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RESUMEN 

El presente trabajo trata del estudio de los procesos de flujo y transporte de solutos a 
través de suelos volcánicos cultivados. La caracterización de dichos suelos proporciona 
información sobre sus propiedades físicas atípicas y la relevancia de éstas de cara a los 
procesos estudiados. En concreto, el alto contenido en oxihidróxidos de hierro y la presencia 
de arcillas alofanas da lugar a una fuerte micro-agregación del suelo que se traduce en la 
existencia de diferentes fases o regiones de agua, así como porosidad, conductividad 
hidráulica y retención de humedad altas. Estas características pueden condicionar tanto las 
predicciones de transporte a través de estos suelos, como las técnicas para la medida y 
estimación del potencial contaminante a través de los mismos. 

El estudio detallado en campo durante 2 años de una parcela comercial de platanera en el 
Norte de Tenerife (Canarias) regada con un sistema de aspersión de gran volumen mostró lo 
inadecuado que resulta este sistema de riego obsoleto en el cultivo, donde el 48-52% del 
nitrógeno total aplicado al cultivo se perdió por lixiviación a través del suelo. Debido a la 
hidrogeología de la zona (basalto fracturado), el volumen lixiviado tiene el potencial de 
recargar rápidamente el acuífero y por lo tanto contaminarlo. Este es un problema de especial 
gravedad por la gran lentitud que la renovación natural de agua tiene en estos acuíferos 
compartimentados. El análisis de los requerimientos de lavado del cultivo según la salinidad 
del suelo indica que la solución al problema debe centrarse en la reducción (cambio) y 
fraccionamiento del fertilizante y sistema de riego, y no en la reducción de la fracción de 
lavado. 

La enorme complejidad que presenta la estimación de los flujos y del potencial 
contaminante del medio agrícola apunta a que los modelos de simulación, suficientemente 
contrastados, pueden ser una herramienta potente para el análisis del problema y la 
elaboración de escenarios alternativos que permitan la reducción del impacto negativo. 

No obstante, la aplicación y contrastación (calibración y validación) de dichos modelos es 
una tarea ardua y compleja. La medida del enorme número de parámetros que intervienen en 
la simulación de dichos procesos es impráctica y en muchos casos no conclusiva. Aunque 
idealmente debe contarse con el rango de las propiedades más significativas que condicionan 
cada proceso, la identificación del valor efectivo de las mismas suele obtenerse durante la 
contrastación del modelo frente a valores experimentales obtenidos en el lugar donde 
pretende aplicarse el mismo. Tradicionalmente, a través de prueba y error, variando los 
rangos de los parámetros que condicionan la salida del modelo, el experto podía encontrar el 
valor efectivo de dichos parámetros. Sin embargo, este procedimiento no es recomendable 
por ser muy subjetivo, consumir bastante tiempo y no asegurar la obtención del mejor 
conjunto de parámetros. Las técnicas de optimización inversa se presentan como una 
alternativa prometedora para estimar de forma automática los parámetros óptimos. Este 
procedimiento requiere el uso de un algoritmo de optimización así como datos de calidad 
medidos en condiciones de campo o de laboratorio en suelo inalterado. En este trabajo se 
utiliza un algoritmo de tipo global (evitando los mínimos locales) desarrollado recientemente 
y el modelo numérico para simulación de flujo y transporte en el suelo, WAVE. Aplicando 
esta técnica con los datos recogidos en la parcela de platanera se demuestra su eficiencia 
frente al procedimiento de calibrado tradicional. 

A la hora de plantear el seguimiento complejo de estos procesos, resulta de gran interés el 
poder minimizar el esfuerzo y coste de esta actividad al mismo tiempo que se garantiza el 
éxito del método. Esto puede obtenerse con la nueva herramienta de optimización inversa 
planteada y la comparación de diferentes estrategias para generar los datos que requiere la 
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técnica. Así, cada estrategia resulta de la combinación de un cierto número de profundidades 
de medida y de distintas variables a medir. La estrategia más adecuada será aquella que, para 
satisfacer los criterios de bondad de ajuste de la simulación, requiera el mínimo de variables 
y de profundidades a medir. Este procedimiento para obtener la estrategia de mínimo coste 
puede utilizarse a priori como una herramienta de diseño experimental utilizando datos de 
simulación sintéticos. Éstos se generan con el modelo a partir de una primera estimación 
aproximada de los parámetros de la zona a estudiar. Para facilitar la comparación de dichas 
alternativas, se propone así mismo un índice de evaluación (FEI). 

La validación de este procedimiento se hizo con datos de flujo de agua a través del suelo 
durante varios riegos obtenidos en el laboratorio, en una columna de suelo inalterado de 
grandes dimensiones (∅45x70 cm). Este monolito se instrumentó intensivamente en 7 
profundidades, cada una de las cuales disponía de 1 tensiómetro digital, 3 sondas de TDR y 2 
extractores de solución de suelo. En los extremos de la columna se instaló un simulador de 
lluvia en la parte superior, y en la base, un controlador de la succión y un sistema para el 
registro del flujo de salida de la columna. El sistema de recogida de datos con tensiómetros, 
TDR y flujo en la base se automatizó mediante un PC. Las estrategias de medida 
experimental planteadas se basaron en la combinación de distinto número de profundidades 
de medida (3, 4 y 7), así como de variables de estado (potencial mátrico-h, contenido de 
humedad-θ y flujo en la base del monolito-q). Aplicando el índice de evaluación propuesto a 
los resultados de la optimización inversa obtenidos con cada estrategia, se deduce que, para el 
experimento en laboratorio, 4 profundidades y la combinación de hθ o θq son suficientes para 
garantizar simulaciones de calidad con el modelo calibrado. Debido a la dificultad que 
implica la medida de q en campo, se sugiere la combinación hθ si ese fuera el caso. 

Actualmente, con las técnicas disponibles, el análisis de la dinámica de transporte en 
suelos volcánicos puede realizarse de forma similar al estudio de sus propiedades hidráulicas. 
La descripción del movimiento de solutos en estos suelos con los procedimientos clásicos 
(ecuación convección-dispersión CDE) puede presentar dificultades derivadas de la fuerte 
micro-agregación del suelo, donde se plantea la existencia de dos fracciones de agua, una 
inmóvil asociada al interior de los micro-agregados y otra móvil entre agregados. En estos 
casos, considerar un proceso de transporte con fase móvil-fase inmóvil (“mobile-immobile-
model”, MIM) puede resultar más conveniente. La aplicación del procedimiento de 
optimización inversa con el modelo WAVE, que incluye ambas alternativas de transporte, 
permite identificar la significación de este factor desde un punto de vista práctico. Esta 
hipótesis se comprueba con datos obtenidos en la columna de laboratorio durante un 
experimento de riego con una solución de trazador bromuro. En este experimento se aplica 
una técnica novedosa de análisis de la señal de TDR (Time Domain Reflectometry) que 
permite estimar la concentración del trazador salino en las distintas profundidades y por lo 
tanto obtener las curvas de ruptura automáticamente. Estos experimentos indican sin embargo 
que, bajo el régimen de humedad contemplado, no hay diferencias importantes entre ambas 
alternativas de transporte. El desplazamiento del soluto resulta principalmente por 
convección. El frente abruto que presentan las curvas sugieren la presencia de flujo 
preferencial. En consecuencia el potencial contaminante de productos agroquímicos 
aplicados a estos suelos volcánicos se espera que sea mayor. 
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INTRODUCCIÓN 

 El constante crecimiento de la población y el aumento del nivel de vida han 

conducido a una intensificación de los métodos de producción agrarios, con el inconveniente 

de la reducción de la calidad de recursos escasos como son el suelo y el agua. En Canarias 

está situación adquiere especial interés. Por un lado, el suelo agrícola es insuficiente y por 

otro lado, el bajo régimen de precipitaciones y las características geológicas de las Islas 

hacen que el agua sea un recurso escaso. Este problema se agrava por la acción contaminante 

de la actividad agrícola, que además es el principal consumidor de agua en las Islas. La 

degradación de estos recursos exige la evaluación de las prácticas agrícolas y su mejora para 

minimizar el impacto negativo que éstas ejercen sobre el medio. Previamente es 

recomendable obtener una descripción lo más detallada posible de las propiedades del medio 

para facilitar la interpretación y compresión de los procesos que en él ocurren. 

 En este contexto, actualmente disponemos de herramientas útiles. Por un lado, los 

avances tecnológicos han conducido al desarrollo de instrumentación que permite realizar el 

seguimiento y obtener información sobre el funcionamiento hidrológico y el transporte de 

contaminantes en escenarios agrícolas. El comportamiento hidrológico no sólo influye en la 

eficiencia del uso del agua, sino en el transporte de las sustancias químicas aplicadas al suelo. 

En este sentido, los procesos hidrológicos y de transporte en suelos volcánicos, como los que 

se encuentran en las Islas Canarias, están condicionados por las propiedades particulares 

(ándicas) de estos suelos. Aunque los suelos volcánicos cubren sólo el 0.84% de la superficie 

terrestre, éstos tienen gran importancia, porque se encuentran entre los suelos más 

productivos del Mundo, debido a su elevada fertilidad y capacidad de retención de agua. En 

el caso de Canarias estos suelos toman aún mayor relevancia dado que el 90% de los 

principales cultivos (plátano y tomate) se realiza en sorribas construidas con suelos que 

exhiben propiedades ándicas. 

 Por otro lado, contamos con modelos de simulación. Las medidas de control que se 

contemplan en la directiva 91/676/CEE y que se recogen en España mediante el Real Decreto 

261/1996 del 16.02.1996 están basadas en pobres estimaciones del riesgo de lixiviación de 

los distintos agroquímicos, sin considerar las interacciones entre clima, cultivos, suelo e 

hidrogeología de la zona. El uso de modelos para la simulación del transporte de aguas y 

solutos en el suelo facilita la evaluación del impacto negativo sobre los recursos 

mencionados; puede ayudar en la toma de decisiones y desarrollo de normas y leyes para 
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reducir el mismo y resulta mucho menos costoso que la propia investigación experimental. 

Además, en la directiva 91/414/CEE sobre evaluación del riesgo de lixiviados, se sugiere la 

realización de estudios de simulación usando modelos suficientemente contrastados. 

 El uso de modelos presenta, sin embargo, limitaciones debido a la necesidad de 

estimar los parámetros que éste requiere y que caracterizan las condiciones en las que se 

pretende aplicar. Este proceso, denominado calibración es crítico, porque de él depende el 

éxito de la aplicabilidad del modelo de simulación. Existen varias técnicas para 

determinación de parámetros o propiedades del medio. Éstos pueden obtenerse por métodos 

directos, pero suelen ser laboriosos, caros y consumir mucho tiempo. Como alternativa, 

tenemos los métodos indirectos, en los que los parámetros se estiman en un proceso basado 

en reducir las diferencias entre los valores medidos y simulados de alguna variable de estado 

del sistema. Esta técnica puede realizarse por el procedimiento de “prueba y error” o bien 

usando herramientas de optimización más complejas y elaboradas. 

 Estos temas se abordan en el presente documento cuya estructura se divide en cuatro 

artículos, cada uno de los cuales se centra en un objetivo diferente. 

 

OBJETIVOS 

 Para cada artículo, los objetivos que se persiguen son los siguientes: 

1. Estudio del funcionamiento hidrológico de un escenario típico agrícola canario a partir de 

información obtenida mediante muestreos intensivos y técnicas avanzadas de 

instrumentación en un cultivo de plátanos. Se evalúa el uso del agua de riego y se 

cuantifica el efecto contaminante de los fertilizantes nitrogenados aplicados. 

2. Con los datos obtenidos, se estudia la aplicación de un modelo para la simulación del 

movimiento de agua en condiciones de campo en un escenario típico agrícola canario. Se 

evalúan tres procedimientos para la estimación de parámetros: método directo, método 

indirecto por “prueba y error” y calibración por optimización inversa. 

3. Visto el potencial y las limitaciones de la optimización inversa se propone un 

procedimiento para analizar diferentes alternativas de toma de datos y establecer de esta 

forma los requerimientos mínimos de información (datos) necesarios para la estimación 

de parámetros hidráulicos por este método. 
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4. Conocidas las propiedades hidráulicas, se procede al estudio de la dinámica de transporte 

en este suelo volcánico. Para ello se emplea la técnica de TDR (Time Domain 

Reflectometry) que permite el seguimiento simultáneo del contenido de humedad del 

suelo y de la concentración de un soluto salino. Para la estimación de los parámetros que 

rigen el movimiento de solutos en el suelo se aplica el procedimiento de simulación 

inversa. 
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Abstract 

 Banana and other horticultural produce cultivation, together with the population increase, 

has led to coastal aquifer degradation in the Canary Islands. A detailed field study to track 

nitrogen degradation and transport through a banana plantation soil into the aquifer is 

presented. The main objective of the study is to understand and quantify the hydrological 

behavior of the system, and quantify nitrogen leaching. The hydrogeological study of the area 

shows that the thin terraced soil is set on top of several layers of fractured basalt down to a 

massive formation where the polluted aquifer is found. When water leaves the soil profile, it 

is likely to quickly percolate along the preferential paths (cracks) through the basaltic layers 

and it is intercepted by lateral interflow in a mixing ratio of 25% irrigation drainage plus 75% 

interflow, before it reaches the aquifer. The soil water balance shows that most of the 

drainage (18% of the total irrigation+rainfall) is produced during the crop highest water 

demand period and during the short rainy season when no irrigation is applied. Monitoring of 

the soil solution showed that very high nitrate concentrations (50-120 mg/l N-NO3) are 

present throughout the experimental period. The high water fluxes and nitrate concentration 

at the bottom of the soil profile produce a yearly loss of 48-52% of the total N applied (202-

218 kg N/ha per year). Monitoring of water from springs below the experimental area shows 

that the nitrate lixiviates are diluted around 60% before reaching the aquifer, after mixing 

with the lateral flow. Smaller and more frequent applications of both N and water would help 

to reduce the environmental impact of the system. 

