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With spatially distributed models, the effect of spatial uncertainty of the model 

inputs is one of the least understood contributors to output uncertainty and can be a 

substantial source of errors that propagate through the model. The application of the 

global uncertainty and sensitivity (GUA/SA) methods for formal evaluation of models is 

still uncommon in spite of its importance. Even for the infrequent cases where the 

GUA/SA is performed for evaluation of a model application, the spatial uncertainty of 

model inputs is disregarded due to lack of appropriate tools. The main objective of this 

work is to evaluate the effect of spatial uncertainty of model inputs on the uncertainty of 

spatially distributed watershed models in the context of other input uncertainty sources. 

A new GUA/SA framework is proposed in this dissertation in order to incorporate the 

effect of spatially distributed numerical and categorical model inputs into the global 

uncertainty and sensitivity analysis (GUA/SA). The proposed framework combines the 

global, variance-based method of Sobol and geostatistical techniques of sequential 

simulation (SS). Sequential Gaussian simulation (SGS) is used for estimation of spatial 

uncertainty for numerical inputs (such as land elevation), while sequential indicator 
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simulation (SIS) is used for assessment of spatial uncertainty of categorical inputs (such 

as land cover type). The Regional Simulation Model (RSM) and its application to WCA-

2A in the South Florida Everglades is used as a test bed of the framework developed in 

this dissertation. The RSM outputs chosen as metrics for GUA/SA for this study are key 

performance measures generally adopted in the Everglades restoration studies: 

hydroperiod, water depth amplitude, mean, minimum and maximum. The GUA/SA 

results for two types of outputs, domain-based (spatially averaged over domain) and 

benchmark cell-based, are compared. The benchmark cell-based outputs are 

characterized with larger uncertainty than their domain-based counterparts. The 

uncertainty of benchmark cell-based outputs is mainly controlled by land elevation 

uncertainty, while uncertainty of domain-based outputs it also attributed to factors like 

conveyance parameters. The results indicate that spatial uncertainty of model inputs is 

indeed an important source of model uncertainty. 

The land cover distribution affects model outputs through delineation of Manning‘s 

roughness zones and evapotranspiration factors associated to the different vegetation 

classes.  This study shows that in this application the spatial representation of land 

cover has much smaller influence on model uncertainty when compared to other 

sources of uncertainty like spatial representation of land elevation.  

The spatial uncertainty of land cover was found to affect RSM domain-based 

model outputs through delineation of Manning‘s roughness zones more than through ET 

parameters effects. 

The relationship between model uncertainty and alternative spatial data 

resolutions was studied to provide an illustration of how the procedure may be applied 
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for more informed decisions regarding planning of data collection campaigns. The 

results corroborate a proposed hypothetical nonlinear, negative relationship between 

model uncertainty and source data density. The inflection point in the curve, 

representing the optimal data requirements for the application, is identified for the data 

density between 1/4 and 1/8 of original data density. It is postulated that the inflection 

point is related to the characteristics of the spatial dataset (variogram) and the 

aggregation technique (model grid size). 

The framework proposed in this dissertation could be applied to any spatially 

distributed model and input, as it is independent from model assumptions. 
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 CHAPTER 1  
INTRODUCTION 

Uncertainty and Sensitivity Analysis 

In the fields of water resources management and ecosystem restoration, the 

decision-making process is often supported by complex hydrological models. Model 

predictions are associated with uncertainties resulting from input data and parameter 

variability, model algorithms or structure, model calibration data, scale, model boundary 

conditions, etc. (Beven, 1989; Haan, 1989; Luis and McLaughlin, 1992; 

Shirmohammadi, 2006). Often, important management decisions are based on those 

simulations results. The uncertainty of the model results is often a major concern, since 

it has policy, regulatory, and management implications (Shirmohammadi et al., 2006). 

Scientific information feeds into the policy process, with a tendency by all parties 

involved to manipulate uncertainty. Uncertainty cannot be resolved into certainty in most 

instances. Instead, transparency must be offered by the global sensitivity analysis. 

Transparency is what is needed to ensure that the negotiating parties do not throw 

away science as a just another contentious input (Pascual, 2005). As stated by Beven 

(2006) if model uncertainty is not evaluated formally, the science and value of the model 

as a decision-supporting tool can be undermined. Formal uncertainty and sensitivity 

analysis (UA/SA) can increase confidence in model predictions by providing 

understanding of model behavior and by assessing model reliability in a decision 

making framework (Saltelli et al., 2004). Uncertainty analysis involves quantification of 

the uncertainties in the model input data and parameters and their propagation through 

the model to model outputs (predictions). The role of the sensitivity analysis (SA) is to 

apportion model output uncertainty into the model inputs. 
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UA/SA provides irreplaceable insight into model behavior and should be used not 

just at the outset but throughout model calibration and application as a part of an 

iterative process of model identification and refinement (Crosetto and Tarantola, 2001). 

Uncertainty and sensitivity analyses can be applied synergistically for the evaluation of 

complex computer models (Muñoz-Carpena et al., 2006; Saltelli et al., 2004). The 

formal application of UA allows the modeler to evaluate the performance and reliability 

of the model for specific application. SA, on the other hand, allows a better 

understanding of a model by identifying factors‘ contributions to output uncertainty.  

However, in spite of their strengths, formal sensitivity and uncertainty analyses are 

often ignored in hydrological and water quality modeling efforts (Haan et al., 1995; 

Muñoz-Carpena et al., 2006; Shirmohammadi et al., 2006), usually due to the 

considerable effort these involve as the complexity and size of the models increase and 

also due to the limited data available specific to the model application (Reckhow, 1994). 

Global Uncertainty and Sensitivity Analysis 

Global UA/SA is based on Monte Carlo (MC) simulations, which involve random 

sampling of model input space (defined by probability distribution), model simulations 

for each set of input values, and the production of an empirical probability distribution for 

resulting model outputs. The MC approach requires that all inputs and outputs are 

scalar (i.e. singular) values so the uncertainty of a variable can be characterized by a 

probability distribution function (PDF). The term ―input factor‖ is used to describe scalar 

random variables that are used to characterize uncertainty in input data and model 

parameters (Crosetto and Tarantola 2001), initial and boundary conditions, etc. This 

term is equivalent to a model input for spatially lumped inputs.  
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Probability distribution functions (PDFs) of model output, resulting from multiple 

model simulations, are used for deriving uncertainty measures, like confidence levels, or 

probability of exceedance of a threshold value (Morgan and Henrion, 1992). Global 

analysis has many advantages over local, derivative-based, one-parameter-at-a-time 

(OAT) approaches (Haan, 1995). Local sensitivity measures are typically fixed to a point 

(base value) where the derivative is taken. The choice of the base value from a factor‘s 

range may largely influence the SA results, especially in case of nonlinear, 

nonmonotonic models. The global analysis, on the other hand, explores the whole 

potential range of all the uncertain model input factors. Therefore it can be applied to 

any model, irrespective of model assumptions of linearity and monotonicity. 

Furthermore, the global analysis considers the effects of simultaneous variation of 

model inputs, allowing for evaluation of input factor interactions on model uncertainty. 

Most complex hydrological models are of non-linear, non-monotonic nature. In this 

case, local, OAT methods are of limited use, if not outright misleading, when the 

analysis aims to assess the relative importance of uncertain input factors (Saltelli et al., 

2005). 

The generation of samples from input factors‘ PDFs can be obtained using 

different sampling methods such as simple random brute-force sampling or more 

efficient, stratified sampling, such as replicated Latin hypercube sampling (r-LHS) 

(McKay et al., 2000; McKay, 1995), quasi random sequences (Sobol, 1993), Fourier 

Amplitude Sensitivity Test, FAST (Cukier et al., 1973), extended FAST (Saltelli et al., 

1999), and random balance designs (Tarantola et al, 2006). Probability distributions of 

input factors can be constructed based on all available information derived from 
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available measurements, literature review, expert opinion, physical bounding 

consideration, or through parameter estimation in inverse problems, etc. (Cacuci, et al. 

2005; Haan, 1989; Haan et al., 1995; Haan et al., 1998; Saltelli et al.2005). When no 

information on a factor‘s variability is available, it is often varied by +/-10 or 20% of the 

base value.  

Different types of global sensitivity methods can be selected based on the 

objective of the analysis, the number of uncertain input factors, the degree of regularity 

of the model, and the computing time for a single model simulation (Cacuci et al., 2003; 

Saltelli et al.,2004; Saltelli et al. 2008; Wallach et al., 2006). The global sensitivity 

analysis (GSA) methods can be differentiated into screening methods (Campolongo et 

al., 2007; Morris, 1991), regression methods (Cacuci et al., 2003; Saltelli et al. 2000) 

and variance-based methods (Saltelli et al., 2004, Saltelli et al., 2008). Figure 1-1 

presents various techniques available and their use as a function of computational cost 

of the model, complexity of the model, dimensionality of the input space. Variance-

based methods provide robust quantitative results irrespectively of the models‘ 

behavior, but are computationally the most demanding. Regression methods, like 

standardized regression coefficients (SRC) are less expensive alternatives to the 

variance-based methods but are only suitable for linear or quasi-linear models (Saltelli 

et al., 2005). Screening methods, like the Morris method, are not computationally 

demanding but provide only qualitative measures of sensitivity. If a model is 

computationally expensive (CPU above 1 hour), the application of global techniques is 

not feasible and local techniques like automatic differentiation (AD) techniques need to 

be used. 
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The screening methods can be applied for initial, computationally cheap, 

qualitative sensitivity analysis (Saltelli et al. 2005). These methods are designed to 

determine, in terms of the relative effect on the model output, which of the model input 

factors can be considered negligible (i.e. with little contribution to model output 

uncertainty). The screening method proposed by Morris (1991), (hereafter the method 

of Morris) and later modified by Campolongo et al. (2005), is used in the current study 

for initial screening since it is relatively easy to implement, requires very few 

simulations, and interpreting its results is straightforward (Saltelli et al. 2005). In 

addition, Morris (1991) showed that the method could be applied with a large number of 

input factors. 

Variance-based (or variance-decomposition) methods (also referred to as ANOVA-

like methods) are based on the assumption that variance of the model output can be 

decomposed into fractions associated with input factors and their interactions. The 

decomposition of model output variance is presented by equation: 

  i ij ijm 12...k

i i<j i<j<m

V(Y) = V + V + V +...+ V  (1-1) 

where: V(Y) – total variance of model output Y, Vi - fraction of output variance explained 

by the ith model input factor, Vij - fraction of variance due to interactions between factors 

i and j, k – number of inputs. 

For a given factor i, two sensitivity measures are calculated: first-order sensitivity 

index Si – measuring a direct contribution of factor i to the total output variance, and 

total sensitivity index STi, that contains sum of all effects involving a given factor (direct 

effects and effects due to interactions with other factors). 
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The first order sensitivity index Si is calculated from the ratio of fraction of output 

variance explained by the ith model input (Vi) to the total output unconditional variance 

(V): 

i
i

V
S =

V(Y)  (1-2) 

It can be written in form of conditional variance as: 

 
 

  i
i

V E Y X
S =

V Y
 (1-3) 

 
where Xi - factor i. 

Assuming the factors are independent, the total order sensitivity index STi is 

calculated as the sum of the first order index and all higher order indices of a given 

parameter. For example, for parameter Xi: 

-i
Ti

V
S =1-

V(Y)
 (1-4) 

 
and 
 

   -i

Ti

V E Y X
S =1-

V(Y)
 (1-5) 

 
where: STi – total order sensitivity, V-i – the average variance that results from all 

parameters, except Xi. 

For a given parameter, Xi, interactions with other factors can be isolated by 

calculating a remainder STi - Si Factors that have small Si but large STi primarily affect 

model output through interactions with other input factors.  

The emphasis of the SA may be placed on calculating either first or total sensitivity 

indices. The choice of a measure depends on the purpose of the analysis, also referred 
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to as a SA setting (Saltelli et al., 2004). Factor prioritization setting is used when the 

purpose of SA is to obtain a ranking of parameter importance. For this setting it is 

important that the Type I error - false positive (i.e. the erroneous identification of a factor 

as influential when it is not) is avoided and use of first-order sensitivity indices is 

recommended (Saltelli, 2004). Factor fixing setting is used for identification of factors 

that, if fixed, would reduce the output variance the most. For this setting, Type II - false 

negative (i.e. failing in the identification of a factor of considerable influence on the 

model) error should be avoided and the suggested measures are total order indices. 

This dissertation focuses on the variance-based methods for GUA/SA (Extended 

FAST, Sobol). Variance-based methods provide quantitative measures of the 

contribution to the output variance from uncertain factors individually or from 

interactions with other factors. Furthermore, this group of methods provides information 

not only about the direct (first order) effect of the individual factors over the output, but 

also about their interaction (higher order) effects. The variance-based methods involve 

high computational costs; therefore the screening methods may be applied in order to 

make the analysis more computationally efficient by focusing only on the subset of 

important factors obtained by the screening method. 

The formal application of global uncertainty and sensitivity analysis allows the 

modeler to: 

 examine model behavior,  

 simplify the model, 

 identify important input factors and interactions to guide the calibration of the 
model, 

 identify input data or parameters that should be measured or estimated more 
accurately to reduce the uncertainty of the model outputs, 
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 identify optimal locations where additional data should be measured to reduce the 
uncertainty of the model, and  

 quantify uncertainty of the modeling results (Saltelli et al., 2005). 

Incorporating Spatial Heterogenity in Global Uncertainty and Sensitivity Analysis 

Spatial heterogeneity is a natural feature of environmental systems. Application of 

spatially distributed environmental models, which aim to reproduce such spatial 

variability, has become more common due to the increased availability of spatial data 

and improved computational resources (Grayson and Blöschl, 2001). With spatially 

distributed models, the spatial uncertainty of input variables is a substantial source of 

errors that propagate through the model and affect the uncertainty of results (Phillips 

and Marks, 1996). The effect of spatial uncertainty of the model inputs is one of the 

least understood contributors to uncertainty of distributed models. Currently, UA/SA 

methods generally disregard the spatial context of model processes and the spatial 

uncertainty of model inputs.  

Spatial uncertainty should be included in the evaluation of model quality for risk 

assessment to be realistic and effective (Rossi et al., 1993). Furthermore, a practical 

implication of including spatial uncertainty of model inputs results in a more effective 

resource allocation, since the collection of spatially distributed data is one of the most 

expensive parts of distributed modeling (Crosetto and Tarantola, 2001). Identification of 

spatially distributed factors contributing the most to model uncertainty enables 

elaboration of the most effective strategies for a reduction of model uncertainty.  

The GUA/SA methodology has been applied primarily to lumped models, where all 

input factors are scalar and generated from scalar PDFs. In the case of spatially 

distributed input factors, alternative input maps (rather than alternative scalar values) 



 

25 

need to be generated and processed by the model. The application of UA to spatial 

models, using geostatistical techniques and MC simulations is straightforward and 

requires processing of alternative spatial realizations through the model (Phillips and 

Marks, 1996), and constructing output probability distributions to evaluate model 

uncertainty (Kyriakidis, 2001).  

Uncertainty associated with spatial structure of input factors may affect model 

uncertainty and therefore influence model sensitivity. However, examples of the 

application of GSA techniques that account for spatial structure of input factors are rare 

and limited in scope (Crosetto et al., 2000, Crosetto end Tarantola, 2001; Francos et al. 

2003, Hall et al., 2005; Tang et al., 2007a). GSA methods generally have limitations that 

make them unsuitable for evaluation of spatially distributed models (Lilburne and 

Tarantola, 2009). The shortcomings of GSA applied to distributed spatial models are 

related to impractical computational costs and the inability to realistically represent 

inputs‘ spatial structure. GSA methods based on the MC sampling require that inputs 

are represented by a scalar values. Medium-size watershed models (i.e., hundreds of 

hectares) may have hundreds or thousands of discretization units. If GSA is performed 

for all cells individually (each parameter value of each discretization unit treated as input 

factor) the computational cost of analysis for watershed models becomes impractical 

and the number of sensitivity indices is intractable. 

This dissertation develops a procedure for application of uncertainty and sensitivity 

analysis of spatially distributed models with incorporation of spatial uncertainty of model 

inputs. A two-step procedure based on a geostatistical technique of sequential 

simulation and variance-based method of Sobol is proposed for incorporation of spatial 
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uncertainty into GUA/SA. The procedure considers both continuous and categorical 

model inputs. Continuous inputs (also referred to as numerical) are quantitative 

variables while categorical inputs are qualitative variables (classified into a number of 

exhaustive and mutually exclusive states). Land elevation is used as an example of 

continuous model input while land use type is used as example of categorical model 

input. 

The benefits of this approach are compared with results for traditional screening 

analysis for lumped factors, used as a reference. 

Research Objectives 

This study aims to explore the application of global sensitivity and uncertainty 

techniques as a tool to evaluate complex, spatially distributed hydrological models. The 

Regional Simulation Model (SFWMD, 2005a; SFWMD, 2005b) in its application to 

WCA-2A will be used as test bed of the methods developed in this project.  

The specific objectives of this study are: 

 to perform global uncertainty and sensitivity analysis (GUA/SA) using approach for 
spatially lumped model inputs, as a reference for more advanced methodology 
developed in this dissertation (Chapter 2), 

 to develop a procedure for incorporation of spatial uncertainty of numerical model 
inputs into GUA/SA and apply it for the benchmark model – RSM (Chapter 3), 

 to apply the GUA/SA with incorporation of spatial uncertainty in order to optimize 
numerical (land elevation) data collection for RSM application to WCA-2A (Chapter 
4), 

 to develop a procedure for incorporation of spatial uncertainty of categorical model 
inputs into GUA/SA and apply it to the RSM, using land cover type as an example 
of categorical model input (Chapter 5), and 

 to evaluate an importance of spatial uncertainty of continuous and numerical 
model inputs in terms of uncertainty of hydrological, spatially distributed models‘ 
predictions. 
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Figure 1-1. Factors influencing the use of various GSA techniques (after Saltelli et al, 
2005, modified). 
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 CHAPTER 2  
EXPLORATORY GLOBAL UNCERTAINTY AND SENSITIVITY ANALYSIS, USING 

SPATIALLY LUMPED MODEL INPUTS 

Introduction 

Initially SA is performed using a screening method and spatially fixed input factors 

for the reference with more advanced SA methods, incorporating spatial uncertainty of 

model inputs, developed in further sections of this dissertation. In this chapter, the 

modified method of Morris is employed to initially assess the sensitivity of the Regional 

Simulation Model (RSM) applied to the WCA-2A conditions. 

The purpose for this screening is to initially investigate the behavior of the model 

and indicate which input factors are important and which one are negligible. The 

screening test provides qualitative results (ranking of parameters importance). The 

computational cost of the screening SA is very low, compared to variance-based 

methods. 

Test Case: Regional Simulation Model for Water Conservation Area-2A 
Application 

The practical application of GUA/SA techniques proposed in this dissertation is 

illustrated using a spatially distributed, hydrological model Regional Simulation Model 

(RSM). The techniques are applied to the RSM for evaluation of model quality in a 

decision making framework for Water Conservation Area-2A in South Florida.  

Regional Simulation Model 

The Regional Simulation Model (RSM) is a spatially distributed hydrological model 

developed by SFWMD for evaluation of complex water management decisions in South 

Florida (SFWMD, 2005a). The RSM simulates physical processes in the hydrologic 

system, including major processes of water storage and conveyance driven by rainfall, 
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potential evapotranspiration, and boundary and initial conditions. RSM accounts for 

interactions among surface water and groundwater hydrology, hydraulics of canals and 

structures, and management of these hydraulic components. The governing model 

equations are based on the Reynolds transport theorem and the finite volume method is 

used to simulate the hydrology and the hydraulics of the system (SFWMD, 2005a).The 

governing equations for RSM are presented in Appendix A. RSM uses an unstructured 

triangular mesh to discretize the model domain. The model elements (cells) are 

assumed homogenous in terms of land elevation, land cover type, soil type, and 

hydraulic properties (SFWMD, 2005a). 

RSM consists of the Hydrologic Simulation Engine (HSE) and the Management 

Simulation Engine (MSE). The HSE simulates the hydrological processes in the system. 

This component of the model is the focus in this study, and is referred to as the RSM. 

The MSE is not considered in this study. A large amount of well organized data is 

needed for the model to simulate the South Florida system. This is facilitated by the use 

of extensible markup language (XML) and geographic information system (GIS) for 

organizing model inputs (SFWMD, 2005a). 

Model application to Water Conservation Area-2A 

In this study RSM is applied to Water Conservation Area-2A (WCA-2A) in the 

Everglades Protection Area (EPA) (Figure 2-1). WCA-2A is a 547 km2 natural marsh, 

consisting of sawgrass, sawgrass intermixed with cattail, open water sloughs and 

remnant drowned tree islands. It is completely surrounded by canals and levees. 

Surface water inflows and outflows are regulated and monitored. WCA-2 was created 

as a critical component of the Central and Southern Florida to provide flood protection, 

water supply and environmental benefits for the region. The WCA-2A area faces 
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ecological problems, related to shifts in vegetation communities from sawgrass 

(Cladium jamaicense) to cattail (Typha domingensis) caused by anthropogenic changes 

in water flow dynamics and increased nutrient loads. Traditional sawgrass slough 

vegetation has been replaced by pure cattail stands and cattail/sawgrass-slough 

vegetation (DEP, 1999). The dynamics and distribution of these species is controlled by 

nutrients and hydrologic conditions. Cattail growth is enhanced by elevated nutrients 

and increased flooding while sawgrass has higher capacity to resist cattail invasion in 

phosphorus poor conditions and shallow waters (Newman et al., 1996). Prolonged 

hydroperiod is conducive to cattail proliferation (Urban et al., 1993). In the WCA-2A 

hydrological conditions were found to be second most important (after nutrients) for 

controlling cattail and sawgrass communities‘ dynamics (Newman et al., 1998).  

WCA-2A receives large inflows from agricultural runoff from the Everglades 

Agricultural Area (EAA) through four inflow structures (S- 10A, S- 10C, S-10D and S- 

10E) located along the north levee and the S-7 pump station (EPA, 1999; Urban et al., 

1993) (Figure 2-1). The S-10E discharge structure has less capacity than the other S-10 

structures but it does provide a way of directing water into the driest areas of WCA 2A 

(EPA, 1999). The southward flow of surface water from inflow structures has resulted in 

increased surface water and soil pore water nutrient gradient which has been 

documented previously (Davis, 1991; Koch and Reddy, 1992).  

The current RSM application uses a model mesh with 386 triangular cells (within 

levee, shown in Figure 2-1) or 510 (included one layer out of the levee, not shown in 

Figure 2-1) varying from 0.5 km2 to 1.7 km2 (average of 1.1 km2).  
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Model inputs and outputs 

Spatial representation of model inputs used in this dissertation ranges from 

spatially lumped (i.e. one value is used for the whole domain), through regionalized (i.e., 

a group of cells is assigned the same input value) to fully distributed (i.e. each cell has 

an individual value assigned). Initially, in this Chapter, all model input factors for the 

GUA/SA are considered spatially fixed, i.e. no spatial uncertainty is considered. Later, 

land elevation is considered as a spatially uncertain numerical model input (Chapter 3 

and 4) and finally, land cover type is considered as a spatially uncertain categorical 

model input (Chapter 5). The definition of all uncertain model inputs used in this study is 

presented in Table 2-1, together with their spatial characteristics. For more detailed 

description of model inputs the reader is referred to Appendix B. 

In case of regionalized or fully distributed parameters, the so called level approach 

is used to reduce the number of input factors for the SA. In case of regionalized variable 

(for example parameter a, used for calculating Manning‘s roughness coefficient), 

alternative parameter values are generated from the PDF assigned to one of the zones, 

and values for all other zones are obtained by preserving the original ratio between 

zones. For more details regarding this approach, the reader is referred to Appendix C. 

In case of fully spatially represented hydraulic conductivity, the same ―level‖ approach is 

used, only one representative cell is selected and probability distribution associated with 

this cell is sampled during the MC simulations, values for all other cells are obtained 

preserving the original ratio with the selected cell. In such way, the number of input 

factors is reduced significantly, and interpretation of results is easier, i.e. instead of 510 

factors representing hydraulic conductivity for each cell individually, there is just one 

input factor representing the spatially distributed input. In case of land elevation and 



 

32 

aquifer bottom, an alternative approach is used for generation of alternative model input 

maps. The input factor is associated with the uncertainty model for error of a variable 

(not variable itself) and the generated values of errors are added to the base map. The 

same generated value of error is added for all model cells for each MC realization. The 

probability distributions of input factors are selected based on specific conditions of the 

South Florida application. 

Apart from scalar input factors, the GUA/SA also requires that model outputs are 

scalar quantities such as a summary or aggregate objective function (Crosetto and 

Tarantola 2001) in order for the empirical PDFs of outputs to be constructed. Raw RSM 

outputs are spatially and temporarily distributed: they include water depth and stage 

reported for each of the model cells on a daily basis for the period of the simulation. 

