transfer Function model (LSTF) 

The LSTF model uses a general linear model to model output (e.g. run-off in a given 

catchment) in terms of the input (e.g. storage in a catchment). 

A linear store is a model element for which the predicted output, Q [L3 T-1], is directly 

proportional to the storage, S [L3] (Beven, 2001). 

 

Figure 2: The linear store. 

 

We assume: 

Q = S/T          (1) 

where T [T] is a parameter equivalent to the mean residence time of the store. The linear 

store is physically equivalent to a straight-sided bucket with a hole in the bottom, allowing 

the storage in the bucket to escape as an output Q. 

In continuous time, the impulse response or transfer function of the linear store is expressed 

as 

Qt = u/T exp{-(t – t0}/T}          (2) 
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where u [L3] is storage input, i.e. the effective rainfall volume. It has the form of an initial 

step rise followed by an exponential decline in the outflow as is shown in the figure above. 

The resulting models may, however, have useful mechanistic interpretations. For example, 

evaluations of some catchment transfer functions have frequently suggested that a parallel 

model structure is appropriate, with a proportion of the runoff being routed through a fast 

pathway and the remainder through a slow pathway (Beven, 2001). 

 

The IHACRES Model 

The IHACRES model (Identification of unit Hydrographs and Component flows from Rainfall, 

Evaporation and Streamflow data) of Jakeman et al. (1990) derives from the work of Young 

(1975) and Whitehead et al. (1979). The model avoids the problem of hydrograph separation 

in classical unit hydrograph models. 

The IHACRES is a transfer function model which relates input (rainfall) to an output 

(discharge).  

Beven (2001) suggested that linear transfer functions may be appropriate to model rainfall 

discharge relationships in catchment if an appropriate nonlinear filter allows the calculation 

of the effective rainfall in terms of total rainfall.  

The IHACRES model uses a particular set of nonlinear functions to filter the rainfall, it 

introduces a soil storage variable and also, for a longer period simulation, uses temperature 

as an index evapotranspiration, to produce an effective rainfall. The effective rainfall is then 

related to total discharge using a generalized linear transfer function. 

This model has been applied in different applications using several forms of the rainfall filter, 

particularly in a wide variety of catchments including some catchments subjected to 

significant snowmelt inputs. The model has also been used in the prediction studies of the 

impacts of climate change on catchment hydrology. 

The model further provides two parallel coupled linear storage functions, one for fast flow 

pathway and one for slower flow pathway. The fast flow will provide the major part of the 

predicted storm hydrograph, the slower pathway the major part of the recession discharge 

between storm periods.  

The main advantage of the IHACRES approach is that the data allows to suggest a part of the 

form of the transfer function (e.g. the distribution between the slow and fast store is 

parameterized). Hence the model structure is not fully fixed beforehand. 
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The Sacramento Model  

The Sacramento Soil Moisture Accounting (SAC-SMA) model represents the moisture 

distribution in a physically realistic manner within hypothetical zones of a soil column, which 

can be split in two conceptual layers.  

The components of the SAC-SMA are tension water and free water; the fluxes for each soil 

column are surface flow, lateral drainage, evapotranspiration (ET), and vertical drainage 

(percolation).   

Rain falling on the soil column first encounters the upper zone. Here, rain falling on any 

impervious areas generates impervious area runoff, while rain falling on the non-impervious 

areas of the basin first encounters the upper tension water storage. After filling this 

reservoir, excess soil water enters the upper zone free water. Water in this free water 

storage can percolate into the lower zone storages or flow out as interflow. If the upper zone 

free water fills completely, then excess soil water flows out as surface runoff. Most 

percolated water flows into the lower zone tension water storage, although some can go 

directly to free water storages in the lower zone. Upon filling the lower zone tension water 

storage, all soil water moves into the two lower zone free water storages. These two free 

water storages generate fast and slow responding base flow. The combination of these two 

base flows is designed to model a variety of hydrograph recessions. 

The SAC-SMA model is very often represented graphically as illustrated in the Figure 3.  

 

Figure 3: Representation of SAC-SMA model. 
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The GR4J Model  

The GR4J model developed in France is a four parameters lumped rainfall-runoff model. Its 

structure is similar to that of many conceptual type models. This model was developed 

following an empirical approach, i.e. without a priori ideas on the rainfall-runoff 

transformation, but trying to find the model structure that performs best on a large set of 

hydro-climatic conditions. 

The GR4J model takes the rainfall and potential evapotranspiration over each sub-basin as 

inputs and computes the discharge at their downstream end. 

The discharge production module is based on (Andréssian et al., 2006): 

- Net rainfall and potential evapotranspiration which are determined with a zero 

capacity interception store. 

- Soil moisture accounting (SMA) store to determine: (i) the part of raw rainfall that 

will become effective rainfall; and (ii) the actual evapotranspiration. 

- A water-exchange function that can simulate import or export of water from/to the 

subsurface outside of the catchment. It acts on the two components simulated by the 

transfer module.     

In the transfer function, the transfer production module is based on (Andréssian et al., 

2006): 

- A percolation from the SMA store. 

- A constant volumetric split of effective rainfall into a direct flow component (10%) 

and an indirect flow component (90%). 

- Two unit hydrographs (UH), each one acting on one flow component. 

- A nonlinear routing store that routes the indirect flow component. 
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Figure 4: GR4J rainfall-runoff model scheme. 

 

The PDM Model  

The Probability Distributed Moisture (PDM) model is a conceptual model, which uses a 

distribution of soil moisture storage capacities for soil moisture accounting and a number 

of linear or non-linear reservoirs for the routing component (Moore, 2007). 

 

One of the main reasons for introducing a distribution of storages was to make the 

calibration problem easier, because it is possible obtain smoother response surface in 

comparison with other models. 

The PDM split rainfall into direct runoff, groundwater recharge and soil moisture storage. A 

probability-distributed soil moisture storage component is used to separate between direct 

runoff and subsurface runoff.  Direct runoff is routed through the ‘fast-response’ surface 

storage representing channel and other surface flow mechanisms to provide surface runoff.  

This employs a two linear reservoir cascade.  Groundwater recharge from soil water 

drainage is routed through subsurface groundwater storage which entails a ‘slow response’ 

system representing the groundwater and other base flow components of total runoff.   
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The main advantages of the PDM model are it´s analytical and computational simplicity. This 

model is capable to provide good simulations of observed discharges in many applications. 

The distribution of conceptual storages can be interpreted as an appropriate realistic 

representation of the functioning of the catchment. 

The basic idea of the PDM model is illustrated in the next figure. 

 

 

Figure 5: Structure of the probability distributed model (PDM). 

 

The TOPMODEL 

TOPMODEL is a hydrologic model that bases its distributed predictions on an analysis of 

basin topography. 

The model may be seen as a product of two objectives. One is the development of a 

pragmatic and practical forecasting and continuous simulation model. The other is the 

development of a theoretical framework within which perceived hydrological processes, 

issues of scale and realism and model procedures may be researched (Beven, 2001). This 

model allows identifying the patterns of response in a catchment through a simple 

approach.  

 

TOPMODEL split the basins into a set of subbasins and use the practice of calculating actual 

evapotranspiration, as a function of potencial evapotranspiration and root zone moisture 

storage. 
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Surface runoff is computed based on variable saturated areas, and the subsurface flow is 

calculated using an exponential function of water content in the saturated zone. 

 

Beven and Kirkby (1979) applied the TOPMODEL to simulate small catchments in the UK, and 

they demonstrated that it is possible to get reasonable results with a minimum of calibration 

of parameter values. 

 

2.2 The Unit Hydrograph model 

2.2.1 Definition 

The unit hydrograph can be defined as the hydrograph of unit volume of storm runoff 

produced by a unit volume of uniform intensity excess rainfall over a unit period, distributed 

uniformly in a catchment. In the unit hydrograph concept, the catchment behaves like a 

linear time-invariant system. 

 

The concept of the unit hydrograph was introduced by Sherman in 1932 as a method for 

predicting floods from available rainfall-discharge data.  

 

The traditional unit hydrograph technique proposes specific forms on the linear transfer 

function, e.g. the triangular transfer function or the transfer function that corresponds to the 

Nash cascade (figure 6). Some specific implementations are reviewed below.   

 

 

Nash Method 

In 1958, Nash presented a conceptual model in which he described a mathematical model of 

a river basin, that simulated the response of the basin to a unit impulse of rainfall excess. To 

explain the theory, Nash utilized the effect of "lamination" of an effective rainfall having the 

depth of 1 mm and duration that tends towards zero. This lamination is performed by a 

cascade of n linear reservoirs having identical storage coefficients K. Nash posed his model 

as an instantaneous unit hydrograph (IUH). 

 

The resulting mathematical form for the unit hydrograph is equivalent to the gamma 

distribution that he expressed as: 

 

     
 

     
 
 

 
          

 

 
           (3) 

 

where u(t) is the ordinate of IUH (hour-1), t is the sampling time interval (hour), n and k are 

the parameters of the Nash model, in which n is the number of linear reservoirs, and k is the 

storage coefficient (hour),   (n) is the gamma function. 
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Figure 6: Nash cascade of n linear stores in series. 

 

 

Snyder Method 

This method developed in 1938 is called the synthetic unit hydrograph of Snyder. It is based 

on relationships found between three characteristics of a standard unit hydrograph and 

descriptors of basin morphology. Snyder standardized the unit hydrograph defining the 

characteristics of effective rainfall duration,(tr(hours)); the peak direct runoff rate (qp(m3/s)); 

and the basin lag time (tl(hours)) (Ramirez, 2000). 

The specific effective rainfall duration of a standard unit hydrograph can be defined by the 

following relationship with basin lag time: 

tl=5.5tr     (h)          (4) 

Considering a standard unit hydrograph, the basin lag time, and the peak discharge, can be 

expressed as follows: 

tl=C1Ct(LLc)
0.3   (h)          (5) 

qp=(C2CPA)/tl     (m
3/s)          (6) 

where Ct (usually ranging from 1.8 – 2.2) is a non-dimensional coefficient derived from 

gauged watersheds in the same region, and represents variations in watershed slopes and 
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storage characteristics and C1 = 0.75 (1.0 for English units). L is the length of the main stream 

from the outlet to the catchment boundary in miles, Lc is the distance from the outlet to a 

point on the stream nearest to the centroid of the watershed in miles. Cp is another non-

dimensional coefficient derived from gauged watersheds in the area, and represents the 

effects of retention and storage, C2 = 2.75 (640 for English units), and A is the basin area in 

km2. 

From the derived unit hydrograph of the watershed, values of its associated effective 

duration tr in hours, its basin lag tlr in hours, and its peak discharge qpr in m3/s are obtained. 

If tlr = 5.5tr, then the derived unit hydrograph is a standard unit hydrograph and is possible 

get the values using the equations shown above. If tlr is quite different from 5.5tr, the basin 

lag of the standard unit hydrograph for the basin is adjusted as follows: 

tl=tlr + (tr-tR)/4          (7) 

 

Snyder’s method is applicable to fairly large catchments only, e.g., 100-500 km2 (Taylor and 

Schwarz, 1952; Gray, 1961). 

 

Unit Hydrograph of Clark 

This method was proposed by Clark in 1945 and has been applied in a large range of 

hydrological studies in the 50´s and 60´s. The method is based on the surface distribution of 

watershed between isochrones lines. The method calculates the production of effective 

runoff in every surface area belonging to an isochrone class, and the transfer towards the 

outlet using a linear transfer function model.  

This method assumes that the considered basin operate as a reservoir. An increase in the 

inlet flow of a reservoir produces effect in the outlet flow, but the outlet flow will be 

damped and delayed as compared to the inlet flows.  

The simple version is to consider a linear reservoir, that is, as we have explained before, a 

linear relationship between the storage volume in the reservoir and the outlet flow.  

S = Q R          (8) 

Where 

S, is the storage volume (m3); 

Q, the outlet flow in reservoir (m3/s); 

R (s), the proportionality constant. 
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For a given time increment (Δt): 

Vin - Vout = ΔS          (9) 

where, Vin, is the inlet flow volume (m3) in a Δt.; 

Vout (m
3), is the outlet flow volume in the same Δt; 

ΔS (m3) is the storage volume variation in the Δt. 

 

If we divide the last equation by Δt, we obtain: 

I – Q = ΔS/ Δt          (10) 

Where 

I (m3/s) is the mean inlet flow rate in the Δt; 

Q (m3/s) is the mean outlet flow rate in the Δt. 

 

Soil Conservation Service (SCS) Method 

The Soil Conservation Service (SCS) of US, now Natural Resources Conservation Service 

(NRCS) developed in 1957 a Dimensionless Unit Hydrograph (DUH) based on the analysis of 

large number of watersheds. 

In this method all the hydrograph ordinates are given by ratios between instantaneous 

discharge and peak discharge and between time and time-to-peak, as illustrated in the next 

figure. The unit hydrograph peak discharge also is directly related to the time-to-peak from 

consideration of the volume of the unit hydrograph. This is best illustrated for the SCS 

dimensionless, triangular unit hydrograph shown in the figure. 
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Figure 7: Soil Conservation Service dimensionless curvilinear unit hydrograph and equivalent 

triangular unit hydrograph (Melching et al., 1997). 

 

The volume of runoff under the SCS dimensionless, triangular unit hydrograph is given by 

V = 1.800 qp(Tp + Tr)          (11) 

where 

qp (ft
3/s) is unit hydrograph peak discharge; 

Tp (hours) is the time-to-peak discharge in hours; and 

Tr (hours) is the time of recession, which is equal to 1.67Tp for the SCS dimensionless, 

triangular unit hydrograph. 

 

Therefore, the volume is 

V = 1.800 qp(Tp + 1.67Tp) = 4.800 qpTp          (12) 

 

and the triangular unit hydrograph peak discharge is 

qp = 484 A/Tp          (13) 
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2.2.2 Probability Density Function approach 

The unit hydrograph of a watershed under the assumption of linear system may be defined 

as the unit impulse response function (or Dirac delta) of a linear system. 

 

Physically, the unit impulse can be described as an input or excitation of unit magnitude, 

imposed either suddenly and lasting a very short time over a wide area, or imposed locally 

and acting over a very small distance or area but in a steady fashion (Brutsaert, 2005). 

 

 
Figure 8: Example of an impulse function of uniform intensity 1/a and duration a. 

 

In general, the delta function is often expressed as 

 

         
             
            

           (14) 

 

            
  

  
          (15) 

 

Although this definition cannot be taken literally. It must be interpreted as suggestive of the 

limiting process involved, because         is not continuous and not differentiable at t=t0. 

A better way to define the delta function is in the following integral form 

 

 

                     
  

  
          (16) 

 

in which f(t) is a continuous and smooth function. 
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The transformation of input into output is called the response of a system. The unit response 

of a linear system u=u(t) is its response to the unit impulse function δ(t). If these 

characteristics are invariant in time or space, the response is u(t0 - t), when the input is δ(t0 - 

t). Due to that we have a linear system, the response will be x(t)u(t0 - t) when the input is 

x(t)δ(t0 - t). Multiplying the response and the input by dt and doing the integration of both,  

leads to the conclusion that when the input is x(t), the response or output of the system is 

given by 

                   
  

  
          (17) 

 

 

where τ is a dummy variable of integration and t is the time. This operation is called the 

convolution integral. 

 

The limits of this equation mean that the output from the system is affected by input values 

of x(t). In hydrologic applications, the upper limit of the before integral should be the time 

(t), therefore one can write 

 

                   
 

  
          (18) 

 

which represent the output from a system with a memory going back to -∞. 

 

A big numbers of studies have been conducted to develop unit hydrographs using probability 

density functions (PDFs), because the unit hydrographs satisfies all the properties of a 

probability distribution function. Changing the parameter values of the PDFs, is possible to 

obtain different shapes of UHs and the shape characterizing the PDFs contains many 

information about the processes that drive a water particle thorough the catchment (Rinaldo 

et al., 1991), (D’Odorico & Rigon 2003). 

 

The travel time of water can be defined as the time spent by a water particle in a catchment 

from its entrance as rainfall until its passage on a point where streamflow is measured 

(Botter et al., 2011). 

 

A probability density function can represent a travel time which consider the hydrologic 

process as stochastic. This PDF provide information about the hydrological response of the 

catchment against rainfall. 
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2.3 Corrections in the hydrologic attributes for identifying rainfall-runoff transfer 

functions  

The quality of input data largely determines the success of a hydrological model. Recently 

several techniques have been developed to improve the estimation of input data of 

hydrological models. We will focus here on the rainfall-discharge and discharge data. 

 

Precipitation data 

Precipitation is the main input in a hydrological modeling. Rainfall can be measured by 

means of raingauges.  