Keywords: Ammonium; Bananas; Contaminant; Environment; Fertigation; Hydrology; 

Nitrate; Pollution; Volcanic soil; Water; Suction cups. 
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1. Introduction 

Although income from bananas is about 2% of the gross regional income in the Canary 

Islands (COAP, 1995), its cultivation and trade are very important for economic, cultural and 

social reasons, employing 6% of the active population. The climatic and physiographic 

variability of the islands impose irrigation on the crop for most of its year-around cycle to 

cover monthly water deficits as high as 130 mm. The introduction of fertigation and micro-

irrigation techniques has allowed the expansion of the crop to areas with reduced water 

quantity and quality. The intensity of the banana and other horticultural crops coexisting in 

the same areas, demanding high inputs of water and agrochemicals, together with rural 

population increase, has resulted in degradation of the coastal aquifers. 

The global hydrological balance in the two most populated islands (Tenerife and Gran 

Canaria) and the region is presented in Table 1. Evapotranspiration plus infiltration account 

for up to 85-98% of the total rainfall. This means surface water is a scarce resource, and the 

islands rely heavily on groundwater resources (95% of total water supply). 

Table 1. Components of the hydrological cycle in the Canary Islands 
Factor1 Gran Canaria Tenerife Canary Islands 

 hm3/year mm/year   % hm3/year mm/year   % hm3/year mm/year   % 
P 466 300 100 865 425 100 2535 507 100 

ET 304 195  65 606 298 70 1665 333 66 
I  87  56  19 239 117 28 590 118 23 

Es  73  47  16  20 10 2 280 56 11 
1. P= Precipitation; ET= Evapotranspiration; I= Infiltration; Es= Surface Runoff. 

 

Rainfall varies significantly within each island depending on orientation and altitude. 

Northern areas are wetter than southern ones, and precipitation also increases with elevation. 

Bananas are grown on the lower, drier coastal areas, where precipitation can be as low as 100 

mm/year or even less. Water consumption from both agricultural and human uses is 

increasing, exceeding in some instances the net groundwater recharge. This situation is 

forcing the introduction of expensive non-traditional water resources such as desalinization 

and water treatment and reuse, as proposed by the Canary Islands’s Hydrological Plans 

(DGA-SPH, 1993; CIAGC, 1995). Water use statistics by economic activity show agriculture 

to be the major consumer, using 60-80% of available resources. Among crops, bananas alone 

consume up to 60% of the agricultural water resources (SYSCONSULT-AICASA,1987). The 

scarcity of water imposes the need to conserve the resource and to use it efficiently. This 
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concern is illustrated by the fact that the Canaries pioneered the introduction of micro- 

irrigation systems at both national and European levels (Sanchez Padrón, 1993). 

Water management and use in the islands is threatened by pollution from human sources 

(agriculture and others). A recent study (DGA-SPH, 1993) shows that most of the traditional 

agricultural areas are already polluted. In a limited area such as an island, a polluted aquifer 

is a lost aquifer, thus imposing the need to resort to expensive non-traditional resources that 

compromise the sustainability of the system. 

There are three mayor classes of groundwater pollution present in the islands: i) volcanic 

activity; ii) sea water intrusion caused by over-exploitation; and iii) drainage from 

agricultural lands and rural septic systems. As a result, the quality of available resources 

varies depending on their source. The two most common groundwater extraction systems on 

the islands are regular (vertical) wells and “galleries” (horizontal wells). Well water typically 

bears a high sodium chloride content, up to 2000 mg/l Cl and 1250 mg/l Na, with neutral pH 

and EC25 >5 dS/m. Gallery water is characterized as sodium bicarbonated, with pH > 8, and, 

in some cases, reaching up to 2000 mg/l HCO3 and 500 mg/l Na. The water usually has a 

high silica content (50-110 mg/l SiO2) caused by prolonged contact with the aquifer materials 

(fossil waters); in some areas it can also have a very high fluoride content (up to 9 mg/l). 

Dumping of domestic untreated effluents and agricultural lixiviates from intensive crops 

are the main nitrate sources to the aquifer. In general, the affected areas correspond to those 

where salt water intrusion is already present. These areas in Tenerife are represented by a 

high density of nitrate (mg/l NO3) concentration isolines (Figure 1). The average nitrate 

concentration in the main agricultural valleys of the island ranges 9-11 mg/l N-NO3 (40-50 

mg/l NO3), but exceeds 25 mg/l N-NO3 in some areas (>110 mg/l NO3). 

The Hydrological Plan of Tenerife (DGA-SPH, 1993) indicates that most of the nitrate 

comes from crop fertilization rather than septic systems. The study concludes that in the short 

and mid term, the groundwater resources of the island will continue to degrade as: i) 

volcanism is a permanent process; ii) there is not an abundant resource available in the short 

term that will prevent aquifer over-exploitation in the coastal areas, although a significant 

increase in alternative sources is expected; iii) nitrate leaching will eventually be reduced by 

non-point source pollution control programs but the existing levels will persist for a long 

time due to the slow recharge rate of the aquifer. The conclusions of the study can be 
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extrapolated to other islands of the Archipelago, with some differences regarding salinity 

levels - lower in the wetter islands - but with nitrate levels still high. 

 

0
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Valle Guerra

 

Figure 1. Nitrate concentration isolines (NO3 mg/l) in the island of Tenerife (DGA-SPH, 1993). 

The following experimental study deals with water and nutrient hydrological transport 

processes that take place in a fertigated banana plot, and that ultimately lead to soil and water 

pollution. The results will help agronomists to identify alternative management schemes that 

reduce environmental impact. The data obtained is also being used in field testing of a 

numerical model that will aid in the assessment of the proposed management schemes. 
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2. Methodology 

2.1.  Selection of experimental area 

A 4800 m2 field plot was selected within an intensive agricultural area, the valley of Valle 

Guerra, in the north of Tenerife (the largest island, 2057 km2). The valley is enclosed by the 

Anaga Mountain range (altitude over 2000 m) on its NE side and is open to the Atlantic 

Ocean on its NW exposure, ending in a cliff 70 m high. The mean annual temperature for the 

area is 20ºC (minimum of 15°C in winter), and annual precipitation and crop 

evapotranspiration measured at the plot are around 380 and 1000 mm, respectively.  

The main crops in the valley are bananas and other horticultural and ornamental crops 

(under greenhouse and open air systems). The experimental plot was selected inside a 42 ha 

banana plantation (Las Cuevas) owned and operated by a private company. The plot was 

chosen to represent the average conditions of the area (fertigation and cultural practices) at 

the time. The plantation, located on fairly steep ground in the lower part of the valley, is 

terraced all the way down to the edge of the cliff, 70 m above sea level. One major spring 

present in the cliff face directly below the plantation (at 10 m above sea level) was also used 

in the experimental study. 

The fertigation system used by the company for this plantation (Table 2) is of the type 

employed in around 13% of the total banana surface in the Canary Islands. 

   
 

Table 2. Characteristics of the fertigation system 
Distribution 
system 

Emitter type Summer 
application 
(m3/ha) 

Annual 
application  
(m3/ha per year) 

Efficiency 
(%)1 

Fertigation 
equipment 

% of 
banana 
area2 

Buried PVC 
pipes 

800 l/h placed  
1 m high, precipitation: 
40-80 mm/h 

500 per week
 

14000  50 Venturi 13.24 
 

  1. From: Ingenieros Asociados de Tenerife, S.L. (1983). 2. Data extrapolated from AGRIMAC S.L.(1995). 

 

Banana fertilization guidelines in the area are as follows (g/plant-year): a) applied with the 

irrigation system: 250-300 N, 80-100 P2O5, 350-400 K2O; b) applied to the soil in solid form: 

80-150 CaO. The density of plants in the area is about 1800 plants/ha. In the south of the 

island, density goes up to 2000 plants/ha, which can be increased by a further 20-30% if 

micro-irrigation, new cultivars, and greenhouses are used. 
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2.2.  Hydrogeology of the area 

A detailed hydrogeological study was conducted on site (Poncela, 1994). The area was 

formed as a series of fractured lava layers from the Quaternary period (Series III) on top of 

an older massive basaltic foundation (Series I) closed to sea level. If enough time passed 

between volcanic eruptions, soil was formed so that the lava layers are alternated by these 

continuous impermeable layers of baked soil called “almagre” (Figure 2). 

The unsaturated zone is constituted by two types of materials: a) thin soil layer at the 

surface, 0.6 m thick; and b) fractured Series III basaltic materials down to the water table, 

with a variable thickness of up to 70 m. There are only a few wells in production in the lower 

coastal areas due to salinization (sodium chloride) and deep water tables. Most of the 

irrigation water comes from galleries or a mixture of both types. The samples obtained from 

the network of wells around the experimental area show that nitrate pollution is present, with 

values above 11 mg/l N-NO3 (50 mg/l NO3) in some instances (Muñoz-Carpena et al, 1996a).  

Pumping

     Evapotranspiration

Infiltration

Precipitation +
irrigation

Runoff

Spring

Discharge

Impermeable basement

Dike

Groundwater
flow lines

piezometric level

Preferential

Sea level

Recharge

flow
"Almagre"

 

Figure 2. Hydrogeological model at the experimental area. 

Water flow to the aquifer comes from two major sources: a) general interflow from the 

adjacent mountains; b) drainage from agricultural lands. This flow to the aquifer is 

intercepted by “almagres” and conducted laterally where it frequently appears as a spring 

flowing from the cliff side. The isotopic and hydrogeological study conducted using water 

samples (irrigation, spring and well water) from one sampling date shows that the water 
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finally reaching the aquifer is a complex mix of about 25% drainage from agriculture and 

75% general groundwater interflow. 

2.3.  Soil characterization 

It is generally agreed that the lower limiting temperature for banana growth is 15 °C. 

Since those conditions are only met in the lower coastal areas of the islands (preferably along 

the southern shores), two practical problems arise for banana (and other horticultural crops) 

production. First, generally speaking, the natural soil profile in the area is too thin to sustain 

banana cultivation due to its recent volcanic origin, and the dry and uniform climate of the 

lower coastal areas. Second, the fact that the landscape of the area is typically formed by 

steep slopes, sometimes over 10%. These conditions have resulted in the typical agricultural 

landscape of the islands, the “sorriba”, terraces built across the steep slopes with rock 

retaining walls filled with soils imported from the high mountain areas where changes in 

humidity and temperature have allowed weathering of the volcanic materials and produced 

well developed soils. Traditionally these soils are put over a drainage layer of gross material, 

which lays on top of the fractured rock that constitutes the subsoil. From the soils standpoint 

the implications are clear: conditions at any given terrace or plot should not necessarily 

correspond to those found in adjacent plots, since the soil might have different characteristics 

depending on its origin. This imposes the need of a careful on-site soil characterization. In 

our case, the “sorribas” of the plantation (42 ha) were built by the owner during the same 

period (over 50 years ago) from the same soil sources, but they might not agree with soils 

from adjacent plantations. 

In June 1994 a soil depth survey was conducted at the experimental plot by means of thin 

soil borer on a grid of 110 points (Figure 3). Seven soil pits were excavated on the plot with 

the aim of describing (Soil Survey Staff, 1978) and sampling the soil profile to determine 

variability (in depth and area) of the main soil characteristics. Soil samples, both disturbed 

samples and undisturbed soil cores, were taken at three depths (15, 30, 60 cm) in each pit. 

Physical and chemical properties were determined following standard methods (Klute, 1986). 

The mineral content was studied with the aid of X-diffraction techniques. 

The soil saturated hydraulic conductivity (Ks) and characteristic (moisture) curves were 

measured using undisturbed soil cores (Klute, 1986). The soil characteristic curves were then 

fitted to the van Genuchten’s equation (van Genuchten, 1980). Sorption properties for 
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ammonium were measured in the laboratory by means of batch studies (Muñoz-Carpena et 

al., 1996a) and the comparison of field values of ammonium sorbed in the soil vs. soil 

solution values. These values will help to establish the nitrogen cycle and transport at the site 

in concurrent modeling efforts. 
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Figure 3. Experimental field setup. 

2.4.  Experimental design and sampling protocol 

The experimental setup at the plot was designed to obtain soil and water samples from the 

soil section of the unsaturated zone, record the variation of the hydrologic components, and 

register the cultural practices and crop data at the experimental plot. Fertigation and other 

cultural practices were carried out by the farm following usual calendars in the area, since the 

intent of the experiment was to evaluate existing practices rather than to alter these 

experimentally. 