These raw outputs need to be post-processed into objective functions that are suitable 

for the GUA/SA and meaningful for decision makers. The same procedure for post-

processing raw model outputs is applied in all GUA/SA studies presented in this 

dissertation (Appendix D). The RSM performance objective functions (also referred as 

outputs) chosen as metrics for GUA/SA for this study were the performance measures 

generally adopted in the Everglades restoration studies (SFWMD, 2007): hydroperiod, 

water depth amplitude, mean, minimum and maximum. The GUA/SA results for two 

types of objective functions: domain-based approach (spatial averaging over domain), 

and benchmark cell-based approach are compared in this work. The benchmark cells 

(14 cells presented in Figure 2-1) are selected based on location in a domain and can 

be divided into four groups of interest: 1) cells located in the north of the domain, 

representing the driest areas in the domain (cell 35), 2) cells located in north-east of the 



 

33 

domain, representing cattail invaded areas (cell 178, 215), cells located in the south of 

domain, representing the wettest areas in the domain (cell 486) and 4) other cells, used 

for the reference to other benchmark cells (cell 224).  

In all of the GUA/SA studies presented in this dissertation the simulations are 

performed for period 1983-2000. A one year long warm-up period (1983) is chosen to 

reduce the influence of the initial conditions on the model outputs. The calculated 

outputs are aggregate values representative for this period.  

Sensitivity and uncertainty methods previously applied to RSM 

Sensitivity and uncertainty analysis was previously performed on the Natural 

Systems RSM (NSRSM). NSRSM is a specific application of the RSM, which was 

designed to simulate the predevelopment hydrologic response. The model was 

constructed using a pre-development (i.e. pre-drainage, mid-19th century) land cover 

condition and predevelopment topography (Mishra et al., 2007). 

The analysis of NSRSM considered only a subset of uncertain input factors that 

was selected subjectively by the analysts prior the analysis (Mishra et al., 2007). This is 

not a robust approach since sometimes the results of sensitivity analysis are very 

counterintuitive and it is hard to indicate a priori which factors are important with respect 

to the outputs and which are not. Because of this, the analysis based on subjectively 

chosen subset of parameters is not the optimal method for verification of the model.  

For the sensitivity analysis the Singular Value Decomposition (SVD) (Doherty, 

2004) was applied to NSRSM. SVD-based sensitivity analysis involves the factorization 

of the sensitivity matrix (Jacobian matrix of local sensitivities) to create matrices which 

define linearly independent groups of parameters and outputs. A vector of singular 

values is also created by the decomposition. These singular values indicate the relative 
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importance of each parameter group. The inclusion and importance of parameters in the 

linearly independent groups provides insight into both parameter interactions and 

synergies, as well as the local sensitivity of output metrics to the parameters. The SVD 

should be used only for linear and monotonic models (i.e. models for which input-output 

relation is linear or monotonic) (Mishra et al., 2007). The findings of this research were 

that, in general, variance of an output metric (water stage and transect flow) was 

controlled by the ET, crop coefficient, conveyance parameter, Manning‘s n, and to a 

lesser extent, topography. 

The two uncertainty analysis techniques were applied to NSRSM: First-Order 

Second-Moment (FOSM) and Monte Carlo simulations. For k model inputs, the FOSM 

method requires only N=k+1 model simulations, as opposed to several thousand 

simulations for typical Monte Carlo simulations. However, the drawback of this approach 

is that it estimates uncertainty in model predictions only in terms of mean and standard 

deviation (rather than the full output distributions). These statistics may not be the most 

useful indicators about the model output because the information is always lost in the 

calculations of means and standard deviations. Also, these measures may not be 

adequate statistics for skewed output distributions. This analysis should only be applied 

to linear or mildly nonlinear problems (Mishra and Parker 1989). The FOSM analysis 

was not carried for the topography (considered as categorical variable with three 

alternative topography scenarios: ―low‖, ―base‖, and ―high‖ maps), since categorical 

variables are not amenable to derivative calculations (Mishra et al., 2007).  

Uncertainty analysis by the Monte Carlo approach (random or Latin Hypercube) 

consisted of the following steps: (1) selection of imprecisely known model input 
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parameters to be sampled, (2) construction of PDF for each of these parameters, 

(3) generating a sample scenario by selecting a parameter value from each distribution, 

(4) calculating the model outcome for each sample scenario and aggregating results for 

all samples (Mishra et al., 2007). By the initial examination of results, 100, 200 and 300 

realization cases were examined for model stability and a sample size of 200 was found 

adequate to provide stable output statistics. The methods applied previously to RSM 

have not considered spatial distribution of input factors. 

Screening Method: Morris Elementary Effects 

Morris (1991) proposed an effective screening sensitivity measure to identify the 

few important factors in models with many factors. The method is based on computing 

for each input a number of incremental ratios, called elementary effects (EEs), which 

are then averaged to assess the overall importance of a given input factor. Campolongo 

(2005) proposed modifications to the original method of Morris improved in terms of the 

definition of the sensitivity measure. The guiding philosophy of the original elementary 

effects method (Morris, 1991) is to determine which input factors may be considered to 

have effects which are (a) negligible, (b) linear and additive, or (c) non-linear or involved 

in interactions with other factors. Morris (1991) proposed conducting individually 

randomized experiments that evaluate the elementary effects along trajectories 

obtained by changing one parameter at a time. Each model input Xi, i=1,.., k (where k is 

a number of inputs) is assumed to vary across p selected levels within its distribution. 

The region of experimentation Ω is thus a k-dimensional p-level grid. Following a 

standard practice in sensitivity analysis, factors are assumed to be uniformly distributed 

in [0,1] and then transformed from the unit hypercube to their actual distributions. 

Therefore for all model inputs, each level is associated with a given percentile of the 
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probability distribution). Elementary effects are calculated by varying one parameter at a 

time across a discrete number of levels (p) in the space of input factors. The elementary 

effect is calculated from: 

EE Xi   
y X1, ,X

i-1
,Xi+ , Xi-1

, ,Xk -y Xi 

 
  (2-1) 

where: EE(Xi) – elementary effect for a given factor Xi, Δ is a value in {1/(p-1), ,1-1/(p-

1)} this value defines a ―jump‖ in the parameter distribution between two levels 

considered for calculating the elementary effect , p – number of levels. The illustration of 

Morris sampling scheme for one input factor is presented in Figure 2-3 for p=4 and Δ of 

2/3.  

A number r of elementary effects is obtained for each input factor. Based on this 

number of elementary effects calculated for each input factor, two sensitivity measures 

are proposed by Morris (1991): (1) the mean of the elementary effects, µ, which 

estimates the overall effect of the parameter on a given output; and (2) the standard 

deviation of the effects, σ, which estimates the higher-order characteristics of the 

parameter (such as curvatures and interactions).  

Campolongo noticed weaknesses of the original measure µ in the method of 

Morris (1996) and proposed modification of the original method in terms of the definition 

of this measure (2005). Since sometimes the model output is non-monotonic, the 

elementary effects may cancel each other out when calculating µ, this measure can be 

prone to the Type II error, i.e. failing in the identification of a factor of considerable 

influence on the model. Campolongo et al. (2005) suggested considering the mean of 

distribution of absolute values of the elementary effects, µ*, for evaluation of 
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parameter‘s importance in order to avoid the canceling of effects of opposing signs. The 

measure µ* is a proxy of the variance-based total index is acceptable and convenient 

(Campolongo, 2007) and can be used for ranking the parameters according to their 

overall effect on model outputs. Saltelli et al. (2004) suggest applying the original Morris 

(1991) measure, σ, when examining the effects due to interactions. Thus measures µ* 

and σ are adopted as global sensitivity indices in this study.  

To interpret the results in a manner that simultaneously accounts for the mean and 

standard deviation sensitivity measures, Morris (1991) suggested plotting the points on 

a µ-σ Cartesian plane. The higher the measure µ* is, the more important factor is. The 

parameters with µ* values close to zero can be considered as negligible (non-important) 

ones. The parameters with the largest value of µ* is the most important one. However, 

the value of this measure for a given factor does not provide any quantitative 

information on its own and needs to be interpreted qualitatively, i.e. relatively to other 

factors‘ values. The meaning of σ can be interpreted as follows: if the value for σ is high 

for a parameter, Xi, the elementary effects relative to this parameter are implied to be 

substantially different from each other. In other words, the choice of the point in the 

input space at which an elementary effect is calculated strongly affects its value, which 

means it is sensitive to the chosen values of other parameters that constitute the 

remainder of the input space. Conversely, a low σ value for a parameter implies that the 

values for the elementary effects are relatively consistent, and that the effect is almost 

independent of the values for the other input parameters (i.e. no interaction).  

The required number of simulations (N) to perform in the analysis results as: 

N = r (k + 1) (2-2) 
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Previous studies have demonstrated that using p = 4 and r = 10 produces 

satisfactory results (Campolongo et al., 1999; Saltelli et al., 2000). So for example, in 

case of k=20 uncertain input factors, only 210 model simulations are required for the 

method of Morris (while variance-based methods, described in Chapter 3, would require 

approximately 20,000 simulations). 

Despite the fact that the fundamental measure of Morris method - the elementary 

effect (or its absolute value) - uses local incremental ratios, this method is not 

considered as local. The final measure µ* is obtained by averaging the absolute values 

elementary effects which eliminates the need to consider the specific points at which 

they are computed (Saltelli et al., 2005). The method, therefore, is considered as a 

hybrid between local and global approaches because it samples across the input factors 

space yields a global measure.  

Methodology 

Sensitivity Analysis Procedure 

The screening procedure follows the general steps required by MC based SA 

methods (Figure 2-4): 1) selection of input factors and construction of probability 

distribution functions; 2) generation of input sets by pseudo-random sampling of input 

PDFs according to the selected sampling scheme (in this case sampling according to 

the method of Morris); 3) running model simulations for each input set and obtaining 

corresponding model outputs; 4) performing global sensitivity (here according to the 

modified method of Morris). 

The software package, SimLab v2.2 (Saltelli et al., 2004), is used for the SA by the 

modified method of Morris. SimLab is designed for pseudorandom number generation-

based uncertainty and sensitivity analysis. SimLab‘s Statistical Pre-Processor module 
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executes step 2 in the procedure (Figure 2-4) based on PDFs provided by the user and 

the method selected and produces a matrix of sample inputs to run the model (step 3, 

Figure 2-4). LINUX scripts were written to automatically run RSM once for each new set 

of sample inputs. The scripts automatically substitute the new parameter set into the 

input files, run the model, and perform the necessary post-processing tasks to obtain 

the selected model outputs for the analysis. The outputs from each simulation are 

stored in a matrix containing the same number of lines as the number of samples 

generated by SimLab. With the input and output matrices the Statistical Post-Processor 

module of SimLab is used to calculate the sensitivity indices by the method of Morris 

(step 4). SimLab produces sensitivity measures based on the absolute values of 

elementary effects, proposed by Campolongo (2005), that are µ* and σ*.  

Definition of Model Inputs and Outputs for the Screening SA 

Table 2-2 shows uncertain input factors (k=20) used for the screening, together 

with corresponding uncertainty specifications (probability distribution functions). The 

PDFs are assigned based on literature review and experts opinion, having in mind 

conditions specific to South Florida. In case of lack of information on variability of input 

factor, uniform distribution with ranges ± 20% around the base value of input factor (i.e. 

value of a input factor from the calibrated model) is used. For the purpose of the 

screening analysis, all input factors are assumed spatially lumped (no spatial 

uncertainty is considered).  

Raw RSM outputs are spatially and temporally distributed. To obtain an 

aggregated statistics for each simulation, raw results are post-processed using scripts in 

AWK programming language. Details on post-processing procedures are provided in 

Appendix D. Two types of model outputs are calculated: 1) domain-based outputs (by 
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spatial averaging of cell-based outputs over the domain), and 2) benchmark cell-based 

outputs. Three benchmark cells are selected for the screening exercise: cell 35 - 

representing drier conditions in north of the domain, cell 178 - representing cattail 

invaded areas in northeast of the domain and cell 486 - representing wet areas in the 

south of the domain (Figure 2-1). 

For k=20, only N=210 model simulations are required (for r=10 in equation 2-2). 

The screening analysis is performed using RSM simulations for 15 years, from 1983 to 

2000, with one year long warm-up period (1983). 

Results 

As suggested by Campolongo (2005), the ranking of importance of the input 

factors can be based on the relative value of µ*. Such ranking for all domain-based, as 

well as benchmark cell-based outputs is provided in Table 2-3. Only important 

parameters have assigned ranks in this table. Figure 2-5 shows the graphical 

representation of the Morris sensitivity measures for a selected subset of domain-based 

outputs (Mean Water Depth, Hydroperiod, and Maximum Water Depth). Parameters, 

identified as important, are separated from the origin of the µ*-σ plane are considered 

important. Parameters located at the origin of the plane are assumed to have negligible 

effect on model outputs. 

In general, the number of parameters identified as important parameters is 

effectively smaller than the full set of model inputs studied (from original 20 inputs down 

to 6 main inputs for domain-based and 7 main inputs for cell-based outputs). Especially, 

few factors: topo, a, det, kds, imax are important for the majority of outputs, both domain 

and cell-based (except outputs for cell 486). While other factors like leakc, kmd are 

identified as potentially important for some outputs (Table 2-3).  
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 Factor topo, associated with the uncertainty of land elevation, is found as the 

most important for the domain-based outputs (Figure 2-5). This factor determines how 

much the initial land elevation map is shifted up or down (the initial relationship between 

cell values is maintained for each realization). Apart from topo, domain-based outputs 

are influenced by factor a and det. Factor a is used for calculating mesh Manning‘s 

roughness coefficient, while factor det accounts for water detained in depressions within 

model cells, as it determines the minimum water depth that needs to be reached for 

overland flow from to occur one cell to the neighboring cell. Factor imax, specifying the 

interception, contributes to uncertainty of the domain-based hydroperiod. Maximum 

water depth for domain seem also to be slightly affected by factor n, which represents 

Manning‘s roughness coefficient for canals, but the effect of factors topo and a is much 

stronger (Figure 2-5). Some of the cell-based outputs, like mean water depth and 

hydroperiod for cell 35 and 178, are affected by factor kds (Figure 2-6). This factor 

specifies levee hydraulic conductivity from a dry cell to a segment. SA results for cell 

486 are different than for the other two benchmark cells and indicate that the outputs for 

this cell are mainly affected by topo in case of mean and maximum water depth and the 

leakc (leakage coefficient for canals, specifies flow between aquifer and canals) in case 

of hydroperiod (Figure 2-6). 

Discussion 

The results clearly illustrate two of the products of the global sensitivity analysis: 

ranking of importance of the parameters for different outputs, and type of influence of 

the important parameters (first order or interactions). 

Factor topo, determining the shift of land elevation for the domain is indicated as 

potentially the most important factor for both domain-based and cell-based outputs. This 
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is expected since surface water inflows and outflows in the current application are fixed 

and controlled by hydraulic structures. Therefore the shift of land elevation in the 

domain affects volume of water that can be retained in a domain. Apart from land 

elevation shift, model response is controlled by conveyance parameters: parameter a 

and det. Unlike previously performed SA studies of the NSRSM (Mishra et al., 2007) 

that identified the crop coefficient (kveg) parameter as the most important one, this ET 

parameter is found as non-important. However, it is important to highlight that the 

results of this study are specific for the WCA-2A application and selected objective 

functions (outputs). 

The SA results for cells are affected by the specific conditions in the given section 

of the domain. For example results for the cell 486 reflect that this area of the domain 

collects all the flow, and the local water depth is conditioned on the local levee 

characteristics (seepage coefficient). 

The modified method of Morris results indicated the additive nature of the model, 

since small interactions are observed (the values of σ are small for all model inputs), 

except for hydroperiod for cells 35 and 178, where values of σ are larger (Figure 2-6). 

The proposed framework provided further validation of the model quality since no 

errors were detected regarding the model behavior (all the relations between inputs and 

outputs can be explained on the basis of the model assumptions).  

The results of this study indicated which factors are of potential importance. This 

subset of factors (6-8 factors) could be used for the more accurate, quantitative SA 

analysis (as in Muñoz-Carpena et. al, 2007). For example, the reduction of parameter 

input set from 20 original parameters to 8 identified as important by the screening 
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method, may result in reduction of number of simulation required by Extended FAST 

from approx. 20,000 to 8,000, as explained in Chapter 3. 

Furthermore, since the factor related to land elevation representation for the WCA-

2A is identified generally as the most important one, this factor is going to be the focus 

of methodology applied in Chapters 2 and 3 of this dissertation. The rudimentary 

approach for describing the uncertainty of land elevation will be refined with a more 

advanced uncertainty description, which accounts for spatial uncertainty of land 

elevation and produces more realistic land elevation realizations. 

Conclusions  

The modified method of Morris is a screening SA method applied to RSM and 

WCA-2A application. This method is characterized by relatively small computational 

cost and it is applied for identification of important and negligible model inputs. The 

ranking of parameters importance is calculated based on the global measure µ* - mean 

of the absolute values of elementary effects. Moreover a type of influence of the 

important parameters (first order or interactions) may be assessed by measure σ – the 

standard deviation of elementary effects.  

The screening performed here indicates that out of the 20 original model inputs, 8 

inputs are important for the considered model outputs. Input factor topo, characterizing 

land elevation uncertainty (vertical shift of land elevation values) is identified as the 

most important factor in respect to most of the outputs (both domain-based and 

benchmark cell-based). Other factors, found important for several outputs, are 

conveyance parameters: a and det , interception parameter imax, factor kds (levee 

hydraulic conductivity from dry cell to segment), and leakc (leakage coefficient for 
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canals) for cell 486. Small interactions between parameters were observed, indicating 

that for the selected outputs, the model is of additive nature. 

The Morris method is qualitative in nature, its sensitivity measures should not be 

used to quantify input factors‘ effects on uncertainty of model outputs. They rather 

provide qualitative assessment of parameter importance in form of a parameter ranking. 

Furthermore, this method cannot account for spatial uncertainty of model inputs 

because it requires that all input factors are scalar values, and uses an analytical 

relationship between model input and output for calculating sensitivity measures. 

As land elevation is identified as one of the most important model inputs, this 

model input is going to be used as an example of spatially distributed numerical model 

input in further chapters of this dissertation. 
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Table 2-1. Definition of uncertain model inputs used for the GUA/SA. 

# Model Input Definition Units Spatial 
Representation 

1 valueshead initial water head  [m] lumped 

2 topo land elevation error [m] fully distributed1 

3 bottom aquifer bottom elevation  [-]2 fully distributed1 

4 hc hydraulic conductivity [m2s-1] fully distributed 

5 sc storage coefficient of solid 
ground 

[-] lumped 

6 kmd levee hydraulic conductivity 
from a marsh cell to a dry cell 

[m2s-1] regionalized 

7 kms levee hydraulic conductivity 
from a marsh cell to a segment 

[m2s-1] regionalized 

8 kds levee hydraulic conductivity 
from a dry cell to a segment 

[m2s-1] regionalized 

9 n Manning‘s n for canals [sm-1/3] lumped 

10 leakc leakage coefficient for canals [-] lumped 

11 bankc coefficient for flow over the 
canal lip 

[-] lumped 

12 a parameter ―a‖ in equation 
nmesh=a*depth-0.77  

[-] regionalized 

13 det detention [m] lumped 

14 kw maximum crop coefficient for 
open water  

[-] lumped 

15 rdG shallow root zone depth [m] for 
grasses  

[m] lumped 

16 rdC shallow root zone depth [m] for 
cypress  

[m] lumped 

17 xd extinction depth below which 
no ET occurs  

[m] lumped 

18 pd open water ponding depth [m] lumped 

19 kveg ET vegetation crop coefficient [-] regionalized 

20 imax maximum interception [m] lumped 
1 in case of land elevation (topo) and aquifer bottom elevation (bottom), the input factor 
used for the screening SA specifies error around the original values and it is spatially 
lumped, the same error value is added to original maps resulting in fully distributed 
inputs; 
2 aquifer bottom elevation units are [m] but the error is unit less since it specifies 
percentage of original bottom values (this approach is easier to implement because of 
the structure of bottom input file);  
3 nmesh – Manning‘s roughness coefficient for cells, calculated for each time step based 
on the calculated water depth (depth). 
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Table 2-2. Characteristics of input factors, used for screening SA. 

# Input 
Factor 

Base Value1 Uncertainty Model (PDF) Source 

1 valueshead 3.66 N1(μ 3.66, σ 0.374)  Jones and Price, 
2007 

2 topo - N(μ 0, σ 0.05) USGS, 2003 

3 bottom 0 U2 (0.8, 1) SFWMD data 

4 hc 46.5 3  Lognormal( μ 4.6, σ 1.2) SFWMD data 

5 sc 0.3 U (0.2, 0.3) SFWMD expert 
opinion 

6 kmd 0.000026 4 U (0.000021, 0.000032) ± 20% 

7 kms 0.0000114 U (0.000009, 0.000013) ± 20% 

8 kds 0.0000031 4 U (0.0000025, 0.0000038) ± 20% 

9 n 0.06 Triangular (min.= 0.03, 
peak=0.10, max.=0.12) 

SFWMD expert 
opinion; USGS, 1996 

10 leakc 0.00001 U (0.000002, 0.001) SFWMD data 

11 bankc 0.05 U (0.04, 0.05) SFWMD data 

12 a 0.3 5 U (0.24, 0.36) ± 20% 

13 det 0.03 U (0.03, 0.12) Mishra et al., 2007 

14 kw 1 U (0.8, 1.2) ± 20% 

15 rdG 0 U (0, 0.2) Yeo, 1964,  

16 rdC 0 U (0, 1.5) expert opinion 

17 xd 0.9 6 U (0.7, 1.1) Mishra et al., 2007 

18 pd 1.8 6 U (1.5, 2.2) ± 20% 

19 kveg 0.83 6,7 U (0.66, 0.99) ± 20% 

20 imax 0 U (0, 0.03) SFWMD expert 
opinion 

1 value of input from calibrated model; 
2 N - normal distribution; DU - discrete uniform distribution; U - uniform distribution;  
3-6 base values for a cell or region, used as a reference for the level approach:  

3 cell 333, 4 L38E, 5 zone 3, 6 cattail HRU; 
7 average annual value of kveg is used, no seasonal variation is considered.
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Table 2-3. Ranking of parameters importance obtained from the modified method of Morris. 

  Mean Water Depth Hydroperiod Minimum Water Depth Maximum Water Depth Amplitude 

 
D1 35 178 486 D 35 178 486 D 35 178 486 D 35 178 486 D 35 178 486 

valueshead - - - - - - -  - - -  -  - - -  -  - - -  -  - 

topo 1 2 2 1 1 1 1 2 1 4 4 1 1 2 - 1 1 2 5 1 

errorbottom - - - - - - - - - - - - - - - - - - - - 

hc - - - - - - - - - - - - - - - - - - - - 

sc - - - - 6 8 - - - - - - - - - - - - - - 

kmd - - - - - 6 7 - - - - - - - - 2 - - - - 

kms - 6 - - - 7 - - - - - - - - - - - - - - 

kds - 4 3 - 5 2 2 - 4 1 3 - - 4 4 - - 5 4 - 

n - - - - - - - - - - - - 3 6 - - 4 - - - 

leakc - - - 2 - - - 1 - - - 2 - - - - - - - 2 

bankc - - - - - - - - - - - - - - - - - - - - 

a 2 1 1 - 4 3 4 - 2 3 2 - 2 1 1 - 2 1 1 - 

det 3 3 4 - 3 4 5 - 3 2 1 - - 5 3 - 3 3 2 - 

kw - - - - 
 

9 - - - - - - - - - - - - - - 

rdG - - - - 7 10 - - - - - - - - - - - - - - 

rdCY - - - - - - - - - - - - - - - - - - - - 

xd - - - - - - 6 - - - - - - - - - - - - - 

pd - - - - - - - - - - - - - - - - - - - - 

kveg - - - - - - - - - - - - - - - - - - - - 

imax 4 5 5 - 2 5 3 - - - - - 4 3 2 - 5 4 3 - 
1 D – domain-based outputs, 35, 178, 486 – benchmark cell-based outputs for cells 35, 178, and 486 (Figure 2-1)
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Figure 2-1. Location of the model application area: Water Conservation Area 2-A.

triangles – model mesh  
arrows – inflows and outflows  
shading – cattail-dominated areas  
EPA – Everglades Protection Area 
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Figure 2-2. Example of spatial representation of model inputs. A) regionalized input (parameter a for calculating Manning‘s 

n), B) fully distributed input (elevation of bottom of aquifer).
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Figure 2-3. Illustration of Morris sampling strategy for calculating elementary effects of 
an example input factor, as applied in SimLab. 

 

 

Figure 2-4. General schematic for the screening GSA with modified method of Morris. 