However precipitation measurements are affected by systematic errors, which lead to an 

underestimation of actual precipitation. In particular, this error depends on the design of the 

raingauge in relation to wind conditions at the site and rainfall intensities. The best design is 

thought to be a raingauge with the orifice set at ground level and surrounded by an anti-

splash grid, but this is not always practical, particularly in environments with frequent snow.  

The wind speed is undoubtedly the most important factor determining the systematics 

errors. However there are others factors involved, as the error due to wetting loss on the 

internal walls of the collector, and a wetting loss when it is emptied (according to the WMO-

8, 2008 about 2-15% in summer and 1-8% in winter). Also there are errors due to 

evaporation from the container. This is especially important in hot climates (according to the 

WMO-8, 2008 up to 4%). In addition, there are  the trace precipitation error (according to 

Sugiura et al. 2003 about 6-130%), the systematic mechanical errors, the errors due to in-

and out-splashing of water (according to the WMO-8, 2008 about 1-2 %) and errors due to 

blowing and drifting snow (Wagner, 2009). 

The systematic mechanical error mentioned is directly relational with the high rainfall 

intensities, especially in some types of recording raingauge, such as the tipping bucket. In 

this case the bucket requires a specific calibration. 

For practical application, the rainfall measurement errors should be minimized. Several 

techniques can be used out to correct the different types of error. We will expose some of 

them.  

The trace precipitation error can be corrected according to Yang et al. (2001) by adding 0.1 

mm in the daily rain measure. However Woo and Steer (1979) designed a method of 

measuring trace rainfall in the Canadian high Arctic and determined a mean rate of 0.01 mm 

per day. 

The error due to evaporation can be estimated as follows according to the WMO Guide to 

meteorological practices (No-168, 1994):   
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ΔPe = ie τe          (19) 

where 

ie= evaporation intensity [mm/day]  

τe = duration of evaporation (fractions of a day) 

The value of ie depends on the construction, material and color of the gauge, on the amount 

and form of precipitation, on the saturation deficit of the air and on wind speed at the level 

of the gauge rim during evaporation. The theoretical estimation of the evaporation intensity 

(ie) is difficult because of the complex configuration of a precipitation gauge (Wagner, 2009). 

Several methods have been developed to avoid the wind effects in the rain measure. Some 

of them are the method developed by The World Meteorological Organization (WMO), the 

correction method according to Sevruk (2004), the method of Richter (1995) or the method 

according to Chang and Flannery (1998). 

Raingauges are also suffering from a small spatial support. To improve the spatial support of 

the measurement rainfall radar measurement are nowadays proposed. This device has led to 

a much greater appreciation of the temporal and spatial variation of rainfall intensities than 

was previously available from raingauge measurements alone (Beven, 2001). 

 

Discharge data 

The availability of discharge data is essential for the model calibration process. Normally the 

discharge data are available only in few locations in a catchment. 

There are many different ways of measuring discharges. Usually it is difficult to make a direct 

flow measurement, except for very small flows. The level of water in a channel is directly 

proportional to discharge, and this water level is relatively easy to measure. Yet the stage-

discharge relationship depends on the governing flow regime and is not unique for any cross 

sections.  

In a well-maintained weir or flume structure, the relationship between stage and discharge 

is determined by well-established hydraulic laws. In these conditions, the stage discharge 

conversion can be accurate (better than 5 percent, Beven, 2001). But sometimes accuracy 

can be worse than this, for example when if the structure is overtopped in a high flow. 

When there are extreme floods, the water-level measuring device may itself be washed 

away. In this case the flow can be estimated by means of the slope-area method. With this 

method, the cross-sectional area of the flow and the slope of the water surface are 

estimated from the trash lines indicating the maximum extent of the flow, and a uniform 

flow roughness equation used to determine an average velocity.  
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In this case, however, the flow may be non-uniform, highly turbulent, and with high 

sediment load. Hence the effective roughness coefficient and cross-sectional area, and 

hence he average velocity and discharge will be very uncertain (Beven, 2001). 

The modeller often forgets these potential errors, normally they use the raw discharge data.  

However, if a model is calibrated using data that are in error, then the effective parameter 

value will be affected. As a consequence these errors in the parameters will affect the 

predictions for other periods depending on these parameters. 

Some errors may be avoided doing simple checks as: 

- Calculate the total volumes of rainfall and runoff for different periods in the record, 

choosing periods separated by similar low flows where possible so that the calculated 

volumes are not greatly affected by recession discharge. 

- If more than one discharge gauge or raingauge are available, check for consistency 

between the gauges.  

- Check for any obvious signs that infilling of missing data has taken place.  

 

2.4 Model Calibration 

Hydrological models allow to predict run-off in terms of rainfall, and hence to support water 

resources management and engineering, if, and on only if, the model parameters of the 

hydrological model are known. In many cases, hydrological models are not known a priori 

and needs to be estimated based on limited observations of precipitation and discharge 

data. This process of parameter estimation is often done during the model calibration phase 

or the model inversion. Inversion refers to the process where model parameters are 

estimated from discharge and rainfall data. The model inversion process is in contrast to the 

direct modelling process, where run-off data are estimated from rainfall data and model 

parameters.   

The "inverse problem" consists in using the results of actual observations to infer the values 

of the parameters characterizing the system under investigation. The technique is based on 

the calibrating selected parameters using an iterative process of three basic steps: (i) 

parameter perturbation; (ii) forward modelling; and (iii) objective functions evaluations 

(Ritter et al., 2003). 

 

Inverse problems may be difficult to solve for at least two different reasons: (1) different 

values of the model parameters may be consistent with the data, and (2) discovering the 

values of the model parameters may require the exploration of a huge parameter space. 

Furthermore inverse problems are most difficult to solve than direct problems because the 

problem is the minimization of a non-linear object function which implies the solution of the 
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direct problem for many possible parameter realizations. This can be done using iterative 

methods such as Newton’s Method or The Gauss-Newton Iteration. The optimal parameter 

set is the one, which produces the optimal objective function. 

We explain below two methods, the simple “trial and error” method, and the method that 

we will use in this project, Global Multilevel Coordinate Search method. 

 

2.4.1 The “trial and error” procedure 

The trial and error is a subjective but simple method of solving inverse problems. With this 

method, parameters are tuned progressively from an initial set towards the optimal set in 

terms of some loosely defined object function. The tuning, however, is unsystematic and 

often subjective. Though very simple, the method should be avoided since the parameters 

may be situated within local optima and results may be largely influenced by the subjective 

initial choices of the model parameters. Also, the model does not allow assessing the quality 

of the obtained parameters. 

 

2.4.2 Global Multilevel Coordinate Search 

The GMCS method belongs to a category of increasingly popular global optimization 

algorithms that are designed to get over the complex topography and multimodality of the 

multidimensional nonlinear objective functions without requiring excessive computing 

resources (Lambot et al. 2002). 

 

Algorithms for solving global minimization problems can be classified into heuristic methods 

that find the global minimum only with high probability like, e.g., Simulated Annealing or 

Genetic algorithms, and stochastic methods that guarantee to find a global optimum with a 

required accuracy. The GMCS algorithm is an intermediate between both methods.  

 

GMCS does not need to calculate derivatives of the objective function, causing it to be very 

insensitive to possible discontinuity of the objective function. The task of global optimization 

is to find a solution for with the objective function obtains its smallest value, the global 

minimum. When the objective function has a huge number of local minima, local 

optimization techniques are likely to get stuck before the global minimum is reached, and 

some kind of global search is needed to find the global minimum with some reliability 

(Huyer, W. et  Neumaier, A. 1999). 

 

Basically, using the GMCS, the parameter search space is split into smaller ‘boxes’. Each box 

is characterized by its midpoint, whose function value is known. A box can be split into 

smaller ones. As a rough measure of the numbers of times a box has been split, and a 

determined level is assigned to each box (Ritter et al. 2003 and Ritter et al. 2004). The 
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algorithm starts with the boxes at the lowest level, and it is the global part of the algorithm. 

When the level of a box reaches a specified maximum value, the box is considered too small 

for follow the split and thus, the local search changes. 

 

The GMCS is a good alternative to other optimization algorithms: initial values of the 

parameters to be optimized are not needed and it is very robust, because it can deal with 

discontinuous nonlinear multimodal objective functions (Ritter et al. 2003). 
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3. Modelling theory 

3.1 The transfer function models 

We use a transfer function model to describe the water transport through the hydrological 

network. A transfer function is a mathematical representation, in terms of spatial or 

temporal frequency, of the relation between the input and output of a linear time-invariant 

system (LTI). 

The transfer function can be represented by the follow scheme:  

 

 

    Input u(t)        Output y(t) 

 

where u(t) would be in this study the rainfall and y(t) the flow. 

Mathematically, a transfer function in the Laplace domain can be defined as the quotient 

between the Laplace transform of the output (response function) and the Laplace transform 

of the input (excitation function, with the initial conditions of zero).  

 

     
    

    
                (20)               

Where: 

Y(s) is the Laplace transform of the output; 

 U(s) is the Laplace transform of the input;  

 G(s) is the Laplace domain Transfer function; and 

 E(s) is the Noise (can be considered zero). 

 

In the discrete-time domain, the model equation is: 

                                    (21) 

 

The transfer function in rainfall-runoff modelling allows the transformation of a time series 

of effective rainfalls into a series of predicted discharges.  

T F 
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3.1.1 Advantages 

The main advantages of the transfer function models are the follow (Rabenstein, 1998):  

- Is possible transpose the same procedure for setting up transfer function to a large 

number of technically important physical phenomena. There is no limitation in the 

number of spatial dimensions. No special system of coordinates is required and no 

special shape of the spatial domain is necessary.  

- The inherent stability of a physical process is reflected by the stability of the 

corresponding transfer function, which can be checked by inspection of the 

denominator polynomial.  

- The resulting discrete models are well suited for computer implementation since 

they require only addition, multiplication and delay elements and are free of implicit 

loops. 

- As compared to numerical models, transfer functions do not  employ a large number 

of calculations and can be easily implemented. 

 

 

3.1.2 Disadvantages 

The main limitation of transfer functions is that they can only be used for linear systems. 

While many of the concepts for state space modelling and analysis extend to nonlinear 

systems, there is no such analog for transfer functions and there are only limited extensions 

of many of the ideas to nonlinear systems. 

 

3.2 Unit hydrographs 

The theory of unit hydrograph was explained in the literature study. In this study we will use 

approaches linked to the unit hydrograph for modelling the hydrologic behaviour of the 

catchment. Since the unit hydrograph represents the probability that raindrops will reach 

the outlet, it reflects a probability density function. We can therefore use the unit 

hydrograph as a probability density based transfer function to model the rainfall-runoff 

process. 

 

 

The unit hydrographs will therefore be represented using parametric Probability Density 

Functions (PDFs).  
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3.3 Probability Density Functions 

The characterization of the time travel of water particles in the catchment will be achieved 

following the transfer function approach of Jury (Jury and Fluhler, 1992). This method uses a 

simple travel time probability density function (PDF) to relate an output time series to an 

input time series. 

 

The simulated discharge is determined through the convolution between the rain and the 

probability density function as followed: 

 

                      
  

  
          (22) 

 
 
where Qsim(t) is the simulated specific discharge (m3/s);  f(t) is the transfer function equal to 

the travel time probability density function (PDF) (1/s); P(t – τ) is the input time series, in our 

case the precipitation (m/s); and τ is the time lag between input water and water when it 

eventually enters the stream flow gauge. The transfer function f(t) measures the probability 

that a unit quantity of rain  reaches the outlet in a time t + Δt.  

 

Several probability density functions will be used in this study, concretely the Simple 

Transfer Function, Normal, Lognormal, Gamma, Beta and Weibull distribution. Brief 

descriptions about these PDFs are presented in this section. 

 
 

 

3.3.1 Simple Transfer Function: 

The Simple Transfer Function is a simple model for the probability density function curve.  

 

This simple curve can be represented as follows: 

             
 

 
           (23) 

 

where H(t) is the transfer function; t is the time; T the characteristic time; and A and B are 

the parameters. 

 

 

3.3.2 Normal Probability Density Function 

The normal or Gaussian density function has two parameters, µ and σ, which are the mean 

and standard deviation respectively. This distribution can be represented as follows: 

 

         
 

      
   

 
      

             (24) 
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The value of t is the time, must be always greater than 0; the value of µ can range between -

∞ and +∞; and σ is always greater than 0. 

 

The use of this distribution can be justified by means of the Central Limit Theorem; this 

states that, if a random variable is the sum of n random, not necessarily independent, 

variables, each with its own, not necessarily normal, density function with a finite mean and 

variance, then the density of this random variable tends to the normal function as n 

increases (Brutsaert, 2005). 

 

 

3.3.3 Log-normal Probability Density Function 

Many natural phenomena, which have a lower bound and exhibit positive skew, cannot be 

described well by the normal distribution, but in some cases their logarithms can. According 

to the Central Limit Theorem, this would be the case when the random variable is the 

product of n variables, each with its own arbitrary density function with a finite mean and 

variance (Brutsaert, 2005). The mathematical expression for the hydrograph using Log-

normal PDF is presented following: 

 

         
 

       
   

 
          

             (25) 

 

The notations µ and σ are the mean and standard deviation respectively. The value of t is the 

time, must be always greater than 0. The value of µ can range between -∞ and +∞, and σ is 

always greater than 0. 

 

 

3.3.4 Gamma Probability Density Function 

The PDF of two parameters Gamma distribution function can be expressed as:  

 

                
  

 
 
 

      
          (26) 

 

where  (a) is the Gamma function evaluated; a is the shape parameter; and b is the scale 

parameter. The parameters in a and b must all be positive, and the values in t must lie on the 

interval [0, ∞). 

  

 

3.3.5 Beta Probability Density Function 

The PDF of two parameters Beta distribution function can be expressed as:  
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                      (27) 

where B(a,b) is the Beta function; the notations a and b are the shape parameters, and they 

are always positive numbers. 

 

The Beta PDF provides all possible shape types based merely on the magnitude relationship 

between the parameters a and b. 

 

The shape of the PDF is: 

1. Positively skewed or prior – peak shape, when b > a > 1; 

2. Symmetrical or midpeak shape, when a = b; 

3. Negatively skewed or posterior – peak shape when a > b > 1. 

 

 

3.3.6 Weibull Probability Density Function 

The Weibull PDF is a continuous probability distribution that can handle increasing, 

decreasing or constant failure-rates and can be created for data with and without 

suspensions (non-failures). 

 

The two-parameter Weibull distribution can be represented as follows: 

 

 

         
 

   
        

 

 
            (28) 

where 

b is the slope or shape parameter; and 

a is  the characteristic life or scale parameter.  

 

 

3.4 Calibration 

In this section we will explain the theory relative to the modelling calibration, following the 

inverse method that was explained in the literature study.  

  

3.4.1 Inverse calibration methodology 

The inverse parameter estimation of the PDFs is formulated as a nonlinear optimization 

problem. The discharge model parameters are optimized by minimizing a suitable objective 

function based on the deviations between observed and predicted flow. 

The objective function OF can be expressed as follows:  

                             
 

 
             (29) 
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where OF(   ) is the objective function of parameter vector     that represents the error 

between measured and simulated values; O(ti) and P(ti) are observed and predicted values 

(hydrographs) using parameter vector    , respectively; t is the time; N is the number of 

measurements available; and wi is the weight of a particular measurement (Lambot et al., 

2002). 

The minimization of the OF will be carried out using the Global Multilevel Coordinate Search 

(GMCS) algorithm (Huyer, W. et Neumaier, A. 1999), described in the literature study. 

In our study, we will use as stopping criterion for the GMCS optimization task the maximum 

number of iterations, namely αmax. Also is defined an additional maximum number of 

function evaluations βmax, for a specific optimization problem.  

Both αmax and βmax are not known a priori for a specific optimization problem. These criteria 

should be defined such that not too many function values are needed after the global 

minimum has been reached, and such that convergence is reached. To solve this problem, 

we adopted the following strategy. Since local optimizations are performed many times, a 

too large βmax is likely to increase considerably the total number of function calls. Therefore, 

βmax was held to a relatively reasonable value. Nonetheless, it could happen that, using this 

limit, the global minimum found by GMCS is not quite optimal. Therefore, it was necessary 

to combine the sequentially GMCS with an additional local search algorithm with the 

classical Nelder-Mead Simplex algorithm (NMS) (Lagarias et al., 1998), to improve the 

solution.  

The local search algorithm starts from the GMCS solution and stops when iterations do not 

improve significantly the solution. This strategy improves the efficiency of the overall 

optimization task since GMCS needs only to find an approximate solution (Lambot et al. 

2002). 

 

3.4.2 Calibration procedure 

The calibration is carrying out in order to obtain the values of the parameters that minimize 

the objective function described above. These parameters values will allow representing the 

hydrograph with the minimum error.  