A total of 1725 samples were collected and analyzed during the 1.5 years experimental 

period (8/1995-9/1996). Soil and water samples were taken at six different points in the plot 

to assess spatial variability (Figure 3). Nitrogen movement was tracked by sampling the soil 

profile at three depths (15, 30, 60 cm). The sampling depth of 60 cm was selected to capture 

nitrogen content at the interface between the soil and the underlying drainage layer. Sampling 
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took place weekly or after each irrigation event when the crop was irrigated more than once a 

week. Four types of samples were collected in each of the six sampling stations: i) soil at 

three depths (15, 30, 60 cm); ii) soil solution taken by ceramic suction samplers at the same 

three depths; iii) effective precipitation (rainfall and irrigation) and incoming nitrogen into 

the soil captured by a set of ground level pluviometers, one in each of the sampling stations 

(Figure 3); and iv) water from the spring on the cliff.  

The porous ceramic cups used were 60.5 mm long with an outside diameter 48.3 mm an 2 

bar (200 kPa) air-entry value (SoilMoisture 653X01-B02M2, 2 bar, high flow). They were 

mounted on 4.8 cm outside diameter PVC tube of 15-61 cm length, closed at the top with a 

Santoprene stopper. Neoprene tubing was used as an access port for sample extraction and 

suction application. The devices were inserted vertically in clusters of three (Figure 4), and 

the PVC pipes were sealed with bentonite at the surface to prevent downward water 

movement along the external surface of the pipe. A suction of 0.60 bar (60 kPa) was applied 

two days prior to sampling. The water was collected during the period in which the suction 

head decreases as water enters the cup (falling head method). Suction cups are one of the 

early methods proposed for sampling soil water (Briggs and McCall, 1904; Wagner, 1962). 

The advantages of the method (nondestructive, low-cost, easiness of use) have made it one of 

the most widely used nowadays. The method however presents limitations and can yield 

contradictory results. Alberts et al. (1977) studied the temporal variation on the soil N-NO3 

content by comparing soil sample extractions with 1M KCl with suction cup samples. 

Generally they found similar values between both types of samples, but in some instances 

large differences were attributed to the soil intrinsic variability and the limited number of 

repetitions. Overall, the authors concluded that this was an acceptable sampling method. 

Bernhard and Schenck (1986) also found an acceptable correlation (R2= 0.5-0.7) between 

both types of samples. Other studies show that the sample volume and concentration are not 

reproducible on a experimental setup, depending on the contaminant studied, material of 

which the suction lysimeter is made of, and the soil variability and type. Hansen and Harris 

(1975) in a nitrate and phosphate monitoring study observed that the variability among 

samplers placed close to each other was at least 30%. They explained this sample variability 

in terms of: i) sorption, diffusion, washing and filtering through the cup; ii) changes in cup 

permeability caused by the deposition of the fine soil particles in the small cup pores; iii) 

spatial variability of the soil horizons; iv) and differences in lysimeter management such as 

vacuum level applied or installation. On another contaminant tracking and monitoring study 
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of pesticides (atrazine and alachlor), using bromide as a tracer, Smith and Thomas (1990) 

found a coefficient of variation among nearby samples ranging from 23-200%. The effect of 

soil texture and structure on suction cup samples was studied by Shaffer et al. (1979), Barbee 

and Brown (1986), and Djurhuus and Jacobsen (1995). These researchers compared soil and 

suction cup samples obtained from soils with different textures and concluded that the 

method is well suited for sandy soils if the sample is taken on the same irrigation or rainfall 

day. For clay structured soils sample variability is high, specially when a large volume of 

water is applied and water moves rapidly through cracks or macropores. Djurhuus and 

Jacobsen (1995) concluded that in the case of structured soils, such us the one in this study, 

the suction cups should be preferred to soil sampling when the aim is to estimate nitrate 

leaching. Preferential flow though macropores in soils may affect the composition of the soil 

solution sampled if seepage water bypasses the suction cup (Shaffer et al., 1979, Barbee and 

Brown, 1986). This problem is partly a problem of spatial variability of the soils and should 

be addressed as such by an intensive sampling and repetition scheme. Some chemicals are 

adsorbed to the porous cups during the sampling process. Nagpal (1982) found very low 

adsorption for NO2 and NO3 when passing a standard solution through the cup, so that there 

are no limitations to its use from this point of view. 

Water samples (from suction cups, pluviometers and the spring) were collected in dark 

glass bottles with teflon caps. Soil and water were immediately cooled down to 5 ºC in the 

field for transportation to the lab. 

A typical analysis of a soil sample consisted of pH, EC25, soluble N-NO3 and N-NH4, and 

total N. The N-NO3 and N-NH4 were analyzed using a Technicon autoanalizer and total N by 

Kjeldahl’s method. Water samples were analyzed in a similar manner (pH, EC25, soluble N- 

NO3 and N-NH4) with the exception of the suction cups samples, where ammonium was not 

determined since it is known to be retained at the ceramic cup (Muñoz-Carpena et al., 1995). 

An automatic weather station was installed on site (Muñoz-Carpena et al., 1996b) to 

estimate reference evapotranspiration for the crop at intervals of 15 minutes (1 min data 

average) and record rainfall and soil temperature changes. Daily soil moisture content was 

monitored using a time domain reflectometry system (TDR). Sensors were placed at the same 

three depths in all six sampling stations (Figure 4). Suction lysimeters, TDR equipment and 

pluviometers were protected by a mesh cage in each of the sampling stations. Soil samples 
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were taken in a spiral fashion around the equipment cage and the sampling spot was marked 

with a survey flag to avoid taking a sample on disturbed soil. 
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Figure 4. Details of the sampling and monitoring equipment used in a sampling station. 

2.5.  Balances 

A monthly water balance was established based on Penman (1950a, b) and taking the sum 

of daily data of precipitation, irrigation and crop evapotranspiration. Monthly average soil 

water content values for the whole profile were determined using the daily values of soil 

water content measured with TDR. Soil water content variation was calculated as the 

difference between consecutive monthly values. Assuming no runoff for the terraced soil, the 

water balance and drainage to the aquifer are given by, 
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BAL = (P + R) – (ETc + ∆W) (1) 

where BAL stands for water balance, P for precipitation, R for irrigation, ETc for crop 

potential evapotranspiration and ∆W for moisture variation. 
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where D stands for drainage. 

If Eq. (1) gives negatives values, there is no drainage and actual evapotranspiration (ETa) 

is set to be less than the potential evapotranspiration. 
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where ETa  is crop actual evapotranspiration. 

A monthly nitrogen balance was also made. N-NH4 and N-NO3 inputs coming from the 

rain and irrigation water were calculated from the analysis of field samples. Those inputs 

coming via fertigation were determined based on water samples taken from the sprinklers 

during fertigation. An estimation of the total nitrogen extraction by the crop was made 

combining data of banana production at the experimental plot for the period studied, foliar 

analyses, and considering average values found in the literature (Table 3). 

Table 3. Annual average matter and nitrogen content of a banana plant of the Cavendish group (cv. “Grand 
Naine”) (Soto Ballesteros, 1990) 

Part of banana plant Fresh matter (%) Dry matter (%) N (%) 
Bunch1 26.85 18.2 0.87 
Whole plant2 91.56 11.2 1.06 
Shoot3 8.44 7.7 1.61 
Whole plant + Shoot 100.00 10.9 1.06 

1. Includes: petiole, rib and limb. 2. Includes: bunch, pseudostem and stalk. 3. Includes: whole leaves, pseudostem, immature leave and stalk. 

 

A fraction of this total N extraction is assumed to return into the soil by mineralization of 

the crop residues left on the plot. N-NO3 and N-NH4 soil concentrations were obtained from 

soil samples, combining them with soil water content values measured with TDR. The 

monthly variation of soil nitrogen concentration was calculated by monthly averaging the 

daily values (estimated by linear interpolation between weekly sample values). Taking all 
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these factors into account, the amount of nitrogen that is lost by leaching from the soil (NL) is 

given by the following balance: 

NL = (NP + NR + NF+ NMIN) – (NEX + ∆NS + NIN) (4) 

where NL is the nitrogen losses by leaching obtained with the balance method, NP the 

nitrogen content in the rain, NR the nitrogen content in irrigation water, NF the nitrogen 

content of fertilizer, NMIN the nitrogen content of the crop residues that are mineralized, NEX 

the total nitrogen extracted by the crop, ∆NS the soil nitrogen content variation and NIN the 

nitrogen content immobilized by soil microorganisms. 

Nitrogen losses by leaching will only take place in those months where drainage is 

observed. If the balance gives a positive value and there is no drainage, it is assumed that the 

nitrogen has been temporally immobilized by soil microorganisms (Gros, 1976), and the 

quantity is supposed to leave the soil by leaching the next month that drainage takes place.  

Nitrogen losses values were compared with those independently obtained by multiplying 

the monthly drainage values from the water balance (Eq. (2)) by the monthly average 

nitrogen concentration of the soil solution in the interface of the soil and fractured rock (60 

cm), 

NL60 = 0.01DC  (5) 

where NL60 is the nitrogen losses by leaching at the interface of the soil and the drainage 

layer (kg/ha), D the drainage (l/m2) and C the monthly average nitrogen concentration at 60 

cm (mg/l). 

3. Results and discussion 

The results of the soil depth survey showed that the average soil depth in the experimental 

plot was 60 cm, with a range of 50-80 cm, below which a net contact with the fractured 

basaltic rock was found. Average values and their standard deviations of the soil physical and 

chemical properties are summarized in Tables 4 and 5. The mineral content shows presence 

of volcanic amorphous materials, ferric minerals (hematites and goethite) and 1:1 clays with 
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pH dependent charge (halloysite) and 1:2 (nontronite). The soil displays andic properties 

(Soil Survey Staff, 1978). 

Table 4. Physical properties of the soil at the experimental site1 
van Genuchten´s parameters Depth 

(cm) 
Hydraulic 

conductivity, 
Ks (cm/h) 

Bulk 
density, 
ρb (g/cm3) 

Specific 
density, 
ρs (g/cm3) 

Porosity, 
P (cm3/cm3)

α n θr 

 Texture 
(USDA)2

15 13.0 ±3.77 1.09±0.06 2.51±0.19 0.55±0.02 0.28 ±0.04 1.38±0.05 0.32±0.03  C 
30 8.38 ±2.08 1.18±0.06 2.49±0.06 0.52±0.03 0.22 ±0.04 1.41±0.05 0.32±0.03  C 
60 7.65 ±2.18 1.09±0.10 2.34±0.20 0.49±0.03 0.19 ±0.04 1.29±0.05 0.25±0.03  C-L 

1. Values shown are X ± Sx, number of samples = 7.  2. C= Clay; L= Loam. 

 

The particle analysis shows that the soil has a clay percentage above 40% (USDA texture 

from Clay to Clay-Loam). Ks literature values for these soil textures are 0.06-0.2 cm/h 

(Rawls and Brakensiek, 1983) or 1.07-3.63 cm/h (McCuen, 1981). Our soils give values 

around 5 times higher than those reported in the literature (Ks=7.65-13.0 cm/h). This may be 

explained in terms of the high Fe-oxyhydroxides content in volcanic soils that leads to strong 

particle aggregation. This is consistent with a dual-porosity soil model revealing a slow flow-

diffusive transport region inside the aggregates and a fast flow-convective transport region in 

between aggregates, as proposed for this soil by Regalado et al. (2001). This preferential flow 

process is widespread and leads to high effective Ks values, well above standard levels for 

their texture, and also to the soil fast response to inputs in the system (water and solutes). 

The higher clay content in the surficial layers results in an increased moisture retention 

capacity as shown in Figure 5. Values for pH and EC25 remain constant with depth, but 

organic matter (OM) is high on the surface layer due to the large amount of leaves that 

bananas produce, which are typically left on site after harvest. 

Table 5. Average chemical properties of the soil at the experimental site at two different times1 
 ECe25 (dS/m) pH Depth 

(cm) 
Organic 
matter (%) 

December 
1995 

 December 
1995 

October 
1996 

December 
1995 

October 
1996 

CEC 
(meq/100g) 

Sorption 
Kd NH4 

15 2.32±0.79  1.85±0.16 1.08±0.04 6.92±0.16 7.07±0.21 37.1±3.4 10.1±2.8
30 1.70±0.63  1.88±0.13 1.02±0.05 6.98±0.11 7.17±0.09 33.7±2.24 13.3±3.6
60 1.03±0.24  1.65±0.13 1.23±0.09 7.25±0.08 7.35±0.11 32.0±2.75 18.9±4.1

1. Values shown are X ± Sx, number of samples = 7. 
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Figure 5. Average suction curves at the experimental site (lines: van Genuchten equation; symbols: data). 

The evolution of the soil water content for the period studied (01/08/95–30/09/96) is 

shown in Figure 6. It represents the average daily moisture variation at each soil depth in 

response to water exchanges from the soil (R, P, ETa, D). The average coefficients of 

variation among sampling stations for each soil depth TDR readings were 21.2, 16.6, 18.3% 

for 15, 30 and 60 cm, respectively. The rainy period at the end of 1995 and beginning of 1996 

results in a noticeable increase in average soil moisture content in the soil profile. Average 

moisture content begins to drop after that date, especially between March and June (when 

irrigation decreases). At 60 cm there is less depletion in soil water content. The increase of 

the irrigation volume in the following months re-establishes the water content of the 

superficial layers to the average levels. 

Figure 7 shows the components of the monthly water balance for the period studied. 