0 

0 1/8 1/4 3/8 1/2 5/8 3/4 7/8 1 

1/8 1/8 

Δ 

Δ Δ 

Δ 

p=4, Δ=1/2; numbers indicate percentiles of the factor‘s  

distribution (e.g. 1/8 indicates 12.5th percentile) 

numbers in circles represent steps in the global evaluation procedure 
explained in text 
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Figure 2-5. Method of Morris results for domain-based outputs. A) mean water depth, 
B) hydroperiod, C) maximum water depth.
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Figure 2-6. Method of Morris results for selected benchmark-cell based outputs. A), B), C) mean water depth, 

D), E), F) hydroperiod, G), H), I) maximum water depth.
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 CHAPTER 3  
INCORPORATION OF SPATIAL UNCERTAINTY OF NUMERICAL MODEL INPUTS 

INTO GLOBAL UNCERTAINTY AND SENSITIVITY ANALYSIS OF A SPATIALLY 
DISTRIBUTED HYDROLOGICAL MODEL  

Introduction 

Incorporating Spatiality in Global Uncertainty and Sensitivity Analysis 

A two-step procedure based on the geostatistical technique of sequential 

simulation and the variance-based method of Sobol is proposed for incorporation of 

spatial uncertainty into GUA/SA. 

Sequential simulation (SS) provides a quantitative measure of spatial uncertainty, 

i.e., uncertainty regarding spatial distribution of a variable rather than location-specific 

uncertainty (Journel , 1989; Goovaerts, 1997). Spatial uncertainty results from the fact 

that knowledge of spatial distribution of phenomena is limited to measurement locations 

and uncertainty arises regarding spatial structure between these locations. Sequential 

simulation is a process of drawing alternative, equiprobable, joint realizations of the 

spatial variable that honor the measured data, data statistics (global histogram), and 

model of spatial correlation (variogram) within ergodic fluctuations (Deutsch and 

Journel,1998, Goovaerts, 1997 ). The theory behind sequential simulation has been 

explained thoroughly by others (Chilès and Delfiner, 1999; Deutsch and Journel, 1998; 

Goovaerts, 1997; Kyriakidis, 2001). Rossi et al. (1993) uses an analogy of a jigsaw 

puzzle, with an incomplete image in the top box, for illustration of the SS principles. 

Measured data are equivalent to known puzzle‘s pieces. Since there is only partial 

information about the final image on the box top, multiple equiprobable images can be 

constructed. These alternative final images, taken together, characterize the uncertainty 

about the true picture on the box top. Of the many SS techniques, Sequential Gaussian 
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Simulation (SGS) is often used because it is fast and straightforward (Deutsch and 

Journel, 1998). SGS has been applied in many studies such as remediation processes 

and flow simulation models, which require a measure of spatial uncertainty, rather than 

location-specific uncertainty (Goovaerts, 1997). 

As presented in Chapter 2, the GUA/SA methodology has been applied primarily 

to lumped models, where all input factors were scalar and generated from scalar PDFs. 

In the case of spatially distributed input factors, alternative maps (rather than alternative 

scalar values) need to be generated and processed by the model. The application of UA 

to spatial models, using geostatistical techniques and MC simulations is straightforward 

and requires processing of alternative spatial realizations through the model (Phillips 

and Marks, 1996). In this way, uncertainty regarding the spatial representation of 

variable is transferred into consequent model uncertainty (Kyriakidis, 2001).  

Uncertainty associated with spatial structure of input factors may affect model 

uncertainty and therefore influence model sensitivity. However, examples of the 

application of GSA techniques that account for spatial structure of input factors are rare 

and limited in scope (Crosetto et al., 2000, Crosetto end Tarantola, 2001; Francos et al. 

2003, Hall et al., 2005; Tang et al., 2007a). GSA methods generally have limitations that 

make them unsuitable for evaluation of spatially distributed models (Lilburne and 

Tarantola, 2009). The shortcomings of GSA applied to distributed spatial models are 

related to impractical computational costs and the inability to realistically represent 

spatial structure. GSA methods based on the MC sampling require that inputs are 

represented by a scalar values. Medium-size watershed models (i.e., hundreds of 

hectares) may have hundreds or thousands of discretization units. If GSA is performed 
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for all cells individually (each parameter value of each discretization unit treated as 

independent factor) the computational cost of analysis for watershed models becomes 

impractical and the number of sensitivity indices is intractable. 

This ―fully distributed‖ spatial representation approach was used in Tang et al. 

(2007a), where SA is performed for all cells individually using the extended FAST. Apart 

from high computational and processing costs, this approach cannot account for spatial 

structure of inputs. Because of an assumption of factor independence inherent in 

variance-based methods (Saltelli et al., 2004), input factors representing cells need to 

be considered independent from one another for MC simulations, so spatial 

autocorrelation between neighboring cells cannot be accurately represented. 

Several approaches have been proposed in the literature to simplify dimensionality 

in the problem and reduce computational demands. The crudest approach is to 

disregard spatial distribution of input factors (i.e., consider them as spatially lumped) 

(Crosetto and Tarantola, 2000; Tang et al., 2007b). Other methods propose spatial 

simplification of the domain to smaller number of zones (Chu-Agor et. al, 2010; Hall et 

al., 2005). The zones may be correlated with one another using a simple statistical 

model of spatial variation (Hall et al., 2005). However, the spatial structure of inputs 

cannot be reproduced realistically since the zones themselves are homogenous.  

To address these shortcomings, Crosetto and Tarantola (2001) proposed the use 

of an indirect (auxiliary) input factor for GSA. The binary input factor is used as a 

―switch‖ that determines if model simulations are performed using realizations 

generated from a spatial uncertainty model (switch on) or if spatial structure is ignored 

(switch off). This approach allows for checking if the spatial representation of a given 
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factor has an influence on model outputs, but does not allow for the simultaneous UA. 

Expanding this approach, Lilburne and Tarantola (2009) proposed using the auxiliary 

factor approach with the method of Sobol. The auxiliary scalar factor with Discrete 

Uniform (DU) distribution is associated with a number of alternative spatial realizations 

(i.e., maps, with the number of spatial maps equal to the number of levels of an auxiliary 

factor), which are then used for MC simulation. When a given value from the factor‘s 

distribution is generated, the associated map is used for model runs. The specifics of 

calculating sensitivity indices using the method of Sobol (i.e., no analytical relation 

between inputs and output); allows for the incorporation of spatial uncertainty into GSA 

via an auxiliary input factor. There is no assumption on how alternative maps of spatial 

factor are produced. In the work by Lilburne and Tarantolla (2009), the alternative 

spatial realizations are produced without regard for the spatial correlation of variables 

(i.e. raster grids of 10x10 resolution are produced based on uncorrelated and uniformly 

distributed spatial uncertainty in the range over each pixel) but the method‘s potential 

for applicability to spatially correlated factors is discussed. 

This study builds on previous work by Lilburne and Tarantolla (2009) and 

proposes a combination of sophisticated spatial uncertainty models produced by SGS 

and the method of Sobol with an auxiliary input factor. The merging of these methods 

represents a powerful tool for GSA of spatially distributed computer models, as it allows 

for incorporation of spatial uncertainty in a computationally efficient way. Furthermore, 

since the method relies on detailed multivariate sampling of input factors‘ PDFs, UA can 

be performed on the outputs without additional computational cost. 
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Theory on Sequential Gaussian Simulation 

Within the geostatistical framework, spatial distribution of an attribute is modeled 

by a random function (RF), i.e., a collection of J spatially dependent random variables 

(RVs) Z (x) defined at J locations in a domain. A set of I existing, spatially distributed 

measurements is viewed as one potential realization of the RF model at I sampled 

locations. The purpose of geostatistical analysis is to provide the estimate for an 

attribute at (J-I) unsampled locations. The uncertainty about any unsampled attribute 

value z(x) can be modeled probabilistically by local conditional cumulative distribution 

function (CCDF), specific for a given location x. This local posterior CCDF is an updated 

version of global (prior) CDF, and is conditioned on the joint outcomes of nearby RVs 

(neighboring data). The random function‘s spatial variability is described by a variogram 

model, defining dissimilarity between random variables located at any two locations, 

separated by a given distance (Goovaerts, 1997). 

Kriging is the most popular geostatistical estimation technique that estimates 

quantity at a given location as a weighted sum of the adjacent measured points. 

Weights depend on the exhibited correlation structure (variogram). Kriging provides the 

best linear local estimates, that display a lower variation than the investigated values. 

Therefore Kriging estimates cannot reproduce the natural spatial variability of the real 

media. (Goovaerts, 1997) and Kriging maps fail to represent natural heterogeneity 

(Goovaerts, 1997). Furthermore, the series of local posterior uncertainty models, 

estimated by Kriging, cannot simultaneously assess the spatial uncertainty (joint multi-

point uncertainty) (Goovaerts, 2001; Kyriakidis, 2001), such as probability that z-values 

at a number of locations are jointly no greater than a critical threshold (Goovaerts, 

1997). Joint uncertainty models are required for assessing the impact of the uncertainty 
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in input spatial data on the uncertainty of model‘s outputs (Kyriakidis, 2001). Sequential 

Simulation (SS), on the other hand is able to reproduce natural spatial heterogeneity of 

variable and provides both the local - one-point - and spatial - multi-point- uncertainty 

about estimates. Sequential simulation maps reproduce spatial distribution of variable 

more realistic than kriging maps and, several equally probable stochastic realizations 

together, provide estimation of spatial uncertainty (Goovaerts, 1997).  

Sequential Simulation provides values for unmeasured locations (nodes) in a 

domain. A sampling of the joint, multipoint RF model is replaced by a sampling of a 

sequence of one-point models along the random path visiting all nodes in a domain. To 

preserve the proper covariance structure between the simulated values, each point 

CCDF is made conditional not only to the original data but also to all values simulated at 

previously visited nodes. In this way an outcome of joint spatial model for multiple 

locations preserves the spatial autocorrelation structure.  

Sequential Gaussian Simulation (SGS) is often used, among SS techniques, 

because of its relative simplicity and robustness (Deutsch and Journel, 1998). SGS 

uses the multi-Gaussian RF model (Goovaerts, 1997), i.e. it assumes that a joint 

distribution of RF model is multiple normal. This is a very congenial characteristic since, 

under assumption of multi-normality, the local CCDF can be fully described by only two 

parameters: mean and variance. To avoid erroneous results, the multi-normal 

assumption of data needs to be checked before SGS is performed. The RF also needs 

to be stationary within the domain for SGS to be applied correctly, i.e., the same global 

CDF is assigned for all locations. RVs at all domain nodes are assumed the same prior 
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CDF (the same mean and variance), therefore SGS should not be applied for data 

exposing trends, or preferential patterns.  

The foundation of sequential simulation is Bayes‘s theorem and Monte Carlo 

(stochastic) simulation (King, 2000). The idea for SS is to trade the sampling of the J-

point CCDF for the sequential sampling of the J one-point CCDFs (Goovaerts, 1997). 

The sequential simulation algorithm approximates a modeling of J-point CCDF by a 

sequence of J univariate (one-point) CCDFs at each node J along the random path. To 

preserve the proper covariance structure between the simulated values, each point 

CCDF is made conditional not only to the original I data but also to all values simulated 

at previously visited locations. For a given realization, value of an attribute assigned to 

location is selected randomly from the local CCDF. 

The simulated CCDFs are conditioned both on measured data and previously 

simulated values. In order for simulated values not to overshadow the measured data, 

the measured and simulated data may be searched separately (two-part search) within 

the search radii (Deutsch and Journel, 1998). In theory every previously simulated value 

should be used for estimation of a value in a given node. In practice only the closest 

conditioning data is used, up to maximum number of previously simulated data or 

search radius to keep CPU time reasonable. This assumes that the closest data 

screens further data out, and the additional information from this screened data is small 

enough that it can be neglected. 

Sequential Gaussian Simulation (SGS) is a robust and conceptually simple 

parametric method. In the SGS, properties of the RF model is assumed to be 

multivariate normal, therefore any local CCDF is also assumed Gaussian and can be 
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modeled using just two parameters: Kriging mean and Kriging variance. The first 

condition for RF to be multivariate normal is that its univariate CDF (sample distribution) 

is normal (Deutsch and Journel, 1998). If data distribution fails the normality test, it 

needs to be transformed to standard normal distribution. The most common technique 

is the normal scores (nscore) transform (Goovaerts, 1997), that is a graphical, rank 

preserving transformation (Deutsch and Journel, 1998) (Figure 3-1). Normal score 

transform is presented in equation 3-1 and a back-transform, required after analysis 

SGS analysis is presented in equation 3-2. 

y(x) =φ{z(x)}  (3-1) 

-1z(x) = φ {y(x)}  (3-2) 

Univariate normality is a necessary but not sufficient test of multiGaussian 

normality, the bivariate normality - the assumption that any two RVs is joint normally 

distributed - for the resulting nscore values needs to be checked as well (Deutsch and 

Journel,1998; Kyriakidis, 2001). If the assumption of bivariate normality is retained, data 

can be simulated using SGS, if not other sequential simulation techniques, like 

nonparametric Sequential Indicator Simulation (Deutsch and Journel, 1998; Goovaerts, 

1997), should be applied for determination of local CCDFs (Goovaerts, 1997). The 

assumption of bivariate normality can be checked by comparing experimental indicator 

covariance values to those obtained from theoretical expressions of the bivariate normal 

distribution (Deutsch and Journel, 1998). In reality, environmental data are hardly ever 

normally distributed, therefore normal scores transformation is required. Simulation of 

normal scores is done most often with Simple Kriging (SK), using the normal score 

semivariogram and a SK zero mean (Deutsch and Journel, 1998; Goovaerts, 1997; 
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Isaaks, 1991). SK determines the mean of the local Gaussian distribution at a given 

location (SK mean) and its variance (SK variance). Once all normal scores are 

simulated, they are back-transformed to original variable‘s space. 

SGS assumes maximum spatial entropy for a given variogram model (no 

correlation for extreme values of a variable). When the impact of spatially connected 

extreme values on the process response is known to be significant, like for the paths of 

connected high hydraulic conductivity, the nonparametric approach like Sequential 

Indicator Simulation should be used (Kyriakidis, 2001), SGS requires that data in 

simulated area come from a single underlying distribution (global CDF used for the 

nscore transform). Therefore trends are not always well reproduced in SGS. If present, 

trends should be filtered out from the data and residuals of the original values should be 

used for the analysis (Deutch 2002). Furthermore, the conditional simulation assumes 

the values at the conditioning points are free of error, and if the measurement error 

should be considered the method needs to be modified (Goovaerts, 1997). 

SGS has also been applied for delineating areas susceptible to soil contamination, 

soil erosion (Delbari et al. 2009), vegetation delineation (King, 2000) and ecological 

risks (Koch et al., Rossi et al., 1993). 

Theory on the Method of Sobol 

The method of (Sobol, 1993) estimates the sensitivity indices (variances in 

Equation 1-1) by approximate Monte Carlo integrations. The procedure (Lilburne and 

Tarantola, 2009) begins with generating 2 matrices A and B, (N,k) of quasi-random 

numbers, where N is a selected integer and k is a number of input factors considered in 

the analysis; each row of the matrices represents a sample - a set of factors values 

used for model simulation. Further, the matrices Di and Ci are defined from matrices A 



 

62 

and B. Matrix Di is created from matrix A, except the column ith, that is taken from matrix 

B, (where i 1, k); matrix Ci is defined created from matrix B, except from the ith column 

taken from matrix A (Figure 3-2). The three vectors of model outputs yi of dimensions 

1xN are obtained by running the model for each of the samples from matrices A, B, Cii: 

     
iA B C i= f A , = f B , = f Cy y y  (3-3) 

The method of Sobol estimates the Monte Carlo approximation for the first order 

sensitivity indices as follows: 
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The total effects can be estimated from: 
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With a set of (2k+2)xN simulations the first-order index and total index is obtained 

for each input factor, where N is a size of a sample (the same as the selected integer for 

matrices generation), and k is a number of factors. Saltelli et al. (2005) recommends 

B 
B 
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Ci 
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using N of 500 – 1000. In practice, the size of N depends on the computational cost of 

the model. Models that are computationally intensive to run may constrain the analyst to 

select small N values (e.g. N 30–100), while more computationally efficient models can 

allow the analyst to use larger N values (e.g. N.500) (Lilburne and Tarantola, 2009). For 

a given model, the larger N the more precise sensitivity estimates are obtained, 

complex non-linear models may require larger N to obtain stable SA estimates (Crosetto 

and Tarantola, 2001, Lilburne and Tarantola, 2009). The accuracy of the estimates 

depends also on complexity of the model under analysis (degree of linearity, additivity, 

etc.) (Crosetto and Tarantola, 2001).  

The quasi-random sampling scheme reduces the number of simulations required 

for accurate SA results (compared to the brute-force random sampling). Quasi-random 

numbers are generated from predefined probability distributions by quasi random 

sequences (Sobol, 1967) (the method of Sobol employs the LPt sequence of Sobol 

(Sobol, 1993)), that is very efficient method of sampling parameter input space that 

results in homogenous sampling of multivariate input space.  

Variance-based techniques assume that input factors are independent. If this is 

not the case other more expensive methods are available (McKay, 1995). The 

assumption of independence relates to the errors of input factors and this hypothesis 

does not forbid the possibility of performing SA with spatially correlated error fields for 

given geographically distributed data (Crosetto and Tarantola, 2001). 

The objectives of this chapter are to: 1) incorporate spatial uncertainty of 

numerical inputs into a generic, model-independent global UA/SA framework based on 

sequential simulation and variance-based sensitivity analysis techniques; 2) apply the 
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framework to evaluate the effect of spatial uncertainty of land elevation data on output 

uncertainty and parameter sensitivities of a complex hydrological model (RSM); and 3) 

evaluate an effect of objective functions selection (domain averaged/cell based) on 

GUA/SA results. 

Methodology 

Land Elevation Data as an Example for Spatially Uncertain, Numerical Model Input 

Topography is potentially a very important factor for all distributed hydrological 

models. For example, a small degree of uncertainty in land elevation may have a 

relatively large effect on inundation model predictions (Wilson and Atkinson, 2003). 

Spatial representation of land elevation may be especially important in areas of 

relatively flat terrain, since small variations in these areas affect surface runoff routes 

(Burrough and McDonnell, 1998). 

The common to South Florida landscape the Water Conservation Area 2A has 

unique characteristics such as: vast extent, very flat topography, dense vegetation, and 

a thick (20-30 cm) layer of debris floating over the bottom of inundated areas. The 

traditional methods for obtaining high resolution and high vertical accuracy elevation 

data like conventional field surveys or remotely-sensed technologies such as Light 

Detection and Ranging (LiDAR) and Interferometric Synthetic Aperture Radar (IFSAR)) 

are not effective in such conditions. Therefore an unique method was developed by the 

USGS for the land elevation surveying of South Florida conditions (USGS, 2003). The 

helicopter-based instrument, known as the Airborne Height Finder (AHF) was used for 

obtaining high vertical accuracy land elevation data. Using an airborne GPS platform 

and a high-tech version of the surveyor's plumb bob, the AHF system distinguishes itself 

from remote sensing technologies in its ability to physically penetrate vegetation and 
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murky water, providing reliable measurement of the underlying topographic surface 

(USGS, 2003). The elevation data has a vertical accuracy not smaller than +/- 15 cm 

(USGS, 2003). Regularly-spaced (approx. 400x400m) land elevation measurements are 

available for the WCA-2A. The total number of 1,645 data points was collected in 2003 

for the area of study. The topography of WCA-2A exhibits a general North-South trend 

and (like that of the Everglades in general) is very flat. In WCA-2A land elevation 

decreases from approximately 3.7 m (North American Vertical Datum 1988, NAVD88) in 

the north to about 2 m NAVD88 in the south over a distance of 32 km (Figure 3-3).  

As it can be seen in variogram constructed for raw land elevation values (Figure 

3-4), the nugget effect is 0.0125 m2. This is a part of the land elevation variability that 

cannot be addressed with the current dataset and can be attributed to the measurement 

error and variability at distances smaller than the sampling interval (the two types 

cannot be distinguished in practice). The resulting standard deviation (approximately 

0.11 m) is smaller than the anticipated measurement error of the USGS, AHF data 

(USGS, 2003).  

The RSM simulations in this study were performed for a period of 18 years 

(January 1983 to December 2000) with a daily time step. A one-year warm-up period 

(1983) was chosen to reduce the influence of the initial conditions on the model outputs. 

Raw model outputs included time series of water depth for each cell. 

Implementation of Sequential Gaussian Simulation 

The workflow for the creation of spatial realizations, using SGS from measured 

data is presented in Figure 3-5. The steps involved in the SGS include (Deutsch and 

Journel, 1998; Nowak, 2005; Zanon and Leuangthong, 2005): 1) a regular data grid for 

which the values are to be estimated (J nodes) is defined and measured values are 
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assigned to closest grid cells; 2) a random path to visit each of the (J - I) grid nodes is 

generated, each node is visited just once; 3) at each node: a) measured data and 

previously simulated values are located within the specified neighborhood, b) the local 

Gaussian CCDF is defined, c) the local CCDF is sampled randomly in order to obtain 

simulated value for the node; 4) a successive node in the random path is visited and the 

procedure from step 3 is repeated, until all nodes are simulated. The above steps 

constitute a single realization of the procedure (one map). Multiple realizations are 

obtained by repeating the procedure using different random paths.  

Land elevation is considered as an example of spatially distributed factor in the 

GUA/SA in this work. The abundance of measured land elevation data enables 

construction of a reliable model of the spatial variation (variogram) and global histogram 

for the simulations. Because of the requirement of stationarity, land elevation data 

(showing a North-South trend) (as seen in Figure 3-3) needed to be de-trended before 

the procedure is applied. For this purpose the second order polynomial model, as a 

function of the Y-coordinate was fitted to the data (R2=0.79) (Figure 3-6, A) and 

residuals were calculated for each data point (Figure 3-6, B). Table 3-1 presents a 

summary of descriptive statistics for land elevation residuals. The assumption of 

normality of residuals is checked using the Kolmogorov-Smirnov normality test. The test 

results in a significant (low) p-value of 0.0016, indicating that residuals are not normally 

distributed at confidence level α 0.01. Therefore, a normal score transform is required. 

A given residual value and its normal score correspond to the same cumulative 

probability of residuals‘ CDF and standard Gaussian CDF, respectively (as illustrated in 

Figure 3-1). The omnidirectional semivariogram model was fitted to the experimental 
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semivariogram of the normal scores of elevation residuals (Figure 3-7). The 

omnidirectional variogram for residuals appears to be trend-free as it reaches the sill. As 

expected, the sill is equal to unity, i.e., the variance of a standard Gaussian distribution. 

The variogram model had a nugget of 0.59 (dimensionless) and two structures: 

exponential with sill contribution of 0.25 and range of 5,3 km; and Gaussian with sill 

contribution of 0.16 and range of 12 km. Anisotropic variograms were also calculated 

(not shown) for four directions with 45° angular increments and ±22.5 angular tolerance. 

The results showed no significant directional behavior of autocorrelation. 

SGS was performed for land elevation data using the SGSIM routine in the GSLIB 

Geostatistical Library (Deutsch and Journel, 1998). Numerous (L=200) alternative land 

elevation scenarios were produced for land elevation over the WCA-2A domain and 

stored for the subsequent GUA/SA. This number was considered to be sufficient to 

characterize the overall uncertainty of land elevation maps, based on comparison of 

results for L ranging from 30 to 500. In this study, no change in SGS results was 

observed for L>200. Successful practical implementation of the SGS algorithms is 

conditioned on the setting choice that can affect analysis results and associated CPU 

requirements. The order of visiting nodes in the SGS algorithm was selected randomly 

to minimize its influence on the final model (Zanon and Leuangthong, 2005). SGS uses 

simple kriging (SK) with zero mean and isotropic nscore variogram model for 

interpolation of nscore values onto 200x200 m grid (approx. half of the measured data 

density). At each simulation node, the local uncertainty is determined by using 10 of 

neighboring simulated nodes, and 10 neighboring values of point data within 10km 

radius (the approximate range of the nscore variogram).  
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After SGS, each of the alternative realizations was aggregated to the RSM mesh 

scale. For this purpose, the model mesh was overlaid over the 200x200m grid 

generated by SGS. Values for SGS nodes that contained centroids of RSM triangular 

cells were extracted and used as effective land elevation values for model cells. The 

continuity between land elevation values for neighboring RSM cells was maintained 

since the centroids‘ values were conditioned on the measured data and SGS simulated 

values within the search radii. Equiprobable SGS realizations of elevation maps, 

aggregated to the model scale, were used as alternative inputs for RSM runs. Cell-by-

cell comparison of 200 aggregated maps of land elevation provided a PDF of land 

elevation values for each model cell, from which estimation variance, confidence 

intervals, and other desired statistics were derived. The estimation variance for land 

elevation of model cells ranges from 0.006 m2 to 0.027 m2 and is 0.01 m2 on average. 

The average 95%CI for all mesh cells is 0.38 m and ranges from 0.3 m to 0.59 m. 