In the optimization procedure, the parameter uncertainty is determined on the basis of the 

parameter variance-covariance matrix C (Koll and Parker, 1988). 

  
   

   
             (30) 

where H is the Hessian matrix (size p x p) whose elements Hi,j are defined as follows: 

     
     

       
           (31)          
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assuming that b is the estimated parameter vector of the global minimum of the objective 

function. 

 

Note that when the estimated parameters are correlated, the consideration of only the 

diagonal terms of C may lead to an overestimation of the actual variability of the 

parameters, and thus of the confidence intervals (Carrera and Neuman, 1986). 

 

The elements Ai,j of the parameter correlation matrix A (size p x p) are defined as: 

 

     
    

          
          (32) 

 

 

High correlation coefficients between estimated parameters could also lead to 

nonuniqueness problems. 

 

Parameter sensitivity coefficients characterize the behaviour of the objective function at a 

particular point in the parameter space. In this study, sensitivity is only analyzed in the 

vicinity of the true parameter values. 

 

Elements Si,j of the sensitivity matrix S (size n x p) are computed as follows: 

 

Si,j = bj Ji,j          (33) 

 

where J is the Jacobian matrix (size n x p) whose elements Ji,j are defined as the partial 

derivatives ∂ei/∂bj. The elements of J are obtained by forward difference approximation with 

∂bj = 0.01 x bj. Elements Si,j represents the change of the measurement variable O relative to 

a change of 1% of the parameter bj, normalized by bj so that a comparison of sensitivities 

between different parameters can be made independently of their magnitudes. The matrix S 

gives the distribution of sensitivities both in time and space (Lambot et al., 2002). 
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4. Water resources issues in the Tempisque catchment 

4.1 Significance of the study area 

This study is performed for the Tempisque catchment in Costa Rica. During the last decades, 

the population of Costa Rica has increased dramatically. Concretely in the twentieth century 

the increase was higher than 3 million peoples (Hunt, 2009). Taking into account that the 

population in 2013 was 4,7 million (INEC, 2013), the increase population was enormous. It 

triggered an increase in the national needs for food, water and energy.  

The study region is particularly important for agriculture. The region has a high potential for 

sugar cane and rice production. As a consequence, agricultural and hydraulic infrastructure 

has been strongly developed. In particular, extraction of surface and groundwater for 

irrigation increased substantially. 

Also, multi-purpose plants haves been constructed to support the development of irrigated 

agriculture, to support energy production and to provide domestic water supply. 

The study region is also important for tourism, due to the cultural heritage of the basin. 

Indeed, the Tempisque catchment is one of the richest and most beautiful catchment of the 

country. The tourism sector strongly developed, resulting in some megaprojects and 

infrastructure developments to control floods in the catchment. Also the water consumption 

increase for domestic purposes increased considerably. 

 

All this have caused considerable impacts on the region’s economical and natural systems. 

The pressure exerted by these recent developments threatens the ecological integrity of the 

region. 

The basin presents several problems like perturbation of the hydrodynamic and intensity of 

the stream flows, increase in the agrochemical, nutrients, and sediment loads, uncontrolled 

water extraction from groundwater and surface water storages. All this involves 

environmental degradation and water-related social conflicts. 

 

Given all these pressures, appropriate management strategies for the basin’s water 

resources are badly needed. Management strategies could involve the optimization of water 

allocation strategies, meeting the different water demands, including the demand for 

preserving the rich diversity of the ecosystem. In all cases, water allocation strategies should 

be built on a depth understanding of the hydrological processes driving the water flow in the 

watershed. 

 

This study aims unravelling the hydrological mechanisms that determine flow in the 

Tempisque catchment. We will use transfer function based hydrological modelling concepts 

to simulate the flow dynamics in some locations of the catchment in terms of rainfall and 

dynamics measured in other locations. 
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Specifically will be develop a model which will be calibrate with river discharge data in the 

upper Tempisque measured from 1980 to 1985. 

 

 

4.2 General characteristics of the study area 

4.2.1 Location, main affluent and extension 

This study focuses on the 3405 km2 Tempisque river watershed situated in the nothwestern 

of Costa Rica. It is the second largest basin of Costa Rica, after the Térraba river catchment. 

The Tempisque river watershed, including the Bebedero basin, has an extension of 5404 

km2.  

The Tempisque river belongs to the Pacific Ocean basin. It is situated entirely in Costa Rica. It 

is the third most extensive river of the country, after the Grande de Térrava and the 

Reventazón rivers. It is the main river of Guanacaste province. The river flows from the 

Guanacaste Cordillera, near the Orosí Volcano, and discharges into the Gulf of Nicoya. It has 

a length of 144 km, it borders the Nicoya Peninsula and passes through Palo Verde National 

Park. 

 

 

Figure 9: Map of the Tempisque-Bebedero watershed, including the Palo Verde National 

Park and wetlands (Alonso, 2013). 
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The main affluents of this stream are the rivers Bebedero, Colorado, Liberia and Salto. The 

river is navigable during 36 km approximately, between the river mouth and the Bolsón 

village.  

The Tempisque basin is divided in three sections. The upper part is covered with forests, 

localized within the Guanacaste Volcanic Cordilllera. The middle part, is characterized by a 

rolling undulating landscape and agriculture land use, it is localized in Santa Rosa Plateau. 

The lower part is composed of plains and marshes known as “la Bajura del Tempisque”. 

 

4.2.2 Climate 

The climate in northern Pacific of Costa Rica is considered tropical. Therefore it is warm and 

isothermal. The pattern of precipitation is very irregular with a dry and a wet season.  

 

The average annual temperature is 27.4°C and a mean annual precipitation of 1817 mm, 

although this data is highly spatially variable.  The major part of the precipitation occurs 

during the wet season, between May and November. However there exist a short period of 

reduced rainfall during June, July and August known as the “Veranillo de San Juan”. This 

climatic phenomenon is due to an increase in the speed of the trade winds and a southerly 

shift of the Intertropical Convergence Zone. Droughts occur relatively frequently during the 

dry period and floods during the rainy season. 

 

 

4.2.3 Geology, Geomorphology and Soils 

The Tempisque River Basin is composed of a series of formations that correspond to 

different geologic ages. The Nicoya Complex is the oldest, it has the orogenesis during the 

Inferior Cretacic (Jimenez et al., 2001). This complex is partially overlain by intrusive rocks 

and the Sabana Grande and Rivas Formations that flourish in the lower areas of the basin. 

 

The Aguacate Complex was formed during the Superior Miocene and is located on the 

eastern section of the watershed. The Barra Honda and Brito Formations are located in the 

right margin of the Tempisque River and a series of hills in the lower basin. 

 

The Liberia and Bagaces Formations are found mainly along the Inter-American Highway. 

During the recent Quaternary era, lahars and volcanic structures were formed, situated in 

the Miravelles and Tenoria volcanoes piedmont. 

 

Furthermore there are fluvial, alluvial and coastal deposits, which form the floodplains of the 

Tempisque River valley or The Tempisque Depression. The floodplains include parts of the 

Gulf of Nicoya. 
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The topography is very variable. In the upland catchment, surface height varies between 0 

and 2,002 masl. In the lower catchment, there is an extensive area of wetlands. 

 

There are 20 subgroups of soils in the Tempisque Watershed that are part of five taxonomic 

orders including alfisoles, entisoles, inceptisoles, mollisoles and vertisoles. 

 

 

4.2.4 Flora and Fauna 

The Tempisque river watershed is one of the most beautiful landscapes of Costa Rica. It 

contains a big diversity of environment like cloud forest, wetlands, volcanoes and is an 

important habitat for various species of crocodiles, monkeys, iguanas and birds.  

In total, 148 tree species have been identified (some of which are in danger of extinction), 

306 species of birds, 111 mammals, 15 reptiles and 22 amphibians. 

 

Downstream from the Arenal-Tempisque Irrigation District is the Palo Verde National Park, it 

is a wetland of critical importance and attracts aquatic birds that migrate southwards during 

the winter season. One section of the park, Laguna Foohas, houses an estimated 50.000 

birds including ducks, herons, storks, egrets, grebes, ibis, jacanas and other forest birds such 

as macaws and small parrots (Hazell et al., 2001). 

 

 

4.2.5 Land use 

Fifty years ago, the Tempisque river basin land use still had approximately 50% of its original 

forest cover. Nowadays, most part of this area has been replaced by agricultural and 

livestock land use or human settlements. Practically all of the land used for agricultural 

purposes (90%), specially cane and rice fields, is concentrated in the lower basin (Jiménez et 

al., 2005), therefore in that area of the basin have been produced the major changes, 

specially important during the last two decades.   
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Table 1. Change of Land Use in the lower basin of the Tempisque River. 1955 – 2000 

(Jiménez et al., 2005). 

 

Until the 1980s, the cattle ranching was a very popular and lucrative business, but due to the 

decrease of the prices of products in international market, this activity diminished 

considerably.  

 

Approximately 20% of the basin is occupied by wetlands. The wetland area corresponds to 

1025 km2. This environment is important for protecting numerous wildlife species, for 

providing water to human settlements, and for decreasing the impacts of flooding. 

 

There are four types of wetlands in the Tempisque watershed: riverine, palustrine, 

lacustrine, and estuarine (Jimenez et al., 2001). 

 

 

4.2.6 Economic activities 

The Tempisque watershed is one of the most economically productive regions in the 

country. Sugar cane and rice plantations are the most productive of the country. 

Approximately 45% of all rice, 50% of sugar cane and all of the national melon production 

comes from the Tempisque river basin (Jimenez et al., 2001). 

 

The rich cultural heritage has promoted the tourism industry, and hence prosperity and 

employment to the area.  

 

The Gulf of Nicoya is one of the most productive estuary system of the world and supplies 

approximately a quarter of all fish production in the country as a whole (Hazell et al., 2001). 
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4.3 The floods 

The wet season is between May and November, but normally the heaviest rainfall that 

produces floods, occur in the period August – October. 

During flooding, water of the Tempisque inundates the riparian area and alluvial plain. The 

alluvial plains have been formed by numerous flooding associated with sedimentation. 

 

Although flooding occurs regularly in the catchment, they are highly unpredictable. Flooding 

is not necessarily negative. These events offer a number of important benefits, such as 

maintaining the ecological integrity of very important ecosystems including herbaceous 

wetlands, where hundreds of aquatic bird species nest and many species of fish and reptiles 

thrive (Jimenez et al., 2001). Further floods provide a set of benefits to the farmers which 

grow sugar cane, rice and melon in very fertile soils.  

 

But also floods induce damages to different cultures. For example in 1999, 2000 ha of rice 

were severely damaged, and 250 completely lost. In addition, 10 000 ha of sugar cane were 

affected and 200 devastated. As a consequence, more than 200 people lost their jobs 

(Jiménez et al., 2001). 

 

 
Figure 10: Floods in the Tempisque river basin during Hurricane Mitch, 1999 (Jiménez et al., 

2001).   
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Hence, the floods produce positive and negative effects, they are necessary for the 

maintaining of environment but produces great damages for agriculture and settlements 

humans. 

In the past decades the Costa Rica’s Government developed a set of measure to evacuate 

abundant water during wet periods including engineered infrastructures, as the Senara 

channel, dikes and dredging.  Nevertheless the floods have continued doing practically the 

same effects.  

 

4.4 A brief historical perspective  

Over many centuries, the Tempisque river basin was subjected to many transformations 

from anthropogenic origins. As a consequence, the landscape progressively changed from a 

dry tropical forest during the pre-Columbian period to extensive cattle ranching period 

during the colonial time. 

 

Transformations in the pre-Columbian history of this basin can be discussed for four periods: 

the Biocrome in Zones (300 BC – 300 AD), Ancient Polychrome (300-800 AD), Mid 

Polychrome (800-1200 AD), and Late Polychrome (1200-1500 AD). 

 

The main inhabitants of the region in the pre-Columbian period were the chorotega and 

nicarao groups that lived in semi-urban settlements, located near water sources. 

 

After arrival of Spaniards in the region, significant changes were produced in the 

environment. Spaniards established different settlement patterns, implemented new types 

of land uses and developed different forms of spatial organization. 

 

During the initial stages of colonial period (1502 to 1821), the subsistence agriculture was 

replaced by a slightly more intensive agriculture. 

 

During this period the land was distributed in three different categories, “caballerías”, 

“estancias” and “sitios”, for use in crop production, cattle ranching and grazing, respectively 

(Jiménez et al. 2001). Other categories of land tenure existed such as those promoted by the 

Franciscan brotherhood to provide funds to support the church’s activities. This land tenure 

consisted in farms establish around the villages and separated into small parcels where corn, 

cotton, cacao and plantains were produced. 

 

Also Spaniards introduced cattle, horses, asses, pigs, goats and chickens and the region 

became an important exporter of beef, lard, leather and cheese to Panamá, Nicaragua, 

Salvador and Guatemala. 
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During the XIX century and the first half of the XX, the land use did not change considerably. 

But at the beginning of the XX century other economic activities emerged, like the 

exportation of precious woods. 

 

Species such as cocobolo, cenízaro, cristobal were used for construction. Other species like 

cedro, caoba and guayacán were harvested for crafts, and palo brazil and mora for dye 

extraction. The rise of this activity produced a great decrease in the forest surface. 

 

After 1950, the region was subjected to important transformations. The Interamerican 

Highway was built along with numerous other rural roads. The banking system provided 

credits and gave an impulse to novel economical activities and the State changed the 

economic politics. 

 

The region became an exporter of beef towards North American markets. By the end of the 

1970s, Costa Rica was the fourth main exporter of meat to the USA. 

 

In North America the import activity of beef was a highly unstable business. During the1980s 

beef demand stagnated in the USA. The industry of the region decreased and furthermore 

Costa Rica suffered an economic crisis that accelerated inflation and skyrocketed interest 

rates. 

 

 

4.5 The Arenal - Tempisque Irrigation Program 

This Arenal - Tempisque Irrigation Program (known as PRAT in its Spanish acronym), was 

conceived originally for a twofold objective, by one hand provide hydroelectricity production 

through a hydroelectric plant, and by the other hand the irrigation purposes. In the figure 11 

is shown the irrigation canals and the hydroelectric plant.  

The original irrigation programme was conceived for the irrigation of an area upper than 60 

000 ha. The catchment is divided into two districts, the Arenal and Zapandi district. This 

project jurisdictionally affects the cantons of Abangares, Cañas, Bagaces and Liberia, 

although it influences also the cantons of Tilarán, San Carlos and Nicoya.  

The program was developed between 1975 and 1978, and is managed by The National 

Service of Subterranean Waters, Irrigation and Drainage (SENARA). 

 

The irrigation project produced changed considerably in the landscape of the region, 

including those areas that are affected by the project downstream of the irrigation 

perimeter, such as wetlands and the coastal and marine area of the Gulf of Nicoya. 

The water requirements for the irrigation project are met by means of the Arenal reservoir, 

situated northwest of the basin.  



43 
 

The irrigation project exploits the water from the Arenal reservoir for agriculture and 

domestic water supply, through a great channel network in the lower basin. The nominal 

discharge of the channel is approximately 60-65m3.sec-1 during the dry season and between 

30-35m3.sec-1 during the rainy season. 

 

In total, more than 255 km of canals and 252 km of roads and paths have been built, to 

supply water for the irrigation area that it is between 40 000 and 44 000 ha (Jiménez et al. 

2001). The irrigated area is mainly covered by two crops, rice and sugar cane, with 

respectively 50 and 40% of the crop area (Hazell et al., 2001). 

 

Water from the Arenal catchment originally flowed down towards the Caribbean Sea. With 

this project, major water transfer took place towards the Pacific catchment, involving the 

development of the Arenal-Tempisque hydroelectric complex, a cascade of three electric 

plants (Arenal, Corobici, and Sandillal). This hydroelectric complex is one of the most 

important hydroelectric centrals of the National Electric Sistem. It is the third plant in the 

country for producing electricity, with an installed capacity of 157.4 MW (Hazell et al., 2001). 

Currently, it generates 12% of the total electricity production of the country (Jiménez et al. 

2001; Coto, 2001). 

 
Figure 11: The Arenal – Tempisque Irrigation Program. 
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5. Material and Methods 

In this section we will explain the initial material that we have (hydrological data), and the 

methods that we have followed to carry out the hydrological modelling. 

 

5.1 Selection of data 

For our purpose, we have used daily data of rainfall and discharge of upper Tempisque Basin, 

measured from 1980 to 1985. 

 

There exist a large amount of rainfall historical data, gathered from the national electricity 

institute (Instituto Costarricense de Electricidad, ICE), and the national weather institute 

(Instituto Meteorologico National IMN), digitized and uploaded on the Hydrobase server 

(http://abe.ufl.edu/carpena/research/Tempisque.html) of University of Florida.  