Potential and actual crop evapotranspiration for the period studied was 1177 and 1059 mm 

respectively. The total drainage reaches 237 mm/year, which corresponds to 18% of the rain 

and irrigation applied in the plot during a year (439 and 873 mm, respectively). This amount 

is not uniformly distributed, but it takes place after long periods of precipitation or frequent 

irrigation. Between November and March there is less evapotranspiration and therefore the 

input of water by irrigation and rain results in the largest amounts of drainage. Irrigation 

excess produces also some drainage in April, May and July of 1996. 
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Figure 6. Soil moisture variation at the experimental plot. 

 

Figure 7. Water balance at the experimental plot. 
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Figure 8 shows the nitrogen content in the soil solution during the year. The average 

coefficients of variation of N-NO3 among sampling stations for each soil depth were 37.6, 

34.2 and 25.0% for 15, 30 and 60 cm, respectively. Likewise 49.9, 41.2 and 47.2% are the 

average coefficients of variation of N-NH4 at those depths. While fertilization increases 

nitrogen in the whole profile, there is a marked reduction in the surficial horizon (15 cm) due 

mostly to plant extraction (roots found at 1-40 cm depth) and to leaching downwards. 

 
Figure 8. Nitrogen content variation measured at the experimental plot and in the spring water samples. 

Table 6 presents annual nitrogen content and fresh and dry matter distribution among the 

different parts of the banana plant at the end of the year based on Table 3 and a yield 46.7 

Tm/ha per year. Figure 9 presents the net nitrogen extraction curve by the crop, i.e. 

discounting the fraction which returns into the soil by mineralization of the crop residues left 

on the plot. In January and August maximal extraction is observed, while in May and 

November the nitrogen uptake is the smallest. 

Table 6. Fresh and dry matter and N-uptake of the crop for the experimental period studied (46.7 Tm/ha 
yield) 

Part of banana plant Fresh matter (kg/ha) Dry matter (kg/ha) N (kg/ha) 
Bunch1 46679.38 8495.65 73.91 
Whole plant2 159176.47 17827.76 188.97 
Shoot3 14676.49 1130.09 18.19 
Whole plant + Shoot 173852.96 18949.97 199.14 

1. Includes: petiole, rib and limb. 2. Includes: bunch, pseudostem and stalk. 3. Includes: whole leaves, pseudostem, immature leave and stalk. 
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Figure 10 summarizes the monthly nitrogen balance for the period. Nitrogen losses by 

leaching reach 202 kg/ha per year, which represents 48% of total nitrogen applied as 

fertilizer. Comparison of Figures 7 and 10 shows that these losses are caused by excessive 

fertigation at times when leaching was produced by rainy periods or intensive irrigation. In 

October 1995, August and September 1996, there is no drainage so that the nitrogen excess 

stays immobilized in the soil profile. There are two possible explanations to the origin of the 

excessive N-applied. One explanation could lay on poor knowledge (or unrealistic 

expectations) of the N requirement by the crop, so that excess N is being applied even when 

no extra yield will be obtained. Alternatively, it could be the case where increased nitrogen 

levels do produce higher yields and so a reduction for environmental reasons would have 

economic implications. Although experience shows that in general unrealistic yield 

expectations (limited by micro-meteorological conditions, plant material and cultural 

practices) might be the key to the problem, further agronomic studies beyond the scope of 

this work (i.e. plant responses to different N-fertilization levels, timing and application 

technique), might be needed to establish the probable cause. 

 

 Figure 9. Nitrogen extraction from the soil by the crop. 
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Figure 10. Nitrogen balance in the soil. 

An alternative to reduce nitrogen leaching could be to decrease soil drainage. There are 

practical limitations to this option based on salt leaching requirements. Leaching 

requirements (LR) are expressed as the additional percentage of water to irrigate, above that 

needed to satisfy crop water needs, in order to maintain salinity in the root environment at 

acceptable levels. For a sprinkler irrigation system LR can be calculated following Ayers and 

Westcot (1976) as LR=ECw/(5.ECe-ECw), where ECw is the electrical conductivity of the 

irrigation water used and ECe is the maximum soil extract electrical conductivity for different 

potential crop yields (Y). Based on weekly analyses, irrigation water used in the plot during 

the experimental period had an ECw range of 0.7-1.4 dS/m with an average of 0.93 dS/m. 

Following work by Israeli et al (1986) with bananas of the same variety, ECe values for 

Y=100% and 90% are 1.8 and 2.5 dS/m, respectively. This translates in average leaching 

requirements in excess of 12% for maximum potential yield and of 8% at 90% potential 

yield. Results from our water balance show the actual annual LR=18%. The effect of this LR 

on salinity levels at the plot is shown in Figure 11. Weekly values for ECe were calculated 

from soil solution (suction cups) electrical conductivity values (ECsw) using the relationship 

proposed by Ayers and Westcot (1976) where ECe=0.5ECsw. The Figure shows that EC 
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values in the root zone (15 and 30 cm) are always maintained below those for maximum 

potential yield and are only over that in a few instances for the deeper soil layer (but always 

below the 90% yield level). Since actual EC values at the root zone will depend on irrigation 

(and rainfall) applied, crop water requirements and drainage, it is always advisable to leave a 

margin so that salinity levels do not become a limiting factor at any given point in the crop 

cycle. Ayers and Wescot (1976) suggest LR values in the range 15-20%. This suggests that to 

avoid salinity problems, reduction in nitrate leaching should be achieved through improved 

fertilization practices. 
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Figure 11. Salinity (soil extract ECe, dS/m) variation in the soil profile for the experimental period. 

As a comparison, nitrogen losses were also calculated combining drainage volumes with 

nitrogen soil concentration at 60 cm (Eq. (5)). Both methods yielded similar annual results. 

The amount determined by the drainage method results in 218 kg/ha per year, which is 16 

kg/ha per year higher than the amount calculated with the balance method. However, 

monthly values estimated by the two methods are different (Figure 12). This discrepancy has 

been reported by other authors (Djurhuus and Jacobsen, 1995; Parker and van Genuchten, 

1984), in terms of the dependency of soil water quantity sampled by each method. The soil 

balance method deals with the resident or volume -averaged concentration, whereas the 
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drainage method considers the flux concentration, i.e. mass of solute passing through a given 

cross section at an elementary time interval. Parker and van Genuchten (1984) showed that 

the concentrations obtained by each method are different, and thus the nitrate leaching 

estimates. 

 

Figure 12. Nitrogen losses according to two methods: monthly balance and soil drainage at 60 cm. 

The hydrogeological study (section 2.2) helps to understand N-NO3 concentration data 

collected at the springs (Figure 13) and how the aquifer might be actually receiving the 

pollutants from the agricultural soil. Comparison of the nitrate concentrations found at the 

bottom of the soil profile (60 cm) with those found in the spring shows a dilution effect (from 

yearly mean concentration of 85 mg/l N-NO3 to 49 mg/l) as the water moves through rock 

fractures in the non-soil section of the unsaturated zone. A nitrate dilution ratio of 0.60 can 

be calculated as concentration of the spring water samples over the concentration of the soil 

drainage (taken as the soil water concentration at the lower soil interface, i.e. 60 cm) (Figure 

13). This is not in agreement with the 0.25 ratio established in the isotopic study using water 

samples (irrigation, spring and well water) from one sampling date. This partial isotopic 

result, though interesting, does not take into account: i) temporal variability; ii) the regional 

scale effect implicit in the spring water sample collected, iii) and the time of travel from the 

bottom of the soil profile down to the spring through the unsaturated fractured volcanic 
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material. There is no immediate extrapolation of this result to the simple nitrate dilution ratio 

calculated above. The concentration at the spring is an aggregation of the leaching 

contributions from the different farms and crops in the surrounding area, affected by the 

delay caused by the travel time of the contaminant in its way to the outlet, and partial mixing 

with groundwater interflow. To illustrate this point a screening for agrochemicals was 

performed on the spring water samples collected (Muñoz-Carpena et al., 1996a). The study 

revealed a herbicide used in other horticultural crops in the area (metribuzine) which had 

never been applied in the 42 ha banana plantation. 

 
Figure 13. Dilution effect after leaching from the soil down to the lower springs in the sea side cliff. 

4. Conclusions 

Bananas in the Canary Islands must be grown with the aid of irrigation to cover monthly 

water deficits in excess of 130 mm. Among the diverse crops produced in the Islands, banana 

is the major consumer of water. Since water is a very scarce resource, not only in terms of 

quantity but also in quality, pollution from agricultural lands threatens the sustainability not 

only of that crop, but of others in the Islands. 

The study conducted herein shows that over 48-52% of the total nitrogen applied (202-218 

kg/ha N) is not used by the plant but rather lost into the aquifer from a banana crop with 
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sprinkler fertigation system. Such losses are concentrated in periods when fertigation or 

rainfall is intensive. Since due to salt-leaching requirements total water drainage should not 

be significantly reduced, fertilizer practices (amount, timing and application technique) must 

be revised in order to control aquifer pollution. 
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Abstract 

 Water and solute transport in the vadose zone greatly depends on the soil physical and 

chemical properties, which generally exhibit high variability. Additionally, the experimental 

determination of those properties in the field or laboratory is tedious, time consuming and 

involves considerable uncertainty for most practical applications. Recently, inverse modeling 

has been introduced to estimate effective properties in-situ by deducing them from e.g. a 

measured time series of soil water content. Inverse methods combine forward soil water flow 

models with appropriate optimization algorithms to find the best parameter set that minimizes 

an objective function. Global optimization methods are suitable for locating a global 

optimum for a given set of conditions (number of parameters, boundary conditions, etc.). In 

this paper we estimate the soil hydraulic properties of a sprinkler fertigated banana plot in the 

North of Tenerife (Canary Islands) in a direct and inverse way. For the inverse method, use 

was made of the measured time series of soil water content at three different depths. The 

forward model is the numerical solution of the Richards equation as implemented in the agro-

environmental model WAVE. Two inverse methods are compared: the traditional “trial and 

error” method and an inverse method using a global search algorithm referred to as the 

Global Multilevel Coordinate Search combined sequentially with Nelder-Mead Simplex 

algorithm (GMCS-NMS). The global search is shown to be a relatively efficient procedure 

for estimating the soil hydraulic properties from measured soil water contents in the banana 

plantation. However, some ill-posedness problems are identified which should be solved by 

upgrading the quality of the experimental programs in irrigated banana plantations.  

Keywords: Inverse modeling; Multilevel coordinate search; Bananas; Water flow; WAVE 

model; Canary Islands. 
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1. Introduction 

The degradation of groundwater resources in the Canary Islands as a result of agricultural 

activities suggests the need to design strategies to reduce and control the environmental 

impact of agriculture. Bananas are the most important crop cultivated in the Archipelago and 

represent an extreme situation of intensive agriculture. Mean nitrate concentration values of 

groundwater found in the main agricultural valleys range within 9-11 mg/l N-NO3 (40-50 

mg/l NO3), in some areas exceeding 25 mg/l (110 mg/l NO3) (DGA-SPH, 1993). 

In this context, numerical, physically based models for water and solute transport are 

useful tools for analyzing nitrogen leaching as a consequence of fertilizer practices. However, 

the use of such models is not an easy task, since they contain a large number of parameters 

that must be identified before the model can be applied to the considered specific situation. 

The success of predictions and associated uncertainties strongly depends on the identification 

of the parameters, which is clearly the most critical step in the modeling process. 

Some of these parameters can be measured directly in the laboratory or in-situ. However, 

parameters determined from laboratory experiments might not be representative of field 

conditions. Furthermore, direct methods for the determination of soil hydraulic parameters 

require the experiments to reach several stages of steady-state conditions and restrictive 

initial and boundary conditions as well (van Dam et al., 1990). To overcome these problems 

indirect methods such as inverse modeling can be used to identify the basic flow and 

transport parameters. This procedure has the advantage that the results are based on a 

variable, which is observed at a larger time scale and under natural boundary conditions.  

A popular inverse method is the manual calibration by a “trial and error” procedure of a 

soil water and flow model by comparing simulated values of a state variable (e.g. soil water 

content) with those experimentally measured. From a scientific point of view, the latter is a 

tricky method that should not be applied by model user. The main drawbacks of this method 

are that it is time consuming; and when several parameters are involved, it is difficult to 

judge in which direction these should be modified. It is also quite subjective, as the modeler 

does not know when to stop the calibration process. Finally, the uncertainty on the obtained 

parameters cannot be quantified in a rigorous way. Consequently, the “trial and error” 

calibration method cannot ensure that the best parameter set is found. 
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A more elaborated inverse method combines the numerical model with an algorithm for 

parameter estimation (e.g. Simunek et al., 1999). Basically the process searches for the best 

set of parameters in an iterative way, by varying the parameters and comparing the real 

response of the system measured during an experiment with the numerical solution given by 

the model. Indeed, the search should consist of finding the global minimum of an objective 

function defined by the error between measured and simulated values. The algorithm 

minimizes the objective function following its own particular strategy, e.g. by gradient based 

search. Within this framework, many different optimization algorithms have been developed 

to numerically solve inverse problems. Among others, we may consider Steepest Descendent 

Method, Newton’s Method, Gauss Method, Levenberg-Marquardt Method, Simplex Method, 

Global Optimization Techniques, etc. (Hopmans and Simunek, 1999). Each of these methods 

has its own advantages and drawbacks, and the success of finding the global minimum 

depends generally on the presence of multiple local minima in the objective function. 