Linkage of SGS with the GUA/SA  

A multi-step procedure for GUA/SA allowing for the incorporation of spatially 

distributed factors is presented in Figure 3-8. In the case of spatially distributed inputs, 

alternative pre-generated maps were at first associated with an auxiliary scalar input 

factor (step 1). The auxiliary input factor was characterized by a discrete uniform 

distribution, with the number of levels corresponding to the number of maps. For 

spatially lumped factors this first step was omitted and the procedure started with the 

definition of uncertainty model (PDFs) of scalar values (step 2). In the following step (3), 

numerous model runs were performed for alternative input sets, generated based on 

PDFs of input factors, and corresponding model outputs were mapped. Next, empirical 

probability distributions with desired uncertainty measures (variance, confidence 
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interval) were obtained for model outputs (step 4). As a final step (5), GSA was 

performed using the method of Sobol.  

For the current study, an auxiliary factor topo with discrete uniform distribution 

(topo ~DU [1,200]), was associated with the 200 land elevation maps produced by SGS. 

This input factor was used to investigate the effect of spatial structure of land elevation 

maps on model output uncertainty. Other inputs were considered as spatially certain 

and assigned uncertainty models based on available information for south Florida 

wetland conditions (based on literature review and experts opinion), using the approach 

presented in Chapter 2 (Table 3-2). All 20 uncertain input factors were sampled pseudo-

randomly (by Sobol sequences) with a sample size N = 512. This required a total of 

21,504 simulation runs, i.e. (2k+2)N runs, where k – number of factors. The matrix of 

corresponding model results was obtained and empirical PDFs for model objective 

functions were constructed. The uncertainty of the model output was expressed by the 

95% confidence interval (95%CI, i.e., the range between 2.5 and 97.5 percentiles) of 

the empirical distribution. Finally, the GSA was performed using the method of Sobol to 

obtain the first-order and total effect sensitivity indices.  

Selected raw RSM outputs are spatially and temporally distributed; for example, 

water depth is calculated for each cell on a daily time step. The MC based GUA/SA 

procedure requires that one value for each output objective function is provided for each 

simulation. The RSM performance objective functions (aggregated raw outputs) chosen 

as metrics for GUA/SA for this study are the performance measures generally adopted 

in the Everglades restoration studies (SFWMD, 2007): annual hydroperiod (specified as 

fraction of a year that a given area is inundated); annual water depth amplitude; and 
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annual mean, minimum and maximum water levels. The values for objective functions 

were averaged so that a single value was obtained for the whole simulation period. Raw 

results were post-processed, using Linux scripts, following two approaches: 1) spatial 

averaging over the application domain (spatial and temporal average of raw outputs); 

and 2) benchmark cells (temporal average of raw outputs). Among the 14 benchmark 

cells used for this study (Figure 2-1), three benchmark cells, representing different 

hydrological conditions, were selected for the illustration of UA and SA results. These 

are: cell 35 (in the north of domain), which represents dry conditions; cell 486 (in the 

south), which represents very wet conditions; and cell 178 (NE of the domain), which 

represents wet conditions and is of special interest because the NE area of the domain 

has experience cattail invasion (Figure 2-1). The two kinds of objective functions 

(domain-based and cell-based) may be used for supporting projects of various purposes 

and scale. In the case of the WCA-2A application, domain-based outputs may be 

effective for decisions of regional scale, like regional water budget assessment. 

Benchmark cell-based results provide information on local hydrological conditions. 

Therefore, this kind of objective functions may be more meaningful for supporting 

decisions on ecological restoration in particular locations of the WCA-2A. 

The quality of sensitivity indices depends on the number of model runs; the more 

runs, the more accurate the results (Sobol and Saltelli, 1995). Best practice dictates that 

one should continue sampling until some stable sensitivity value is reached 

(Pappenberger, 2008). Convergence tests were performed (for N ranging from 672 to 

43,008), and 21,504 simulations produced satisfactory GUA/SA results (results for 

10,753 were also acceptable). Since computational cost of the analysis is high 
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(accounting that one model simulation takes approximately 3 minutes), the simulations 

for this study were performed using the High Performance Computing Center (HPC) at 

University of Florida. Batch jobs utilized on average 64 computational nodes 

simultaneously, making possible to obtain results for each analysis (i.e. 21,504 model 

simulations) in approximately 17 hours. Otherwise, one analysis would take 

approximately 45 days on a single PC.  

Results 

Uncertainly Analysis Results 

The summary of UA results for all domain-based outputs and benchmark cells-

based outputs is presented in Table 3-3. Domain-based outputs had relatively small 

variability when compared to cell-based outputs (Figure 3-9). For example, the 

distribution of the domain‘s mean water depth (Figure 3-9 A-B) had a 95% CI of 0.02 m 

(0.28-0.30) and the distribution for the domain‘s hydroperiod (Figure 3-9 C-D) had a 

95%CI of 3% (79%- 82%). Such small uncertainty implies that for all alternative sets of 

input factor‘s used for RSM simulations, the domain‘s mean water depth and 

hydroperiod vary by only 2 cm and 3% respectively.  

Uncertainty associated with benchmark-based outputs was approximately an order 

of magnitude higher than for domain-based outputs (Table 3-3, Figure 3-9). For 

example, for benchmark cell 178, the 95%CI for mean water depth for benchmark cell 

178 was 0.28 m (0.16-0.44 m), and the 95% CI for hydroperiod was 14% (83%-98%). 

Similar magnitudes of variability regarding water depth and inundation periods were 

observed for other benchmark cells (Table 3-3).  

The benchmark cell results are spatially variable and reflect general hydrological 

conditions in domain‘s regions. The simulation results are in agreement with previously 
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described hydropatterns in WCA-2A. As described by Romantowicz and Richardson 

(2008), water flows into WCA-2A from the north, likely causing the water depth at the 

northern boundary to increase rapidly. Later, it gradually disperses through the wetland 

As the water flows to the southern boundary it is impounded along the southern dike 

until flowing out of WCA-2A. Benchmark cells located in the south of domain have 

generally higher values for all objective functions (Figure 3-9), the cells located in the 

north have smallest values, objective functions for cells in NE oscillate between these 

extremes. The spatial hydropattern is also reflected in the uncertainty for benchmark-

based outputs. Uncertainty results for mean water depth and minimum water depth are 

the highest for cells in the South of the domain (Figure 3-9 B and F). For example, the 

95%CI for mean water depth is 0.49 m for cell 486 , and 0.28 m for cell 35 and cell 178 

(Table 3-3). The uncertainty of hydroperiod is the highest for dry cells in the North 

(Figure 3-9 D), with a 95% CI for hydroperiod of 3%, 14% and 32% for cells 486, 178 

and 35 respectively. 

In order to compare deterministic and probabilistic approaches, the model was run 

for base values (i.e. default values from calibrated model) of the input factors, and 

unique values for model output are obtained (deterministic case). For the deterministic 

scenario, the domain‘s mean water depth is 0.29 m, and domain hydroperiod is 82%, for 

cell 178 the mean water depth is 0.23 m and hydroperiod is 94%. These values are very 

similar to the median values obtained for the output PDFs (Figure 3-10, Table 3-3). 

Figure 3-10 illustrates the difference in information obtained using deterministic and 

probabilistic approach. Vertical lines indicate results obtained for factors based on 

nominal/base values from Table 3-2.  
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Sensitivity Analysis Results 

Figure 3-11 illustrates first-order sensitivity indices for domain outputs. The 

sensitivity measure Si represents the contribution of a factor i to the total variance of 

domain-based objective functions (y-axis). The first-order sensitivity index ranges from 0 

(completely unimportant input factor) to 1 (factor entirely controlling model output 

variance). A subjective criterion, used in this study, is that an input factor contributing 

less than 5% of total output variance is not considered important. 

The most important factors for the majority of domain-based outputs were: 

parameter det determining detention depth, parameter a, used for calculation of 

Manning‘s roughness coefficient of mesh cells, and the auxiliary factor topo (Figure 3-11 

A and Table 3-4). Detention depth is a depth of ponding in cell below which no transfer 

of water from one cell the other cell occurs, even if a hydraulic gradient exists. It 

represents water retained in small surface depressions with a cell. Moreover, the 

interception parameter imax contributed to variability of the domain‘s hydroperiod, and 

mean and minimum water depths, though to a lesser extent (Table 3-4). Manning‘s 

roughness coefficient for canals (n) contributed to the variance of maximum water depth 

and amplitude to a small extent (Table 3-4). 

The auxiliary input factor topo, which represents the spatial uncertainty of land 

elevation, contributed to 19%, 21%, 13%, and 11% of the uncertainty domain mean 

water depth, minimum water depth, maximum water depth and amplitude of water depth 

respectively (Table 3-4). This factor was the second most important (after the parameter 

a) for the domain‘s mean water depth, and the third most important (after det and a) for 

the domain‘s minimum water depth.  
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While GSA results over the model domain indicated a shared importance between 

topo, det, and a (and other input factors, to a lesser extent), results for benchmark cell-

based outputs showed that spatial uncertainty of land elevation had a dominant effect 

over all hydrological outputs for all benchmark cells. This factor contributed to the 

variability of model responses directly (without interactions) since its first-order 

sensitivity indices were above 90% for most cell-based outputs (Table 3-4). Figure 3-11 

B- D presents SA results for the three selected benchmark cells. Other parameters used 

for the analysis were generally unimportant, with a few exceptions. Parameter a, 

contributes to 12 to 17% of variance of water depth amplitude for cells in NE of the 

domain (Table 3-4), including cell 178. Parameter leakc affects hydroperiod and 

amplitude in cell 486 (sensitivity indices are 15% and 6% respectively) and may reflect a 

local influence of a neighboring canal. 

In case of domain-based and most benchmark cell-based outputs, higher-order 

effects for all factors are negligible (Table 3-4) as differences between total-order effects 

and first-order effects (STi -Si) of all factors are close to zero. This indicates that there 

are no indirect effects of input factors on output variance (interactions between factors 

in influencing output variance). The exception is hydroperiod for cell 178 and amplitude 

for cell 486, where small interactions are observed for factors topo and det, and topo 

and leakc respectively (Table 3-4). 

Discussion 

Preserving realistic land elevation is potentially very important in hydrological 

modeling, as it transfers into overland flow patterns in a domain. Especially for 

extensive wetland systems such as WCA-2A, which has a very low slope, even small 

changes in land elevation can affect water flow direction and hydrological patterns. The 
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hypothesized importance of spatial uncertainty of land elevation on RSM results was 

corroborated by GSA results. Despite exacting measurement of land elevation data, and 

reproduction of measured data histogram and variogram, the remaining ―space‖ of 

spatial uncertainty, explored using random sampling, was large enough to affect model 

results. The auxiliary factor topo was relatively important for domain-based outputs, and 

it dominates cell-based model responses.  

The results of this study showed that the choice of objective functions used for 

GUA/SA has significant impact on analysis results. The smaller variation of domain-

based model response can be explained by two factors: spatial averaging of raw model 

outputs calculated for each cell over the entire domain; and the nature of the application 

itself. WCA-2A wetland is confined within levees, and inflows and outflows are 

controlled and considered as deterministic (i.e., fixed for all model runs). Therefore the 

only difference between simulations was the distribution of water within domain. In such 

a case, differences between spatially averaged outputs were small, and consequently, 

the uncertainty of predictions was smaller. The higher uncertainty for benchmark cell-

based outputs was related to different water distribution patterns between model 

simulations resulting from alternative land elevation realizations.  

GSA results depend also on the selection of objective function and help to explain 

UA results. The domain-based outputs were controlled mainly by the overland flow 

parameters: a used for calculating Manning‘s roughness coefficient for mesh cells and 

det, determining detention depth, while topo had a smaller contribution to uncertainty. 

On the other hand, benchmark cell-based outputs were controlled almost completely by 

the spatial uncertainty of land elevation.  
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Information obtained by GUA/SA should support decision making process. With 

UA results, transparency in the model results and assessment of model uncertainty can 

effectively support the decision process, rather than simply acknowledging that a model 

is associated with existing, but undefined, uncertainty. For example, RSM results could 

be used as a decision support tool for restoration of sawgrass communities in NE region 

of the WCA-2A. This area (Figure 2-1) was originally dominated by a sawgrass 

community, but is experiencing an expansion of cattail due to anthropogenic changes of 

hydrological conditions and nutrient loads (Newman et al., 1998). Regarding 

hydrological controls, sawgrass has higher capacity to resist cattail invasion in shallow 

waters with more variable hydroperiod (Newman et al., 1996; Urban et al., 1993). For 

the purpose of this example, mean water depth of 24 cm is assumed to be a threshold 

between sawgrass-favorable hydrological conditions (shallower water) and cattail-

favorable hydrological conditions (deeper water), since water depth above 24 cm is 

reported as optimal for cattail (David 1996, Grace 1989). If only deterministic RSM 

results for benchmark cell 178 are taken under consideration (Figure 3-10, A) one may 

decide that hydrological conditions in this location are favorable for sawgrass restoration 

since mean water depth for 18-year-long simulation is 23 cm. However, if the whole 

PDF of mean water depth is to be considered, it can be seen that approx. 60% of output 

values exceed the threshold of 24 cm. Therefore probabilistic analysis could lead to 

conclusions that cattail invasion is encouraged by existing hydrological conditions. A 

similar illustration could be done for any other location in a domain, for example 

benchmark cell 35 (located north of domain), that does not exhibit favorable 

hydrological conditions for cattail expansion for approx. 70% (Figure 3-10, B) of 
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simulated values. The example illustrates how neglecting the variability of model 

predictions may lead to incorrect management decisions. The combined GUA/SA 

methodology, apart from providing estimation of model uncertainty, can identify the 

controls of hydrologic system and indicate model inputs that control model performance.  

Several processes simulated by the RSM model can potentially affect hydrological 

patterns. From the set of processes modeled by RSM, overland flow is found to be the 

most important in respect with the selected objective functions in this analysis. If the 

model uncertainty is not acceptable, the important input factors could be better 

estimated to reduce the model output variance. With GSA results, resources for 

additional data acquisition for reduction of model uncertainty can be optimally allocated. 

For example, for the WCA-2A application, if variability of outputs was to be reduced, the 

additional measurements or parameter estimation efforts should focus on the overland 

flow parameters (a and det) or land elevation rather than, for example, transpiration 

parameters. Finally, first and total order sensitivity indices are very similar, indicating 

that input factors influence model outputs only by direct effects and interactions effects 

are weak, and that for the outputs selected RSM behaves as an additive model.  

It is important to highlight that the SA results are not only specific to selected 

objective functions but also depend on the uncertainty (probability distributions) of input 

factors. Uncertainty models are generally constructed based on limited information. In 

the case of a sensitive factor, different uncertainty models would likely result in different 

sensitivity measures. Therefore the GUA/SA should be performed iteratively and 

uncertainty models for input factors (lumped or spatial) should be considered as 

dynamic and updated every time new information is available.  



 

78 

The proposed methodology for GUA/SA is model-independent. Application of the 

variance-based method of Sobol requires no assumptions on model behavior (does not 

have to be linear, monotonic), and both direct effects and interactions of factors are 

examined. The methodology presented in this study can be applied to any spatially 

distributed hydrological model if sufficient information for construction of a variogram 

model of spatially distributed inputs is available. Potential disadvantages of the 

framework are high computational requirements, amplified by computational cost of 

model simulations. If duration of model runs renders an application of variance-based 

methods too costly, a screening method (Campolongo et al., 2007; Morris, 1991) can be 

applied first, without consideration of input spatial uncertainty. The incorporation of an 

auxiliary input factor in a method of Sobol can be used not only for estimation of effects 

of spatial pattern, but also for evaluation of effects of various data scales (resolution) or 

aggregation techniques. It can also be applied for selecting best model structure 

(Lilburne and Tarantola, 2009). 

Conclusions 

Spatial uncertainty of model inputs has so far been omitted in the uncertainty 

analysis and global sensitivity analysis (GUA/SA) of hydrological models. The 

uncertainty regarding spatial structure of model inputs can affect hydrological model 

predictions and therefore its influence should be evaluated formally. The framework 

applied in this research enables for spatial uncertainty of model inputs to be 

incorporated into GUA/SA. The results of this analysis confirm that spatial uncertainty of 

model inputs (land elevation) can propagate through spatially distributed hydrological 

model and affect model predictions.  
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A geostatistical technique of Sequential Gaussian Simulation (SGS) was used for 

estimation of spatial variability of input factors. Alternative realizations of land elevation 

surface maps were realistic since measured data, global CDF (histogram) and 

variogram models were preserved. The method of Sobol, combined with an auxiliary 

input factor, allowed for incorporation of alternative maps into GUA/SA and an 

estimation of the effect of spatial variability on model uncertainty and sensitivity.  

RSM, a spatially distributed hydrological model was used as a benchmark model 

for the framework application. Land elevation was used as an example of spatially 

distributed model input. The auxiliary input factor topo is associated with land elevation 

maps and represents spatial uncertainty of topography. Other uncertain inputs are 

considered as spatially lumped.  

GUA/SA results depended on the objective function considered (domain-based 

and benchmark cell-based). Benchmark cell-based outputs were associated with higher 

uncertainty than domain-based outputs. For example, the 95%CI for mean water depth 

(used as uncertainty measure) was 0.02 m for the domain, and 0.28 m for benchmark 

cell 178. GSA results for majority of domain-based outputs indicated that the most 

important factors were parameters a, used for calculating Manning‘s roughness 

coefficient for mesh cells, and det, specifying detention depth. In the case of the 

domain‘s mean water depth, Sa = 0.56, Sdet = 0.13 (where Si –first order sensitivity index 

for factor i, measures contribution of this factor to total output variance). The factor topo 

also contributed to the variability of domain-based outputs to a considerable extent 

(Stopo=0.19 for mean water depth). The GSA results for benchmark cell, on the other 

hand, showed that the factor topo practically dominated uncertainty of cell-based 
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outputs for all benchmark cells (Stopo > 0.9 for most cases), whereas other parameters 

have marginal and local influence on the cell-based outputs.  

The framework, based on combination of SGS and the method of Sobol, could be 

applied to any spatially distributed model, as it is independent from model assumptions. 

GUA/SA evaluates suitability of the model as a decision support tool by specifying 

model uncertainty. The framework identifies areas in model input space that need 

additional research (additional measurements, parameter estimation). With spatial 

uncertainty, the analysis can also optimize spatial data collection for optimal reduction 

of model uncertainty. 

Table 3-1. Summary for sample statistics of land elevation and land elevation residuals. 

Sample Statistics Land Elevation [m]1 Residuals of Land Elevation [m] 

Mean  3.043 0.002 
Variance 0.091 0.014 

Skewness -0.528 -0.308 
Minimum 1.740 -0.602 
Median  3.060 0.007 

Maximum 3.860 0.473 
1 NAVD 88. 
  



 

81 

Table 3-2. Characteristics of input factors, used for GSA/SA. 

# Input 
Factor 

Base Value Uncertainty Model (PDF) Source 

1 valueshead 3.661 N3(μ 3.66, σ 0.374)  Jones and Price, 
2007 

2 topo2 - DU3[1,200] USGS, 2003 

3 bottom 0 U3(0.8, 1) SFWMD data 

4 hc 46.5  Lognormal( μ 4.6, σ 1.2) SFWMD data 

5 sc 0.3 U (0.2, 0.3) SFWMD expert 
opinion 

6 kmd 0.000026  U (0.000021, 0.000032) ± 20% 

7 kms 0.000011 U (0.000009, 0.000013) ± 20% 

8 kds 0.0000031 U (0.0000025, 0.0000038) ± 20% 

9 n 0.06 Triangular (min.= 0.03, 
peak=0.10, max.=0.12) 

SFWMD expert 
opinion; USGS, 1996 

10 leakc 0.00001 U (0.000002, 0.001) SFWMD data 

11 bankc 0.05 U (0.04, 0.05) SFWMD data 

12 a 0.3 U (0.24, 0.36) ± 20% 

13 det 0.03 U (0.03, 0.12) Mishra et al., 2007 

14 kw 1 U (0.8, 1.2) ± 20% 

15 rdG 0 U (0, 0.2) Yeo, 1964,  

16 rdC 0 U (0, 1.5) expert opinion 

17 xd 0.9 U (0.7, 1.1) Mishra et al., 2007 

18 pd 1.8 U (1.5, 2.2) ± 20% 

19 kveg 0.83 U (0.66, 0.99) ± 20% 

20 imax 0 U (0, 0.03) SFWMD expert 
opinion 

1 all input factors, except topo, have the same PDFs as in screening SA in Chapter 2; 
2 in this chapter factor topo is an auxiliary input factor, associated with pre-generated 
land elevation maps. Unlike in the Chapter 2, where topo represents uncertainty of land 
elevation error, here factor topo does not have any physical meaning. 

3 N - normal distribution; DU - discrete uniform distribution; U - uniform distribution;  
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Table 3-3. Summary of output PDFs for domain-based and benchmark cell-based 
outputs. 

Output Statistics Domain 
Benchmark cells 

35 178 486 

Mean Water 
Depth [m] 

mean 0.29 0.18 0.27 0.91 

median 0.29 0.17 0.26 0.90 

2.50% 0.28 0.07 0.16 0.72 

97.50% 0.30 0.35 0.44 1.21 

95%CI 0.02 0.28 0.28 0.50 

      

Hydroperiod 
[fraction] 

mean 0.80 0.81 0.94 0.99 

median 0.80 0.83 0.95 0.99 

2.50% 0.79 0.60 0.83 0.97 

97.50% 0.82 0.92 0.98 1.00 

95%CI 0.03 0.32 0.14 0.03 

      

Minimum 
Water 

Depth [m] 

mean 0.07 0.04 0.08 0.46 

median 0.07 0.02 0.06 0.45 

2.50% 0.07 0.00 0.01 0.29 

97.5%. 0.08 0.17 0.23 0.75 

95%CI 0.02 0.17 0.22 0.46 

      

Maximum 
Water 

Depth [m] 

mean 0.67 0.45 0.80 1.43 

median 0.67 0.45 0.79 1.43 

2.50% 0.65 0.29 0.66 1.24 

97.50% 0.68 0.64 0.99 1.75 

95%CI 0.03 0.35 0.33 0.51 

      

Amplitude 
[m] 

mean 0.60 0.42 0.73 0.97 

median 0.60 0.42 0.73 0.97 

2.50% 0.58 0.29 0.63 0.94 

97.50% 0.61 0.50 0.81 1.00 

95%CI 0.03 0.21 0.18 0.05 
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Table 3-4. First-order sensitivity indices (Si) for domain-based and benchmark cell-based outputs. 

Output Factor Si – domain* 
Si - cells 

(STi -Si) - domain 
(STi -Si) - cells 

35 178 486 35 178 486 

Mean Water 
Depth 

topo 0.19 1.00 0.99 0.96 - - - - 

a 0.56 - - - - - - - 

det 0.13 - - - - - - - 

imax 0.07 - - - - - - - 

  
        

Hydroperiod 

topo 0.05 1.00 0.94 0.79 - 0.02 0.06 0.03 

a 0.05 - - - - - - - 

det 0.38 - - - - 0.02 0.04 - 

imax 0.40 - - - - - - - 

leakc - - - 0.15 - - - 0.02 

  
        

Minimum Water 
Depth 

topo 0.21 0.99 0.99 0.96 - - - - 

a 0.24 - - - - - - - 

det 0.41 - - - - - - - 

imax 0.05 - - - - - - - 

  
        

Maximum Water 
Depth 

topo 0.13 1.00 0.93 0.96 - - - - 

a 0.81 - 0.06 - - - - - 

n 0.06 - - - - - - - 

  
        

Amplitude 

topo 0.11 1.00 0.74 0.88 - - - 0.06 

a 0.59 0.05 0.17 - - - - - 

det 0.15 - 0.05 - - - 0.02 - 

leakc - - - 0.06 - - - 0.06 

n 0.07 - - - - - - - 

* only sensitivity indices with values larger than 5% are presented, but all (STi -Si) larger than 1% are shown
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Figure 3-1. Transformation of an empirical cumulative distribution function to normal 
score (after Jingxiong et al., 2009). 

 

 
Figure 3-2. Generating matrices for the method of Sobol (after Lilburne and Tarantola, 

2009). 
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Elevation

 
Figure 3-3. North-south trend in land elevation data for WCA-2A. 
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nugget = 0.0125 m2, sill contribution=0.064 m2, range = 16.8 km 
 
Figure 3-4. Experimental variogram (dots) and variogram model (line) for raw land 

elevation data. 
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Figure 3-5. Workflow for generation of spatial realizations (maps) of spatially distributed 

variables from measured data, using SGS. 
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Figure 3-6. De-trending of land elevation data. A) polynomial trend fitted to original data 
as a function of Y coordinates, B) residulas obtained using the trend. 
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Figure 3-7. Experimental variogram (dots) and variogram model (line) for normal scores 

of land elevation residuals. 
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Figure 3-8. General schematic for the global sensitivity and uncertainty analysis of 

models with incorporation of spatially distributed factors.  
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Figure 3-9. Uncertainty analysis results: PDFs (left) and CDFs (right) for domain-based 
and selected benchmark cell-based results. A), B) mean water depth, 
C), D) hydroperiod, E), F) minimum water depth, G), H) maximum water 
depth, I), J) amplitude. 
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vertical line – model results for base values of input factors 
PDF and CDF – model results for 21,504 alternative sets of input factors 

 
Figure 3-10. Comparison of deterministic (vertical line) and probabilistic (PDF and CDF) 

RSM results for benchmark cells. A) cell 178, B) cell 35. 
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Figure 3-11. Sensitivity analysis results: first-order sensitivity indices (Si) for domain-

based and selected benchmark-cell based outputs. A) domain, B) cell 35, 
C) cell 178, D) cell 486. 
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 CHAPTER 4  
GLOBAL UNCERTAINTY AND SENSITIVITY ANALYSIS FOR SPATIALLY 
DISTRIBUTED HYDROLOGICAL MODELS, INCORPORATING SPATIAL 

UNCERTAINTY OF CATEGORICAL MODEL INPUTS. 