 

We have used eight stations of rainfall, and two stations of discharge, and we have applied 

the Transfer Functions in all combinations rainfall-discharge, in order to gain more accuracy 

in the interpretation of the basin behaviour. Therefore we have 16 combinations rainfall-

discharge. The stations locations in the watershed are shown in the figure below.   

 

 

 
Figure 12: the stations locations in the Tempisque river watershed. 
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The main characteristics of the rainfall stations are shown in the next table (the elevations of 

the stations are given in local reference, Costa Rica uses datum WGS84): 

 

 Hydrobase 
Code 

The owner 
station 

Latitude Longitude Elevation Count 
(days) 

Liberia TBRN1 IMN 10.6 -85.5333 85 m 2071 

Hacienda la 
Flor 

TBRN2 IMN 10.65 -85.5333 50 m 2071 

Cañas Dulces TBRN4 IMN 10.7333 -85.4833 100 m 2071 

Hacienda 
Guachipelín 

TBRN5 ICE 10.75 -85.3833 520 m 2071 

Boriquen TBRN6 ICE 10.8167 -85.4167 580 m 2071 

Quebrada 
Grande 

TBRN7 IMN 10.85 -85.5 366 m 2071 

Hacienda 
Santa María 

TBRN8 IMN 10.75 -85.3 825 m 2071 

Fortuna TBRN10 ICE 10.6833 -85.2 430 m 2071 
Table 2: the main characteristics of the rainfall stations. 

 

The graphs showing the rainfall evolution in the modelling period (01/05/1980 – 

31/12/1985) are presented as follows: 

 

Liberia: 

 

 
Figure 13: Graphs showing the precipitation evolution between 1/05/1980 and 31/12/1985 

in Liberia. 
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Hacienda La Flor: 

 

 
Figure 14: Graphs showing the precipitation evolution between 1/05/1980 and 31/12/1985 

in Hacienda La Flor. 

 

 

Cañas Dulces: 

 

 
Figure 15: Graphs showing the precipitation evolution between 1/05/1980 and 31/12/1985 

in Cañas Dulces. 
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Hacienda Guachipelín: 

 

 
Figure 16: Graphs showing the precipitation evolution between 1/05/1980 and 31/12/1985 

in Hacienda Guachipelín. 

 

 

Boriquen: 

 

 
Figure 17: Graphs showing the precipitation evolution between 1/05/1980 and 31/12/1985 

in Boriquen. 
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Quebrada Grande:  

 

 
Figure 18: Graphs showing the precipitation evolution between 1/05/1980 and 31/12/1985 

in Quebrada Grande. 

 

 

Hacienda Santa María: 

 

 
Figure 19: Graphs showing the precipitation evolution between 1/05/1980 and 31/12/1985 

in Hacienda Santa María. 
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Fortuna: 

 

 
Figure 20: Graphs showing the precipitation evolution between 1/05/1980 and 31/12/1985 

in Fortuna. 

 

 

The discharges data were obtained exclusively from the limnigraph readings as made 

available by the national electricity institute (ICE). We have utilized data from two stations: 

Coyolar and Ponchote.  

 

 

Coyolar: 

The station gauge is located in Colorado River, approximately 1500 meters downstream of 

the Interamerican Highway Bridge. Concretely the Coyolar station is located in the Colorado 

River, and belongs to ICE. The station is equipped with limnigraph, pressure type (home 

Neyrpic).  

 

- Hydrobase Code: TBCA2 

- The owner station: ICE 

- Draining area: 128,2 km2 

- Latitude: 10.6689 

- Longitude: -85.4844 

- Elevation (WGS84): 76.69 m 

- Initial Date: 1/05/1980 

- Final Date: 31/12/1985 

- Count: 2071 

- Frequency: daily 
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Figure 21: Graphs showing the discharge evolution between 1/05/1980 and 31/12/1985 in 

Coyolar. 

 

 

El Ponchote: 

The Ponchote station is located in Salitral River, between the Santa Anita and Ahogados 

villages. It belongs to ICE. 

 

- Hydrobase Code: TBCA3 

- The owner station: ICE 

- Draining area: 26.2 km2 

- Latitude: 10.8047 

- Longitude: -85.4711 

- Elevation (WGS84): 258 m 

- Initial Date: 1/05/1980 

- Final Date: 31/12/1985 

- Count: 2071 

- Frequency: daily 
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Figure 22: Graphs showing the discharge evolution between 1/05/1980 and 31/12/1985 in El 

Ponchote. 

 

 

5.2 Implementation 

In this section we will develop the procedure that we have followed to obtain the unit 

hydrographs, and also the established criteria to choose the best model. 

 

5.2.1 Matlab 

The implementation and calibration carried on in this study were programmed entirely in 

MATLAB routines (version 7.12.0.635 (R2001a)). 

The rainfall and discharge data of the corresponding period were exported to programme. 

All the transfer functions that we have used were codes in MATLAB routines. Detailed codes 

are given in the annex of the document.  

The discharge function is modelled using a transfer function with their respective 

parameters and the precipitation, this general function can be expressed as: 

Qmod = f (TF(A,B), P)          (34) 

where Qmod is the modelled discharge; (TF(A,B)) is the corresponding transfer function with 

the parameters A and B; and P is the precipitation.  
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The last expression is the mathematical convolution between the transfer function and the 

rainfall. The next step was developing the objective function (OF). It is obtained as the 

difference between the measured and modelled discharges. 

 

5.2.2 Calibration  

The Global Multilevel Coordinate Search combined with Nelder-Mead Simplex Algorithm is 

used in this study and implemented in MATLAB.  

The first stage in the GMCS is the definition of the fixed and fitted parameters and also fitted 
parameters space in which the optimization process will be carried out or for which the 
objective function will be calculated.  
 

To establish the lower and upper bounds (U.V) in which the optimization is carried out, we 
have done a small study of the behavior of every probability density function. We have 
selected the range where the representation of the PDF is the shape of a Gauss bell, with 
maximum and minimum values of width. 
 
In the local optimization developed in Matlab, the Nelder-Mead function employed was 

“fminsearch”. It finds the minimum of a scalar function of several variables, starting at an 

initial estimate. This is generally referred to as unconstrained nonlinear optimization. The 

associated command to “fminsearch” is the follows:  

This function starts at the point x0 (global minimum by GMCS) and returns a value x that is a 

local minimizer of the function described in fun, in our case it is the objective function. 

Therefore we have obtained two possible solutions of parameter of each transfer function. 

However, the global solution with GMCS is the better, because it’s inside of the initial 

parameter range (U, V). 

 

5.2.3 Criteria for model selection 

The suitability of the PDFs to represent the shape of the hydrographs was obtained by 

comparing the simulated hydrographs with the observed hydrographs. A criterion for the 

selection of the PDFs is the resemblance of the shape of the PDF to the shape of the 

observed flood hydrograph.  

 

In order to evaluate the goodness of fit of predicted data, we have employed three criteria, 

concretely The Root Mean Square error (RMSE), the Nash–Sutcliffe model efficiency 

coefficient (NSE), and the Error Sum of Square (SSQ). 
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The RMSE is a useful single measure of the prediction capability of a model, since it indicates 

the precision with which the model estimates the value of the depended variable. The RMSE 

can be defined as: 

      
         

  
   

 
          (35) 

 

where Oi and Pi are the observed and predicted discharge respectively; and n is the number 

of observations.  

The NSE is traditionally used to assess the predictive power of hydrological models. It is 

defined as: 

        
         

 
   

        
    

          (36) 

 

where Oi and Pi are the observed and predicted discharge respectively; and    is the average 

of observed data.   

The Error Sum of Square is a measure of the discrepancy between the data and an 

estimation model. It can be expressed as: 

             
  

             (37) 

 

where n is the number of observations; and Oi and Pi are the observed and predicted 

discharge respectively. 

 

 

 

 

 

 

 

 

 

http://en.wikipedia.org/wiki/Hydrology
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6. Results and Discussions 

In this section we present the results of the modelling of the rainfall-discharge relationship in 

some locations of the Tempisque river watershed using Transfer Function modelling. First we 

used data from 2 rainfall and 2 discharge stations.  We have employed the precipitation – 

discharge series Boriquen rain – Ponchote flow, and Quebrada Grande rain – Coyolar flow.  

 

We first identified the parametric equation that is most appropriate for modelling flow in 

the catchment. We tested 6 parametric models (simple TF, normal TF, log-normal TF, beta 

TF, gamma TF and Weibull TF). 

We used visual comparison of modelled and simulated flow and statistical model error 

statistics to identify the most appropriate model. 

 

 

6.1 Identification of the parametric TF model 

In order to do the identification of the parameters of every Transfer Function, we have used 

only the slow TF, that is, only one Transfer Function in all rainfall range. The obtained results 

in the first combination (Boriquen rain – Ponchote flow) were the following: 

 

 Distribution Parameters RMSE NSE SSQ 

1 Simple T.F. A = 2.24; B =77.6 32.2353 -6.6789 4084.6031 
2 Normal µ =14 ; σ=7 0.87910 0.52531 1600.2862 
3 Log-normal µ = 3.6 ; σ= 0.65 0.94868 0.3472 1863.8720 
4 Beta A =43.49 ; B =48.5 1.89490 -1.2056 7436.5343 
5 Gamma A =6 ; B =7 0.98882 0.36578 2045.0535 
6 Weibull A =73 ; B =6 0.97264 0.41893 1959.2198 

Table 3: Parameters of the distribution and estimated values of error criteria (Boriquen rain – Ponchote flow). 

 

Unfortunately, the peak flows were not correctly simulated with the first model. Therefore, 

in order to improve the simulation for the peak flow event, we implemented a model 

consisting of 2 Transfer Functions coupled in parallel. The first TF, the slow TF, will only be 

activated for small and moderate rainfall events. The second TF, the fast TF will be activated 

for intensive rainfall events. A threshold rainfall determines when either the slow or the fast 

TF will be activated. 

Below we show the graphs using the two Transfer Functions coupled in parallel. These 

graphs display the simulated and observed discharge using the six transfer functions, in blue 

color are shown the observed discharge and in green color the predicted. Firstly is show the 

serie Boriquen rain-Ponchote flow, and after Quebrada Grande rain-Coyolar flow.  
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Fig. 23: Boriquen – Ponchote Weibull TF   Fig. 24: Boriquen - Ponchote Gamma TF 

  

Fig. 25: Boriquen - Ponchote Simple TF   Fig. 26: Boriquen - Ponchote Beta TF 

 

  

Fig. 27: Boriquen-Ponchote Normal TF   Fig. 28: Boriquen-Ponchote Log-normal TF 
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In the experiment Quebrada Grande rain and Coyolar flow, the obtained results were the 

follow (only in slow Transfer Function): 

 Distribution Parameters RMSE NSE SSQ 

1 Simple T.F. A =1.6 ; B =80.2 5.330 -0.20906 58944.990 
2 Normal µ = 14; σ=7 4.454 0.19726 41085.2521 
3 Log-normal µ 3.6= ; σ=0.65 3.4715 0.18807 24957.4773 
4 Beta A =44.87 ; B =49.2 6.5723 -0.83491 84456.474 
5 Gamma A =4.0 ; B =3.2 4.3804 0.18491 39737.790 
6 Weibull A = 35.6; B =6.0 4.3831 0.18390 39784.642 

Table 4: Parameters of the distribution and estimated values of error criteria (Quebrada Grande rain – Coyolar 

flow).  
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Fig. 29: Quebrada Grande – Coyolar Weibull TF Fig. 30: Quebrada Grande-Coyolar Gamma TF 

  

Fig. 31: Quebrada Grande – Coyolar Simple TF Fig. 32: Quebrada Grande – Coyolar Beta TF 

  

Fig. 33: Quebrada Grande-Coyolar Normal TF     Fig. 34: Quebrada Grande-Coyolar Log-normal TF 
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After analysing the tables with the obtained results and the graphs, we see that the 

simulations done by means of the Log-normal transfer function yield the best results. 

However also the Gamma and Weibull transfer functions gave good results. Therefore we 

will implement the Log-normal transfer function in all locations of the catchment, in order to 

know what are the water travel time and the shape of the several unit hydrograph in the 

catchment. 

The next table show the parameters value (Mu and Sigma) using the Log-normal transfer 

function in all combinations rainfall-discharge in the catchment. 

 

 PONCHOTE FLOW COYOLAR FLOW 

QUEBRADA 
GRANDE RAIN 

µ1= 3.6; σ1=0.65; µ2=3.6; σ2=0.65 µ1=3.6 ; σ1=0.65; µ2=1.7005; σ2=0.0336 

BORIQUEN RAIN µ1= 3.6; σ1=0.65; µ2=3.6 ; σ2=0.65 µ1=3.6 ; σ1=0.65; µ2=1.5873 ; σ2=0.65 

CAÑAS DULCES 
RAIN 

µ1= 3.6; σ1=0.65; µ2=3.6; σ2=0.65 µ1= 1.7832; σ1=0.65; µ2=3.6; σ2=0.65 

FORTUNA RAIN µ1= 3.6; σ1=0.65; µ2=3.6; σ2=0.65 µ1= 1.7451; σ1=0.65; µ2=3.6; σ2=0.65 

GUACHIPELÍN RAIN µ1= 3.6; σ1=0.65; µ2=3.6; σ2=0.65 µ1= 3.6; σ1=0.65; µ2=1.5; σ2=0.046 

HACIENDA LA FLOR 
RAIN 

µ1= 3.6; σ1=0.65; µ2=3.6; σ2=0.65 µ1= 3.6; σ1=0.65; µ2=1.5; σ2=0.0438 

HACIENDA SANTA 
MARÍA RAIN 

µ1= 3.6; σ1=0.65; µ2=3.6; σ2=0.65  µ1= 3.6; σ1=0.65; µ2=1.6983; σ2=0.0344  

LIBERIA RAIN µ1= 3.6; σ1=0.65; µ2=3.6; σ2=0.65 µ1= 3.6; σ1=0.6254; µ2=2.013; σ2=0.025 

Table 5: the parameters value in all combinations rainfall-discharge.  

 

After the parameters identification, is possible represent the shape of the Probability Density 

Functions (PDFs) of the Log-normal distribution. As we have explained in the theory section, 

the Probability Density Function corresponds to the shape of the unit hydrograph.  The slow 

and fast TFs identified for the different rainfall-runoff combinations in the catchment are 

given below.  
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Quebrada Grande rain – Ponchote flow: 

 

(a)                (b) 

Fig. 35: optimal Log-normal transfer function. Slow transfer function (a). Fast transfer function (b). 

Quebrada Grande rain – Coyolar flow: 

 

(a)                                                            (b) 

Figure 36: optimal Log-normal transfer function. Slow transfer function (a). Fast transfer function (b).  

Boriquen rain – Ponchote flow: 

 

(a)                                                            (b)   

Fig. 37: optimal log-normal transfer function. Slow transfer function (a). Fast transfer function (b).  
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Boriquen rain – Coyolar flow: 

 

(a)                 (b)  

Fig. 38: optimal Log-normal transfer function. Slow transfer function (a). Fast transfer function (b).  

Cañas Dulces rain – Ponchote flow: 

 

(a)              (b) 

Fig. 39: optimal Log-normal transfer function. Slow transfer function (a). Fast transfer function (b).  

Cañas Dulces rain – Coyolar flow: 

 

(a)                                                              (b) 

Fig. 40: optimal Log-normal transfer function. Slow transfer function (a). Fast transfer function (b).  
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Fortuna rain – Ponchote flow: 

 

(a)                (b) 

Fig. 41: optimal Log-normal transfer function. Slow transfer function (a). Fast transfer function (b).  

Fortuna rain – Coyolar flow: 

 

(a) (b) 

Fig. 42: optimal Log-normal transfer function. Slow transfer function (a). Fast transfer function (b).  

Guachipelín rain – Ponchote flow: 

 

(a)                          (b) 

Fig. 43: optimal Log-normal transfer function. Slow transfer function (a). Fast transfer function (b).  
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Guachipelín rain – Coyolar flow: 

 

(a)                 (b) 

Fig. 44: optimal Log-normal transfer function. Slow transfer function (a). Fast transfer function (b).  

Hacienda La Flor rain – Ponchote flow: 

 

(a)                                                             (b) 

Fig. 45: optimal Log-normal transfer function. Slow transfer function (a). Fast transfer function (b).  

Hacienda La Flor rain – Coyolar flow: 

 

(a)                                                             (b) 

Fig. 46: optimal Log-normal transfer function. Slow transfer function (a). Fast transfer function (b).  
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Hacienda Santa María rain – Ponchote flow: 

 

(a)                                                             (b) 

Fig. 47: optimal Log-normal transfer function. Slow transfer function (a). Fast transfer function (b).  