Recently Huyer and Neumaier (1999) have developed a global optimization algorithm 

(Multilevel Coordinate Search) that combines global search and local search capabilities with 

a multilevel approach that enhances the convergence to the smallest objective function value. 

In a soil physics context, Lambot et al., (2002) used the Global Multilevel Coordinate Search 

(GMCS) algorithm combined sequentially with the classical Nelder-Mead Simplex algorithm 

(Nelder and Mead, 1965) to determine subsurface hydraulic properties from a continuously 

observed soil water content time series obtained from a numerical one-dimensional 

infiltration-redistribution experiment. The efficiency of the algorithm in finding the global 

minimum of the objective function depends on the number of parameters to be optimized, the 

objective function topology, the parameterization of the algorithm, etc. 

The success of an inverse parameter determination depends on how well the problem can 

be posed. Three aspects generally characterize the posedness: identifiability, stability and 

uniqueness. If more than one parameter set leads to the same model response, the parameters 

are unidentifiable. Instability means that small errors in the measured variable or in some 

fixed parameters may result in large changes of the optimized estimated parameters. In 

contrast to identifiability, uniqueness refers to the inverse relationship; if a given response 

leads to more than one set of parameters, the inverse solution is non-unique (Russo et al., 

1991; Hopmans and Simunek, 1999). The posedness of an inverse method depends on the 

soil under investigation, the type and range of boundary conditions used, the model structure, 
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and the magnitude of the measurement errors of the input data (Russo et al., 1991; Durner et 

al., 1999). 

The optimization techniques mentioned above are widely used in the context of 

fundamental soil physics research mostly limited to the estimation of soil hydraulic 

parameters for uniform soils on small, undisturbed soil columns (see e.g. Hopmans and 

Simunek, 1999; Zou et al., 2001). However, they may be considered as powerful engineering 

tools as they can be applied on field experimental data sets to derive parameters of the system 

under consideration. The first application of inverse modeling to field data was reported by 

Dane and Hruska (1983), who optimized van Genuchten’s function parameters from drainage 

data. 

In this framework, our study presents a comparison of the performance of two indirect 

methods for identifying the hydraulic parameters of a stratified soil profile of a banana plot: 

the traditional “trial and error” method and the inverse modeling method by using the 

multilevel coordinate search global optimization method. For this purpose the numerical 

model WAVE (Vanclooster et al., 1996) was used to simulate water fluxes in the stratified 

soil profile in a sprinkler fertigated banana plantation.  

The main objectives of the study can be defined as follows: 

1) To perform a thorough sensitivity analysis to identify the most sensible parameters on 

which the optimization will be focused. Indeed, it is well known that the efficiency of 

parameter calibration can clearly be enhanced if the efforts are concentrated on those 

parameters to which the model simulation results are most sensitive (Beven, 2001); 

2) To compare the optimized parameter sets of the two above-discussed indirect 

methodologies and compare them with directly obtained parameter values;  

3) To investigate the impact of the calibration methodology on the simulated water fluxes 

that leave the soil profile.  
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2. Materials and methods  

2.1.  Field experimental setup 

The experiment was conducted in a 4800 m2 banana field plot selected within an intensive 

agricultural area, the valley of Valle de Guerra, in the north of Tenerife (Canary Islands). The 

valley is enclosed by the Anaga Mountain on its NE side and is open to the Atlantic Ocean on 

its NW exposure, ending in a cliff 70 m high. Mean annual temperature in this area is 20 ºC 

(minimum of 15 ºC in winter), and annual precipitation and crop potential evapotranspiration 

are around 380 mm and 1000 mm, respectively. The experimental plot was chosen inside a 

42 ha banana plantation (Las Cuevas) owned and operated by a private company. It was 

selected to represent the average conditions of the area (fertigation and cultural practices) at 

the time. The plantation, located on a fairly steep ground in the lower part of the valley, is 

terraced all the way down to the edge of the cliff 70 meters above see level. 

The bananas (Musa acuminata, cv “Dwarf Cavendish”) were grown in the open air and at 

a plant density of about 1800 plants/ha. The field was irrigated weekly with a sprinkler 

fertigation system. 

As common practice in the Canary Islands, due to the steep slopes of the landscape, crops 

grow on “sorribas”, i.e. terraces built across the steep slopes with rock retaining walls, filled 

with soils imported from the high mountain areas where changes in humidity and temperature 

have allowed weathering of the volcanic material producing well developed soil. The 

experimental plot, on a “sorriba” built over 50 years ago, showed an averaged soil depth of 

60 cm, with a range of 50 – 70 cm, below which a net contact with the fracturated basaltic 

rock was found. The soil profile exhibits three different soil horizons (0 – 20; 20 – 50; 50 – 

70 cm). Further details are described elsewhere (Muñoz-Carpena et al., 2002). 

Soil water content was measured at 6 locations uniformly distributed within the field with 

covered double waveguides TDR probes. At each location, TDR probes were installed at 

three different depths, 15, 30 and 60 cm, each corresponding to approximately the middle of 

the three above-mentioned horizons. Between the 26th of July 1995 and the 30th of September 

of 1996, soil water content readings were taken on 286 dates resulting in a data set of more 

than 5000 measurements. A TDR calibration was performed using a packed soil column 
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(∅16 x 20 cm), that was stepwise dried after saturation. During each step, weight and TDR 

measurements were taken. The relation between the dielectric constant and the soil water 

content (Figure 1) followed the commonly used Topp's Equation (Topp et al., 1980). 

Irrigation amounts were measured at the 6 locations with ground level raingauges. 6 different 

locations were chosen to account for spatial variability of both soil water content and 

irrigation, but in the following analyses, we only use the average values for the 6 locations, 

considered as representative for the whole experimental field. An automatic weather station 

was installed on-site (Muñoz-Carpena et al., 1996) to estimate reference evapotranspiration 

for the crop at intervals of 15 min (1 min data average).  

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.0 10.0 20.0 30.0 40.0 50.0

Dielectric constant

So
il 

w
at

er
 c

on
te

nt
 θ

(c
m

3 cm
-3

)

 
Figure 1. TDR calibration curve for the considered volcanic soil. Measured data (symbols) and Topp's 

Equation (line). 

2.2.  Model description 

Developed at the Institute for Land and Water Management of the K.U. Leuven 

(Belgium), the WAVE model (Water and Agrochemicals in soil, crop and Vadose 

Environment) is a numerical, deterministic model for simulation of the vertical transport of 

energy (heat) and mass (water, non-reactive solutes, nitrogen species and pesticides) in the 

soil-plant-atmosphere-continuum. It can be applied to soil laboratory columns, field 
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lysimeters and to the field scale if transport is mainly vertical and if effective (1-D) 

parameters are used. 

The WAVE model (Vanclooster et al., 1996) integrates several models developed earlier: 

SWATRE (Belmans et al., 1983), SWATNIT (Vereecken et al., 1990; 1991), the universal 

crop growth model SUCROS (van Keulen et al., 1982; Spitters et al., 1988) and subroutines 

for heat and nitrogen transport based on the LEACHN model (Wagenet and Hutson, 1989). 

The WAVE model is structured in five modules for determining respectively water transport, 

solute transport, heat balance, nitrogen transformations and crop growth. In this study, only 

the water transport module was used. 

Water transport is modeled by solving a one-dimensional, isothermal Darcian flow 

equation in a variably, saturated, rigid porous medium, expressed by the following form of 

Richards equation: 
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where C(h) is the soil water content capacity [L-1] equal to the slope of the soil moisture 

retention curve; z is the vertical distance from the soil surface [L]; t is the time [T]; K(h) is 

the soil hydraulic conductivity function [LT-1], h is the matric pressure head [L] and Γ(z,h) is 

the sink term describing water uptake by plant roots. The latter accounts for root water 

uptake reduction due to water stress and is based on a factor, which reduces linearly the 

maximal root water uptake (Smax [L3L-3T-1]) according to four critical matric pressure head: 

h0, h1, h2, and h3 [L]. Under conditions wetter than h0, water uptake ceases due to lack of 

oxygen in the root zone; below h3, it stops due to drought stress, while between h1 and h2 

water uptake is optimal and Smax is not reduced. Furthermore, the threshold matric pressure 

head below which water uptake decreases, depends on whether the atmospheric demand is 

low or high (h2l and h2h, respectively). On the other hand, the atmospheric demand is 

estimated by splitting the potential crop evapotranspiration into potential transpiration and 

evaporation using the Leaf Area Index (LAI [-]) as division parameter (Vanclooster et 

al.,1996). 

The soil water retention function is given by (van Genuchten, 1980): 
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where Se is the effective saturation [-]; θ(h) is the soil water content [L3L-3] at matric 

pressure head h; θs and θr are the saturated and residual soil water content [L3L-3], 

respectively; α is the inverse of the air entry value of h [L-1]; m and n are curve shape 

parameters. The former characterizes the asymmetry and is assumed to be m=1-1/n, while the 

latter is related to the slope of the curve (van Genuchten, 1980). 

The hydraulic conductivity can be described in WAVE with several model equations. In 

this study the following expression for the unsaturated hydraulic conductivity function was 

chosen. It results when combining Eq. (2) with the pore-size distribution model of Mualem 

(1976).  

( )[ ]211)( mm
s SeSeKSeK −−−= λ  (3) 

where K(Se) and Ks are the unsaturated and saturated hydraulic conductivity [LT-1], 

respectively and λ is the pore connectivity parameter [-], which accounts for tortuosity and 

correlation between pore sizes (Durner et al., 1999). 

In the vertical direction, the model considers the existence of heterogeneity in the form of 

horizons or layers within the soil profile. These layers are subdivided in space intervals called 

soil compartments. Halfway in each soil compartment, a node is identified for which the state 

variables are calculated using finite difference techniques, space implicit and time explicit. 

To model less dynamic processes (crop growth) a fixed daily time step is used, while for 

strongly dynamic processes, such as water, solute and heat transport and solute 

transformations, a smaller variable time step can be chosen to limit mass balance errors 

induced by solving the flow equation. The model inputs are given on a daily basis and 

outputs can be obtained at daily intervals or higher (e.g. Muñoz-Carpena et al., 2001). 

2.3.  Direct estimation of model parameters 

Concerning the high number of parameters required by the model, although there was the 

possibility to obtain them from the literature, it was decided to measure as many of them as 

possible. Thus, the effort spent on parameter determination was hoped to be regained in terms 
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of minimal calibration work. Model inputs and parameters used in this work and also the 

methodology applied for their determination is described in Muñoz-Carpena et al. (1999a; 

1999b). Hydraulic properties were determined on undisturbed USDA 7,62 cm soil cores 

using Tempe cells and laboratory constant head permeameters (Klute, 1986). The 

undisturbed samples were taken at the 6 different locations and the 3 above-mentioned 

depths. Thus, average values for each depth were used. The soil moisture retention curves 

were then fitted (Table 1) to van Genuchten’s water retention model (van Genuchten, 1980), 

which is available in WAVE. Table 1 shows also the saturated hydraulic values obtained with 

the constant head permeameters, and Mualem’s pore connectivity parameter (λ), which can 

be assumed equal to the most commonly accepted value of 0.5 (Mualem, 1976). The 

maximum root water uptake rate (Smax) was considered constant within the root zone and was 

fixed at 0.023 cm3cm-3day-1 (Vanclooster et al., 1996). In addition, the matric pressure head 

values, which characterize the root water uptake for bananas, were obtained from Simunek et 

al., (1998). The Leaf Area Index (LAI) function and the crop coefficients (Kc) were taken 

from (Muñoz-Carpena et al., 1999a; 1999b). The yearly evolution of both parameters, Kc and 

LAI is presented in Figure 2, where linear interpolation between values is considered.  
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Figure 2. Kc and LAI functions used in the simulations. 
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Table 1 
Hydraulic parameters selected for the sensitivity analysis 

van Genuchten parameters Depth 
(cm) θs 

(cm3/cm3) 
θr 

(cm3/cm3) 
α 

(cm-1) 
n 
 

Ks 
(cm/day) λ 

15 0.549 0.322 0.278 1.377 311 0.5 
30 0.520 0.315 0.220 1.406 201 0.5 
60 0.495 0.250 0.189  1.292 199 0.5 

2.4.  Sensitivity analysis 

Model parameter estimation is an arduous task, which can be done efficiently if the 

parameters most influencing the model response are previously identified. For this purpose, a 

sensitivity analysis provides information about the sensitivity of the model to its parameters, 

i.e. it indicates those parameters whose variation has large effects on the model outputs. This 

analysis is usually based on coefficients, which express the proportion of variation (∂q/∂bj) in 

a model output variable (q) relative to an infinitesimal change in a particular parameter (bj). 

According to Yeh (1986), sensitivity coefficients can be calculated with the “influence 

method” (finite differences). In an attempt to optimize van Genuchten’s hydraulic parameters 

from actual evapotranspiration and actual transpiration, Jhorar et al. (2002) used the root 

mean square error between reference and modeled values of cumulative actual transpiration 

as a sensitivity estimator. Furthermore, they varied the parameters over a particular range. 

However, as a common practice, the “influence method” is used and only a 1% parameter 

change is considered (Simunek and van Genuchten, 1996).  