Introduction 

Categorical model inputs are widely used for hydrological and ecological model 

applications. Categorical model inputs are defined as non-numerical (nominal data) and 

include inputs like land cover, vegetation type and soil class. The environmental 

phenomenon is classified into discrete number of classes, which are often used to 

derive other model parameters. For example, vegetation type may determine the leaf 

area index or crop coefficient, and the soil type may determine hydraulic conductivity 

values. The study presented in this chapter aims at the exploration of the effect of 

potential spatial uncertainty in categorical model inputs on uncertainty of hydrologic 

model predictions. This study focuses on land cover type as an example of a spatially 

distributed categorical model input. The effect of land cover type on model uncertainty is 

evaluated simultaneously with other uncertain model inputs (including spatially 

uncertain land elevation) within the GUA/SA framework.  

Model RSM cells are assumed homogenous in terms of land cover type. However, 

as it can be observed in Figure 4-1 (and Figure F-1 and F-2 in Appendix F) vegetation 

patterns may differ at the sub cell scales. Therefore, uncertainty regarding cell 

classification arises. The uncertainty may be further enlarged by the natural vegetation 

changes that are not accounted for by long term model simulations (vegetation maps 

are fixed)  

The methodology applied for incorporation of spatial uncertainty of categorical 

model inputs, proposed in this study, is based on the general framework for 
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incorporation of spatial uncertainty. The framework incorporates the method of Sobol for 

the GUA/SA, and sequential simulation for generating alternative maps of model inputs. 

The difference between approaches for numerical data (described in Chapter 3) and 

categorical data is that instead of adopting the parametric framework (SGS) for 

modeling spatial uncertainty, the nonparametric (SIS) framework is used, as described 

in this chapter.  

The spatial uncertainty of categorical data like land cover class was evaluated 

before (Kyriakidis and Dungan, 2001) using the geostatistical technique of SIS 

(Goovaerts, 1997). However, studies incorporating this uncertainty into GUA/SA of 

hydrological models have not been presented in the literature. 

SIS of Categorical Variables 

Categorical random variable (RV) s(u) can take K mutually exclusive and 

exhaustive outcomes/states {sk,k 1, ,K} (Goovaerts, 1997). Every sample datum s(uα ) 

belongs to one and only one of the K classes, with no uncertainty. Within indicator 

formalism, each category is coded into an indicator variable  α;sk . Indicator is set to 1 if 

the category/state sk is observe at a given location α and to 0 otherwise: 

i α;sk   
1  if s(α) sk 

0  otherwise
  (5-1) 

For given location α, the distribution (histogram) of categorical data is completely 

described by a frequency table, which lists K states and their frequency of occurrence 

(Goovaerts, 1997). 

f(sk 
1

n
 i(α;sk)

n
α 1  (5-2) 
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The pattern of continuity (variability) of category sk, can be characterized by 

indicator semivariogram, computed as: 

 
I
  ;sk  

1

2N( )
  i uα;sk -i uα+ ;sk  

2N( )

α 1   (5-3) 

The indicator variogram indicates how often two location a vector h apart belong to 

two different categories (Goovaerts, 1997). The smaller the  
I
  ;sk  the better spatial 

connectivity for class sk. 

Sequential Indicator Simulation (Gómez-Hernández and Sirvastava, 1990) can be 

used to model joint uncertainty of the spatial occurrence of categorical class labels e.g. 

the probability that a specific class prevails at a set of locations. SIS is the most 

commonly used non-Gaussian simulation technique (Goovaerts, 1997). The SIS 

procedure consists of generating multiple alternative realizations (maps) of class labels 

consistent with the available information (i.e. measured data at their locations, global 

histogram, and models of spatial variability), and determining the probability of class 

occurrence at more than one location (Goovaerts, 1997). The resulting realizations of 

class labels provide location dependent models of categorical data variability. Similarly, 

as in the SGS, the conditional PDF of the indicator RV is assessed by decomposing 

multivariate Conditional PDF (CPDF) into a product of N one point CPDF (using Bayes 

axiom) (Kyriakidis and Dungan, 2001). The local CPDF is estimated based on the 

conditional probability of occurrence of each category sk,  p(uα;sk n  )  based on the 

conditioning information n (see SIS procedure steps in the methodology). The 

alternative SIS maps can be used to evaluate spatial variability of categorical data, and 

can be further used for evaluating model uncertainty and sensitivity due to this spatial 

uncertainty.  
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WCA-2A Land Cover 

This study focuses on land cover as a spatially distributed model input, therefore 

the information on the study site that is presented in the previous sections is 

complemented here by more detailed land cover (vegetation) descriptions. The WCA-

2A is a remnant Everglades area, consisting of vegetation communities dominated by 

sawgrass, with contribution of open marsh, cattail, shrubs and trees and other 

vegetation communities (Figure 4-2 A, Table F-1 in Appendix F). The vegetation 

patterns in the WCA-2A are affected by anthropogenic changes related to increased 

nutrient loads as well as altered water depth, hydroperiod, and flow. The major concern 

is an expansion of cattail to the areas previously occupied by sawgrass community 

(Newman et al., 1998), disappearance of tree islands as result of historically higher 

water depths (Wu et al. 2002), and to a much smaller extent, exotic species expansion 

(Rutchley et al., 2008).  

The current application uses the 2003 baseline land-cover vegetation map of the 

WCA-2A for deriving input land cover map (Wang, personal communication). This land 

cover map was produced by the stereoscopic analysis of aerial photographs that 

allowed identification at species-level resolution for most of the grid cells (Rutchey et al., 

2008). A hierarchical classification scheme, created specifically for use in the 

Comprehensive Everglades Restoration Plan (CERP) vegetation monitoring and 

assessment project (Rutchey et al., 2008) was utilized to label the grid cells. Each 

50x50m grid cell was labeled with the major vegetation category observed within the 

cell. To verify the spectral signature of vegetation types on the photos with field 

conditions, a number of ground-truth (reference) sites were selected (Figure 4-2 B). 
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Constant vegetation pattern changes are reported to take place in the area. The 

reported rate of yearly spread of cattail is 960.6 ha/year from 1991–1995, and 312.0 

ha/year from 1996–2003 (Rutchley et al., 2008). That is equivalent to an area of 8.7 and 

2.8 average-size cells (1.1 km2) per year for the first and second period respectively. 

Methodology 

The spatial uncertainty of land cover type is incorporated into GUA/SA, together 

with other input factors presented in Table 4-1. In this analysis land cover maps 

determine the spatial distribution of evapotranspiration (ET) parameters and the spatial 

distribution of parameter a, used for calculating Manning‘s n for model cells. ET 

parameters and parameter a maps are generated independently from each other. The 

two auxiliary input factors used for the GSA are factor LC, associated with land-cover-

dependent ET parameters and factor MZ, associated with Manning‘s roughness zones 

(i.e. parameter a zones). 

Implementation of Sequential Indicator Simulation 

SIS is used for generating alternative class label realizations at the resolution of 

the land cover map. A realization form the multivariate CPDF is generated by a 

sequence of drawings from a set of univariate CPDFs. The SIS proceeds with the 

following actions (Goovaerts, 1997): 1) Transformation of each categorical datum s(uα) 

into a vector of hard indicator data, (defined as in the equation 5-2); 2) Definition of 

random path visiting each undefined node in the domain; 3) At each node: a) 

Determination of the conditional probability of occurrence of each category sk, 

 p(u ;sk n
 )  using indicator kriging (IK). The conditional information consists of both hard 

data and previously simulated nodes within the search radii centered on u‘; b) Definition 

of the ordering of the K categories and constructing the CDF by adding the 
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corresponding probabilities of occurrence; c) Drawing a random number p uniformly 

distributed in [0,1]. The simulated category at location u is the one corresponding to the 

probability interval that contains number p; 4) Adding the simulated value to the 

conditioned data set and moving to the next model along the random path. In order to 

generate L realizations the above steps need to be repeated L times, using different 

random paths. 

In the current study the SIS is performed using the class labels based on the 

reference data for the 2003 WCA-2A vegetation map (Figure 4-2 B). The original 

vegetation from ground truth data is assigned one of the five land cover types used in 

the current WCA-2A application, either sawgrass, cattail, cypress, freshwater marsh, 

and other, following the guidelines from the Vegetation Classification for South Florida 

Natural Areas (Rutchey et al. 2006). Figure 4-3 presents the frequency of 5 land cover 

classes, characterizing the global distribution used for SIS. The pattern of continuity of 

each of the land cover classes is presented using the indicator semivariograms (Figure 

4-4). These semivariograms reflect patterns of spatial continuity (autocorrelation) and a 

range of spatial dependence for each land cover type. The variogram of sawgrass has a 

long range (approx. 10 km) and a larger scale of spatial variation, whereas variograms 

for cattail and cypress have short-range structures of spatial continuity. The long-range 

structure of the variogram for sawgrass is related to the vast extent of this vegetation 

class for the area. The smaller continuity of other classes can be possibly attributed to 

local conditions (like phosphorus concentration in case of cattail, tree islands for 

cypress). The variogram for marsh is very noisy and it appears as a pure nugget effect 

model (nugget effect is the same as sill). It suggests that the attribute is not spatially 
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structured. Possibly it is the effect of the inadequacy of classification (this class 

combines a lot of land cover types like marsh vegetation, shrubs, open water that does 

not have to be spatially correlated). Also the hard data locations may be a factor. These 

sites were chosen for referencing classification of satellite image, (i.e. for ambiguous 

rasters in the map) therefore they do not have to be representative for all of the 

vegetation classes considered here. 

Geostatistical modeling is performed using GSLIB, SISM routines (Deutch and 

Journel, 1998). SIS is performed using the Simple Indicator Kriging algorithm. It uses 12 

measured and 12 previously simulated points, within the search radius of 10 km. A 

number of 250 alternative land cover maps with 50x50m resolution is produced. The 

maps honor both the ground truth sites‘ class labels and indicator variogram models. 

Two example SIS realizations are shown in Figure 4-5. The simulated land cover maps 

exhibit patterns that are locally different from the 2003 vegetation map (for comparison 

see two realization for cell 178 in Figure 4-5 and the corresponding vegetation 

representation in Figure F-2 in appendix F). These discrepancies between the SIS 

realizations and the 2003 vegetation map are probably dictated by the fact that only 

reference data are used for the SIS (without using any image derived information). 

The original land cover map, i.e. the map, used as an input for the calibrated RSM 

is presented in Figure 4-6. It can be seen that one of the 5 land cover classes is 

assigned to each of the model cells. In order to construct the land cover maps used as 

inputs for RSM, the 50x50 vegetation maps, produced by the SIS, need to be 

aggregated to the model scale. For this purpose the model mesh is overlaid over the 

SIS grid (in ArcMap) and the majority of pixels (class with the largest proportion within a 
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model cell) falling within a model cell determine which class is assigned to a model cell. 

The classes are crisp, which means that only one class can be assigned to a model cell 

for a given realization. Two aggregated maps are presented in Figure 4-7.  

Associating RSM parameters with land use maps 

The land cover maps are used to derive input values for model simulations. Land 

cover type can affect RSM outputs by: 1) determination of ET parameters, and 2) 

determination of parameter a (used for calculating Manning‘s roughness coefficient). 

Actual ET is calculated by the RSM based on the potential ET provided as input and the 

crop correction coefficient (Kc). The crop correction coefficient is evaluated based on 

other parameters: kw, rd, xd, pd, kveg and imax. The parameters are defined in Table 

5-1 and illustrated in Figure B-1. Manning‘s roughness coefficient for mesh cells (nmesh) 

specifies resistance to flow by vegetation for cells in the domain. It depends on the 

vegetation type (shape and texture of vegetation). Roughness varies greatly with the 

changes of density, height, flexibility of vegetation, and the relative ratio between flow 

depth and vegetative elements (Maidment, 1992). Because the geometry of plants is 

not uniform over the entire height of the plant, the resistance to flow changes with water 

depth and therefore is calculated for each model time step, depending on the water 

depth. For the purpose of this study, the Manning map is derived from a land cover 

map, by assigning each vegetation class a nominal Manning‘s roughness coefficient. 

The relationship between the land cover and Manning‘s roughness n, adopted here is 

presented in Table 4-2. It is assumed that there is no variation of vegetation density 

within the class (for example sparse, medium or dense cattail is considered as one type 

that is cattail). In reality, the density may vary within each land cover class but this is not 

addressed here and maybe a subject of further study. 
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ET parameters, as well as parameter a, are associated with two sorts of input 

factors for the GUA/SA. The first kind of input factor represents the uncertainty around 

the value of parameters for different zones. The first source of uncertainty was modeled 

in the previous chapters using the level parameter approach. The second kind of factor 

is related to the uncertainty regarding the spatial uncertainty (uncertainty about spatial 

distribution of zones within domain). The second source of uncertainty is examined in 

this chapter, with the use of the auxiliary factor LC for ET parameters and factor MZ for 

parameter a (i.e. Manning‘s roughness).  

Implementation of the GUA/SA 

A set of alternative maps of class labels (simulated realizations of land cover) can 

be input into the model and used for propagation of spatial input uncertainty onto model 

predictions. For each model run, one of the 250 land cover maps is randomly chosen 

and used as an alternative land cover input that translates into alternative realizations of 

ET parameters and Manning‘s n. The effects of alternative realizations are evaluated 

individually by two independent auxiliary input factors LC and MZ. Both factors have 

discrete uniform distributions: DU[1,250], with levels associated with the pre-generated 

land cover maps. 

Four alternative scenarios (input factor sets) are considered for the GUA/SA 

(Table 4-3): 1) LC_la scenario. 2) MZ_la scenario, 3) VF_5a scenario, and 4) MZ_5a 

scenario. These scenarios differ in consideration of spatial uncertainty of land cover (LC 

- land cover is spatially variable and affects ET parameters through LC factor, MZ - land 

cover is spatially variable and affects spatial distribution of factor a through MZ factor, 

VF – land cover is assumed spatially fixed), and in the approach towards simulating 

parameter a (la- level approach, and 5a-approach based on five independent factors). 
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The level parameter approach is explained in the previous chapters (see Chapter 2 and 

Appendix C). Factor a2-a6, representative for zones II-VI are characterized by uniform 

distribution with ranges equal to ± 20% of base values (Table C-1).In the alternative ―5a‖ 

approach each Manning‘s n zone is represented by an independent factor a (a2-a6). In 

this way alternative maps of parameter a are no longer just shifted up and down (like in 

the level approach), but the spatial relationship between parameter values also 

changes. The GUA/SA results are provided for the domain-based outputs and the 

selected benchmark cell-based outputs: cell 35 in north, cell 180 in northeast, and cell 

486 in south (Figure 2-1). 

Results 

Uncertainty Analysis Results 

The comparative uncertainty results obtained for five input factors‘ sets, described 

in Table 4-3 are presented in Figure 4-8 and Figure 4-9. It is observed that the approach 

applied for generating alternative values of parameter a (level or zone-based) affects 

uncertainty results for domain-based outputs (Figure 4-8 A). For domain-based mean 

water depth, maximum water depth and amplitude, the uncertainty is higher when the 

level approach is applied than for the zone-based approach. However, the differences in 

the 95%CI are not very high (as generally values for the 95%CI are not high in case of 

domain-based outputs).  

The inclusion of the LC factor into UA does not seem to affect uncertainty results, 

i.e. there is not much difference in the 95% CI for the VF_la and LC_la scenarios. The 

incorporation of the MZ factor seems to increase the uncertainty of the domain-based 

mean and maximum water depth, compared to the spatially fixed land cover maps. This 

is observed for both the level and the zone-based approaches for generating alternative 
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values of parameter a (scenarios: VF_la with MZ_la, and scenarios: VF_5a and 

MZ_5a). The uncertainty results for cells-based outputs indicate that the uncertainty 

measures are very similar for the four scenarios considered (Figure 4-8 B-D). 

Sensitivity Analysis Results 

The GSA results show that factor LC is not important in respect to the domain-

based outputs (Figure 4-10 A, Table 4-4). It indicates that the spatial distribution of ET 

parameters, conditioned on land cover maps, has negligible effect on the model 

outputs. ET factors were found to be negligible when they are considered as spatially 

certain (as presented in Chapter 3). Therefore the lack of importance of spatial 

variability of ET parameters on output uncertainty is not surprising. The GSA results for 

the scenario incorporating the LC factor are very similar to the previously obtained 

results for the spatially fixed land cover map (Figure 3-11 A). 

The application of the GSA with incorporating factor MZ (for the MZ_la set) 

indicates that the spatial variability of the Manning‘s n zones have some contribution to 

the domain-based outputs (Figure 4-10 B). This factor contributes to the variance of 

mean water depth, maximum water depth and amplitude by 6%, 8%, and 7% 

respectively (Table 4-5).  

Also for the scenario, based on the five individual a parameters for different 

Manning‘s n zones (the 5-a approach), factor MZ is found important (Figure 4-10 D). It 

contributes to 13%, 17%, and 9% of mean water depth, maximum water depth, and 

amplitude respectively (Table 4-7).  

Independently form the land cover variability effects, it can also be observed that if 

the 5-a approach is used instead of the level parameter approach, the influence of this 

parameter is reduced significantly (compare Figure 3-11 A and Figure 3-11 C). The 
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reduction of parameter a importance is accompanied by the increase of first order 

sensitivity indices (Si) for other important factors, for example the factor MZ, as 

described above. Out of the 5 a parameters, only a6 (associated with cattail, Table 4-2) 

is important for the MZ_6a scenario (no variability of Manning‘s n maps). In the case 

when MZ is also considered, additionally to the 5 different parameters a (MZ_5a), two 

factors a6 and a5 seem to be of importance, together with factor MZ, associated with 

spatial variability of parameter a maps (Table 4-7). Similar to the results presented in 

Chapter 3, the factor topo dominates the uncertainty of all benchmark-cell based 

outputs. The example for cell 35 and scenario MZ_5a is presented in Figure 4-11. 

Discussion 

The global uncertainty and sensitivity analysis combined with the sequential 

indicator simulation enables quantification of the importance of spatial uncertainty of 

categorical model inputs in terms of model uncertainty and sensitivity. Furthermore, this 

importance is evaluated relative to the importance of other uncertain model inputs. The 

application of the GUA/SA with the SIS can indicate how significant the quality of spatial 

representation of categorical-type information is and therefore how much attention 

should be paid to preparation (collecting, pre-processing) of such data for modeling 

purposes. This study evaluates the importance of spatial representation of land cover 

type for modeling South Florida conditions with the RSM. Model input maps of land 

cover type are associated with uncertainty due data processing (up-scaling) but also 

due to the fact that vegetation cover is a dynamic phenomena that changes with time. 

The temporal variability of vegetation in a domain may introduce error, especially for 

long term simulations, as land cover maps used for as model inputs cannot account the 

land cover changes. 
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The land cover type is an important factor for ecological and hydrological model 

applications. The relative importance of land cover variability is evaluated in comparison 

to other factors, including spatial representation of land elevation. Therefore the main 

controls of the system may be determined.  

The analysis of the domain-based indicates that spatial uncertainty of land cover 

type affects model outputs (domain-based outputs) by specification of Manning‘s n 

zones rather than by the ET parameters. Factor MZ, representing spatial uncertainty for 

parameter a (and therefore Manning‘s n zones) contributes significantly to domain-

based outputs. While the importance of factor LC, associated with spatial representation 

of ET parameters is negligible. However, factor MZ is of smaller importance than some 

other uncertainty sources like the spatial uncertainty of land elevation that is 

represented by factor topo, or uncertainty about overland parameters‘ values, 

represented by factor a. The cell-based outputs are dominated by factor topo and the 

spatial representation of land cover type does not affect these outputs at all. 

The lack of importance of factor LC indicates that the spatial distribution of ET 

parameters does not affect the selected RSM outputs for the WCA-2A application. 

Therefore it can be concluded that information requirements regarding the ET 

parameters can be relaxed, both regarding the value of these parameters and their 

spatial distribution. If a spatially distributed factor does not affect model uncertainty, 

there is no need to worry about the spatial structure much. For example in case of LC 

only rudimentary vegetation information would suffice. As long the parameters are 

within the conservative limits used for the specification of input factors in this study, 

there should not make much difference for model uncertainty.  
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The spatial distribution of parameter a for calculating Manning‘s roughness 

coefficient is somehow important for the domain-based model outputs (especially for the 

5-a approach). Factor a is also reported as one of the most important factors for the 

domain-based outputs, especially for the level approach used for generating parameter 

a values (la). For the level approach, the actual values of factor a, assigned to particular 

zones, are more important than the spatial distribution of zones itself. In the case of the 

5-a approach, when all 5 zones are associated with independent factors a2-a5, the 

influence of the spatial distribution of zones is similar to the effect of factors a5, and a6. 

Therefore, it can be observed that when the uncertainty about factor a values is 

reduced, the spatial distribution of zones becomes more relevant. For the 5a approach 

all factor a values (associated with different zones, i.e. land cover classes) are 

generated independently. Moreover, the values associated with different zones may 

overlap, which in some way accounts for similarity of vegetation densities between 

various classes (like sawgrass – factor a5, and cattail - factor a6). From all parameter a 

zones, only zones associated with sawgrass and cattail are important with respect to 

domain-based model outputs. This fact is probably related to the highest Manning‘s 

roughness coefficient values (the highest flow resistance) associated with these two 

land cover classes. 

The results of this chapter provide an illustration of the significance of specification 

of uncertainty for factors used in the GUA/SA on the analysis results. In case of zonal 

factor a the level parameter approach seem to inflate the model output variance. The 

less conservative and probably more realistic approach is based on generating values 

of parameter a for different zones independently. Furthermore, it can be observed that 
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in the case of reduction of uncertainty of the most important factors, other factors gain 

importance. Generally, domain-based outputs are controlled to a larger extent by factor 

a (when the level approach is used). However, when the 5a-appraoch is used 

topography is the main factor controlling model outputs.  

The conservative approach is used here for producing alternative land cover maps 

with the SIS in order to provide the ―worst-case‖ uncertainty of spatial variability. Only 

ground truth points used for the reference of the source vegetation map (2003 

vegetation map) are used for constructing alternative land cover realizations without any 

regard to the information in the vegetation maps itself. The uncertainty and sensitivity 

results could be smaller if hard data used for indicator Kriging was supported by soft, 

image derived information. In spite of this conservative approach land cover variability 

does not contribute much to model uncertainty. Therefore, it can be assumed that if 

additional information was used, the uncertainty would be even smaller. However it 

needs to be considered that the analysis presented in this chapter is of an exploratory 

nature. It aims at better understanding of model processes affected by land cover input 

maps. 

Conclusions 

The framework proposed in this chapter allows for spatial uncertainty of 

categorical model inputs to be incorporated into global uncertainty and sensitivity 

analysis (GUA/SA) by combining utilities of the variance-based method of Sobol and 

geostatistical technique of Sequential Indicator Simulation (SIS). For the purpose of this 

study it is assumed that land cover maps may affect model outputs by delineation of ET 

parameter zones, and Manning‘s n zones. Five land cover classes, used in the 

application are externally associated with the corresponding Manning‘s roughness 
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zones (i.e. parameter a zones). For both the Manning‘s n and ET parameters two types 

of uncertainties are considered independently: spatial uncertainty of parameter zones 

(related to spatial uncertainty of land cover classes), and uncertainty of parameters 

assigned to each of the zones. The ET factors, associated with each of the land cover 

classes, are varied within ranges based on the physical limitations, expert opinion, or 

±20% of calibrated value, in case no other information is available. With these 

assumptions, the results of the analysis show that spatial uncertainty of land cover 

affects RSM domain-based model outputs through delineation of Manning‘s roughness 

zones more than through ET parameters effects. In addition, the spatial representation 

of land cover has much smaller influence on model uncertainty when compared to other 

sources of uncertainty like spatial representation of land elevation, or the uncertainty 

ranges for the parameter a.  
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Table 4-1. Characteristics of input factors, used for GSA/SA. 