Hacienda Santa María rain – Coyolar flow: 

 

(a)                    (b) 

Fig. 48: optimal Log-normal transfer function. Slow transfer function (a). Fast transfer function (b).  

Liberia rain – Ponchote flow: 

 

(a)                                                             (b) 

Fig. 49: optimal Log-normal transfer function. Slow transfer function (a). Fast transfer function (b).  
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Liberia rain – Coyolar flow: 

 

(a)                                                              (b) 

Fig. 50: optimal Log-normal transfer function. Slow transfer function (a). Fast transfer function (b).  
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7. Conclusions 

In this study, we implemented linear transfer function theory for modelling hydrological 

fluxes in the hydrological network of the Tempisque catchment in Costa Rica. We used a 

transfer function model to estimate the travel time water between rainfall and runoff in 

several points of the watershed. We were able to make a relatively good prediction of the 

discharge in terms of observed precipitation in the catchment using parametric transfer 

functions.  

 

We used a transfer function composed of a fast and a slow reservoir. Six parametric forms of 

the transfer functions for the slow and fast reservoir were tested. The best results were 

obtained with the Log-normal, Gamma and Weibull transfer function. The results with the 

Log-normal were the most suitable, because the error between the modelled and real 

discharge was minimum.  

 

As we have applied transfer functions (slow and fast) that represent travel time between 

nodes of the hydrological network, we can assess the mean and standard deviation of the 

travel time of water in parts of the Tempisque catchment.  

 

The results showed that the slow transfer function has a variation of the travel time between 

1.7451 and 3.6 days, with a mean of 3.3705. The standard deviation was between 0.6254 

and 0.65 days, with a mean of 0.6484. In the case fast transfer function the travel time 

varied between 1.5 and 3.6 days, with a mean of 2.8749. The standard deviation of the fast 

transfer function was between 0.025 and 0.65 days, with a mean of 0.4583. 

 

With this study we have realized the good ability to predict the simulated flow over the time 

through transfer functions models when the precipitation is known. Therefore this project 

could provide a good tool in order to fight against flood in the country.  
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ANNEXE: Implementation in Matlab 

The routines carried out in Matlab in order to calibrate the transfer function model are very 

extensive. In this section we will explain some of the routines and also the functions used.     

The codes of the transfer functions used in this study are shown as follows:  

Simple Transfer Function 

tf = A – B.*exp(-t/T) 

 

Normal Probabilty Density Function 

tf = normpdf(t,Mu,sigma) 

 

Lognormal Probabilty Density Function 

tf = lognpdf(t,Mu,sigma) 

 

Gamma Probabilty Density Function  

tf = gampdf(t,A,B) 

 

Beta Probabilty Density Function  

tf = betapdf(t,A,B) 

 

Weibull Probabilty Density Function  

tf = wblpdf(t,A,B) 
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The simulated discharge was calculated through the mathematical convolution between the 

precipitation and the transfer function.  

y = convolution(a,b) 

The convolution function calculate the product convolution between the vectors a and b in 

the context of applying a filter to a series. The vector b acts as filter, and the length of the 

vector result is the same that vector a. 

To establish the objective function (OF), difference between the measured and modelled 

discharges, we have applied the next routine: 

function [OF] = obj_fun(X0) 

 

 

The vector determination of hydrologic parameters: 
 

tfm_parameters = PARAM; 

 

i2 = 1; 

 

for i1 = 1:length(tfm_parameters) 

 

   if isnan(tfm_parameters(i1)) 

 

      tfm_parameters(i1) = X0(i2) 

 

      i2 = i2+1; 

 

   end 

 

end 

  

 

 To establish the initial variables: 
 

Ymodel = []; ERR = []; Wvect = []; 

 

 

The calculation of the direct problem for the given the parameters vector: 
 

[Ymodel] = tfm(t,rain,tfm_parameters); 

 
 
The objective function is calculated only if the direct problem has converged.  
 

if ~isempty(Ymodel) 

 

   WEIGHT = [1];  
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“Weight” is only a simplification to save memory, only valid if all elements of Wvect are 
equal. 
 
 
The Calculation of the residuals vector: 
 

    ERR = Ymeas-Ymodel; 

  

 
The Calculation of the objective function: 
 

    OF = ERR'*WEIGHT*ERR; 

  

else 

   OF = 1;  

end 

 

 

The calibration implementation was carried out through the next routines: 

The parameters data were established through the next function: 

Function[PARAM,U,V,DIS1,Qp,NM,smax,nf,stop,iinit,local,gamma] 

= param_data() 

 

where: 
 
-PARAM: referred to the parameters of every transfer function, in our case Mu and Sigma 
(Log-normal). 
 
-U and V: define the parameters space in which the optimization will be carried out. Being U 
the lower bound and V the upper.  
 
-DIS1: define the discretization of parameters space, concretely the number of values 
between lower and upper bounds. 
 
-Qp: define values of fitted parameters to use as constants. 
 
-NM: define the different parameters couple for which the objective function will be 
calculated and plotted. 
 
-smax: is the number of levels, smax governs the relative amount of global versus local 
search. 
 
-nf: is the maximum number of function evaluations. 
 
-stop: is the integer defining stopping test. 
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-iinit: is the parameter defining the initialization list. 
 
-local: is the maximal number of steps in local search. 
 
-gamma: is the stopping criterion for local search. 
  

 

 The Global Multilevel Coordinate Search Function was defines as: 
 

[xbest,fbest,xmin,fmi,ncall,ncloc,flag] = 

    

mcs('feval','obj_fun',U,V,0,smax,nf,stop,iinit,local,gamma,one

s(np,np)) 

 
 

During the calibration the Jacobian, the covariance matrix (C), and the correlation matrix (A) 

are needed to carry out the calibration. The routines developed in Matlab in order to make 

these calculations were the follow: 

 
To calculate the Jacobian(J) 
 

J = zeros(n,p); 

for k = 1:p 

   delta = zeros(p,1); 

   delta(k) = xbest2(k)*0.01; 

   [OF] = obj_fun(xbest2+delta); 

   if OF == 1 

      [OF] = obj_fun(xbest2-delta); 

   end 

   J(:,k) = (Ymodel-Ymodelfit)/delta(k); 

End 

 

 

To calculate the parameters covariance matrix (C) 
 

S = chol(WEIGHT);   %Cholesky decomposition 

Jw = S*J; 

ERRw = S*ERR; 

ERR_var = (ERRw'*ERRw)/(n-p); 

C = ERR_var*inv(Jw'*Jw);         

Cii = diag(C); 

  

 
To calculate the parameters correlation matrix (A) 
 

Ci = Cii*ones(1,p); 

Cj = Ci'; 

A = C./(sqrt(Ci).*sqrt(Cj)); 
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Local optimization: 
As we have explained before, the global optimization is combined with the local optimization 
through the Nelder Mead. We have used the next function. 
 
x = fminsearch(fun,x0) 
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MULTILEVEL COORDINATE SEARCH FUNCTION:  
 The Global Multilevel Coordinate Search was programmed as follow: 
 
 Input: 
 -fcn: 'fun'   name of function fun(data,x), x an n-vector 
 -data:      data vector (or other data structure) 
 -[u,v]:     box in which the optimization is carried out (u, v n-vectors) 
- prt:       print level 
       prt = 0: no printing 
       prt = 1: # sweep, minimal nonempty level, # f-calls, best point and function value (default) 
       prt > 1: only meaningful for test functions with known global minimizes in addition levels and 
function values of boxes  containing the global minimizes of a test function. 
- smax:          number of levels (default: 5*n+10) 
 -nf:               maximum number of function evaluations (default: 50*n^2) 
- stop:          stop(1) in ]0,1[:  relative error with which the known global minimum of a test function 
should be found. 
              stop(2) = fglob known global minimum of a test function 
                   stop(3) = safeguard parameter for absolutely small  
      fglob: 
              stop(1) >= 1: the program stops if the best function value has not been improved for 
stop(1) sweeps. 
                   stop(1) = 0: the user can specify a function value that should be reached 
                   stop(2) = function value that is to be achieved 
              (default: stop = 3*n) 
- iinit: parameter defining the initialization list 
            = 0        corners and midpoint (default for finite u,v) 
            = 1        safeguarded version *default otherwise) 
            = 2        5u/6 + v/6, u/6 + 5v/6 and midpoint 
            = 3        initialization list with line searches otherwise  self-defined init. list (to be stored in  
             init0.m) 
 
 Output: 
 xbest(1:n):    current best point  
 fbest:     function value at xbest 
 xmin:          matrix with n rows; the columns are the points in the 'shopping basket' (i.e. good 
points resp. local minimizers) 
 fmi:           function values corresponding to the 'shopping basket'; 
             fmi(i) is the function value at xmin(:,i) 
 ncall:      number of function evaluations 
 ncloc:     number of function evaluations used for local search 
 flag:       specifies which stopping criterion has been used 
               = 0  a (known) global minimum fglob of a test function has been found with the required 
relative error  
            Relerr: 
               = 1  the division procedure has been completed 
               = 2  the maximum number nf of function calls has been reached without finding a known 
minimum with the required relative error or completing the division procedure 
           = 3  stop(1) sweeps without progress (for stop(1) >= 1) 
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function 
[xbest,fbest,xmin,fmi,ncall,ncloc,flag]=mcs(fcn,data,u,v,prt,smax,nf,stop,iinit,local,gamma,hess) 
  
Global variables 
global foptbox nbasket nboxes ncall nglob nsweep nsweepbest optlevel  record xglob xloc 
  
foptbox(1:nglob):  function value(s) of the box(es) containing the (a)global minimizer of a test 
function 
 -nbasket:       counter for boxes in the 'shopping basket' 
 -nboxes:        counter for boxes not in the 'shopping basket' 
 -nglob:         number of global minimizers of a test function 
- nloc:      (for local ~= 0) counter of points that have been used as starting points for a local search 
- nsweep:        sweep counter 
 -nsweepbest:    number of sweep in which fbest was updated for the last time 
 -optlevel:      level(s) of the box(es) containing the (a) global minimum of a test function 
 -record(1:smax-1) record(i) points to the best non-split box at level i(record list) 
- xglob(1:n,1:nglob)  xglob(:,i), i=1:nglob, are the global minimizers of a test function in [u,v] 
-xloc(1:n,:)   (for local ~= 0) columns are the points that have been used as starting points for local 
search 
 
n = length(u); 

  

To check box bounds: 
if ~isempty(find(v<u))  

  error('incompatible box bounds') 

elseif ~isempty(find(u==v)) 

  error('degenerate box bound') 

end 

  

  

Default values for the input parameters:  
if nargin < 5, prt = 1; end 

if nargin < 6, smax = 5*n+10; end 

if nargin < 7, nf = 50*n^2; end 

if nargin < 8, stop = 3*n; end 

if nargin < 9,  

  if isempty(find(isinf(u))) & isempty(find(isinf(v))) 

    iinit = 0;  

  else 

    iinit = 1; 

  end 

end 

if nargin < 10, local = 50; end 

if nargin < 11, gamma = eps; end 

if nargin < 12, hess = ones(n,n); end 

  

 

xmin=[];fmi=[];     % avoid warnings in Matlab 

  

 

The initial values for the numbers of function calls (total number/local search): 
ncall = 0; 

ncloc = 0; 

  

Some parameters needed for initializing large arrays: 
step1 = 10000; 
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step = 1000; 

dim = step1; 

  

 

The initialization of some large arrays: 
isplit = zeros(1,step1); 

level = zeros(1,step1); 

ipar = zeros(1,step1); 

ichild = zeros(1,step1); 

f = zeros(2,step1); 

z = zeros(2,step1); 

nogain = zeros(1,step1); 

  

 

Definition of the initialization list: 
if iinit == 0  

  x0(:,1) = u; 

  x0(:,2) = (u+v)/2; 

  x0(:,3) = v; 

  l = 2*ones(n,1); 

  L = 3*ones(n,1); 

elseif iinit == 1 

  for i = 1:n 

    if u(i) >= 0 

      x0(i,1) = u(i); [x0(i,2),x0(i,3)] = subint(u(i),v(i));x0(i,2) = 

0.5*(x0(i,1)+x0(i,3)); 

    elseif v(i) <= 0 

      x0(i,3) = v(i); [x0(i,2),x0(i,1)] = subint(v(i),u(i));x0(i,2) = 

0.5*(x0(i,1)+x0(i,3)); 

    else 

      x0(i,2) = 0; [xi,x0(i,1)] = subint(0,u(i)); [xi,x0(i,3)] = subint(0,v(i)); 

    end 

  end 

  l = 2*ones(n,1); 

  L = 3*ones(n,1); 

elseif iinit == 2 

  x0(:,1) = (5*u + v)/6; 

  x0(:,2) = 0.5*(u + v); 

  x0(:,3) = (u + 5*v)/6; 

  l = 2*ones(n,1); 

  L = 3*ones(n,1); 

elseif iinit == 3 

  [x0,f0,l,L,istar,ncall1] = initlist(fcn,data,u,v); 

  ncall = ncall + ncall1; 

else 

  init0     %self-defined initialization list 

  for i=1:size(x0,2) 

    if ~isempty(find(x0(:,i)<u)) | ~isempty(find(x0(:,i)>v)) 

      error('incorrect initialization list') 

    end 

  end 

end  

 

 

To check whether there are infinities in the initialization list: 
if ~isempty(find(isinf(x0))), error('infinities in ititialization list'), end 

  

if iinit ~= 3 

  [f0,istar,ncall1] = init(fcn,data,x0,l,L,n); 

  ncall = ncall + ncall1;  

end 
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Definition of the base vertex of the original box: 
for i = 1:n 

  x(i) = x0(i,l(i)); 

end 

  

 

Definition of the opposite vertex v1 of the original box: 
for i = 1:n 

  if abs(x(i)-u(i)) > abs(x(i)-v(i)) 

    v1(i) = u(i); 

  else 

    v1(i) = v(i); 

  end 

end 

  

 

Initialization of the record list, the counters nboxes, nbasket, m and nloc, xloc and the output 
flag: 
record = zeros(smax-1,1); 

nboxes = 1; 

nbasket = 0; 

nbasket0 = 0; 

nsweep = 0; 

m = n; 

record(1) = 1; 

nloc = 0; 

xloc = []; 

flag = 1;  

  

[ipar,level,ichild,f,isplit,p,xbest,fbest] = initbox(x0,f0,l,L,istar,u,v,prt); 

 

 

Generates the boxes in the initialization procedure: 
f0min = fbest; 

if stop(1) > 0 & stop(1) < 1 

  flag = chrelerr(fbest,stop); 

elseif stop(1) == 0 

  flag = chvtr(fbest,stop(2)); 

end 

if ~flag,return,end 

 

if the (known) minimum function value fglob has been found with the required tolerance, flag is 
set to 0 and the program is terminated 
  

s = strtsw(smax,level,f(1,:));  

 

The vector record is updated, and the minimal level s containing non-split boxes is computed 
nsweep = nsweep + 1 

 

   

while s < smax & ncall + 1 <= nf 

  par = record(s);    

  [n0,x,y,x1,x2,f1,f2] = vertex(par,n,u,v,v1,x0,f0,ipar,isplit,ichild,z,f,l,L);  

  if s > 2*n*(min(n0)+1)  

   

    [isplit(par),z(2,par)] = splrnk(n,n0,p,x,y);   

    splt = 1;   

  else 

    if nogain(par)  

      splt = 0; 

    else 
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      [e,isplit(par),z(2,par)] = exgain(n,n0,l,L,x,y,x1,x2,f(1,par),f0,f1,f2); 

      fexp = f(1,par) + min(e); 

      if fexp < fbest  

        splt = 1; 

      else 

        splt = 0;   

        nogain(par) = 1; 

      end 

    end 

  end 

  if splt == 1   

    i = isplit(par); 

    level(par) = 0; 

    if z(2,par) == Inf  

      m = m + 1; 

      z(2,par) = m;  

      [xbest,fbest,f0(:,m),xmin,fmi,ipar,level,ichild,f,flag,ncall1] = 

splinit(fcn,data,i,s,smax,par,x0,n0,u,v,x,y,x1,x2,L,l,xmin,fmi,ipar,level,ichild

,f,xbest,fbest,stop,prt); 

      ncall = ncall + ncall1; 

    else   

      z(1,par) = x(i); 

      [xbest,fbest,xmin,fmi,ipar,level,ichild,f,flag,ncall1] = 

split(fcn,data,i,s,smax,par,n0,u,v,x,y,x1,x2,z(:,par),xmin,fmi,ipar,level,ichild

,f,xbest,fbest,stop,prt); 

      ncall = ncall + ncall1; 

    end 

    if nboxes > dim  

 

 