The final aim of the modeling analysis is to obtain good predictions of the flux at the 

bottom of the soil profile as this strongly influences the mass of nitrogen leaving the soil 

profile. Unfortunately, the flux at the bottom was not measured and time series of soil water 

content were the only available data for the model calibration. Hence, we performed two 

different sensitivity analyses. The first was carried out to check the sensitivity of soil water 

content to change in a range of soil and plant parameters. The selection of the soil and plant 

parameters was based on previous global sensitivity analysis done with the model (e.g. Diels 

1994; Vanclooster et al. 1995). This analysis was done to identify the most sensitive 

parameters on which the calibration process should be focused. The second one was 

performed to check the sensitivity of the flux at the bottom of the soil profile, as it is 

ultimately the predictive variable of interest.  

Sensitivity coefficients for soil water content were formulated with the “influence 

method” following Simunek and van Genuchten (1996). These coefficients were normalized 
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according to Simunek et al. (1999) to allow for comparison of sensitivities between different 

parameters, independent of their magnitudes (see Eq. (4)). 
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where SCθ(z,t,bj) represents the soil water content change at time t and depth z¸ due to a 

variation of the parameter bj. The magnitude of variation was set here to 10% (∆b·ej= 0.10bj) 

to avoid possible disturbances associated to the numerical solving process used for the 

simulation. Thereby, b is the parameter vector, while ej is the j-th unit vector.  

Table 1 shows the hydraulic parameters selected for the sensitivity analysis, while some of 

the crop parameters are presented in Figure 2. The hydraulic parameters considered include 

saturated and residual soil water contents (θs and θr), inverse of the air entry value of the 

matric pressure head (α), van Genuchten’s shape parameter n, Mualem’s pore connectivity 

parameter (λ) and saturated hydraulic conductivity (Ks). As described before, the van 

Genuchten parameter values were estimated by fitting matric pressure head vs. soil water 

content data obtained with Tempe cells. The crop parameters chosen were leaf area index 

(LAI), crop coefficient (Kc) and maximum root water uptake rate (Smax).  

The sensitivity coefficients of each parameter were calculated for the whole simulation 

period (432 days) and for the three different depths at which soil water content was measured 

(15, 30 and 60 cm). Variation of hydraulic parameters was considered independently layer by 

layer. To compare the sensitivity coefficients among parameters, time-average coefficients 

were calculated according to the following expression (Inoue et al, 1998): 
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In a similar way as in Eq. (4), the formulation of the sensitivity coefficients for the 

cumulative flux at the bottom of the soil profile will lead to: 

)()·()( bebb FFbSC jjF −∆+=  (6) 

where SCF(bj) is the accumulated bottom flux change corresponding to a variation of the 

parameter bj of the parameter set b (∆b·ej= 0.10bj).  
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2.5.  Indirect parameter estimation  

The calibration process was performed with only one part of the available data set in order 

to leave the rest for model validation. The period between the 1st of October 1995 and 31st of 

March 1996 was selected for the calibration as this period seems to contain useful 

information and explores a large range of soil water content conditions.  

2.5.1 The “trial and error” procedure 

The strategy used consisted of performing a first simulation run with the parameter sets 

obtained from direct measurements (Table 1 and Figure 2). The modeled soil water contents 

were then compared with the measured ones. Then we tuned progressively some parameters 

selected for calibration according to the sensitivity analysis, until an adequate fit was 

achieved. The goodness of the fit was based on the calculated root mean square error 

(RMSE) and the visual inspection of the time series of measured and simulated soil water 

contents. The simulated flux at the bottom of the profile was also considered. 

2.5.2 The inverse modeling procedure  

This technique consisted of calibrating selected parameters using an iterative process of 

three basic steps: i) parameter perturbation; ii) forward modeling and iii) objective function 

evaluations. For the third step the error between the forward simulation results and field 

measurements is considered as objective function. The optimal parameter set is the one, 

which produces the minimum objective function. To minimize the objective function, the 

forward model was combined with a global optimization algorithm. In this study the Global 

Multilevel Coordinate Search, GMCS, algorithm was used. The latter combines a global 

minimum search and local minima search with a multilevel approach (Huyer and Neumaier, 

1999). Basically, using the GMCS, the parameter search space is split into smaller “boxes”. 

Each box is characterized by its midpoint, whose function value is known. A box can be split 

into smaller ones. As a rough measure of the numbers of times a box has been split, a level is 

assigned to each box. The fact that the algorithm starts with the boxes at the lowest levels 

(i.e. less split) constitutes the global part of the algorithm. The local part of the algorithm is 

characterized by the fact that at each level the box with the lowest function value is selected. 

The GMCS is a good alternative to other optimization algorithms: initial values of the 

parameters to be optimized are not needed and it is very robust, because it can deal with 

discontinuous nonlinear multimodal objective functions. To enhance the minimization of the 
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objective function the GMCS is combined sequentially with the Nelder-Mead Simplex 

algorithm (NMS) (Nelder and Mead, 1965). Indeed, the GMCS algorithm needs only to find 

an approximate solution, which is supposed to be in the basin of attraction of the global 

minimum. By using this solution as initial guess for the NMS, fast convergence towards the 

global minimum is ensured (Lambot et al., 2002). 

Since the parameter calibration by inverse modeling can be considered as a nonlinear 

optimization problem and can be solved as a generalized least squares problem, we defined 

the objective function by: 

[ ]∑
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−=
N

i
isimimea ttWOF

1

2),()()( bb θθ  (7) 

where OF(b) [-] is the objective function of the parameter vector b; θmea and θsim [L3L-3] 

are the measured and simulated soil water content, respectively; t is the time [T] and N is the 

number of measurements available. The normalizing coefficient, W is set equal to (Ns2)-1, 

where s denotes the standard deviation of the measurement data (Lambot et al., 2002). 

Parameter uncertainty was estimated using linear regression analysis. Although restrictive 

and only approximately valid for nonlinear problems, it allows comparing confidence 

intervals between parameters (Hopmans and Simunek, 1999). This analysis implies the 

estimation of the parameter covariance matrix, which allows calculating both 95% parameter 

confidence intervals, based on Student’s t-distribution, and parameter correlation matrix. 

Details of the formulation can be found elsewhere (Hopmans and Simunek, 1999; Lambot et 

al., 2002).  

The selected parameters were first optimized, within the calibration period, layer by layer 

using only soil water content data of the corresponding layer (N = 125). Next, all available 

soil water content measurements (N = 375) in the profile were used, but again the parameters 

of each horizon were determined independently. Finally, due to the clear interactions between 

the layers, it was decided to optimize simultaneously the parameters of the three different 

horizons. Values of the flux at the bottom of the profile predicted by the model with the 

optimized parameters were also considered. 

As mentioned above, the RMSE was used to evaluate the goodness of fit. Indeed, the 

RMSE is a useful single measure of the prediction capability of a model, since it indicates the 

precision with which the model estimates the value of the depended variable. The smaller the 
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RMSE, the better the simulated values fit the observed data (Eching and Hopmans, 1993). 

Accordingly to the notations described above, RMSE was calculated as follows: 

[ ]∑
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2),()(1 bθθ  (8) 

2.6.  Validation process 

For the validation process, two periods were used: the first between the 26th of July and 

the 30th of September 1995 and the second between the 1st of April and 30th of September 

1996. Three simulation runs were performed: first with the parameter set identified directly 

from the measurements; second with parameter set obtained by the trial and error method; 

and finally with the parameter sets obtained by the inverse procedure. The goodness of the fit 

was based on the RMSE and the visual inspection of simulated and observed soil water 

contents.  

3. Results and discussion 

Results of the sensitivity analysis for soil water content (Table 2 and Table 3), showed that 

soil water content, predicted by WAVE, was more sensitive to the hydraulic than to the crop 

parameters. These results are consistent with the findings of Musters et al. (2000) who 

applied inverse modeling to a forest ecosystem (pine stand) and Hupet et al. (2002) who 

analyzed parameter sensitivity of the WAVE model in a maize-cropped field. At any depth, 

sensitivity of the soil water content to θs, θr and n parameters was high. The sensitivity 

coefficient of the saturated hydraulic conductivity (Ks) was low, but still relatively 

significant. Among the hydraulic parameters, Mualem's pore connectivity parameter (λ) 

presented the smallest coefficient. It is also worth mentioning that parameter change in one 

layer affected specially soil water content of the corresponding layer. 

Concerning the flux at the bottom of the profile, the sensitivity coefficients (Table 4) 

showed that this model output variable was also most sensitive to θs and n. However, it is 

interesting to note that it was very sensitive to the crop coefficient (Kc) too, illustrating that 

the model sensitivity to a particular parameter depends on the objective function (output 

variable) considered. Vanclooster et al. (1995) presented similar results, but by contrast to 
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values in Table 4, they found WAVE to be relatively sensitive to Ks. This can be explained 

by the fact that they analyzed the sensitivity of the model for wet conditions. The next most 

sensitive parameters were θr and LAI, while λ had the smallest coefficient.  

Table 2 
Average sensitivity coefficient (% Soil water content), SCθ(z,bj), for the hydraulic parameters 
corresponding to the variation of those of the first, second and third layer respectively 

Depth θs θr  n α Ks λ 
 

First layer (0 – 20 cm) 
15 3.0·10-3 6.0·10-4 3.8·10-3 2.3·10-4 1.7·10-4 7.7·10-5 
30 2.4·10-4 1.0·10-4 2.2·10-4 7.3·10-5 4.9·10-5 3.2·10-5 
60 1.4·10-4 6.0·10-5 1.9·10-4 3.7·10-5 2.4·10-5 2.3·10-5 

 
Second layer (20 – 50 cm) 

15 5.6·10-5 1.9·10-5 9.4·10-5 2.7·10-4 1.0·10-4 3.7·10-5 
30 2.8·10-3 6.6·10-4 3.4·10-3 7.3·10-5 2.2·10-4 7.0·10-5 
60 2.5·10-4 6.8·10-5 1.0·10-4 1.1·10-5 3.6·10-5 1.4·10-5 

 
Third layer (50 – 70 cm) 

15 5.6·10-5 3.7·10-6 4.2·10-5 2.4·10-5 3.6·10-5 8.8·10-6 
30 2.8·10-3 3.3·10-6 4.2·10-5 4.2·10-5 3.5·10-5 9.9·10-6 
60 2.5·10-4 3.3·10-4 4.4·10-3 3.2·10-5 2.4·10-4 5.0·10-5 

       
 

Table 3 
Average sensitivity coefficient (% Soil water content), SCθ(z,bj), for the crop parameters 

Depth Kc LAI Smax 
15 2.9·10-5 2.8·10-5 3.1·10-6 
30 2.7·10-5 2.7·10-5 3.1·10-6 
60 1.8·10-5 2.1·10-5 1.6·10-6 

 
Table 4 
Sensitivity coefficient (mm), SCF(,bj) , for the hydraulic and crop parameters 

n Kc θs LAI θr α Ks Smax λ 
63.50 40.60 38.20 9.50 8.10 2.30 2.20 0.30 0.20 

 

Consequently, the van Genuchten hydraulic parameters were selected for calibration based 

on soil water content data measured experimentally. Among these parameters, θs has a clear 

physical significance and can rather be determined directly. Thus, the number of parameters 

for optimization was reduced to θr, α and n.  

The parameters estimated by the “trial and error” method are shown in Table 5. Soil water 

content simulations at 15, 30 and 60 cm depth corresponding to these parameters are 

presented in Figure 3. The simulated values approximate the measured values in the field 

rather well and the model responded satisfactorily to drought periods and rain and irrigation 

events. Simulations and measurements compared better during rain and irrigation periods 
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than during drought ones. The average coefficients of variation among sampling locations for 

each soil depth TDR reading were 24, 17 and 21%, respectively. The model prediction in the 

calibration period was better than in the validation one. During May of 1996 the simulation 

did not fit the field data, probably due to sampling errors, because there was no response of 

the measured values to the irrigation events during this period. 

 

Table 5 
Calibrated hydraulic parameters with 95% confidence intervals (for inverse optimization only) 

Depth 
(cm) 

θr 
(cm3/cm3) 

α 
(cm-1) 

n 
 

    
 Experimental determination 

15 0.322 0.278 1.377 
30 0.315 0.220 1.406 
60 0.250 0.189  1.292 

 
 “trial and error” method 

15 0.200 0.018 1.45 
30 0.220 0.019 1.55 
60 0.220 0.023  1.35 

    
 Inverse Optimization 

15 0.254 ±0.040 0.0191 ±0.007 2.653 ±0.893 
30 0.256 ±0.038 0.0234 ±0.010 2.471 ±0.830 
60 0.269 ±0.041 0.0565 ±0.024 1.643 ±0.270 

    

 

 

 50



0.2

0.3

0.4

0.5

0.6

0.7

0.8 0

10

20

30

40

50

60

70

80

Pr
ec

ip
ita

tio
n 

an
d 

Irr
ig

at
io

n 
(m

m
)

0.2

0.3

0.4

0.5

0.2

0.3

0.4

0.5

25/07/1995 25/09/1995 25/11/1995 25/01/1996 25/03/1996 25/05/1996 25/07/1996 25/09/1996

Date

So
il 

w
at

er
 c

on
te

nt
  
θ(

cm
3 cm

-3
)

15 cm

30 cm

60 cm

Precipitation Irrigation Field data WAVE

Calibration period Validation periodValidation

 
Figure 3. Soil water content simulation with parameters calibrated by the “trial and error” method. Measured 

data (symbols) and WAVE prediction (lines). 