# Input 
Factor 

Base Value Uncertainty Model (PDF) Source 

1 LC - DU3[1,250] SWFMD, 2001 
vegetation map 

2 MZ - DU[1,250] SWFMD, 2001 
vegetation map 

3 valueshead 3.661 N3(μ 3.66, σ 0.374)  Jones and Price, 
2007 

4 topo2 - DU[1,200] USGS, 2003 

5 bottom 0 U3(0.8, 1) SFWMD data 

6 hc 46.5  Lognormal( μ 4.6, σ 1.2) SFWMD data 

7 sc 0.3 U (0.2, 0.3) SFWMD expert 
opinion 

8 kmd 0.000026  U (0.000021, 0.000032) ± 20% 

9 kms 0.000011 U (0.000009, 0.000013) ± 20% 

10 kds 0.0000031 U (0.0000025, 0.0000038) ± 20% 

11 n 0.06 Triangular (min.= 0.03, 
peak=0.10, max.=0.12) 

SFWMD expert 
opinion; USGS, 1996 

12 leakc 0.00001 U (0.000002, 0.001) SFWMD data 

13 bankc 0.05 U (0.04, 0.05) SFWMD data 

14 a 0.3 U (0.24, 0.36) ± 20% 

15 det 0.03 U (0.03, 0.12) Mishra et al., 2007 

16 kw 1 U (0.8, 1.2) ± 20% 

17 rdG 0 U (0, 0.2) Yeo, 1964,  

18 rdC 0 U (0, 1.5) expert opinion 

19 xd 0.9 U (0.7, 1.1) Mishra et al., 2007 

20 pd 1.8 U (1.5, 2.2) ± 20% 

21 kveg 0.83 U (0.66, 0.99) ± 20% 

22 imax 0 U (0, 0.03) SFWMD expert 
opinion 

1 all input factors, except topo, have the same PDFs as in screening SA in Chapter 2; 
2 in this chapter factor topo is an auxiliary input factor, associated with pre-generated 
land elevation maps. Unlike in the Chapter 2, where topo represents uncertainty of land 
elevation error, here factor topo does not have any physical meaning. 

3 N - normal distribution; DU - discrete uniform distribution; U - uniform distribution;  
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Table 4-2. Relationship between vegetation type and Manning‘s n. 

Vegetation Type Manning zone nr abase
1 nbase 

2 

Sawgrass 5 0.70 0.73 

Cattail 6 0.90 0.94 

Forest 23 0.30 0.31 

Freshwater marsh 4 0.50 0.52 

Other 1 0.10 0.10 
1abase, and nbase are associated with n zone for the calibrated model; 
2 nbase values are calculated for the 0.29m (the median for the domain-based mean 
water depth distribution); 
3 zone 3 is missing here, it has value of a=0.34 (n=1.99), the value for zone 2 is 

assigned instead; which is related to the implementation of substituting scripts. 
 
 
Table 4-3. Input factor scenarios used for the GUA/SA. 

Land Cover Effect 

Generation of parameter a 

1 factor - level  
approach (la) 

5 individual 
factors (5a) 

Land cover affects spatial distribution of 
ET parameters (LC factor) 

LC_la - 

Land cover affects spatial distribution of 
parameter a (MZ factor) 

MZ_la MZ_5a 

Land cove is considered spatially 
certain (VF) 

VF_la VF_5a 
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Table 4-4. First order sensitivity indices for scenario: LC_la. 

Input 
Si 

Mean W.D1. Hydroperiod Min. W.D. Max. W. D. Amplitude 

valueshead - - - - - 

topo 0.19 0.06 0.25 0.15 0.17 

bottom - - - - - 

hc - - - - - 

sc - 0.04 - - - 

kmd - - - - - - 

kms 0.01 0.01 0.01 - - 

kds 0.03 0.04 0.07 - - 

n 0.04 0.02 0.01 0.07 0.06 

leakc - 0.01 - - - 

bankc - - - - - 

det 0.13 0.39 0.37 - 0.13 

kw - - 0.02 - - 

rdG - - - - - 

rdCY - - - - - 

xd - 0.01 - - - 

pd - - - - - 

kveg - - - - - 

imax 0.05 0.31 0.02 - - 

LC 0.01 0.04 0.01 - - 

a 0.54 0.04 0.24 0.78 0.62 

Sum Si 1.00 0.99 1.00 1.00 0.99 
1 W.D. – water depth 
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Table 4-5. First order sensitivity indices for scenario MZ_la. 

Input 
Si 

Mean W.D. Hydroperiod Min. W.D. Max. W. D. Amplitude 

valueshead - - - - - 

topo 0.15 0.04 0.22 0.12 0.15 

bottom - - - - - 

hc 0.01 0.01 0.01 - - 

sc - - - - - 

kmd - - - - - 

kms 0.01 0.01 0.01 - - 

kds 0.02 0.03 0.05 - 0.01 

n 0.05 0.02 0.01 0.09 0.10 

leakc - 0.01 - - - 

bankc - - - - - - 

det 0.09 0.33 0.30 - 0.09 

kw - 0.02 0.03 - - 

rdG - 0.02 - - - 

rdCY - - - - - 

xd - - - - - 

pd - - - - - 

kveg - - - - - 

imax 0.09 0.42 0.07 - 0.02 

MZ 0.06 0.01 0.04 0.08 0.07 

a 0.52 0.04 0.26 0.71 0.56 

Sum Si 1.00 0.98 0.99 1.00 1.00 
1 W.D. – water depth 
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Table 4-6. First order sensitivity indices for scenario VF_6a 

Input 
Si 

Mean W.D. Hydroperiod Min. W.D. Max. W. D. Amplitude 

valueshead - - - - - 

topo 0.33 0.04 0.25 0.36 0.21 

bottom - - - - - 

hc - - - - - 

sc - 0.03 - - - 

kmd - - - - - 

kms 0.02 0.01 0.02 0.01 - 

kds 0.04 0.03 0.06 - 0.03 

n 0.05 0.01 - 0.17 0.13 

leakc - 0.01 - - - 

bankc - - - 0.01 0.01 

det 0.22 0.41 0.48 - 0.26 

kw 0.03 0.01 0.04 0.01 -0.01 

rdG - 0.02 - - - 

rdCY - - - - - 

xd - - - - - 

pd - - - - - 

kveg - - - - - 

imax 0.13 0.41 0.07 0.02 0.05 

a2 0.02 - 0.01 0.02 - 

a3 0.03 - 0.01 0.04 0.01 

a4 0.03 - 0.01 0.06 0.03 

a5 0.04 - 0.01 0.04 0.01 

a6 0.09 0.01 0.03 0.29 0.15 

Sum Si 0.98 0.99 0.98 0.96 0.94 
1 W.D. – water depth 
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Table 4-7. First order sensitivity indices for scenario MZ_6a. 

Input 
Si 

Mean W.D. Hydroperiod Min. W.D. Max. W. D. Amplitude 

valueshead - - - - - 

topo 0.23 0.05 0.23 0.23 0.19 

bottom 0.01 - - 0.02 0.01 

hc - - - - - 

sc - 0.03 - - - 

kmd - - 0.01 - - 

kms 0.02 0.01 0.02 - - 

kds 0.05 0.03 0.08 - 0.02 

n 0.04 0.01 - 0.14 0.14 

leakc - 0.02 - - - 

bankc - - - - - 

det 0.14 0.36 0.37 0.01 0.20 

kw 0.02 0.01 0.03 - 0.01 

rdG - 0.02 - - - 

rdCY - - - - - 

xd - - - - - 

pd - - - - - 

kveg - - - - - 

imax 0.11 0.43 0.07 0.01 0.04 

a2 0.01 - 0.01 0.02 0.01 

a3 - - - - - 

a4 0.01 - 0.01 0.01 - 

a5 0.18 0.01 0.08 0.22 0.10 

a6 0.02 - - 0.13 0.14 

MZ 0.13 0.02 0.07 0.17 0.09 

Sum Si 0.98 1.00 0.98 0.96 0.94 
1 W.D. – water depth 
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Figure 4-1. Land cover variability for WCA-2A with model mesh cells. A) whole model domain, B) magnified fragment. 
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Figure 4-2. Vegetation at WCA-2A. A) Vegetation map (Rutchley, 2008), B) Location of ground truth. 
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Figure 4-3. Global PDF for land cover types. 
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Figure 4-4. Indicator variograms for land elevation datasets. A) sawgrass, B) cattail,  

C) cypress (trees), D) freshwater marsh, E) other. 
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Figure 4-5. Example SIS realizations of land cover for cell 178. A) realization 1, B) realization 150. 
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Figure 4-6. Land cover map used originally for WCA-2A application. 
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Figure 4-7. Example SIS realizations of land cover for cell 178, aggregated to RSM scale. A) realization 1,  
B) realization 150. 
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Figure 4-8. GUA results for alternative scenarios from Table 4-3. A) domain-based 

outputs, B) 35 cell-based outputs, C) 180 cell-based outputs, D) 486 cell-
based outputs. 
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Figure 4-9. GUA results (PDFs – left, CDFs – right) for alternative scenarios from Table 
4-3. A), B) domain-based mean water depth, C), D) domain-based maximum 
water depth, E), F) cell 486-based mean water depth. 
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Figure 4-10. GSA results for alternative scenarios. A) LC_la, B) MZ_la, C) VF_5a, 

D) MZ_5a. 
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Figure 4-11. Example GSA results for benchmark cell 35, scenario MZ_5a. 
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 CHAPTER 5  
UNCERTAINTY AND SENSITIVITY ANALYSIS AS A TOOL FOR OPTIMIZATION OF 
SPATIAL NUMERICAL DATA COLLECTION, USING LAND ELEVATION EXAMPLE. 

Introduction 

Despite the fact that the topography is identified as very important input for 

hydrologic applications very little work has been done to determine the minimum data 

requirements for this model input. One of the reasons for this is that land elevation 

uncertainty assessment is complex and challenging, yet it is a mandatory undertaking to 

the progression of hydrologic science (Wechsler, 2006). The framework used in this 

study allows for comparing the importance of land elevation maps (or Digital Elevation 

Models, DEMs) together with other uncertain model inputs. The joint assessment of 

effects of land elevation uncertainty with other inputs uncertainty has not been 

addressed so far (Fisher and Tate, 2006) since studies presented in the literature 

considered either DEM uncertainty on its own or focused on other hydrological model 

inputs. Simultaneous comparison of land elevation uncertainty and uncertainty from 

other inputs (spatially lumped or distributed) allows for evaluating the importance of 

DEM for a particular model application.  

The procedure of evaluation of hydrological model uncertainty due to sampling 

density of land elevation data is a two-step process. At first, land elevation data density 

translates into spatial uncertainty of land elevation maps used as model inputs. The 

spatial uncertainty of these maps is assessed by the geostatistical technique of SGS 

(described in Chapter 3). Secondly, the model of spatial uncertainty, evaluated by SGS, 

is used for GUA/SA analysis and the corresponding hydrological model uncertainty is 

evaluated. The approach presented in this Chapter can be used as guidance for spatial 

data collection for hydrological model applications as it may indicate optimal spatial 
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density of numerical model inputs in terms of model uncertainty. The analysis presented 

in this chapter focuses on evaluation of model uncertainty due to alternative land 

elevation sampling densities. 

Spatial Input Data Resolution and Spatial Uncertainty  

Spatial density of model inputs is one of the factors affecting spatial uncertainty of 

input parameters and consequently model predictive quality. Spatial data collection is 

the most expensive part of distributed modeling (Crosetto and Tarantola, 2001), 

therefore its optimization can lead to significant improvements in allocation of resources. 

In case of field data, the optimization of data collection could be obtained by 

specification of minimum data density (or resolution) that would allow model predictions 

to meet quality requirements (accuracy and precision).  

The effect of data resolution (i.e. soil, meteorological, and land elevation data) on 

hydrological model output uncertainty was explored in the literature (Inskeep et al., 

1996; Wagenet and Hutson, 1996; Wilson et al., 1996; Zhu and Mackay, 2000). These 

studies show that, in general, model predictions based on input data sets with low 

spatial resolution were linked with higher model uncertainty. However, it was not always 

the case. For example, a study presented in Watson et al. (1998) showed that despite 

more realistic terrain representation of high resolution DEM data, simulation of runoff did 

not produce better results than using the coarser DEM resolution. This was explained 

by the fact that the model could not make use of the additional terrain information in the 

detailed data. This indicates that the input data resolution - model predictive quality 

relationship is more complex than simple ―more data - less uncertainty‖ concept. As 

stated by Fisher and Tate (2006): ―Whilst there is an increasing tendency to collect 
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larger volumes of elevation data with seemingly ever-improved precision and accuracy, 

we have no evidence that this improvement and the associated costs are worthwhile‖. 

Figure 5-1, proposed by Grayson and Blosch (2001), illustrates a conceptual 

relationship between model complexity, data availability (understood as both the 

amount and the quality of data) and predictive performance of a model. Grayson and 

Blosch (2001) stated that: ―For a given model complexity, increasing data availability 

leads to better performance up to a point, after which the data contains no more 

―information‖ to improve predictions; i.e. we have reached the best a particular model 

can do and more data does not help to improve performance‖. A similar graph (Figure 

5-2) presents a conceptual relation between model output uncertainty and data density, 

used as a hypothetical relationship between model uncertainty and data resolution in 

this work. The uncertainty decreases with an increase of sampling density but only until 

a threshold value of data sampling density is reached. Above this threshold value the 

change of sampling density does not influence the uncertainty. If a threshold value (i.e. 

optimal data density in Figure 5-2) illustrated in these graphs can be identified for 

specific model output and spatially distributed model input, this could be considered as 

an indication of minimum data quality requirements in terms of model output 

uncertainty. By specifying the optimal data density for a given model and model 

application, rather than utilizing ―one size fits all‖ approach (i.e. using the same input 

data densities for various models and applications), the resources spent on data 

collection may be allocated efficiently.  

The Influence of Land Elevation Uncertainty on Hydrological Model Uncertainty  

Topography is an important factor for hydrological models (Wilson and Atkinson, 

2005, Wechsler 2006). Land elevation affects surface flow routing as it is used to derive 
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terrain characteristics (like slope and aspect, i.e. direction in which a slope faces) for 

hydrological applications. Land elevation is usually represented in a form of digital 

elevation models (DEMs). A DEM is a numerical representation of surface elevation 

over a region of terrain (Cho and Lee, 2001). DEM is just a model (abstraction) of reality 

that inherently contains deviations from the true values, or errors. As the ―true land 

elevation‖ is not known, the error cannot be calculated and uncertainty arises. Despite 

the DEM uncertainty and its potential importance for hydrologic applications, DEM data 

are often used for hydrological simulations without quantification of DEM uncertainty 

and its propagation. Uncertainty regarding land elevation should inform the uncertainty 

of topographic parameters (like slope) and further propagate into uncertainty of 

hydrological outputs. The DEM error/uncertainty is especially important in areas of 

relatively flat terrain, since small variations in such areas significantly affect hydrological 

flow paths (Burrough and McDonnel 1998). In such conditions, even a small degree of 

uncertainty in elevation may have a relatively large effect of model predictions.  

Uncertainties associated with land elevation for hydrologic applications have been 

studied with different approaches (Fisher and Tate, 2006; Wechsler, 2006). DEM 

accuracy is usually reported as a global statistic Root Mean Square Error (RMSE), 

obtained based on comparison with more accurate land elevation data. However, this is 

just one value for the map and it has been suggested that the assessment of DEM 

uncertainty requires more information on spatial structure of the error not possible by 

RMSE (Wechsler, 2006). Kyriakidis el al. (1999) suggests using maps of local 

probabilities for over or underestimation of the unknown reference elevation values from 

those reported in the DEM, and joint probability values attached to different spatial 
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features. There is still little known about spatial structure of DEM error (Liu and Jezek, 

1999), and it is currently often difficult, if not impossible, to recreate the spatial structure 

of error for a particular DEM, as higher accuracy data – usually non available - is 

required. In fact, the uncertainty of DEM is related to the following factors: a) source 

data (accuracy, density and distribution); b) characteristics of the terrain surface; c) 

method used for construction of the DEM surface (interpolation and processing) (Gong 

et al, 2000). 

Two approaches towards simulating DEM uncertainty for uncertainty assessment 

and error propagation are usually applied (Wechsler, 2006): 1) derivation of error 

analytically, and 2) stochastic simulation of error (unconditional, conditional).The 

example of the first approach was presented by Hunter and Goodchild (1995). For every 

pixel (single point in DEM grid), error was assumed to follow the normal distribution 

around the estimated elevation value and the global RMSE was assumed as a local 

error variance around this estimate. DEM errors are not spatially correlated and spatial 

structure of error is not considered; DEM error is normally distributed with mean zero 

and standard deviation approximated by the RMSE. For the second approach for 

simulating error, the spatial structure of error is considered; the information on spatial 

structure of the error is obtained by comparison with more detailed DEM (Endreny and 

Wood, 2001) or ground measurements (Canters et al.2002), or both (Enderny et al., 

2000). 

Propagation of DEM Uncertainty due to DEM Resolution 

Among all the factors affecting DEM uncertainty, this study focuses on the density 

of source measured data. The spatial resolution of DEM affects the accuracy of the 

terrain. For the case of raster or regular grid DEMs, a sampling interval is constant and 
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it is referred as resolution. Similarly, for field measurements distributed on a grid the 

sampling density is equivalent to DEM resolution. Irrespective of the source of the data 

used for DEM construction (field surveys, topographic maps, stereo aerial photographs 

or satellite images), the error in a DEM can be influenced by the density and distribution 

of the measured point source data. Gong et al. (2000) found that the sampling interval is 

the most important factor affecting accuracy of DEM for a given type of terrain and that 

the relationship between DEM accuracy and sampling interval was linear and negative, 

more pronounced, for hilly areas than for flat ones (Gong et al., 2000). The influence of 

DEM resolution on the DEM accuracy was also examined by Li (1992) that concluded 

that smaller sampling interval was more accurate, especially for complex terrains. 

Similarly, Östman (1987) observed that an increased point density reduced the RMSE, 

while Gao (1997) showed that RMSE increased with a decrease of resolution from 10 to 

60m (and this relation was linear) when producing DEM from contour maps because 

larger sample size captured the terrain better (Gao, 1997). In summary, smaller grid cell 

size allows for better representation of complex topography and high resolution DEMs 

are better able to depict characteristics of complex topography. 

DEM resolution was also reported to affect terrain attributes (Carter, 1992; Chang 

and Tsai, 1991; Kenzle, 2004). Chang and Tsai (1991) reported that slope and aspect 

were less accurate if generated from DEM of lower resolution.  

As a result of affecting DEM uncertainty and terrain characteristics uncertainties, 

DEM resolution was shown to directly impact hydrologic model predictions for spatially 

distributed models like TOPMODEL (Band and Moore, 1995; Quinn et al., 1995; Wolock 
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and Price, 1994; Zhang and Montgomery, 1994), the SWAT model (Chaubey et al., 

2005; Chaplot, 2005), and AGNPS (Perlitsh, 1994; Vieux and Needham, 1993). 

Based on the hypothesis presented in Figure 5-2, despite the generally reported 

trends between increased DEM resolution and derived terrain characteristics accuracy, 

increase of land elevation source data resolution does not always produce better 

hydrological models predictions. For land elevation maps used as model inputs, 

constant increasing data resolution will inevitably lead to some redundancy. For 

example, Zhang and Montgomery (1994) concluded that a 10 m grid size provides a 

substantial improvement over 30 and 90 m data, but 2 or 4 m data provide only 

marginal additional improvement for the performance of physically based models of 

runoff generation and surface processes.  

What resolution of land elevation should be used to construct a DEM used as 

inputs for model simulations? Two aspects of modeling need to be considered for 

answering this question, these are the financial cost of obtaining land elevation data 

and, accuracy requirements that need to be met by model predictions. The identification 

of the optimal data density for modeling requires answering two questions: 1) to what 

extent is the source data resolution a factor in the propagation of errors from DEMs to 

model outputs, and 2) how does this uncertainty relate to other model input 

uncertainties associated with a given model and its application, i.e. is land elevation 

uncertainty important when compared with uncertainties of other model inputs? In order 

to answer these questions the GUA/SA needs to be performed using land elevation 

maps obtained from alternative data resolutions (sampling densities). The methodology, 

proposed in the previous chapter, based on the combination of the SGS and method of 
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Sobol, allows for evaluation of spatial uncertainties related to different land elevation 

data densities. Moreover, the uncertainty of DEM is evaluated simultaneously with the 

uncertainties of other model inputs and relative uncertainty of land elevation can be 

evaluated. 

The objectives of the study presented in this chapter are to: a) evaluate the effect 

of spatial sampling resolution of a distributed model input data (specifically source land 

elevation data) on output uncertainty and parameter sensitivities of a complex 

hydrological model (RSM); b) estimate the optimal spatial resolution of source land 

elevation data in terms of tradeoffs between costs associated with higher spatial 

resolution of data collection and reduction of uncertainty of model outputs. 

Methodology 

Subsets from the original WCA-2A, AHF land elevation survey are extracted and 

used as alternative data sources for construction of DEMs. The methodology presented 

in the study is based on two steps: geostatistical technique of sequential Gaussian 

simulation (SGS) for assessment of land elevation spatial uncertainty, and on the 

method of Sobol, global uncertainty and sensitivity analysis, for propagation of the input 

uncertainty onto the model outputs. As described in Chapter 3, the synergistic 

combination of these two methodologies results in a global spatial uncertainty and 

sensitivity analysis that has the ability to account for spatial autocorrelation of input 

variables and is independent of model behavior. Detailed description of the procedure, 

together with its assumptions, is provided in (Chapter 3).  

Description of Land Elevation Data Subsets 

As described in Chapter 3, a total of 1,645 land elevation data points are available 

for WCA-2A (USGS, 2003) (see Table 3-1). Data is regularly spaced, on a 400 x 400 m 
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grid. Land elevation measurements were obtained using the Airborne Height Finder 

(AHF), a helicopter-based instrument developed specifically for South Florida conditions 

(vast extent, very flat topography, impenetrable vegetation). The vertical accuracy of 

data is at least +/- 15 cm (USGS, 2003).  

To investigate the effect of sample data density, the original land elevation data 

set (400x400 m spacing) is reduced to subsets of 1/2, 1/4, 1/8, 1/16, 1/32 and 1/64 of 

original data. All 7 data sets are approximately regularly distributed (example data sets 

are presented in Figure 5-3). The descriptive statistics and histograms for each data set 

are presented in Table 5-1 and Figure 5-4. These datasets consisting of different 

densities of measured point data are used individually to produce alternative land 

elevation maps for RSM simulations.  

Estimation of Spatial Uncertainty of Land Elevation 

The method of Sequential Gaussian Simulation (SGS) is used for estimation of 

spatial uncertainty for land elevation maps, produced based on the 7 datasets. For each 

dataset of land elevation values, SGS reproduces the measured data, data histogram 

and variogram. ―The remaining ―space‖ of spatial uncertainty beyond these data 

constrains is explored via a random number generator (Kyriakidis, 2001). For each of 

the datasets, L=200 equiprobable maps of land elevation are generated by SGS. 

Alternative land elevation realizations, taken together, constitute spatial uncertainty of 

land elevation. The procedural steps presented in Figure 3-5 and described in 

Chapter 3 are followed for each land elevation dataset individually: 

1) land elevation data are de-trended using a trend fitted for the original data;  

2) normal score transform is performed for the measured values;  

3) SGS is performed for the nscore space;  
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4) simulated grid values are back-transformed into residuals space; 

5) the trend is added to simulated residuals. 

The nscores of residuals are interpolated into elevation matrices with a Simple 

Kriging (SK) algorithm. The same interpolation grid is used for all data densities, that is 

200x200m grid. After SGS, each of the alternative realizations (maps) is aggregated to 

the RSM mesh scale by overlaying the model mesh over the 200x200m grid. Values for 

SGS nodes corresponding with centroids of the RSM triangular cells are extracted and 

used as effective land elevation values for model cells. Since the centroids‘ values are 

conditioned on the measured data and SGS simulated values within the search radii the 

continuity between land elevation values for neighboring RSM cells is maintained. Cell-

by-cell comparison of 200 aggregated maps of land elevation provides a PDF of land 

elevation values for each model cell, from which estimation variance, confidence 

intervals, and other desired statistics can be derived. The estimation variance is 

calculated for each of model cells, based on the PDF, constructed from 200 aggregated 

values. Then, for each of the datasets, the average estimation variance is calculated as 

a global measure representing map variability.  

Two alternative approaches are considered for the SGS in this study: 1) SGS is 

performed using the same ―true‖ histogram and variogram model for all datasets; 2) 

SGS is performed using experimental variograms and histograms, constructed for each 

dataset separately, based on the data in the given dataset.  

For the first approach, it is assumed that the ‗true‘ global distribution (histogram) of 

data in a domain is known and that it is approximated by the histogram of the original 

data (density 1), and that the ‗true‘ model of spatial variability is approximated by the 
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variogram for the same densest dataset (density 1). In this case, the only factor 

changing between different datasets is the density of measured data, while the 

histogram and the variogram are the same. This assumption allows filtering out effects 

related to various sample sizes and histograms of the considered datasets. The 

variogram model for the original land elevation data, used for the SGS of all datasets, is 

presented in Figure 3-7. It has a nugget of 0.59 (dimensionless) and two structures: 

exponential with sill contribution of 0.25 and range of 5.3 km; and Gaussian with sill 

contribution of 0.16 and range of 12 km. 