If the pre-assigned size of the `large' arrays has already been exceeded, these arrays are made 
larger: 
      isplit(nboxes+1:nboxes+step) = zeros(1,step); 

      level(nboxes+1:nboxes+step) = zeros(1,step); 

      ipar(nboxes+1:nboxes+step) = zeros(1,step); 

      ichild(nboxes+1:nboxes+step) = zeros(1,step); 

      z(:,nboxes+1:nboxes+step) = zeros(2,step); 

      nogain(nboxes+1:nboxes+step) = zeros(1,step); 

      f(:,nboxes+1:nboxes+step) = zeros(2,step); 

      dim = nboxes + step; 

    end 

    if ~flag,break,end 

  else   

    if s + 1 < smax  

      level(par) = s + 1; 

      updtrec(par,s+1,f(1,:)); 

    else 

      level(par) = 0; 

      nbasket = nbasket + 1; 

      xmin(:,nbasket) = x; 

      fmi(nbasket) = f(1,par); 

    end 

    if prt > 1 

      [w1,w2] = bounds(n,n0,x,y,u,v); 

      iopt = []; 

      for iglob = 1:nglob 

        if w1 <= xglob(:,iglob) & xglob(:,iglob) <= w2 

          iopt = [iopt, iglob]; 

        end 

        for iglob = 1:length(iopt) 

          optlevel(iopt(iglob)) = s + 1; 

        end 

      end       



79 

 

    end 

  end   s = s + 1;     

  while s < smax  

    if record(s) == 0 

      s = s + 1; 

    else 

      break    

    end 

  end 

  if s == smax   

    if local, 

      [fmi(nbasket0+1:nbasket),j] = sort(fmi(nbasket0+1:nbasket)); 

      xmin(:,nbasket0+1:nbasket) = xmin(:,nbasket0+j); 

      xmin0 = []; 

      fmi0 = []; 

      for j = nbasket0+1:nbasket 

        x = xmin(:,j); 

        f1 = fmi(j); 

        chkloc; 

        if loc, 

          addloc;           

          [xbest,fbest,xmin,fmi,x,f1,loc,flag,ncall1] = 

basket(fcn,data,x,f1,xmin,fmi,xbest,fbest,stop,nbasket0); 

          ncall = ncall + ncall1; 

          if ~flag,break,end 

          if loc, 

            [xmin1,fmi1,nc,flag] = lsearch(fcn,data,x,f1,f0min,u,v,nf-

ncall,stop,local,gamma,hess); 

            ncall = ncall + nc; 

            ncloc = ncloc + nc; 

            if fmi1 < fbest 

              xbest = xmin1; 

              fbest = fmi1; 

              nsweepbest = nsweep; 

              if ~flag 

                nbasket0 = nbasket0 + 1; 

                nbasket = nbasket0; 

                xmin(:,nbasket) = xmin1; 

                fmi(nbasket) = fmi1; 

                break 

              end 

              if stop(1) > 0 & stop(1) < 1 

                flag = chrelerr(fbest,stop); 

              elseif stop(1) == 0 

                flag = chvtr(fbest,stop(2)); 

              end 

              if ~flag,return,end 

            end 

            [xbest,fbest,xmin,fmi,loc,flag,ncall1] = 

basket1(fcn,data,xmin1,fmi1,xmin,fmi,xbest,fbest,stop,nbasket0); 

            ncall = ncall + ncall1; 

            if ~flag,break,end 

            if loc, 

              nbasket0 = nbasket0 + 1; 

              xmin(:,nbasket0) = xmin1; 

              fmi(nbasket0) = fmi1; 

              fbestloc; 

              if ~flag, 

                nbasket = nbasket0; break 

              end 

            end 

          end 

        end 
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      end 

      nbasket = nbasket0;       

      if ~flag,break,end 

    end 

    s = strtsw(smax,level,f(1,:)); 

    if prt, 

      if nsweep == 1 

        fprintf('nsw  minl  '); 

        if prt > 1 

          fprintf('optl    fopt       ') 

        end 

        fprintf('nf     fbest        xbest\n') 

      end 

      minlevel=s; 

      fprintf('%3i  %3i',nsweep,minlevel); 

      if prt > 1 

        fprintf('  %3i',optlevel);fprintf('  %10.3e',foptbox); 

      end 

      fprintf('  %5i  %10.3e',ncall,fbest); 

      fprintf('  %10.4f',xbest); 

      fprintf(1,'\n'); 

    end 

    if stop(1) > 1 

      if nsweep - nsweepbest >= stop(1),flag = 3; return,end 

    end 

    nsweep = nsweep + 1; 

  end 

end 

if ncall >= nf 

  flag = 2; 

end 

if local, 

  if length(fmi) > nbasket 

    xmin(:,nbasket+1:length(fmi)) = []; 

    fmi(nbasket+1:length(fmi)) = []; 

  end 

end 

  

  

 

BASKET FUNCTION: 
The Basket function checks whether a candidate for local search lies in the 'domain of attraction' of 
a point in the 'shopping basket'. 
 

function [xbest,fbest,xmin,fmi,nbasket,loc,flag] = 

basket(fcn,data,x,f,xmin,fmi,xbest,fbest,stop,nbasket) 

 

global nsweep nsweepbest 

loc = 1; 

flag = 1; 

ncall = 0; 

if ~nbasket, return, end 

for k = 1:nbasket 

  dist(k) = norm(x - xmin(:,k)); 

end 

[dist1,ind] = sort(dist); 

for k = 1:nbasket 

  i = ind(k); 

  if fmi(i) <= f 

    p = xmin(:,i) - x; 

    y1 = x + 1/3*p; 

    f1 = feval(fcn,data,y1); 
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    ncall = ncall + 1; 

    if f1 <= f 

      y2 = x + 2/3*p; 

      f2 = feval(fcn,data,y2); 

      ncall = ncall + 1; 

      if f2 > max(f1,fmi(i)) 

        if f1 < f 

          x = y1; 

          f = f1; 

          if f < fbest 

            fbest = f; 

            xbest = x; 

            nsweepbest = nsweep; 

            if stop(1) > 0 & stop(1) < 1 

              flag = chrelerr(fbest,stop); 

            elseif stop(1) == 0 

              flag = chvtr(fbest,stop(2)); 

            end 

            if ~flag,return,end 

          end 

        end 

      else 

        if f1 < min(f2,fmi(i)) 

          f = f1; 

          x = y1; 

          if f < fbest 

            fbest = f; 

            xbest = x; 

            nsweepbest = nsweep; 

            if stop(1) > 0 & stop(1) < 1 

              flag = chrelerr(fbest,stop); 

            elseif stop(1) == 0 

              flag = chvtr(fbest,stop(2)); 

            end 

            if ~flag,return,end 

          end    

        elseif f2 < min(f1,fmi(i)) 

          f = f2; 

          x = y2; 

          if f < fbest 

            fbest = f; 

            xbest = x; 

            nsweepbest = nsweep; 

            if stop(1) > 0 & stop(1) < 1 

              flag = chrelerr(fbest,stop); 

            elseif stop(1) == 0 

              flag = chvtr(fbest,stop(2)); 

            end 

            if ~flag,return,end 

          end    

        else 

          loc = 0;break 

        end 

      end 

    end 

  end 

end 
 

 

 

INIT FUNCTION:  
The Init function computes the function values corresponding to the initialization list and the 
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pointer istar to the final best point x^* of the init list. 
 

function [f0,istar,ncall] = init(fcn,data,x0,l,L,n) 

function [f0,istar,ncall] = init(fcn,data,x0,l,L,n) 

ncall = 0; 

for i = 1:n 

  x(i) = x0(i,l(i)); 

end 

x = x'; 

f1 = feval(fcn,data,x); 

f0(l(1),1) = f1; 

ncall = ncall + 1;  

for i = 1:n 

  istar(i) = l(i); 

  for j = 1:L(i) 

    if j == l(i) 

      if i ~= 1 

        f0(j,i) = f0(istar(i-1),i-1); 

      end 

    else 

      x(i) = x0(i,j); 

      f0(j,i) = feval(fcn,data,x); 

      ncall = ncall + 1; 

      if f0(j,i) < f1 

        f1 = f0(j,i); 

        istar(i) = j; 

      end 

    end 

  end 

  x(i) = x0(i,istar(i)); 

end 

 

 

 

INITLIST FUNCTION: 
The Initlist function generates an initialization list with the aid of line searches. 
 

function [x0,f0,l,L,istar,ncall] = initlist(fcn,data,u,v) 

ncall = 0; 

nloc = 5; 

small = 0.1; 

smaxls = 25;   

n = length(u); 

x = min(max(u,0),v);     

f = feval(fcn,data,x); 

ncall = ncall + 1; 

for i = 1:n 

  alist = 0; 

  flist = f; 

  p = zeros(n,1); 

  p(i) = 1; 

  [alist,flist,nfls] = gls(fcn,data,u,v,x,p,alist,flist,nloc,small,smaxls); 

  ncall = ncall + nfls; 

  [alist1,flist1] = lspost(alist,flist); 

  if isempty(find(alist1==0)) 

    alist1 = [alist1 0]; 

    flist1 = [flist1 f]; 

  end 

  if length(alist1) < 3 

    if isempty(find(alist1==alist(length(alist)))) 

      alist1 = [alist1 alist(length(alist))]; 

      flist1 = [flist1 flist(length(alist))]; 
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    end 

    if length(alist1) < 3 

      if isempty(find(alist1==alist(1))) 

        alist1 = [alist1 alist(1)]; 

        flist1 = [flist1 flist(length(alist))]; 

      end 

      if length(alist1) < 3 

        k = round((1+length(alist))/2); 

        alist1 = [alist1 alist(k)]; 

        flist1 = [flist1 flist(k)]; 

      end 

    end 

  end 

  [alist,ind] = sort(alist1); 

  flist = flist1(ind); 

  l(i) = find(alist == 0); 

  [f1,istar(i)] = min(flist); 

  L(i) = length(alist); 

  x0(i,1:L(i)) = alist + x(i); 

  f0(1:L(i),i) = flist'; 

  x(i) = x0(i,istar(i)); 

  f = feval(fcn,data,x); 

end 

  

 

 

CHRELERR FUNCTION: 
The Chrelerr function checks whether the required tolerance for a test function with known global 
minimum has already been achieved. 
 

function flag = chrelerr(fbest,stop) 

 

fglob = stop(2); 

if fbest - fglob <= max(stop(1)*abs(fglob),stop(3)) 

  flag = 0; 

else 

  flag = 1; 

end   

 

 
 
STRTSW FUNCTION: 
The STRTSW function updates the record list for starting a new sweep and computes the lowest 
level containing non-split boxes. 
 

 

function s = strtsw(smax,level,f) 

 

record = zeros(smax-1,1); 

s = smax; 

for j = 1:nboxes 

  if level(j) > 0 

    if level(j) < s 

      s = level(j); 

    end 

    if ~record(level(j))   

      record(level(j)) = j; 

    elseif f(j) < f(record(level(j))) 

      record(level(j)) = j; 

    end 



84 

 

  end 

end 

  

 

 

SPLRNK FUNCTION: 
The SPLRNK function determines the splitting index and splitting value for splitting a box by rank. 
 

function [isplit,splval] = splrnk(n,n0,p,x,y) 

 

isplit = 1; 

n1 = n0(1); 

p1 = p(1); 

for i = 2:n 

 if n0(i) < n1 | (n0(i) == n1 & p(i) < p1) 

  isplit = i; 

  n1 = n0(i); 

  p1 = p(i); 

 end 

end  

if n1 > 0 

 splval = split2(x(isplit),y(isplit)); 

else 

 splval =  Inf; 

end 
 

 

 

EXGAIN FUNCTION: 
The exgain function determines the splitting index, the splitting value and the expected gain vector 
e for (potentially) splitting a box by expected gain. 
 

function [e,isplit,splval] = exgain(n,n0,l,L,x,y,x1,x2,fx,f0,f1,f2) 

 

emin = Inf;  % initialization 

for i = 1:n 

  if n0(i) == 0 

    e(i) = min(f0(1:L(i),i)) - f0(l(i),i);   

    if e(i) < emin 

      emin = e(i); 

      isplit = i; 

      splval = Inf; 

    end 

  else 

    z1 = [x(i) x1(i) x2(i)]; 

    z2 = [0 f1(i) - fx f2(i) - fx]; 

    d = polint(z1,z2); 

    [eta1,eta2] = subint(x(i),y(i)); 

    % safeguard against splitting too close to x(i) 

    xi1 = min(eta1,eta2); 

    xi2 = max(eta1,eta2); 

    z = quadmin(xi1,xi2,d,z1); 

    e(i) = quadpol(z,d,z1); 

    if e(i) < emin 

      emin = e(i); 

      isplit = i; 

      splval = z; 

    end 

  end 

end 
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VETEX FUNCTION: 
The Vetex function computes the base vertex x and the opposite vertex y of the box # j of MCS and 
the 'neighboring vertices' x1 and x2 and their functionvalues f1 and f2 needed for separable 
quadratic interpolation. 
 

function [n0,x,y,x1,x2,f1,f2] = 

vertex(j,n,u,v,v1,x0,f0,ipar,isplit,ichild,z,f,l,L) 

 

x = Inf*ones(n,1); 

y = Inf*ones(n,1); 

x1 = Inf*ones(n,1); 

x2 = Inf*ones(n,1); 

f1 = zeros(n,1); 

f2 = zeros(n,1); 

n0 = zeros(n,1); 

fold = f(1,j); 

m = j; 

while m > 1 

  i = abs(isplit(ipar(m))); 

  n0(i) = n0(i) + 1; 

  if ichild(m) == 1 

    if x(i) == Inf | x(i) == z(1,ipar(m))   

      [x(i),x1(i),x2(i),f1(i),f2(i)] = 

vert1(2,z(:,ipar(m)),f(:,ipar(m)),x1(i),x2(i),f1(i),f2(i)); 

    else 

      [f1,f2,fold] = updtf(n,i,x1,x2,f1,f2,fold,f(1,ipar(m))); 

      [x1(i),x2(i),f1(i),f2(i)] = 

vert2(1,x(i),z(:,ipar(m)),f(:,ipar(m)),x1(i),x2(i),f1(i),f2(i)); 

    end 

  elseif ichild(m) >= 2 

    [f1,f2,fold] = updtf(n,i,x1,x2,f1,f2,fold,f(1,ipar(m))); 

    if x(i) == Inf | x(i) == z(2,ipar(m)) 

      [x(i),x1(i),x2(i),f1(i),f2(i)] = 

vert1(1,z(:,ipar(m)),f(:,ipar(m)),x1(i),x2(i),f1(i),f2(i)); 

    else 

      [x1(i),x2(i),f1(i),f2(i)] = 

vert2(2,x(i),z(:,ipar(m)),f(:,ipar(m)),x1(i),x2(i),f1(i),f2(i)); 

    end  

  end 

  if 1 <= ichild(m) & ichild(m) <= 2 & y(i) == Inf 

    y(i) = split1(z(1,ipar(m)),z(2,ipar(m)),f(1,ipar(m)),f(2,ipar(m))); 

  end 

  if ichild(m) < 0  

    if u(i) < x0(i,1) 

      j1 = ceil(abs(ichild(m))/2);   

      j2 = floor(abs(ichild(m))/2); 

      if (abs(ichild(m))/2 < j1  & j1 > 1) | j1 == L(i)  

        j3 = -1;  

      else 

        j3 = 1; 

      end 

    else 

      j1 = floor(abs(ichild(m))/2) + 1; 

      j2 = ceil(abs(ichild(m))/2); 

      if abs(ichild(m))/2 + 1 > j1 & j1 < L(i) 

        j3 = 1; 

      else 

        j3 = -1; 
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      end 

    end 

    if isplit(ipar(m)) < 0  

      k = i; 

    else 

      k = z(2,ipar(m));  

    end 

    if j1 ~= l(i) | (x(i) ~= Inf & x(i) ~= x0(i,l(i))) 