Concerning the inverse simulation methodology applied to this stratified soil profile, as 

the experimentally determined soil moisture retention curves at the three depths were not so 

different, an initial strategy was adopted. This strategy consisted of optimizing the three 

parameters, θr, α and n, layer by layer and iteratively applying the inverse procedure on the 

different layers until the parameter values obtained were stable. However, this strategy failed 

due to the strong interactions between the three horizons. Hence, the inverse procedure was 

changed to determine the above-mentioned parameters of the three layers simultaneously, 

resulting in 9 parameters to optimize.  
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Figure 4. Soil water content simulation using the parameters of Table 5 estimated by inverse optimization. 

Measured data (symbols) and WAVE prediction (lines). 

First, we started the inverse optimization procedure using broad parameter intervals, i.e. 

θr[0.01–0.350]; α[0.005–0.300] and n[1.05–3.30]. No acceptable results were obtained, 

because the search space defined by those intervals was too large. Thereby, we decided to 

reduce the parameter intervals trying four new alternatives: Inv.Opt.1 {θr[0.15–0.30]; 

α[0.050–0.200]; n[1.05–2.00]}; Inv.Opt.2 {θr[0.01–0.270]; α[0.005–0.050]; n[1.10–3.00]}; 

Inv.Opt.3 {θr[0.15–0.320]; α[0.005–0.050]; n[1.10–3.3]}; Inv.Opt.4 {θr[0.15–0.320]; 

α[0.010–0.070]; n[1.10–3.30]}. All of them, except Inv.Opt.1, yielded acceptable parameters 

according to RMSE and visual inspection of goodness of fit. Although different parameter 
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estimations were obtained, 95% confidence intervals of the optimized parameters overlapped 

for the distinct inverse simulations carried out. The best solution (corresponding Inv.Opt.3) is 

presented in Table 5. As can be seen in this table, the α value for the third layer was outside 

of the Inv.Opt.3 α interval. This can be explained by the fact that the GMCS solution serves 

as initial guess to initialize the NMS algorithm. The latter performs an additional local search 

without limitations of iterations and parameter space, which may force the optimal value to 

be out of the predefined interval. Each inverse optimization included 4095 iterations and took 

around 2 hours using a PC Pentium4 at 1.4GHz. 

Figure 4 shows the soil water content simulation at the three depths for the optimized 

parameters presented in Table 5. Like in Figure 3, predictions in the calibration period were 

more successful than in the validation one. Graphical comparison between model predictions 

with the parameters estimated by the “trial and error” method (Figure 3) and between those 

resulting from the set of parameters optimized in each inverse simulation procedure (Figure 4 

and others not included), showed that inverse optimization yielded better results than the 

“trial and error” method. RMSEs for the calibration, validation and whole period (Table 6) 

confirmed the conclusions obtained from the visual inspection above-mentioned. 

Table 6 
Root mean square errors (RMSEs) and predictions of flux at the bottom of the profile 

Estimation method RMSE Cum. bottom flux (mm) 
 Calibration Validation Whole Calibration Validation Whole 

Experimental determination 0.0417 0.0490 0.0447 511.7 339.7 851.4 
“trial and error” method 0.0288 0.0341 0.0319 163.6 56.9 220.5 
Inverse Optimization 0.0175 0.0305 0.0257 246.1 178.1 424.2 
 

Concerning model predictions for the flux at the bottom of the profile, there were little 

differences between the values obtained for each inverse simulation procedure carried out 

(ranging between 410.4–429.2 mm). Table 6 shows the simulated bottom flux values for the 

three periods using the parameter sets of Table 5. Extremely large differences were observed 

when comparing the three estimation methods. The direct estimation of parameters yielded 

very large amount of water leaving the soil profile, while the value obtained from the “trial 

and error” method was much smaller. Furthermore, it is interesting that small RMSE 

differences (0.0319 vs. 0.0257) had a large effect on the cumulative bottom flux (220.5 vs. 

424.2 mm). This illustrates that even with an acceptable model calibration uncertainties in 

flux predictions could be extremely large. 
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Consequently, although the “trial and error” method is more flexible and popular in 

modeling water balances in agricultural soils, it has some disadvantages: i) it is more time 

consuming; ii) it is difficult to know in which directions the parameters should be tuned 

(particularly if they interact among each other); iii) the result depends on the initial values; 

iv) it is a subjective process; v) it does not assure to find the best solution; and vi) it does not 

allow the parameter uncertainty to be quantified objectively. Moreover, from a scientific 

point of view it is not an appropriate method.  

On the contrary, the use of the inverse optimization algorithm makes the calibration 

process faster, because it does not depend on initial values and within the search space 

(defined by the given parameter intervals) it does not test all the possible combinations, just 

those sets with more likelihood to be the solution. This technique is less subjective and due to 

its working procedure, it is more efficient in finding the best solution. However, its flexibility 

depends on the number of parameters to optimize, which is limited by convergence problems. 

As illustrated in this study, the inverse optimization method is a promising parameter 

estimation procedure, but it requires the inverse problem to be well-posed. Our situation 

suffers from ill-posedness, since 9 parameters were estimated simultaneously. In addition, the 

optimization algorithm was shown by Huyer and Neumaier (1999) and Lambot et al. (2002) 

to be effective when no more than 4 parameters were identified. Figure 5 shows the different 

soil moisture retention curves corresponding to the distinct sets of parameters calibrated by 

the “trial and error” methodology and by some of the inverse simulations performed, as well 

as those determined by the direct approach (Table 5). From this figure, we can see that the 

algorithm was not able to find the global solution. Coefficients of correlations between 

several estimated parameters were high. This means that different parameter combinations 

can equally well describe the experimental measurements. On the other hand, the soil water 

content input data used for the optimization might not contain enough information for a 

unique identification of the hydraulic parameters. Thus, an increase in the number of 

optimized parameters entails the need for further measurements of different types (Hopmans 

and Simunek, 1999), such as tensiometric and/or outflow data. Yet, it must also be taken into 

account that additional data require more time and make the experimental setup more 

difficult (Zou et al., 2001). Moreover, it must be considered that, as shown by Carrera and 

Neuman (1986), when input data are subject to measurement errors, the convergence of the 

minimization algorithm at several points in the parameter space may be very slow due to 

instability. Inverse optimization techniques should be complemented with direct methods, 
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especially when over-parameterized models are used. Indeed, Russo et al. (1991), analyzing 

infiltration events to determine soil hydraulic properties by inverse simulation, concluded 

that the use of prior information of the model parameters reduces the degree of ill-posedness 

of the inverse problem and might lead to a stable and unique solution, even when the input 

data are associated with considerable measurement errors. 
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Figure 5. Soil moisture retention curves for the different parameter estimation methods. Measured data 

(symbols) and obtained from calibration (lines). 

In addition, it should be taken into account that, although laboratory determinations are 

more precise and in general more convenient than field measurements, the use of soil 

properties determined in small cores is questionable (Russo et al., 1991). In this work there is 
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a considerable deviation between the directly determined and inversely estimated soil 

moisture retention curves in particular for the top soil layer. This may be explained by the 

fact that the soil structural phenomena, which generally drives soil water flow at the field 

scale, are poorly represented at the core scale on which soil retention curves are directly 

determined.  

4. Conclusions 

The use of the WAVE model applied to a sprinkler fertigated banana plantation in the 

North of Tenerife (Canary Islands) showed that using laboratory-determined soil hydraulic 

properties to simulate the field water balance at field scale in a stratified soil profile can 

produce inaccurate results. Although there are many other uncertainties (e.g. semi-empirical 

crop parameters, spatial variability within the field, determination of irrigation amounts, 

representation of a 3-D situation with a 1-D model), it is generally well accepted that some of 

the soil parameters experimentally determined should be further calibrated with an observed 

data set. 

The study also pointed out the issues related to the “trial and error" calibration procedure, 

which, besides being a tricky and non-scientific method, it is not really objective (certainly 

not for a cropped three-layered soil) and it can lead to relatively poor fit of the measured 

data, even if time is not a limiting factor. An alternative method is the use of an optimization 

algorithm, like GMCS-NMS that, combined with the numerical model, results in a relatively 

efficient parameter estimation technique. However, under certain boundary conditions of the 

inverse problem, it may yield different solutions, that lead to the same response for the model 

variable used in the calibration process (i.e. soil water content), but with different results for 

other variables such as the cumulative bottom flux. This clearly illustrates the problem of ill-

posedness, which, in this study, can be partially explained due to a large number of 

parameters to optimize and to errors or insufficient information in the measured input data set 

used for calibration. Nevertheless, ill-posedness is an intrinsic problem of parametric models 

suggesting the necessity of additional experimental data to identify the more realistic 

optimized solution. 
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Abstract 

 In this paper, the suitability of alternative measuring strategies for identifying the flow 

parameters from transient flow experiments in an undisturbed volcanic soil column is 

analyzed.  Alternative measurement strategies are defined by combining observed data from 

different hydraulic state variables with a variable depth resolution. The state variables 

considered are soil water content (θ), matric pressure head (h), and the water flux at the 

bottom of the soil column (q). For θ and h a maximum measurement depth frequency of 

seven observation depths per profile was used. A first outflow experiment allows making an 

initial direct estimate of the flow parameters for the four soil horizons in the column. From 

this initial experiment, the hydraulic parameters selected for inverse estimation are reduced to 

the saturated water content, the van Genuchten’s n suction curve shape parameter and the 

saturated hydraulic conductivity. The performance of the inverse analysis is measured by 

means of a factorial evaluation index, encompassing a measure of the goodness of fit and 

parameter uncertainty.  Results show that the best measurement strategies for inverse analysis 

are those combining θ with either h or q. Although inverse modeling using data from all the 

state variables considered (θ, h and q) give the best results, monitoring of θ in combination 

with either h or q proofs to be sufficient, even when only four observation depths are 

considered. 

Keywords: Canary Islands; Inverse modeling; Multilevel coordinate search; Parameter 

estimation; Volcanic soils; WAVE model. 
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1. Introduction 

Computer models of soil water and solute transport are nowadays widely used for 

assessing the impact of agricultural activities on groundwater resources and for designing 

best management practices (BMPs) to reduce these impacts. This is the case in the Canary 

Islands (Spain), where appropriate agricultural and water management is needed for reducing 

the impacts of the intensive subtropical horticulture on the groundwater resources. 

The success of modeling soil flow and transport processes heavily depends on the quality 

of the model parameters that are used to describe the soil’s hydraulic behavior. There are 

several direct field and laboratory methods that allow determining the soil hydraulic 

properties. However, they are relatively tedious, time-consuming, expensive, and involve 

considerable uncertainty for practical applications (Russo et al., 1991; Abbaspour et al., 

1999). An alternative approach is to obtain the flow properties by using “indirect methods”, 

where the parameters are treated as unknowns and are estimated based on a certain system 

response (i.e. a measurable variable) (Russo et al., 1991). In this context, curve fitting may be 

considered as the simplest way to estimate parameters indirectly (Vrugt et al., 2001). A more 

complex and increasingly attractive form of parameter estimation is inverse modeling. With 

this latter method, parameters are optimized by minimizing a suitable objective function that 

expresses the discrepancy between the output of the numerical model and the measurement of 

a certain hydraulic state variable (matric pressure head, soil water content, flow rates, etc.) 

(Si and Kachanoski, 2000). For this approach the numerical flow model is coupled with a 

global optimization algorithm. Among such algorithms, the GMCS-NMS algorithm (Global 

Multilevel Coordinate Search-Nelder Mead Simplex), described by Huyer and Neumaier 

(1999) and Lambot et al. (2002), is a powerful algorithm. 

Inverse optimization has several advantages over the traditional direct methods (Si and 

Kachanoski, 2000; Zou et al., 2001): i) it provides effective parameters in the range of 

envisaged model applications; ii) it allows for relatively simple experimental design, as few 

restrictions are imposed upon the experimental conditions; iii) it allows to determine 

simultaneously water retention and hydraulic conductivity functions; and iv) it can handle 

data from transient flow experiments, which are inherently faster than steady-state 

experiments. Disadvantage of the method is the ill-posedness of many inverse problems. As 

stated by several authors (Beven, 1996; Carrera and Neuman, 1986; Russo et al., 1991), the 
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well-posedness of the inverse problem depends upon three aspects: parameter identifiability, 

solution uniqueness and solution stability or robustness. If more than one parameter set lead 

to the same model response, the parameters are unidentifiable and the solution is non-unique. 

Stability means that small errors in the response data should not yield large changes in the 

estimated parameters. 

Many authors (Dane and Hruska, 1983; Kool et al., 1985; Ritter el al., 2002) experienced 

difficulties to achieve the unique solution when using inverse optimization to estimate soil 

hydraulic properties. To overcome the non-uniqueness problem several recommendations 

have been suggested such as modifying the experimental boundary conditions (e.g. multistep 

instead of one-step outflow experiments (Eching and Hopmans, 1993)); constraining the 

parameter space by introducing prior parameter information (Abbaspour et al., 1999; Russo 

et al, 1991); reducing the experimental errors (Kool et al., 1985); improving the efficiency 

and robustness of the inversion algorithm (Kool et al., 1987); or introducing additional 

measurements of one or more state variables (Eching and Hopmans, 1993; Kool and Parker, 

1988). 