For the second approach it is assumed the only information available for 

generation of plausible land elevation realizations is the actual dataset, so different 

measured data sets, histograms, and variograms are used for each data density. The 

histograms for datasets with different densities are presented in Figure 5-4. The 

variogram models, fitted to experimental variograms for each dataset are presented in 

Figure 5-5, and parameters for these exponential variogram models are summarized in 

Table 5-2. It can be seen that these variograms are very similar. Unlike, variogram for 

the density of 1, these are one-structure variograms.  

This first approach allows for examination of effect of various data densities on the 

spatial uncertainty of land elevation realizations, and consequently, its propagation to 

hydrological model outputs. Therefore, this first approach is going to be presented in 

this Chapter. The SGS results for the second approach are presented in Appendix E. 

Global Uncertainty and Sensitivity Analysis 

In this study the GUA/SA analysis is performed for each of the7datasets 

separately. As presented in Chapter 3, the 200 maps, embodying the spatial uncertainty 
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are used in the GUA/SA using the method of Sobol through the auxiliary input factor 

associated with alternative land elevation realizations.  

The RSM outputs chosen as metrics for GUA/SA for this study are: mean water 

depth, hydroperiod, and maximum water depth for domain and 3 benchmark cells: 35, 

215, and 486 (Figure 2-1). These cell-based performance measures reflect the 

hydrological variability across the domain. Raw model results are post processed using 

the approach described in the previous chapters. Model simulations are performed for 

period of 1983-2000 with first year used for model warm-up.  

Results  

Sequential Gaussian Simulation Results 

Maps presenting estimation variances for selected data densities are presented in 

Figure 5-6. The general increase of spatial uncertainty is visually observed (by visual 

analysis) in the maps produced from smaller data densities. Furthermore, it can be 

observed that for a given map, there is no spatial pattern in estimation variances within 

the domain. As specified in the SGS theory section in Chapter 3, for sufficiently large 

number of realizations, at a given SGS grid node, the estimation variance should be 

similar to the SK interpolation variance. The SK variance is a function of distance from 

measured data and data distribution. Since for each dataset, measured data are 

regularly distributed in the domain, the variances of kriged nscore values and back-

transformed values should not exhibit spatial patterns. 

As seen in Figure 5-7, the average estimation variance decreases with the 

increase of source data density. The decrease accelerates at the inflection points 1/8 of 

original data density. The average estimation variance decreases rapidly from 
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0.0121 m2 for density 1/64 to 0.0106 m2 for density 1/8, and then decreases slowly to 

0.0097 m2 for density 1. 

Global Uncertainty and Sensitivity Analysis Results 

The relationship between output uncertainty (expressed as the 95% Confidence 

Interval) and land elevation data density for the domain outputs is illustrated in Figure 

5-8. The trends for mean and maximum water depth (Figure 5-8 A and C) are similar to 

the trend observed for the average estimation variance. There is not much change in 

output uncertainties for greater than 1/4, while uncertainty increases sharply with 

reduction of data density below 1/4 to 1/8 of initial data density. In contrast, the 

uncertainty for hydroperiod does not seem to be affected by change of land elevation 

data density (Figure 5-8 B).  

The relationship between benchmark cells outputs and land elevation data density 

is presented in Figure 5-9. In case of benchmark cell-based outputs, no general pattern 

between uncertainty and data density is observed. Mean and maximum water depth for 

cell 215 show pattern similar to patterns observed for the corresponding domain-cased 

outputs. On the other hand, the outputs for benchmark cells 35 and 486 do not seem to 

display any relation between uncertainty and land elevation data density. 

The sensitivity analysis (SA) results for domain-based outputs exhibit similar 

trends as the uncertainty results (Figure 5-10). The SA results indicate that the 

importance of factor topo (Stopo) increases with a reduction of land elevation data 

density for mean and maximum water depth (Figure 5-10 A and C), while it is 

unchanged for hydroperiod (Figure 5-10 B). There seems to be not much difference in 

Stopo for densities between 1 and 1/4, and the contribution of this factor increases 

significantly below the density of 1/8. For example for mean water depth variance, the 
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first-order sensitivity index Stopo contributes to about 20% for the density of 1, below the 

density of 1/8 its influence increases and eventually reaches over 40% for the density of 

1/64. A similar trend is exhibited by the first order sensitivity index for topo in case of 

domain‘s maximum water depth. The factor topo does not seem to influence uncertainty 

of domain-based hydroperiod in large extent. It contributes to the variability of this 

output from 5% (density 1) to 10% (density 1/64). As seen in Figure 5-10, the decreased 

contribution of factor topo to the output variance is accompanied by the increase of 

importance of a spatially certain factor a. This factor, together with factor det, also 

plotted in the figure, is one of the most important factors contributing to the output 

variances for the original land elevation density (as presented in Chapter 3). The sum of 

first order sensitivity indices is close to one for domain-based outputs when the original 

land elevation density is used for the analysis (Figure 5-10, A and C). Therefore 

increase of topo contribution, observed for smaller data densities, needs to be 

accompanied by decrease of importance of other factors. No interactions between 

factors are observed (the total order effects are similar to the first order effects) but it 

seems that factors topo and det are somehow interconnected as they switch the 

importance in affecting model output, while other important factor, parameter a, remains 

unaffected. 

GSA first order sensitivity indices results for the benchmark cell-based outputs 

indicate that the responses of the benchmark cells are completely dominated by the 

land elevation spatial variability. Figure 5-10 illustrates the example of Si results for 

cell 35. 
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Discussion 

The results of this study show that the domain-based outputs follow the 

hypothetical trend for the model uncertainty and spatial density of model input data 

presented in Figure 5-2. This nonlinear, negative trend, with inflection point, is observed 

for domain-based mean water depth and maximum water depth. These two outputs are 

affected by land elevation uncertainty as indicated by the GSA results (i.e. have high 

values of Stopo). The domain-based hydroperiod, that is not affected by factor topo to a 

great extent does not display any trend. The trend observed for model outputs seems to 

be reflection of the pattern for spatial land elevation uncertainty and data density what is 

related to the fact that the variability of land elevation maps is transferred into 

uncertainties of model predictions.  

Both relations (spatial uncertainty and model uncertainty vs. data density) are 

characterized by the inflection point around data density of 1/4 to 1/8 (Figure 5-7, Figure 

5-8). These densities correspond to average measured data spacing of 800 m and 

1131 m respectively (Table 5-1), that is in the range of model cell size (on average 1.1 

km2). The general increase of spatial uncertainty can be explained by the fact that with 

smaller resolution of the data, there is a larger uncertainty due to spatial structure of the 

land elevation maps (larger interpolation variance). The kriging estimation variance 

depends on the number and proximity of supporting data points and degree of spatial 

dependence as quantified by a semivariogram (Robertson, 1987). It is directly 

proportional to the distance of an interpolated value from an input observation. 

Therefore the less dense datasets are associated with higher interpolation variance. 

Since SGS realizations are aggregated to the RSM scale, the estimation variance for 

cell values is also affected by the aggregation method (in this case the centroids 
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approach). Other aggregation method, for example spatial averaging of SGS values 

within model cell, would probably result in different estimation variance. 

The question that comes into mind is which factors determine the value of 

inflection density for the spatial uncertainty vs. density relationship. In this study the 

inflection density coincides with the average cell size. Since spatial uncertainty is 

estimated as the average of variances for selected SGS grids (i.e. grids that contain 

mesh centroids), it seems that the observed pattern is related to interpolation method 

rather than the aggregation method (i.e. spacing of cells centroids related to cell size). 

Besides, aggregation method is constant for all data densities, so it should not affect the 

relative results for the datasets.  

The lack of clear pattern presented in Figure 5-2 is observed for the benchmark 

cell-based outputs and land elevation density. This may be related to the mismatch of 

scales between cell-based outputs and model inputs changing on the domain-scale. In 

case of the WCA-2A application, the general direction of flow (from north to south) is 

maintained irrespectively of land elevation data density. Therefore the uncertainty of this 

cell is not affected by land elevation density used for generation of land elevation maps, 

as no matter what topography-conditioned path will be selected for model simulations, 

the water will eventually end up in this cell. Cell 35 located in the north of domain, does 

not exhibit clear trend, because of the similar reasons. This cell is located at the 

generally higher and drier part of the domain. Therefore irrespective of the data density 

used for generating topography maps, this cell will always be higher and drier than cells 

located southwards in a domain. However, the uncertainty of mean and maximum water 

depth for this cell increases for the smallest two densities 1/32 and 1/64 of original data 
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density, suggesting that these densities are associated with spatial uncertainty that 

affects northern cells outputs. The SA results of benchmark cell outputs are dominated 

by factor topo. As reported in the previous chapter, this factor associated with land 

elevation spatial uncertainty dominates cell-based outputs even for the original data 

density (i.e. density associated with the smallest spatial uncertainty); therefore further 

increase of land elevation with decrease of land elevation density importance is not 

possible. 

This study provides findings that are specific to the examined model and its 

application. By examining the uncertainty and sensitivity results obtained for different 

land elevation datasets, it is possible to isolate model uncertainty solely due to land 

elevation data resolution. Furthermore, it is possible to determine land elevation data 

density threshold, below which the model uncertainty increases significantly. For the 

current RSM application to the WCA-2A, one could accept the domain-based outputs 

uncertainty increase from density 1 to density 1/4, as a tradeoff for smaller spatial data 

requirements. Such information could be helpful in designing data collection efforts for 

areas similar to WCA-2A (possibly other wetland areas in extensive South Florida 

region). It is important to remember that the currents results are obtained using several 

assumptions. Spatial uncertainty models for the alterative datasets are constructed 

based on the assumption that the ―true‖ global probability distribution (histogram) and 

model of spatial variation (variogram) are known. In this way the influence of other 

effects (like variability of sampled data in a given dataset) is eliminated from the 

experiment.  
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The more general (model and application independent) findings of this study are 

related to the corroboration of patterns illustrated in Figure 5-1and Figure 5-2. This 

study illustrated that the relationship between model uncertainty and input data quality 

can be defined, and that the inflection point can be identified. Possibly similar patterns 

can be identified for other hydrological models and applications in order to further 

explore general factors affecting model outputs uncertainty.  

As noted by Crosetto and Tarantola (2001), such an approach would be especially 

useful at the beginning of a large-scale modeling project, when it needs to be decided 

how to allocate of resources for data collection, and what should be the minimum data 

requirements for model inputs. The analysis based on the SGS and method of Sobol 

could be applied for the small area, representative of the modeling domain, before 

larger data collection efforts are undertaken.  

Conclusions 

Spatial data collection efforts can be optimized by specification of minimum data 

requirements for a given model application. In this chapter, a hypothetical negative, 

nonlinear relationship between model uncertainty and source data density is developed 

and tested. The GUA/SA with incorporation of spatial uncertainty is applied for 

identification of minimum spatial data requirements (data density) for land elevation. 

Source data density is found to affect spatial uncertainty of topography maps, used as 

alternative model inputs, and consequently the hydrological model outputs. 

Comparative GUA/SA results for the 7 land elevation densities show that domain-based 

outputs (mean water depth and maximum water depth) are impacted by the density of 

land elevation data. The results corroborate the hypothetical relationship between 

model uncertainty and source data density. The inflection point in the curve is identified 
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for the data density between 1/4 and 1/8 of original data density. It is postulated that the 

inflection point is related to the characteristics of the spatial dataset (variogram) and the 

aggregation technique (model grid size). Sensitivity analysis results indicate that 

contribution of land elevation to the domain-based outputs variability (mean water depth 

and maximum water depth) shows similar pattern as the uncertainty results. In case of 

benchmark cell-based outputs, generally no clear trend is observed between output 

uncertainty and data density. Based on the comparative results for the considered land 

elevation densities, it is concluded that the reduced data density (up to 1/8 of original 

land elevation data points) could be used for simulating the WCA-2A application with 

RSM, without significantly compromising the certainty of model predictions and the 

subsequent decision making process. The results of this chapter illustrate how 

quantification of model uncertainty related to alternative spatial data resolutions allows 

for more informed decisions regarding planning of data collection campaigns.  
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Table 5-1. Summary of descriptive statistics for land elevation datasets.  

Sample 
statistics 

Sampled data density 

1  1/2  1/4  1/8  1/16  1/32  1/64 

Sample Size 2643 1320 663 332 162 81 40 

Interval [m] 400 565 800 1131 1600 2262 3200 

Range [m] 3.51 2.54 2.54 2.23 1.54 1.31 1.22 

Mean [m] 3.04 3.04 3.05 3.05 3.04 3.05 3.05 

Variance [m2] 0.10 0.09 0.09 0.10 0.09 0.09 0.10 

Minimum [m] 0.77 1.74 1.74 2.05 2.07 2.25 2.34 

Maximum [m] 4.28 4.28 4.28 4.28 3.61 3.56 3.56 

 
 

 

Table 5-2. Summary of nscore variogram parameters for data subsets.  

variogram 
parameter 

variogram 
type 

Sampled data density 

1/2 1/4 1/8 1/16 1/32 1/64 

nugget effect Exp. 0.58 0.64 0.62 0.60 0.62 0.62 

sill contribution Exp. 0.42 0.37 0.34 0.40 0.38 0.38 

range [m] Exp. 10000 11180 8100 10400 9450 9450 

Exp. – exponential model 
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Figure 5-1. Schematic diagram of the relationship between model complexity, data 

availability and predictive performance (after Grayson and Bloschl, 2001). 

 
 
Figure 5-2. Hypothetical relation between data density and variance of the model 

output. 
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Figure 5-3. Selected datasets used for the analysis. A) original data points, density of 1, 

B) density of 1/4, C), density of 1/8, D) density of 1/32. 
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Figure 5-4. Histograms for land elevation datasets. A) density 1, B) density 1/2, C) 

density 1/4, D) density 1/8, E) density 1/16, F) density 1/32, G) density 1/64. 
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Figure 5-5. Nscore variograms for land elevation datasets. A) density 1/2, B) density 

1/4, C) density 1/8, D) density 1/16, E) density 1/32, F) density 1/64. 
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Figure 5-6. Example maps of estimation variances. A) density 1, B) density 1/4,  

C) density 1/8 D) density 1/32 
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Figure 5-7. Average estimation variance (based on 200maps) for cells vs data density 
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Figure 5-8. Uncertainty results for domain-based outputs. A) mean water depth, B) 

hydroperiod, C) maximum water depth.
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Figure 5-9. Uncertainty results for selected cell-based outputs. A), B), C) mean water depth, D), E), F) hydroperiod  
G), H), I) maximum water depth.
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Figure 5-10. Sensitivity results for domain-based outputs (left) and benchmark cell -

based outputs (right). A), B) mean water depth, C), D) hydroperiod,  
E), F) maximum water depth. 
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 CHAPTER 6  
SUMMARY 

Application of spatially distributed environmental models is currently expanding 

due to the increased availability of spatial data and improved computational resources. 

With spatially distributed models, the effect of spatial uncertainty of the model inputs is 

one of the least understood contributors to output uncertainty and can be a substantial 

source of errors that propagate through the model. The application of the global 

uncertainty and sensitivity (GUA/SA) methods for formal evaluation of models is still 

uncommon in spite of its importance. Even for the infrequent cases where the GUA/SA 

is performed for evaluation of a model application, the spatial uncertainty of model 

inputs is disregarded due to lack of appropriate tools.  

The central question related to specification of data quality for a modeling process 

is whether the uncertainty present in model inputs is significant in terms of uncertainty 

and sensitivity of model outputs. The global uncertainty and sensitivity analysis 

(GUA/SA) framework can quantify the contribution of uncertain model inputs to 

uncertainty of model predictions and identify critical regions in the input space (i.e. 

model inputs that need to be measured or evaluated more accurately), and determine 

minimum data standards in order for model quality requirements to be met. Furthermore 

GUA/SA can corroborate model structure, and establish priorities in updating the model, 

including model simplifications. 

The uncertainty regarding spatial structure of model inputs can affect hydrological 

model predictions and therefore its influence should be evaluated formally in the context 

of uncertainty deriving from other non-spatial inputs. The framework proposed in this 

dissertation allows for incorporation of spatial uncertainty of model inputs into GUA/SA. 
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The proposed framework is based on the combination of variance-based method of 

Sobol and geostatistical technique of Sequential Simulation (SS). The SS is used for 

estimation and simulation of spatial variability of input factors. Alternative realizations of 

inputs are realistic and preserve spatial autocorrelation, since they are conditioned on 

measured data, global CDF (histogram) and variogram model. Both continuous (land 

elevation) and categorical (land cover) model inputs are considered. Sequential 

Gaussian Simulation is used for producing alternative realizations of continuous data, 

while Sequential Indicator Simulation is applied for categorical inputs. The method of 

Sobol allows for incorporation of alternative maps into GUA/SA through an auxiliary 

input factor sampled from the distributed uniform distribution. 

The Regional Simulation Model (RSM) and its application to WCA-2A in the South 

Florida Everglades is used as test bed of the methods developed in this dissertation. 

RSM simulates physical processes in the hydrologic system, including major processes 

of water storage and conveyance driven by rainfall, potential evapotranspiration, and 

boundary and initial conditions. The model domain is spatially represented in a form of 

triangular elements (cells), which are assumed homogenous in terms of model inputs. 

The simulations of the RSM are used for support of complex water management and 

ecosystem restoration decisions in South Florida. The RSM outputs chosen as metrics 

for GUA/SA for this study are key performance measures generally adopted in the 

Everglades restoration studies: hydroperiod, water depth amplitude, mean, minimum 

and maximum. The GUA/SA results for two types of outputs: domain-based approach 

(spatially averaged over domain), and benchmark cell-based approach are compared. 

The two kinds of objective function may be used to support various-purpose 
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management decisions. For example, RSM domain-based results can be more 

adequate to support decisions of regional scale, like regional water budget assessment. 

Benchmark cell-based results provide information on local hydrological conditions and 

they may be used for supporting decisions on ecological restoration (for example 

restoration of sawgrass communities) in particular locations of WCA-2A. 

The general steps in this work include: 1) an initial GUA/SA screening analysis, 

without consideration of spatial uncertainty of model inputs (Chapter 2), 2) GUA/SA 

analysis with incorporation of spatial uncertainty of numerical model input (land 

elevation) (Chapter 3), 3) incorporation of spatial uncertainty of categorical model input 

(land cover) into the GUA/SA (Chapter 4), and 4) application of the GUA/SA 

methodology for specification of the optimal data density for the land elevation 

(Chapter 5).  

As the first step in this study (Chapter 2) the traditional GUA/SA is applied to RSM 

and WCA-2A application, using spatially fixed model inputs. The results of this 

screening analysis are used as a reference for more advanced methodology, i.e. 

incorporating spatially distributed inputs, developed in this dissertation. The screening is 

applied using the modified method of Morris. This method is characterized by a 

relatively small computational cost and it is applied for identification of important and 

negligible model inputs. The qualitative screening results indicate that, out of the 20 

original model inputs, 8 inputs are important for the model outputs considered. Input 

factor topo, characterizing land elevation uncertainty (for the screening analysis, 

expressed as vertical shift of land elevation values) is identified as the most important 

factor in respect to most of the outputs (both domain-based and benchmark cell-based). 
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Other important factors include: factors a and det (conveyance parameters), factor imax 

(precipitation interception parameter), factor kds (levee hydraulic conductivity), and 

factor leakc (leakage coefficient for canals). Small interactions between parameters are 

observed, indicating that the model is of additive nature. Since land elevation is 

identified as one of the most important model inputs this model input is used as an 

example of spatially distributed numerical model input.  

The incorporation of spatial uncertainty of a numerical model input (land elevation) 

into GUA/SA (Chapter 3) shows that the choice of objective functions used for GUA/SA 

has significant impact on analysis results. The domain-based outputs are characterized 

with smaller uncertainty (95% Confidence Interval PDF) than their cell-based 

counterparts. For example, for the domain-based mean water depth the 95%CI is 0.02 

m whereas the 95%CI for the mean water depth for benchmark cells ranges from 0.28 

m to 0.5 m depending on the cell location in the domain. The uncertainty regarding 

hydrological outputs for specific cells is large enough to induce incorrect conclusions 

and decision, regarding small-scale projects, as it is discussed in Chapter 3. The 

uncertainty of the domain-based outputs, although small compared to cell-based results 

may be still important factor affecting decision making process on regional-scale 

projects, given the very smooth relief in the area. The smaller variation of the domain-

based model response can be explained by two factors: spatial averaging of raw model 

outputs calculated for each cell over the entire domain, and because WCA-2A is 

confined within levees, and inflows and outflows are controlled and considered as 

deterministic for all model runs. On the other hand, the higher uncertainty for 

benchmark cell-based outputs is related to different water distribution patterns between 
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model simulations, affected by different land elevation scenarios. Uncertainty results for 

benchmark cells depend on the location of the cell in the area. For example uncertainty 

of mean water depth is much larger for the cell 486, located in the southern (inundated) 

part of the domain, than for cell 35, located in the northern (drier) part.  

GSA results for the majority of domain-based outputs indicate that the most 

important factors are factor a, used for calculating Manning‘s roughness coefficient for 

mesh cells, factor topo, representing spatial uncertainty of land elevation and factor det, 

specifying detention depth. The results confirm that spatial uncertainty of model inputs 

(land elevation) can indeed propagate through spatially distributed hydrological models 

and can be an important factor, affecting model predictions. The GSA results for 

benchmark cells show that uncertainty of benchmark cell-based outputs is attributed to 

the variability of land elevation maps, represented by the factor topo. Similarly, to the 

screening analysis results, no interactions are observed, confirming the additive nature 

of the RSM for this application.  

The procedure for incorporation of spatial uncertainty of categorical model inputs 

into GUA/SA is proposed in Chapter 4. For the purpose of this study it is assumed that 

land cover maps may affect model outputs by delineation of ET parameter zones, and 

Manning‘s n zones. Five land cover classes, used in the application are externally 

associated with the corresponding Manning‘s roughness zones (i.e. parameter a 

zones). For both the Manning‘s n and ET parameters two types of uncertainties are 

considered independently: spatial uncertainty of parameter zones (related to spatial 

uncertainty of land cover classes), and uncertainty of parameters assigned to each of 

the zones. The ET factors, associated with each of the land cover classes, are varied 
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within ranges based on the physical limitations, expert opinion, or ±20% of calibrated 

value, in case no other information is available. With these assumptions, the results of 

the analysis show that spatial uncertainty of land cover affects RSM domain-based 

model outputs through delineation of Manning‘s roughness zones more than through ET 

parameters effects. In addition, the spatial representation of land cover has much 

smaller influence on model uncertainty when compared to other sources of uncertainty 

like spatial representation of land elevation, or the uncertainty ranges for the 

parameter a.  

Spatial data collection efforts can be optimized by specification of minimum data 

requirements for a given model application. In Chapter 5, a hypothetical negative, 

nonlinear relationship between model uncertainty and source data density is developed 

and tested. The GUA/SA with incorporation of spatial uncertainty is applied for 

identification of minimum spatial data requirements (data density) for land elevation. 

Source data density is found to affect spatial uncertainty of topography maps, used as 

alternative model inputs, and consequently the hydrological model outputs. 

Comparative GUA/SA results for the 7 land elevation densities show that domain-based 

outputs (mean water depth and maximum water depth) are impacted by the density of 

land elevation data. The results corroborate the hypothetical relationship between 

model uncertainty and source data density. The inflection point in the curve is identified 

for the data density between 1/4 and 1/8 of original data density. It is postulated that the 

inflection point is related to the characteristics of the spatial dataset (variogram) and the 

aggregation technique (model grid size). Sensitivity analysis results indicate that 

contribution of land elevation to the domain-based outputs variability (mean water depth 
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and maximum water depth) shows similar pattern as the uncertainty results. In case of 

benchmark cell-based outputs, generally no clear trend is observed between output 

uncertainty and data density. Based on the comparative results for the considered land 

elevation densities, it is concluded that the reduced data density (up to 1/8 of original 

land elevation data points) could be used for simulating the WCA-2A application with 

RSM, without significantly compromising the certainty of model predictions and the 

subsequent decision making process. The results of this chapter illustrate how 

quantification of model uncertainty related to alternative spatial data resolutions allows 

for more informed decisions regarding planning of data collection campaigns.  

In general, results for this dissertation show that the main controls of the system 

identified as important by the GUA/SA (like land elevation and conveyance parameters) 

are justifiable from the conceptual perspective. This constitutes further corroboration of 

the RSM behavior.  

Limitations 

The GUA/SA results are based on the set of assumptions, on the specification of 

uncertainty models for model input factors, and the interpolation and aggregation 

methods used for spatial data, as well as the nature of the selected outputs (domain vs. 

cell-based). Furthermore the GUA/SA techniques have high computational cost and 

abundant spatial data is required for construction of variograms. 

Future Research 

Since the framework proposed in this dissertation could be applied to any spatially 

distributed model and input, as it is independent from model assumptions, the general 

relationship between spatial model uncertainty and spatial data quality could be further 
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examined by application of the GUA/SA with Sequential Simulation for other spatial 

models and applications. Specific focus should be given to the identification of a 

functional relationship for optimal data density for a given model resolution (grid size) 

using spatial input semivariogram characteristics. In addition, the effect of model 

resolution (cell size) and aggregation methods could be further explored. 
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APPENDIX A  
RSM GOVERNING EQUATIONS 

The finite volume method is built around governing equations in integral form 

(SFWMD, 2005a). The Reynolds transport theorem is at the core of the RSM model. 