      [f1,f2,fold] = updtf(n,i,x1,x2,f1,f2,fold,f0(l(i),k)); 

    end  

    if x(i) == Inf | x(i) == x0(i,j1) 

      x(i) = x0(i,j1); 

      if x1(i) == Inf 

        [x1(i),x2(i),f1(i),f2(i)] = 

vert3(j1,x0(i,:),f0(:,k),L(i),x1(i),x2(i),f1(i),f2(i)); 

      elseif x2(i) == Inf & x1(i) ~= x0(i,j1+j3)  

        x2(i) = x0(i,j1+j3); 

        f2(i) = f2(i) + f0(j1+j3,k); 

      elseif x2(i) == Inf 

        if j1 ~= 1 & j1 ~= L(i) 

          x2(i) = x0(i,j1-j3); 

          f2(i) = f2(i) + f0(j1-j3,k); 

        else 

          x2(i) = x0(i,j1+2*j3); 

          f2(i) = f2(i) + f0(j1+2*j3,k); 

        end 

      end 

    else 

      if x1(i) == Inf 

        x1(i) = x0(i,j1); 

        f1(i) = f1(i) + f0(j1,k); 

        if x(i) ~= x0(i,j1+j3) 

          x2(i) = x0(i,j1+j3); 

          f2(i) = f2(i) + f0(j1+j3,k); 

        end 

      elseif x2(i) == Inf   

        if x1(i) ~= x0(i,j1) 

          x2(i) = x0(i,j1); 

          f2(i) = f2(i) + f0(j1,k); 

        elseif x(i) ~= x0(i,j1+j3)  

          x2(i) = x0(i,j1+j3); 

          f2(i) = f2(i) + f0(j1+j3,k); 

        else 

          if j1 ~= 1 & j1 ~= L(i) 

            x2(i) = x0(i,j1-j3); 

            f2(i) = f2(i) + f0(j1-j3,k); 

          else 

            x2(i) = x0(i,j1+2*j3); 

            f2(i) = f2(i) + f0(j1+2*j3,k); 

          end 

        end      

      end 

    end 

    if y(i) == Inf 

      if j2 == 0 

        y(i) = u(i); 

      elseif j2 == L(i)  

        y(i) = v(i); 

      else 

        y(i) = split1(x0(i,j2),x0(i,j2+1),f0(j2,k),f0(j2+1,k)); 

      end 

    end  

  end 
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  m = ipar(m); 

end 

for i = 1:n 

  if x(i) == Inf 

    x(i) = x0(i,l(i)); 

    [x1(i),x2(i),f1(i),f2(i)] = 

vert3(l(i),x0(i,:),f0(:,i),L(i),x1(i),x2(i),f1(i),f2(i)); 

  end 

  if y(i) == Inf 

     y(i) = v1(i); 

  end 

end 
 

 

 
SPLINIT FUNCTION: 
The Splinit function splits box # par at level s according to the initialization list in the ith coordinate 
and inserts its children and their parameters in the list.  
 

function [xbest,fbest,f0,xmin,fmi,ipar,level,ichild,f,flag,ncall] =  

splinit(fcn,data,i,s,smax,par,x0,n0,u,v,x,y,x1,x2,L,l,xmin,fmi,xbest,fbest,ipar,

level,ichild,f,stop,prt) 

 

splinit(fcn,data,i,s,smax,par,x0,n0,u,v,x,y,x1,x2,L,l,xmin,fmi,ipar,level,ichild

,f,xbest,fbest,stop,prt) 

 

global nbasket nboxes nglob nsweep nsweepbest record xglob xloc   

ncall = 0; 

n = length(x);  

f0 = zeros(max(L),1); 

flag = 1; 

if prt > 1 

  [w1,w2] = bounds(n,n0,x,y,u,v); 

  iopt = []; 

  for iglob = 1:nglob 

    if w1 <= xglob(:,iglob) & xglob(:,iglob) <= w2 

      iopt = [iopt, iglob]; 

    end 

  end       

end 

for j=1:L(i) 

  if j ~= l(i) 

    x(i) = x0(i,j); 

    f0(j) = feval(fcn,data,x); 

    ncall = ncall + 1; 

    if f0(j) < fbest 

      fbest = f0(j); 

      xbest = x; 

      nsweepbest = nsweep; 

      if stop(1) > 0 & stop(1) < 1 

        flag = chrelerr(fbest,stop); 

      elseif stop(1) == 0 

        flag = chvtr(fbest,stop(2)); 

      end 

      if ~flag,return,end 

    end 

  else 

    f0(j) = f(1,par); 

  end 

end   

[fm,i1] = min(f0);  

if i1 > 1 
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  splval1 = split1(x0(i,i1-1),x0(i,i1),f0(i1-1),f0(i1)); 

else 

  splval1 = u(i); 

end 

if i1 < L(i) 

  splval2 = split1(x0(i,i1),x0(i,i1+1),f0(i1),f0(i1+1)); 

else 

  splval2 = v(i); 

end 

if s + 1 < smax  

  nchild = 0; 

  if u(i) < x0(i,1) 

    nchild = nchild + 1; 

    nboxes = nboxes + 1; 

    [ipar(nboxes),level(nboxes),ichild(nboxes),f(1,nboxes)] = genbox(par,s+1,-

nchild,f0(1));  

    updtrec(nboxes,level(nboxes),f(1,:)); 

    if prt > 1, 

      updtoptl(i,u(i),x0(i,1),iopt,s+1,f0(1)); 

    end 

  end 

  for j=1:L(i)-1 

    nchild = nchild + 1; 

    splval = split1(x0(i,j),x0(i,j+1),f0(j),f0(j+1));   

    if f0(j) <= f0(j+1) | s + 2 < smax 

      nboxes = nboxes + 1; 

      if f0(j) <= f0(j+1)  

        level0 = s + 1; 

      else 

        level0 = s + 2; 

      end 

      [ipar(nboxes),level(nboxes),ichild(nboxes),f(1,nboxes)] = 

genbox(par,level0,-nchild,f0(j)); 

      updtrec(nboxes,level(nboxes),f(1,:)); 

      if prt > 1, 

        updtoptl(i,x0(i,j),splval,iopt,level0,f0(j)); 

      end 

    else 

      x(i) = x0(i,j); 

      nbasket = nbasket + 1; 

      xmin(:,nbasket) = x; 

      fmi(nbasket) = f0(j); 

      if prt > 1, 

        updtoptl(i,x0(i,j),splval,iopt,smax,f0(j)); 

      end     

    end 

    nchild = nchild + 1; 

    if f0(j+1) < f0(j) | s + 2 < smax 

      nboxes = nboxes + 1; 

      if f0(j+1) < f0(j)   

        level0 = s + 1; 

      else 

        level0 = s + 2; 

      end 

      [ipar(nboxes),level(nboxes),ichild(nboxes),f(1,nboxes)] = 

genbox(par,level0,-nchild,f0(j+1)); 

      updtrec(nboxes,level(nboxes),f(1,:)); 

      if prt > 1, 

        updtoptl(i,splval,x0(i,j+1),iopt,level0,f0(j+1)); 

      end          

    else 

      x(i) = x0(i,j+1); 

      nbasket = nbasket + 1; 
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      xmin(:,nbasket) = x; 

      fmi(nbasket) = f0(j+1); 

      if prt > 1, 

        updtoptl(i,splval,x0(i,j+1),iopt,smax,f0(j+1)); 

      end          

    end 

  end 

  if x0(i,L(i)) < v(i) % in that case the box at the boundary gets level s + 1 

    nchild = nchild + 1; 

    nboxes = nboxes + 1; 

    [ipar(nboxes),level(nboxes),ichild(nboxes),f(1,nboxes)] = genbox(par,s+1,-

nchild,f0(L(i))); 

    updtrec(nboxes,level(nboxes),f(1,:)); 

    if prt > 1, 

      updtoptl(i,x0(i,L(i)),v(i),iopt,s+1,f0(L(i))); 

    end          

  end      

else 

  if prt > 1 & u(i) < x0(i,1) 

    updtoptl(i,u(i),x0(i,1),iopt,smax,f0(1)); 

  end 

  for j=1:L(i) 

    x(i) = x0(i,j); 

    nbasket = nbasket + 1; 

    xmin(:,nbasket) = x; 

    fmi(nbasket) = f0(j); 

    if prt > 1 & j < L(i) 

      splval = split1(x0(i,j),x0(i,j),f0(j),f0(j+1)); 

      updtoptl(i,x0(i,j),splval,iopt,smax,f0(j)); 

      updtoptl(i,splval,x0(i,j+1),iopt,smax,f0(j+1)); 

    end 

    if prt > 1 & x0(i,L(i)) < v(i) 

      updtoptl(i,x0(i,L(i)),v(i),iopt,smax,f0(L(i))); 

    end 

  end   

end 
 

 

 

SPLIT FUNCTION: 
The Split function splits box # par at level s in its ith coordinate into two or three children and 
inserts its children and their parameters in the list. 
 

function [xbest,fbest,xmin,fmi,ipar,level,ichild,f,flag,ncall] =  

split(fcn,data,i,s,smax,par,n0,u,v,x,y,x1,x2,z,xmin,fmi,ipar,level,ichild,f,xbes

t,fbest,stop,prt) 

 

global nbasket nboxes nglob nsweep nsweepbest record xglob  

ncall = 0; 

n = length(x); 

iopt = []; 

if prt > 1 

  [w1,w2] =  bounds(n,n0,x,y,u,v); 

  for iglob = 1:nglob 

    if w1 <= xglob(:,iglob) & xglob(:,iglob) <= w2 

      iopt = [iopt, iglob]; 

    end 

  end      

end 

flag = 1; 

x(i) = z(2); 

f(2,par) = feval(fcn,data,x); 
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ncall = ncall + 1; 

if f(2,par) < fbest 

  fbest = f(2,par); 

  xbest = x; 

  nsweepbest = nsweep; 

  if stop(1) > 0 & stop(1) < 1 

    flag = chrelerr(fbest,stop); 

  elseif stop(1) == 0 

    flag = chvtr(fbest,stop(2)); 

  end 

  if ~flag,return,end 

end 

splval = split1(z(1),z(2),f(1,par),f(2,par)); 

if s + 1 < smax  

  if f(1,par) <= f(2,par) 

    nboxes = nboxes + 1; 

    [ipar(nboxes),level(nboxes),ichild(nboxes),f(1,nboxes)] = 

genbox(par,s+1,1,f(1,par)); 

    updtrec(nboxes,level(nboxes),f(1,:)); 

    if prt > 1, 

      updtoptl(i,z(1),splval,iopt,s+1,f(1,par)); 

    end  

    if s + 2 < smax  

      nboxes = nboxes + 1; 

      [ipar(nboxes),level(nboxes),ichild(nboxes),f(1,nboxes)] = 

genbox(par,s+2,2,f(2,par)); 

      updtrec(nboxes,level(nboxes),f(1,:)); 

    else 

      x(i) = z(2); 

      nbasket = nbasket + 1; 

      xmin(:,nbasket) = x; 

      fmi(nbasket) = f(2,par); 

    end 

    if prt > 1, 

      updtoptl(i,splval,z(2),iopt,s+2,f(2,par)); 

    end  

  else 

    if s + 2 < smax 

      nboxes = nboxes + 1; 

      [ipar(nboxes),level(nboxes),ichild(nboxes),f(1,nboxes)] = 

genbox(par,s+2,1,f(1,par)); 

      updtrec(nboxes,level(nboxes),f(1,:)); 

    else 

      x(i) = z(1); 

      nbasket = nbasket + 1; 

      xmin(:,nbasket) = x; 

      fmi(nbasket) = f(1,par); 

    end 

    if prt > 1, 

      updtoptl(i,z(1),splval,iopt,s+2,f(1,par)); 

    end  

    nboxes = nboxes + 1; 

    [ipar(nboxes),level(nboxes),ichild(nboxes),f(1,nboxes)] = 

genbox(par,s+1,2,f(2,par)); 

    updtrec(nboxes,level(nboxes),f(1,:)); 

    if prt > 1, 

      updtoptl(i,splval,z(2),iopt,s+1,f(2,par)); 

    end  

  end 

  if z(2) ~= y(i) 

    if abs(z(2)-y(i)) > abs(z(2)-z(1))*(3-sqrt(5))*0.5 

      nboxes = nboxes + 1; 

      [ipar(nboxes),level(nboxes),ichild(nboxes),f(1,nboxes)] = 
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genbox(par,s+1,3,f(2,par)); 

      updtrec(nboxes,level(nboxes),f(1,:)); 

      if prt > 1, 

        updtoptl(i,z(2),y(i),iopt,s+1,f(2,par)); 

      end  

    else 

      if s + 2 < smax 

        nboxes = nboxes + 1; 

        [ipar(nboxes),level(nboxes),ichild(nboxes),f(1,nboxes)] = 

genbox(par,s+2,3,f(2,par)); 

        updtrec(nboxes,level(nboxes),f(1,:)); 

      else 

        x(i) = z(2); 

        nbasket = nbasket + 1; 

        xmin(:,nbasket) = x; 

        fmi(nbasket) = f(2,par); 

      end 

      if prt > 1, 

        updtoptl(i,z(2),y(i),iopt,s+2,f(2,par)); 

      end  

    end 

  end 

else 

  x(i) = z(1); 

  nbasket = nbasket + 1; 

  xmin(:,nbasket) = x; 

  fmi(nbasket) = f(1,par); 

  x(i) = z(2); 

  nbasket = nbasket + 1; 

  xmin(:,nbasket) = x; 

  fmi(nbasket) = f(2,par); 

  if prt > 1, 

    updtoptl(i,z(1),splval,iopt,smax,f(1,par)); 

    updtoptl(i,splval,z(2),iopt,smax,f(2,par)); 

    if z(2) ~= y(i) 

      updtoptl(i,z(2),y(i),iopt,smax,f(2,par)); 

    end 

  end 

end 
 

 
 
BOUNDS FUNCTION: 
The Bounds function computes the bounds for a box with base vertex x and opposite vertex y. 
 

function [w1,w2] = bounds(n,n0,x,y,u,v) 

 

w1 = zeros(n,1); 

w2 = w1; 

for i = 1:n 

  if n0(i) == 0 

    w1(i) = u(i); 

    w2(i) = v(i); 

  else 

    w1(i) = min(x(i),y(i)); 

    w2(i) = max(x(i),y(i)); 

  end 

end 
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LSEARCH FUNCTION: 
 
function [xmin,fmi,ncall,flag] = 

lsearch(fcn,data,x,f,f0,u,v,nf,stop,maxstep,gamma,hess) 

 

global nsweep nsweepbest 

ncall = 0; 

n = length(x); 

x0 = min(max(u,0),v); % absolutely smallest point 

if nargin < 10, maxstep = 50; end 

if nargin < 11, gamma = eps; end 

if nargin < 12, hess = ones(n,n); end 

flag = 1; 

eps0 = 0.001; 

nloc = 1; 

small = 0.1; 

smaxls = 15; 

[xmin,fmi,g,G,nfcsearch] = csearch(fcn,data,x,f,u,v,hess); 

xmin = max(u,min(xmin,v)); 

ncall = ncall + nfcsearch; 

xold = xmin; 

fold = fmi; 

if stop(1) > 0 & stop(1) < 1 

  flag = chrelerr(fmi,stop); 

elseif stop(1) == 0 

  flag = chvtr(fmi,stop(2)); 

end  

if ~flag,return,end 

d = min(min(xmin-u,v-xmin),0.25*(1+abs(x-x0))); 

p = minq(fmi,g,G,-d,d,0); 

if norm(p), 

  x = xmin + p; 

  x = max(u,min(x,v)); 

  f1 = feval(fcn,data,x); 

  ncall = ncall + 1; 

  alist = [0 1]; 

  flist = [fmi f1]; 

  fpred = fmi + g'*p + 0.5*p'*G*p; 

  [alist,flist,nfls] = gls(fcn,data,u,v,xmin,p,alist,flist,nloc,small,smaxls); 

  ncall = ncall + nfls; 

  [fminew,i] = min(flist); 

  if fminew == fmi 

    i = find(~alist); 

  else 

    fmi = fminew; 

  end 

  xmin = xmin + alist(i)*p; 

  xmin = max(u,min(xmin,v)); 

  gain = f - fmi; 

  if stop(1) > 0 & stop(1) < 1 

    flag = chrelerr(fmi,stop); 

  elseif stop(1) == 0 

    flag = chvtr(fmi,stop(2)); 

  end 

  if ~flag,return,end 

  if fold == fmi 

    r = 0; 

  elseif fold == fpred 

    r = 0.5; 

  else 

    r = (fold-fmi)/(fold-fpred); 

  end 

else 
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  gain = f - fmi; 

  r = 0; 

end 

diag = 0; 

ind = find(u < xmin & xmin < v); 

b = abs(g)'*max(abs(xmin),abs(xold)); 

nstep = 0; 

while ncall < nf & nstep < maxstep & (diag | length(ind) < n | (stop(1) == 0 & 

fmi - gain <= stop(2)) | (b >= gamma*(f0-f) & gain > 0))  

  nstep = nstep + 1; 

  delta = abs(xmin)*eps^(1/3); 

  j = find(~delta); 

  if ~isempty(j) 

    delta(j) = eps^(1/3)*ones(size(j)); 

  end 

  [x1,x2] = neighbor(xmin,delta,u,v); 

  f = fmi; 

  if length(ind) < n & (b < gamma*(f0-f) | ~gain) 

    ind1 = find(xmin == u | xmin == v); 

    for k=1:length(ind1) 

      i = ind1(k); 

      x = xmin; 

      if xmin(i) == u(i) 

        x(i) = x2(i); 

      else 

        x(i) = x1(i); 

      end 

      f1 = feval(fcn,data,x); 

      ncall = ncall + 1; 

      if f1 < fmi 

        alist = [0 x(i)-xmin(i)]; 

        flist = [fmi f1]; 

        p = zeros(n,1); 

        p(i) = 1; 