Reynolds transport theorem is generally used to describe physical laws written for fluid 

systems applied to control volumes fixed in space. More recently, it has been used as a 

first step in the derivation of many conservative laws in partial differential equation form 

(Chow et al., 1988). The Reynolds transport theorem is expressed for an arbitrary 

control volume (Figure A-1) as: 

 
cv cv

D
dV dA

Dt t


   
  

N
E×n  (A-1) 

where: N = an arbitrary extensive property such as the total mass; η   arbitrary 

intensive property, or property per unit mass such as concentration; E   flux vector; n = 

unit normal vector; dV = volume element; dA = area element; cv = control volume; and 

cs = control surface. Variables N and η can be vectors or scalars. This representation of 

Reynolds transport theorem can be used to write any conservation law with the 

application of different assumptions. For example, in the case of mass balance, η   1, 

and in the case of momentum, η   ux + vy in Cartesian coordinates in which u and v are 

the velocity components in x and y directions (SFWMD, 2005a).  
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Figure A-1. An arbitrary control volume, after RSM Theory Manual (SFWMD, 2005a) 
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APPENDIX B  
INPUT FACTOTS FOR THE GUA/SA  

RSM inputs include dynamic data such as historical rainfall, estimated 

evapotranspiration, and boundary conditions as well as static data such as topography, 

land cover, and aquifer thickness. Input parameters include groundwater parameters 

such as hydraulic conductivity, storage coefficient, seepage parameters, and surface 

water parameters such as Manning‘s coefficient. All model inputs, considered as 

uncertainly sources in this analysis are presented in Table 2-1 in Chapter 2.  

All model inputs required for running RSM-HSE are provided in XML files specified 

in the DTD (document type definition) file. The purpose of a DTD is to define the legal 

building blocks and structure of an XML document. The RSM-HSE input factors for the 

WCA-2A application are organized into logical groups represented by the XML main 

elements under <root>, that are <control>, <mesh>, <watermovers> defined in Table 

B-1, below. Location of all model inputs, considered in the GUA/SA is provided in Table 

B-2. 

A brief description of these inputs is provided below: 

topo - represents land elevation map. Unique land elevation values are assigned on the 

cell basis. The elevation values are assigned to each cell in the file containing a list of 

values. Different approaches for modeling the uncertainty of this factor are considered 

in this dissertation. In the screening analysis in Chapter 2, the topography from the 

original XML file is modified during the simulations by a Linux batch script. The 

parameter topo characterizes error around land elevation values; it is generated in 

Simlab from the Gaussian distribution and added to the original topography values (the 
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same value of error is added to all cells). In the GUA/SA analysis with incorporation of 

SGS, the facto topo is an auxiliary factor, associated with maps generated by the SGS. 

 

bottom - specifies the elevations of aquifer bottom; it is assigned to each cell individually 

in the file containing a vector of values. The uniform distribution with range ± 20% of the 

base value (value for a cell from the calibrated model application) is used due to lack of 

information on the bottom uncertainty in the WCA-2A. For analysis simplicity, the unit 

multiplier: multBOTTOM is used as an actual parameter in the Simlab analysis. 

 

valueshead - specifies the initial head of water in the domain. This is a lumped parameter 

with normal distribution with μ = base value from the calibrated model and σ   0.374 ft . 

The variance of water depth measurements, applied here, is derived from the USGS 

report: Initial Everglades Depth Estimation Network (EDEN) digital elevation model 

research and development (Jones and Price 2007).  

 

a - a parameter used for calculating the Manning‘s n for model cells. The RSM-HSE 

defines Manning‘s n using the following equation:  

n = ad b (B-1) 

 where: d - water depth, and, a, b - empirical constants, b is fixed to -0.77. 

 

det - represents the detention storage for a cell and defines the minimum depth of 

surface ponding required in order to produce overland flow. The detention storage 

accounts for the micro-topography not represented by the topography defined by the 
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scale of the cells. The detention storage basically acts as a switch. When the ponding is 

less than the detention storage then the overland flow is set to zero. When the ponded 

water exceeds the detention storage overland flow occurs. 

 

kveg - specifies the vegetation crop coefficient. The crop coefficient defines plants 

maximum capability to transpire water. The coefficient is not directly measurable and 

can only be determined through calibration. The same value of kveg is used for all year. 

This parameter, similarly to other ET parameters is presented in Figure B-1.  

 

xd - defines the extinction depth, i.e. the water table depth at which ET ceases to 

remove water from the water table and vadose zone. The ET crop correction factor 

(Figure B-1) linearly approaches zero starting from the root depth at which point the ET 

factor is defined as kveg. In the HSE formulation the extinction depth accounts for the 

dwindling number of roots at depth by further reducing the ET factor and thus the ET 

rate for the cell. This is a calibration parameter. There is no direct measurement of the 

extinction depth. In the current analysis xd is treated as regional variable, associated 

with land cover type, and the level approach is used: a level parameter (xd value for 

cattail) is used to derive xd values for other land cover types. 

 

kw - specifies the maximum crop coefficient for open water, the same for all land cover 

types. 
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pd - describes the open water ponding depth. In the current analysis the level approach 

is used for 4 different pd parameters, associated with different land use types: cypress, 

freshwater marsh, sawgrass, and cattail; pd for cattail is used as the level parameter. 

 

imax - characterizes the maximum interception. In the current analysis the same range 

of imax is assigned for all land uses. 

 

rd - defines the shallow root zone depth . Currently two different distributions are 

assigned to low vegetation areas (cattail, sawgrass, marsh) and to cypress tree areas: 

rdG (for grasses) and rdCY (for cypress). 

 

hc - specifies the aquifer hydraulic conductivity. Hydraulic conductivity values are 

assigned to each cell individually in the file containing a vector of values. The hydraulic 

conductivity is assumed to be spatially independent due to large variability at the cell 

scale. The lognormal distribution is fitted to all non-boundary cell values reported in the 

domain.  

 

sc - represents the storage converter. Stage-volume converters have been developed to 

allow a more accurate representation of the volume of water stored at different water 

levels. Depending on the area under water, wetlands can store variable amounts of 

water at various depths. A flat ground with a designated storage coefficient below 

ground level and the assumption of open water above ground level is generally a poor 
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representation of wetland storage conditions. However, this has been the standard 

method used to conceptualize water storage above and below ground. 

 

n - Manning‘s Roughness Coefficient for canals 

 

leakc - defines the leakage coefficient, and is used for computing flow between the 

aquifer and the canal (leakc=k/δ) using the following equation. 

 q leakc p H h    (B-2) 

where: q = seepage flow per unit length of the canal, k = hydraulic conductivity of 

bottom sediment, δ   thickness of the sediment layer, p = wetted perimeter of the canal 

h = water level in the canal segment, H = water level in the cell.  

 

bankc - used for calculating overland flow between canal segment and a cell . The 

overland flow is modeled as a weir flow over a ―lip‖ along the edge of the canal 

segment. The overland flow is calculated from equation: 

1.5

Q=CL gh  (B-3) 

where: C = bankc - weir coefficient, L - length of overlap between the segment and the 

cell, h – difference between canal head and leap height. 

 

kmd - specifies the levee seepage, i.e. levee hydraulic conductivity from a marsh cell to 

a dry cell. There are 4 different values of kmd assigned to different canals in the 
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application (L35B, L36, L6, and L38E), the parameter kmd for L38 is used as a level 

parameter. 

 

kds - specifies the levee seepage, i.e. levee hydraulic conductivity from a dry cell to a 

segment. There are 4 different values of kds assigned to different canals in the 

application (L35B, L36, L6, and L38E), the parameter kds for L38 is used as a level 

parameter. 

 

kms - specifies the levee seepage, i.e. levee hydraulic conductivity from a mash cell to a 

segment. There are 4 different values of kms assigned to different canals in the 

application (L35B, L36, L6, and L38E), level the parameter kms for L38 is used as a 

level parameter.  
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Table B-1: Main XML elements in the WCA-2A application. 

XML element Description 

<control> All the program control parameters such as time step size, beginning 
time, ending time, etc. are defined using this XML element. 

<mesh> Information regarding the 2-D mesh, land input factors 

<network> Information regarding the canal network  

<watermovers> Water movers such as structures are defined here; levee seepage 
 
 
 

Table B-2: Location of inputs in XML input structure 

# Model Input XML Structure Location 

1 valueshead <mesh><shead> 

2 topo <mesh><surface> 

3 bottom <mesh><bottom> 

4 hc <mesh><transmissivity> 

5 sc <mesh><svconverter> 

6 kmd <watermovers><leveeSeepage> 

7 kms <watermovers><leveeSeepage> 

8 kds <watermovers><leveeSeepage> 

9 n <network><arcs><arcflow> 

10 leakc <network> <arcseepage> 

11 bankc <network><arcoverbank> 

12 a <mesh><conveyance> 

13 det <mesh><conveyance> 

14 kw <mesh><hpm><layer1nsm> 

15 rdG <mesh><hpm><layer1nsm> 

16 rdC <mesh><hpm><layer1nsm> 

17 xd <mesh><hpm><layer1nsm> 

18 pd <mesh><hpm><layer1nsm> 

19 kveg <mesh><hpm><layer1nsm> 

20 imax <mesh><hpm><layer1nsm> 
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Figure B-1: Parameters used for modeling ET in RSM (RSM-HSE User Manual, 2005b). 
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APPENDIX C  
SPATIAL STRUCTURE OF MODEL INPUTS 

The spatial representation of model inputs may range from spatially lumped, 

through regionalized to fully distributed. Some of the factors are spatially lumped, i.e. 

only one value of the factor is assigned for the whole domain, and in such case the 

generated values of input factors are substituted for the model parameter and used for 

model simulations. Other factors, like parameter a, are regionalized. In such case, the 

value of the parameter varies between zones in the domain. The so called ―level 

parameter‖ approach is used for the zonal parameters in order to reduce the number of 

input factors used for the analysis. In this approach values for a parameter in one zone 

are generated from the assigned PDF, and the parameter values in other zones are 

obtained from the initial ratio of parameter values in different zones. Another group of 

factors are fully spatially distributed (e.g. hydraulic conductivity), the sample level 

approach is applied for these factors, with a parameter for one cell being generated. 

The values for other cells are obtained by preserving the initial ratio with the selected 

cell. The spatial representation of model input factors (lumped, regional or fully 

distributed) is conditioned on the structure of input files associated with model inputs.  

An example of the level parameter approach is provided for the regionally varied 

parameter a for calculating Manning‘s n. Six regions (zones) are delineated, each of the 

zones characterized by different value of the parameter (Figure 2-2 A, Table C-1). 

Parameter a for each zone could be considered as a separate input factor in the 

GUA/SA, however this approach would increase the overall number of input factors and 

the computational requirements for the analysis (especially if applied to all regionalized 

model inputs). In order to make the GUA/SA more efficient, all zones for parameter a 
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are represented by the same input factor (in this case factor a for zone 2). Value of 

parameter a for all other zones are obtained from the MC realizations generated for 

parameter a in zone 2, by preserving the original relationship between parameters (i.e. 

relationship from the calibrated model). 

The original XML file for the WCA-2A application with the values of parameter a for 

6 Manning‘s roughness zones is presented in Figure C-1. The input factor a is assigned 

a uniform PDF with ± 20% (around the base value of a for zone II), and values of a for 

other zones II-VI are obtained by preserving the original relationship of base values 

(Table C-1). The values of parameter a for zones II-VI (a2-a6) are substituted in the 

input file using AWK script shown in Figure C-4. Figure C-2 presents XML file that is 

used for substituting the values, generated by the MC simulations. The indexed file, with 

the format presented in Figure C-3 is used to specify which Manning‘s roughness zone 

is assigned to each cell. Similar level approach is used for other zonal parameters (ET 

parameters: kveg, kw, rd, levee seepage parameters: kmd, kms, kds) and for fully 

distributed hydraulic conductivity (hc). 

Table C-1: Ranges of parameter a, assigned to different vegetation density zones in the 
WCA-2A in the calibrated model. 

Zone Base value a # of cells 

I 

II 

III 

IV 

V 

VI 

0.11 

0.3 

0.33786 

0.5 

0.7 

0.9 

125 

50 

62 

63 

103 

106 
1 The values for zone I - the boundary cells - are fixed in the GUA/SA analysis. 
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<conveyance> 

  <indexed file="./input/zone_wca2_10-29-2007.xml"> 

   <entry id="1" label="Zone I"> <!-- Boundary Cells --> 

     <mannings a="0.1" b="-0.77" detent="0.11"></mannings> 

   </entry> 

   <entry id="2" label="Zone II">  

     <mannings a="3.0000E-01" b="-0.77" detent="0.1"></mannings> 

   </entry> 

   <entry id="3" label="Zone III">  

     <mannings a="3.3786E-01" b="-0.77" detent="0.1"></mannings> 

   </entry> 

   <entry id="4" label="Zone IV">  

     <mannings a="5.0000E-01" b="-0.77" detent="0.1"></mannings> 

   </entry> 

   <entry id="5" label="Zone V">  

     <mannings a="7.0000E-01" b="-0.77" detent="0.1"></mannings> 

   </entry> 

   <entry id="6" label="Zone VI">  

     <mannings a="9.0000E-01" b="-0.77" detent="0.1"></mannings> 

   </entry> 

  </indexed> 

</conveyance> 

 
Figure C-1. Example of original input file for specification of parameter a for calculating 

Manning‘s n 
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<conveyance> 

  <indexed file="./input/zone_wca2_10-29-2007.xml"> 

   <entry id="1" label="Zone I"> <!-- Boundary Cells --> 

     <mannings a="0.1" b="-0.77" detent="0.11"></mannings> 

   </entry> 

   <entry id="2" label="Zone II">  

     <mannings a=" a2 " b="-0.77" detent=" det "></mannings> 

   </entry> 

   <entry id="3" label="Zone III">  

     <mannings a=" a3 " b="-0.77" detent=" det "></mannings> 

   </entry> 

   <entry id="4" label="Zone IV">  

     <mannings a=" a4 " b="-0.77" detent=" det "></mannings> 

   </entry> 

   <entry id="5" label="Zone V">  

     <mannings a=" a5 " b="-0.77" detent=" det "></mannings> 

   </entry> 

   <entry id="6" label="Zone VI">  

     <mannings a=" a6 " b="-0.77" detent=" det "></mannings> 

   </entry> 

  </indexed> 

</conveyance> 

 
Figure C-2. Example of modified input file for specification of parameter a for calculating 

Manning‘s n 
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OBJTYPE 'mesh2d' 

BEGSCL 

ND 510 

NAME 'zone_wca2_10-29-2007.xml' 

TS 0 0 

1  

1 

1 

1 

1 

5 

1 

1 

1 

1 

1 

4 

 

. 

. 

. 

 

1 

1 

ENDDS 

 
Figure C-3. Structure of the indexed file specifying which Manning‘s n zone is assigned 

to each model cell. 
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# create the table of substitutions for this run to be used by 

"a_subst" script based on command-line parameters and labels.txt 

 

exec 3>&1            #save current stdout as &3 

exec > substitute.tab #echo to substitute.tab file 

exec < ../labels.txt      #read from labels.txt file 

 

sample=$1 

shift 

 

for par in $* 

do 

  read lbl 

  echo $lbl $par 

  case $lbl in 

    "a2") 

      echo a3 `python -c "print $par * 1.1262"`  

      echo a4 `python -c "print $par * 1.666"` 

      echo a5 `python -c "print $par * 2.333"` 

      echo a6 `python -c "print $par * 3"`    

      ;; 

    "xdCA") 

      echo xdCY `python -c "print $par * 3"` 

      echo xdM `python -c "print $par * 0.4"` 

      echo xdS `python -c "print $par * 1.5"` 

      ;; 

    "pdCA") 

      echo pdCY `python -c "print $par * 1.666666667"` 

      echo pdM `python -c "print $par * 0.666666667"` 

      echo pdS `python -c "print $par * 1.166666667"` 

      ;; 

    "kmdL38E") 

      echo kmdL35B `python -c "print $par * 2.210526316"` 

      echo kmdL36 `python -c "print $par * 0.442105263"` 

      echo kmdL6 `python -c "print $par * .178947368"` 

      ;; 

    "kmsL38E") 

      echo kmsL35B `python -c "print $par * 0.859388646"` 

      echo kmsL36 `python -c "print $par * 1"` 

      echo kmsL6 `python -c "print $par * 2.082969432"` 

      ;; 

    "kdsL38E") 

      echo kdsL35B `python -c "print $par * 3.443786982"` 

      echo kdsL36 `python -c "print $par * 1"` 

      echo kdsL6 `python -c "print $par * 9.097633136"` 

      ;; 
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    "hc333") 

      ../../common/doMath.sh input/hyd_con.xml "*$par" > 

hyd_con.xml 

      ;; 

    "topo") 

      cp ../topomaps/200/1/$par.txt topo_wca2.xml 

      ;; 

       

  esac 

done  

 

exec 1>&3  #echoing to default stdout (screen) 

 

# Substitute parameters into the XML input files for this 

simulation 

../../common/a_subs ../run_wca2_gms.xml > run_wca2_gms.xml 

../../common/a_subs input/canal_index.xml > canal_index.xml 

../../common/a_subs input/mann_wca2_10-29-2007.xml > 

mann_wca2_10-29-2007.xml 

../../common/a_subs input/evap_prop_hpm.xml > 

evap_prop_hpm.xml 

../../common/a_subs input/levee_seep_123.xml > 

levee_seep_123.xml 

 

#run hse for this sample combination 

/apps/rsm/2961/src/hse run_wca2_gms.xml > /dev/null 

 

# check line count in output 

linecnt=`wc -l wca2_pond.gms | awk '{print $1}'` 

echo "$sample" "$linecnt" >> linecnt.txt 

if [ "$linecnt" -lt 3359830 ] 

then 

  # log error 

  echo "$sample" "$linecnt" >> errors.txt 

  mv wca2_pond.gms wca2_pond"$sample".gms 

else 

  # process and save the model output 

  echo -n "$sample " >> sensitivityMulti.out 

  echo -n "$sample " >> sensitivityDomain.out 

  ../../common/doOutputMulti.sh wca2_pond.gms >> 

sensitivityMulti.out 

  ../../common/doOutputDomain.sh wca2_pond.gms >> 

sensitivityDomain.out 

fi 

 

Figure C-4. AWK script used to substitute parameters in model input files. 
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APPENDIX D  
POST-PROCESSING MODEL OUTPUTS 

Output provided by the HSE-RSM (water depth) is generated on a daily time step 

basis for each model cell. The raw model outputs are aggregated into performance 

measures, selected in this study. The model outputs chosen as metrics for the 

sensitivity and uncertainty analysis are the performance measures generally adopted in 

the Everglades restoration studies (SFWMD, 2007): 1) hydroperiod (here defined as a 

percent of time a given area is inundated); 2) seasonal water depths (mean, maximum 

and minimum), and 3) seasonal amplitude (the difference between average annual 

maximum depth and average annual minimum depth over period of simulation). 

Raw outputs are post-processed using scripts in AWK programming language. For 

the domain-based outputs the following steps are performed using the script presented 

in Figure D-1: 1) raw output values (daily water depth reported for each cell) is averaged 

over the domain‘s space; 2) annual mean, minimum, maximum and amplitude are 

calculated from the spatially averaged daily values, 3) seasonal (simulation period) 

averages are calculated from the annual values. For benchmark-cell based outputs – 

processed using the script presented in Figure D-2 – the first step is omitted, therefore 

the raw results are reported for each cell (i.e. they are averaged only over simulation 

time).  

 

awk ' 

# step - day of year 

# count - total no of days from start 

# cell - base + current cell no 

# base - starting index used in min,max,... arrays 

# leap=4 means a leap year 

# period - number of days in year 
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BEGIN { 

  step = 0; count = 0; base = 0; leap = 1; period = 365; sum = 

0; above = 0;  

  } 

 

# skip first year 

NR <= 186520 {next; } 

 

$1 == "TS" { 

  if (step++ == period) { 

    #print "step " step-1;  

    step = 1; 

    base = cell; 

    if (leap++ == 4) { 

      leap = 1; 

      period = 366; 

      } 

    else 

      period = 365; 

    } 

  cell = base; 

  next;  

  } 

 

step == 0 {next; } 

{sum += $1; cell++; count++; } 

$1 > 0 {above++; } 

step == 1 {min[cell] = $1; max[cell] = $1; next; } 

$1 < min[cell] {min[cell] = $1; } 

$1 > max[cell] {max[cell] = $1; } 

 

END { 

  summin = 0; 

  summax = 0; 

  for (i=1; i<=cell; i++ ) { 

    summin += min[i]; 

    summax += max[i]; 

    } 

  #if (cell == 0 || count == 0) {print cell count > 

"error.txt"}; 

  print sum/count " " above*100/count " " summin/cell " " 

summax/cell " " summax/cell-summin/cell;  

  }  

' "$@" 

 

Figure D-1. AWK script used to calculate domain-based outputs. 
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awk ' 

# step - day of year 

# count - total no of days from start 

# year - total no of years from start 

# cell - base + current cell no 

# base - starting index used in min,max,... arrays 

# leap=4 means a leap year 

# period - number of days in year 

 

BEGIN { 

step = 0; count = 0; year = 1; base = 0; leap = 1; period = 365;  

benchCells[1] = 35; 

benchCells[2] = 48; 

benchCells[3] = 147; 

benchCells[4] = 180; 

benchCells[5] = 215; 

benchCells[6] = 355; 

benchCells[7] = 120; 

benchCells[8] = 178; 

benchCells[9] = 224; 

benchCells[10] = 244; 

benchCells[11] = 279; 

benchCells[12] = 288; 

benchCells[13] = 447; 

benchCells[14] = 486; 

} 

 

# skip first year 

NR <= 186520 {next; } 

 

$1 == "TS" { 

  if (step++ == period) { 

    #print "step " step-1; 

    year++; 

    step = 1; 

    base = cell; 

    if (leap++ == 4) { 

      leap = 1; 

      period = 366; 

      } 

    else 

      period = 365; 

    } 

  count++; 

  cell = base; 

  next;  

  } 
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step == 0 {next;} 

 

# check if benchmark cell 

{ cc = ++cell - base; 

  notBc = 1;  

  for (b in benchCells) 

    if (cc == benchCells[b]) 

      notBc = 0;  

  } 

notBc == 1 {next; } 

 

step == 1 {min[cell] = $1; max[cell] = $1; sum[cell] = 0; 

above[cell] = 0; } 

{sum[cell] += $1; } 

$1 > 0 {above[cell]++; } 

$1 < min[cell] {min[cell] = $1; } 

$1 > max[cell] {max[cell] = $1; } 

 

END { 

for (b=1; b<=14; b++) { 

  bc = benchCells[b]; 

  sumsum[bc] = 0; 

  sumabove[bc] = 0; 

  summin[bc] = 0; 

  summax[bc] = 0; 

 

  for (i=0; i<year; i++ ) { 

    cc = i*510 + bc; 

    sumsum[bc] += sum[cc]; 

    sumabove[bc] += above[cc]; 

    summin[bc] += min[cc]; 

    summax[bc] += max[cc]; 

    } 

 

  #printf "%s",bc " "; 

  printf "%s",sumsum[bc]/count " " sumabove[bc]/count " " 

summin[bc]/year " " summax[bc]/year " " summax[bc]/year-

summin[bc]/year " "; 

  } 

print ""; 

}  

' "$@" 

 

Figure D-2. AWK script used to calculate benchmark-cell based outputs. 
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APPENDIX E  
ALTERNATIVE RESULTS FOR SGS 

This appendix presents alternative results for Chapter 4. The alternative results 

were obtained in the case when land elevation maps are generated using the 

Sequential Gaussian Simulation (SGS) with histograms and variograms specific for 

given data set (density). No general trend is observed for the relationship between 

average estimation variance and data density. This is attributed to the fact that apart 

from data density, other factors like different variability of sampled data within datasets 

affect the spatial uncertainty of generated land elevation realizations. 

density

0.0 0.2 0.4 0.6 0.8 1.0

A
v
e
ra

g
e
 e

s
t.

 v
a
r.

 [
m

2
] 

0.0090

0.0095

0.0100

0.0105

0.0110

0.0115

0.0120

0.0125

trend fitted to the one-variogram, 
one-histogram SGS approach

 

Figure E-1. Average estimation variance versus data density for alternative approach 
towards SGS. 
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APPENDIX F  
SUPPLEMENTARY VEGETATION INFORMATION 

 

Table F-1. Distribution of vegetation categories for the 2003 WCA-2A vegetation map 
(after Rutchey et al., 2008). 
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Figure F-1. Subsection of the 2003 vegetation map for NE of WCA-2A (cattail invaded 

areas), 



 

187 

 

Figure F-2. Subsection of the 2003 vegetation map for cell 178 in the NE of WCA-2A. 
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