        [alist,flist,nfls] = gls(fcn,data,u,v,xmin,p,alist,flist,nloc,small,6); 

        ncall = ncall + nfls; 

        [fminew,j] = min(flist); 

        if fminew == fmi 

          j = find(~alist); 

        else 

          fmi = fminew; 

        end 

        xmin(i) = xmin(i) + alist(j); 

      else 

        ind1(k) = 0; 

      end 

    end 

    xmin = max(u,min(xmin,v)); 

    if ~sum(ind1),break,end 

    delta = abs(xmin)*eps^(1/3); 

    j = find(~delta); 

    if ~isempty(j) 

      delta(j) = eps^(1/3)*ones(size(j)); 

    end 

    [x1,x2] = neighbor(xmin,delta,u,v); 

  end  

  if abs(r-1) > 0.25 | ~gain | b < gamma*(f0-f) 

    [xmin,fmi,g,G,x1,x2,nftriple] = triple(fcn,data,xmin,fmi,x1,x2,u,v,hess); 

    ncall = ncall + nftriple; 

    diag = 0; 

  else 

    [xmin,fmi,g,G,x1,x2,nftriple] = triple(fcn,data,xmin,fmi,x1,x2,u,v,hess,G); 

    ncall = ncall + nftriple; 
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    diag = 1; 

  end 

  xold = xmin; 

  fold = fmi; 

  if stop(1) > 0 & stop(1) < 1 

    flag = chrelerr(fmi,stop); 

  elseif stop(1) == 0 

    flag = chvtr(fmi,stop(2)); 

  end 

  if ~flag,return,end 

  if r < 0.25 

    d = 0.5*d; 

  elseif r > 0.75 

    d = 2*d; 

  end 

  p = minq(fmi,g,G,max(-d,u-xmin),min(d,v-xmin),0); 

  if ~norm(p) & ~diag & length(ind) == n,break,end 

  if norm(p), 

    fpred = fmi + g'*p + 0.5*p'*G*p; 

    x = xmin + p; 

    f1 = feval(fcn,data,x); 

    ncall = ncall + 1; 

    alist = [0 1]; 

    flist = [fmi f1]; 

    [alist,flist,nfls] = gls(fcn,data,u,v,xmin,p,alist,flist,nloc,small,smaxls); 

    ncall = ncall + nfls; 

    [fmi,i] = min(flist); 

    xmin = xmin + alist(i)*p; 

    xmin = max(u,min(xmin,v)); 

    if stop(1) > 0 & stop(1) < 1 

      flag = chrelerr(fmi,stop); 

    elseif stop(1) == 0 

      flag = chvtr(fmi,stop(2)); 

    end 

    if ~flag,return,end  

    gain = f - fmi; 

    if fold == fmi 

      r = 0; 

    elseif fold == fpred 

      r = 0.5; 

    else 

      r = (fold-fmi)/(fold-fpred); 

    end 

    if fmi < fold   

      fac = abs(1-1/r); 

      eps0 = max(eps,min(fac*eps0,0.001)); 

    else 

      eps0 = 0.001; 

    end 

  else 

    gain = f - fmi; 

    if ~gain 

      eps0 = 0.001; 

      fac = Inf; 

      r = 0; 

    end 

  end 

  ind = find(u < xmin & xmin < v); 

  b = abs(g)'*max(abs(xmin),abs(xold)); 

end 
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BASKET 1 FUNCTION: 
The Basket 1 function checks whether a candidate for the 'shopping basket' lies in the 'domain of 
attraction' of a point already in the 'shopping basket'. 
 

function [xbest,fbest,xmin,fmi,loc,flag,ncall] = basket1(fcn,data,x,f 

xmin,fmi,xbest,fbest,stop,nbasket) 

 

global nsweep nsweepbest  

loc = 1; 

flag = 1; 

ncall = 0; 

if ~nbasket, return, end 

for k = 1:nbasket 

  dist(k) = norm(x - xmin(:,k)); 

end 

[dist1,ind] = sort(dist); 

for k = 1:nbasket 

  i = ind(k); 

  p = xmin(:,i) - x; 

  y1 = x + 1/3*p; 

  f1 = feval(fcn,data,y1); 

  ncall = ncall + 1; 

  if f1 <= max(fmi(i),f) 

    y2 = x + 2/3*p; 

    f2 = feval(fcn,data,y2); 

    ncall = ncall + 1; 

    if f2 <= max(f1,fmi(i)) 

      if f < min(min(f1,f2),fmi(i)) 

        fmi(i) = f; 

        xmin(:,i) = x; 

        if fmi(i) < fbest 

          fbest = fmi(i); 

          xbest = xmin(:,i); 

          nsweepbest = nsweep; 

          if stop(1) > 0 & stop(1) < 1 

            flag = chrelerr(fbest,stop); 

          elseif stop(1) == 0 

            flag = chvtr(fbest,stop(2)); 

          end 

          if ~flag,return,end 

        end    

        loc = 0;break 

      elseif f1 < min(min(f,f2),fmi(i)) 

        fmi(i) = f1; 

        xmin(:,i) = y1; 

        if fmi(i) < fbest 

          fbest = fmi(i); 

          xbest = xmin(:,i); 

          nsweepbest = nsweep; 

          if stop(1) > 0 & stop(1) < 1 

            flag = chrelerr(fbest,stop); 

          elseif stop(1) == 0 

            flag = chvtr(fbest,stop(2)); 

          end 

          if ~flag,return,end 

        end    

        loc = 0;break 

      elseif f2 < min(min(f,f1),fmi(i)) 

        fmi(i) = f2; 

        xmin(:,i) = y2; 

        if fmi(i) < fbest 

          fbest = fmi(i); 
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          xbest = xmin(:,i); 

          nsweepbest = nsweep; 

          if stop(1) > 0 & stop(1) < 1  

            flag = chrelerr(fbest,stop); 

          elseif stop(1) == 0 

            flag = chvtr(fbest,stop(2)); 

          end 

          if ~flag,return,end 

        end    

        loc = 0;break 

      else 

        loc = 0;break 

      end 

    end 

  end 

end 
 

 

 
HESSIAN: 
The Hessian computes the element G(i,k) of the Hessian of the local quadratic model. 
 

function h = hessian(i,k,x,x0,f,f0,g,G) 

 

h = f-f0-g(i)*(x(i)-x0(i))-g(k)*(x(k)-x0(k))-0.5*G(i,i)*(x(i)-x0(i))^2-

0.5*G(k,k)*(x(k)-x0(k))^2; 

h = h/(x(i)-x0(i))/(x(k)-x0(k)); 

 

 

 

GLS FUNCTION: 
The GLS function provides local and global line search for noiseless functions. 
  

 function 

[alist,flist,nf]=gls(func,data,xl,xu,x,p,alist,flist,nloc,small,smax,prt) 

 

if nargin==1,  

  disp(' '); 

  disp('******** debug mode; old data are used ********') 

  disp(' '); 

  prt1=func; 

  load glsinput; 

  prt=prt1; 

else  

  if nargin<9, nloc=1; end; 

  if nargin<10, small=0.1; end; 

  if nargin<11, smax=10; end; 

  if nargin<12, prt=0; end; 

  save glsinput; 

end; 

  

if prt>1,  

  disp('********************** gls *********************'); 

  format short;  

end; 

  

sinit=size(alist,2  

  

% get 5 starting points (needed for lslocal) 

bend=0;lsrange;          

lsinit;              
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nf=s-sinit;          

  

while s<min(5,smax),  

  if nloc==1, 

    lspar;           

    if s>3 & monotone & (abest==amin | abest==amax),  

      if prt>1, disp('return since monotone'); end; 

      nf=s-sinit       

lsdraw; return; 

    end; 

  else  

    lsnew;           

  end; 

end; 

  

saturated=0;             

if nmin==1,  

  if monotone & (abest==amin | abest==amax),  

    if prt>1, disp('return since monotone'); 

 end; 

    nf=s-sinit;          

    lsdraw; return; 

  end; 

  if s==5, lsquart; 

end;     

 

  lsdescent;             

  lsconvex;              

  if convex, 

    if prt>1, disp('return since convex'); end; 

    nf=s-sinit;          

    lsdraw; return; 

  end; 

end; 

sold=0; 

while 1, 

  lsdraw; 

  if prt>1, disp('***** new refinement iteration *****'); end; 

  lsdescent;             

  lssat;             

  if saturated | s==sold | s>=smax,  

    if saturated & prt>1, disp('return since saturated'); end; 

    if s==sold   & prt>1, disp('return since s==sold');   end; 

    if s>=smax   & prt>1, disp('return since s>=smax');   end; 

    lsdraw;break;  

  end; 

  sold=s; nminold=nmin; if prt>1, nmin, end; 

  if ~saturated & nloc>1, 

    lssep;           

  end; 

  lslocal;           

  if nmin>nminold, saturated=0; end; 

end; 

  

nf=s-sinit;          

 

 

 

ELS FUNCTION: 
The ELS function provides new linear line search using only initial gradient. 
 
function [alp,x,f,eff,nf]=els(case,x0,f0,p,gTp,fid); 
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if ~exist('fid'), fid=0; end; 

if fid>0, fprintf(fid,'*********** new line search **********\n'); 

 end; 

  

if gTp>=0, 

  eff=-1;  

  x=x0;f=f0;  

  return;  

end;  

  

maxit=10;    

ftol=.001; 

xtol=.1; 

stpmin = 0; 

stpmax = 1e20;  

 [memory,ier]=init(f0,gTp,ftol,xtol,stpmin,stpmax,fid); 

alp=1;  

nf=0; 

task='VALUE'; 

  

while 1, 

  ier=0; 

  if task(1)=='V', 

    x=x0+alp*p; 

    f=func1(case,x); 

    nf=nf+1; 

    eff=0; 

  elseif task(1)=='C', 

    if fid>0, fprintf(fid,task); 

end; 

    eff=1; 

  elseif task(1)=='W', 

    if fid>0, fprintf(fid,task);  

end; 

    eff=2; 

  else % task(1)=='E', 

    if fid>0, fprintf(fid,task);  

end; 

    eff=0; 

    x=x0;f=f0; 

    ier=1; 

  end; 

  if nf>=maxit | ier>0 | eff>0, break;  

end; 

    [alp,task,memory]=step(alp,f,memory); 

end; 

  

if f>f0,x=x0;f=f0; 

end; 

  

if fid>0 & nf>0, 

  format='eff=%1.0f f=%16.8e alp=%10.4f mu=%8.1f nf=%2.0f%4s\n'; 

  mu=(f-f0)/(alp*gTp); 

  if length(task)<12, task='VALUE    max';  

end; 

  fprintf(fid,format,eff,f,alp,mu,nf,task(9:12)); 

end; 
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MINQ FUNCTION: 
The Minq function minimizes an affine quadratic form subject to simple bounds, using coordinate 
searches and reduced subspace minimizations using LDL^T factorization updates. 
 

 function [x,fct,ier,nsub]=minq(gam,c,G,xu,xo,prt,xx); 

 

if prt>0, printlevel=prt, end; 

convex=0; 

n=size(G,1); 

maxit=3*nnitrefmax=3;         

 

if nargin<7, 

  xx=zeros(n,1); 

end; 

xx=max(xu,min(xx,xo)); 

  

hpeps=100*eps;   

G=G+spdiags(hpeps*diag(G),0,n,n); 

  

K=logical(zeros(n,1));  % initially no rows in factorization 

if issparse(G), L=speye(n); else L=eye(n); end; 

dd=ones(n,1);    

  

free=logical(zeros(n,1));  

nfree=0; 

nfree_old=-1; 

  

fct=inf;         

nsub=0;          

unfix=1;         

nitref=0;        

improvement=1;       

  

while 1, 

  if prt>1, disp('enter main loop'); end; 

  if norm(xx,inf)==inf, error('infinite xx in minq.m'); end; 

  g=G*xx+c; 

  fctnew=gam+0.5*xx'*(c+g); 

  if ~improvement, 

    if prt,  

      disp('terminate: no improvement in coordinate search');  

    end; 

    ier=0; break;  

  elseif nitref>nitrefmax, 

    if prt, disp('terminate: nitref>nitrefmax'); end; 

    ier=0; break;  

  elseif nitref>0 & nfree_old==nfree & fctnew >= fct, 

    if prt,  

      disp('terminate: nitref>0 & nfree_old==nfree & fctnew>=fct');  

    end; 

    ier=0; break;  

  elseif nitref==0, 

    x=xx; 

    fct=min(fct,fctnew); 

    if prt>1, fct, end; 

    if prt>2, X=x', fct, end; 

  else  

    x=xx; 

    fct=fctnew; 

    if prt>1, fct, end; 

    if prt>2, X=x', fct, end;     

  end; 
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  if nitref==0 & nsub==maxit,  

    if prt, 

      disp('!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!');  

      disp('!!!!!           minq          !!!!!');  

      disp('!!!!! incomplete minimization !!!!!');  

      disp('!!!!!   too many iterations   !!!!!');  

      disp('!!!!!     increase maxit      !!!!!');  

      disp('!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!'); 

    else 

      disp('iteration limit exceeded'); 

    end; 

    ier=99; 

    break; 

  end; 

  

  count=0;    k=0;       

  while 1, 

    while count<=n, 

      count=count+1; 

      if k==n, k=0; end; 

      k=k+1; 

      if free(k) | unfix, break; end; 

    end; 

    if count>n,  

    end; 

    q=G(:,k); 

    alpu=xu(k)-x(k); alpo=xo(k)-x(k); % bounds on step 

  

    [alp,lba,uba,ier]=getalp(alpu,alpo,g(k),q(k)); 

    if ier, 

      x=zeros(n,1);  

      if lba, x(k)=-1; else x(k)=1; end; 

      if prt,  

        gTp=g(k),pTGp=q(k),quot=pTGp/(norm(p,1)^2*norm(G(:),inf)) 

        disp('minq: function unbounded below in coordinate direction');  

        disp('      unbounded direction returned');  

        disp('      possibly caused by roundoff');  

      end; 

      if prt>1,  

        disp('f(alp*x)=gam+gam1*alp+gam2*alp^2/2, where');  

        gam1=c'*x 

        gam2=x'*(G*x) 

        ddd=diag(G); 

        min_diag_G=min(ddd) 

        max_diag_G=max(ddd) 

      end; 

      return; 

    end; 

    xnew=x(k)+alp; 

    if prt & nitref>0, 

      xnew,alp 

    end; 

     

    if lba | xnew<=xu(k), 

      if prt>2, disp([num2str(k), ' at lower bound']); end; 

      if alpu~=0, 

        x(k)=xu(k); 

        g=g+alpu*q; 

        count=0; 

      end; 

      free(k)=0; 

    elseif uba | xnew>=xo(k), 

      if prt>2, disp([num2str(k), ' at upper bound']); end; 
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      if alpo~=0, 

        x(k)=xo(k); 

        g=g+alpo*q; 

        count=0; 

      end; 

      free(k)=0; 

    else 

      if prt>2, disp([num2str(k), ' free']); end; 

      if alp~=0, 

        if prt>1 & ~free(k),  

          unfixstep=[x(k),alp],  

        end; 

        x(k)=xnew; 

        g=g+alp*q; 

        free(k)=1; 

      end; 

    end; 

  

  end; 

  

  nfree=sum(free); 

  if (unfix & nfree_old==nfree), 

    g=G*x+c; 

    nitref=nitref+1; 

    if prt>0, 

      disp('optimum found; iterative refinement tried'); 

    end; 

  else 

    nitref=0; 

  end; 

  nfree_old=nfree; 

  gain_cs=fct-gam-0.5*x'*(c+g); 

  improvement=(gain_cs>0 | ~unfix); 

  

  if prt,  

    nfree=pr01('csrch ',free); 

  end;  

  if prt, gain_cs, end; 

  if prt>2, X=x', end; 

  

  xx=x;  

  if ~improvement | nitref>nitrefmax, 

  elseif nitref>nitrefmax, 

  elseif nfree==0, 

    if prt>0, 

      disp('no free variables - no subspace step taken') 

    end; 

    unfix=1; 

  else 

    minqsub;  

    if ier, return; end; 

  end; 

  

  if prt>0,  

    nfree=pr01('ssrch ',free); 

    disp(' '); 

    if unfix & sum(nfree)<n, 

      disp('bounds may be freed in next csearch');  

    end; 

  end;  

  

  

end; 
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if prt>0,  

  fct 

  disp('################## end of minq ###################'); 

end; 
 