The efficiency of this latter strategy will depend on the quality of the information 

contained in the new data (Vrugt et al., 2001). The usefulness of additional measurements 

depends on its sensitivity to the hydraulic parameters, the independence of the existing 

measurements, and the measurement error (Si and Kachanoski, 2000). In such a context, the 

effectiveness of different measurement strategies for the inverse estimation of soil hydraulic 

properties could be analyzed in detail. This is an important issue, since some variables are 

easier to measure than others and are thus more suitable for estimation by inversion 

(Abbaspour et al., 1999). Moreover, when designing an experiment, efforts and costs should 

be minimized. Decisions on sampling methods and variables should be based on quantitative 

and objective information rather than on intuition. 

In this paper, the suitability of alternative measuring strategies for identifying the flow 

parameters from transient flow experiments in an undisturbed volcanic soil column is 

analyzed. The adopted method of analysis can be used at the experimental design stage using 

synthetic data obtained from a simulation run with reference parameters or for the estimation 

of flow parameters from real ‘observed’ data. Alternative measurement strategies combining 

different state variables at different sampling locations are considered. To facilitate the 

evaluation of the alternative strategies, we introduce a factorial evaluation index that 
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integrates goodness of fit and parameter uncertainty. The analysis deals with the estimation 

of the soil hydraulic parameters from outflow experiments performed on a large undisturbed 

volcanic soil column. Matric pressure head, soil water content, and/or bottom flux data are 

introduced in the inversion problem. The parameters were inversely estimated using the 

water flow module of the WAVE model coupled with the Global Multilevel Coordinate 

Search combined sequentially with Nelder-Mead Simplex algorithm (GMCS-NMS). 

2. Materials and methods  

2.1.  The forward numerical model  

To describe the flow across the initially unsaturated monolith, the one-dimensional 

computer code WAVE (Vanclooster et al., 1996) was used. The quality of the numerical 

solution of this model was recently successfully tested in a numerical flow modeling 

benchmark exercise (Vanderborght et al., 2002). WAVE simulates transient flow by 

numerically solving a one-dimensional, isothermal Darcian flow equation in a variably 

saturated, rigid porous medium, using the mass-conservative scheme of Richards equation 

proposed by Celia et al. (1990): 
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where C(h) is the soil water content capacity [L-1]; z is the vertical distance from the soil 

surface [L]; t is the time [T]; K(h) is the hydraulic conductivity [LT-1] and h is the matric 

pressure head [L].  
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where Se is the effective saturation [-]; θ(h) is the soil water content [L3L-3] at matric 

pressure head h; θs and θr are the saturated and residual soil water content [L3L-3], 

respectively; α is the inverse of the air entry value of h [L-1]; m and n are curve shape 

parameters. The m characterizes the asymmetry, while the n is related to the slope of the 
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curve (Vanclooster et al., 1996). Combining Eq. (2) with the pore-size distribution model of 

Mualem (1976) and using the constraint m=1-1/n, yields an expression for the unsaturated 

hydraulic conductivity function (van Genuchten, 1980):  

( )[ ]211)( mm
s SeSeKSeK −−−= λ  (3) 

where K(Se) and Ks are the unsaturated and saturated hydraulic conductivity [LT-1], 

respectively and λ is the pore connectivity parameter [-], which accounts for tortuosity and 

correlation between pore sizes (Durner et al., 1999). 

2.2.  Inverse optimization procedure 

2.2.1 Formulation of the inverse optimization problem 

The inverse parameter estimation is formulated here as a nonlinear optimization problem, 

where the model soil hydraulic parameters are optimized by minimizing a suitable objective 

function based on the deviations between observed and predicted system response variables 

(Hopmans and Simunek, 1999). The optimization process includes three basic steps repeated 

until some predefined convergence criteria are satisfied. These steps are: i) parameter 

perturbation; ii) forward modeling and iii) objective function evaluations. In addition, an 

analysis of uncertainty is also performed. The formulation of the objective function can be 

derived from the maximum likelihood theory, that leads to the generalized least squares 

problem when measurement errors follow a multivariable normal distribution with zero mean 

and known variance-covariance matrix:   

OF(b)= eTV-1e (4) 

where OF(b) [-] is the objective function of the parameter vector b; V is the error 

covariance matrix, so that V-1 denotes the weighting matrix. The residual vector is equal to 

e=(q*–q), and q*= q*(z,t) and q= q(z,t,b) are vectors containing the observed and the 

simulated data, respectively, at time t, and depth z. When residuals are independent and 

normally distributed with different variances for the different data types, V reduces to a 

diagonal matrix leading to a weighted least squares problem (Carrera and Neuman, 1986; 

Hopmans and Simunek, 1999), where the objective function (OF) takes the form: 
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where j represents the different sets of observation type (here matric pressure head, soil 

water content and bottom flux); nj is the number of measurements within a particular set of 

type j; Y*
j(z,ti) are measurements of type j at time ti and depth z; Yj(z,ti,b) are the 

corresponding model predictions using the parameter vector b. The nm and nz denote the 

number of different measurement types and observation depths, respectively, while Wj and 

wi,j are weighting factors associated with observation type and individual measurements, 

respectively (Vrugt et al., 2001). The Wj factor accounts for the differences between 

observation types due to different magnitudes and numbers (nj), and is equal to (njsj
2)-1, 

where sj denotes the standard deviation of j-type observations (Vrugt et al., 2001). 

2.2.2 Global optimization algorithm 

To minimize the objective function, the WAVE model was coupled with the Global 

Multilevel Coordinate Search, GMCS algorithm (Huyer and Neumaier, 1999). This algorithm 

combines global and local search capabilities with a multilevel approach. The GMCS is a 

good alternative to other existing optimization algorithms. It can deal with objective 

functions with complex topography, does not require powerful computing resources and 

initial values of the parameters to be optimized are not needed. In addition, for problems with 

finite bound constraints (parameter search space), the convergence is guaranteed if the 

objective function is continuous in the neighborhood of the global minimum. To refine the 

minimization of the objective function the GMCS is combined sequentially with the Nelder-

Mead Simplex (NMS) algorithm (Nelder and Mead, 1965). Further details about application 

of GMCS-NMS to inverse modeling of soil hydraulic properties are given in Lambot et al. 

(2002) and Ritter et al. (2002).  

The code that couples the GMCS-NMS algorithm with the WAVE model requires specific 

input files for each inverse optimization procedure, making multiple inverse simulations a 

tedious task. We modified the code for this study by adding several routines that allow for 

quicker and more flexible inverse procedures when combining different hydraulic variables 

and observation depths. Furthermore, the new code saves the results in appropriate files 

depending on the combination of measurement types and observation depths chosen. The 

format of these files was designed to allow for direct import of results into spreadsheets. In 
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addition, the modified system can be easily set up to run automatically inverse simulations in 

batch mode. 

2.2.3 Quantification of parameter uncertainty 

Uncertainty associated with parameter estimated by inverse modeling is an essential 

aspect. The quantification of the parameter uncertainty for non-linear models is built upon the 

following assumptions: i) convergence to the global minimum; ii) zero model error; and iii) 

independent and normally distributed residuals (measurement errors) (Hopmans and 

Simunek, 1999). For nonlinear fitting models, knowledge of the true distributions of the 

optimized parameters is required. The latter can be obtained using the Monte Carlo method. 

However, since this is usually a very time consuming task, linear regression analysis is often 

performed to approximate parameter confidence intervals for the nonlinear problem nearby 

the optimum. In this case, the objective function in the parameter space must be quasi-linear 

within the confidence interval region.  

Although this approach is restrictive and only approximately valid for nonlinear problems, 

it allows comparing confidence intervals between parameters, indicating which of them need 

to be measured or estimated independently (Hopmans and Simunek, 1999).  

Considering the previous assumptions, parameter uncertainty can be determined on the 

basis of the parameter variance-covariance matrix, which can be estimated from the variance 

of the residuals e (Eq. (4)) and the Jacobian matrix (Kool and Parker, 1988). By using this 

estimation of the covariance matrix, 95% parameter confidence intervals based on Student’s 

t-distribution can be determined. Furthermore, the correlation matrix can be calculated from 

the covariance matrix. Details of this formulation can be found elsewhere (Hopmans and 

Simunek, 1999; Kool and Parker, 1988; Lambot et al., 2002). It must be taken into account 

that high correlation coefficients between estimated parameters might lead to non-uniqueness 

of the solution and overestimation of the parameter uncertainty. Indeed, a change of one 

parameter may be balanced by a change of the correlated parameter. Thus, correlated 

parameters cannot be independently determined by the inverse method (Zurmühl and Durner, 

1998). 

2.2.4 Sampling strategies for the inverse procedure 
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We refer here to the term “strategy” to denote a certain combination of measured data to 

be used for the inverse optimization of parameters. Each strategy implies a particular 

formulation of the objective function according to the number and type of observations 

chosen. Thus, when considering only distinct types of measurements, seven different 

objective functions (Eq. (5)) can be formulated by combining three hydraulic variables: (h), 

(θ), (q), (hθ), (hq), (θq) and (hθq); where h, θ and q, represent matric pressure head, soil 

water content and bottom flux, respectively. On the other hand, using these combinations, 

more strategies can be obtained by taking into consideration different numbers of observation 

depths. Further in this paper, we will use the notation (var)L to identify the strategies; where 

var represents the combinations of hydraulic variables and L the number of observation 

depths. 

The performance of several sampling strategies for the inverse optimization of hydraulic 

parameters was analyzed. First, considering that the readings from all observation depths are 

available, we performed inverse modeling independently for each of the seven objective 

functions mentioned above. Secondly, once we evaluated which of those strategies were 

more appropriate, these were further tested by reducing the number of observation depths. 

Thereby, we verified if the same solution of the inverse problem was achieved with less 

observations points, i.e. lower experimental cost. 

The performance of the inversion procedure was evaluated first using the approximate 

95% confidence interval (CI95) and goodness of fit. Parameter identifiability was analyzed by 

considering the overlap and length of CI95 (Durner et al., 1999). The shorter the length of the 

CI95, the more suitable is the strategy to find the solution of the inverse problem.  

The model’s goodness of fit is usually quantified by using the average of the squared 

deviations between observed and simulated data. Thus, the commonly used statistic is the 

mean square error (MSE) or the root mean square error (RMSE). The smaller their value, the 

better the model predictions fit the observed data (Eching and Hopmans, 1993). However, to 

allow for a comparison between results of different observation types, non-dimensional 

statistics are required (Wilson, 2001). The normalized MSE per range of observed values 

(nMSE) expresses the proportion of the variance about the 1:1 line compared to the variance 

of the observed data (σo
2). It is calculated as follows: 
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Thereby, for each strategy and considering the whole profile, a nMSE corresponding to the 

three observation types (matric pressure head, soil water content and bottom flux) were 

calculated. 

A factorial evaluation index (FEI) was proposed to combine the above-mentioned criteria, 

and make comparisons between strategies easier. The FEI takes into account that model 

performance is better when nMSE and parameter uncertainty are small. Non-dimensional CI95 

lengths relative to the mean value were considered for each k-parameter and are denoted 

herein as (L95)k.  

To evaluate the alternative strategies, we considered that the contribution of both criteria 

to the index is multiplicative, so that geometric means of components may be used (Limpert 

et al., 2001). Therefore, we calculated the FEI as follows: 
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where the subscript GM denotes the geometric mean among the j-type hydraulic variables 

considered (nm=3, for θ, h and q) or among the k-parameters (nk= 8, as described below). In 

addition, the FEI includes a scaling constant, C, to avoid too large index values. In our case, 

we fixed a value of C= 10-3, to ensure that the calculated values were within the range 0-1. 

Following FEI’s definition, appropriate measurement strategies will be characterised by a 

high FEI. 

Finally, to determine whether alternative measurement strategies perform statistically 

different, significance tests were made on the nMSE’s (Steel et al., 1997). 

2.3.  Experimental set-up 

A large monolith of undisturbed volcanic soil (sandy-clay-loam texture) was taken from a 

banana (Musa accuminata cv. ‘Giant Cavendish’) field in Tenerife (Canary Islands, Spain). 

The plantation was under a shadehouse and drip irrigated.  
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Agriculture in the Canary Islands is carried out on terraced areas containing soil 

transported from the higher parts of the Islands, where weathering conditions allow for well-

developed soils. Terraces are built by distributing a 70-90 cm thick layer of soil upon a 

drainage layer of fractured basaltic rock. The resulting soil profiles are relatively 

homogeneous. 

To reduce the effect of preferential flow along the walls during the outflow experiments, 

large cylinders with big diameters are recommended (Schneider and Howell, 1991). A device 

was developed to extract large undisturbed soil columns in stainless steel cylinders (∅45 cm 

x 85 cm x 0.4 cm thickness), based on an oil hydraulic press, which applied up to 66 kN 

pressure on a steel plate. The insertion plate was supported by a metallic structure that was 

anchored to the soil. The monolith was then brought to the laboratory, where it was 

instrumented with 21 TDR probes (3 waveguides ∅0.3x20 cm and 2.5 cm separation) and 

seven digital tensiometers (tensiometric tube with porous ceramic and a pressure transducer) 

(Figure 1), inserted at seven observation depths (denoted as A, B, C, D, E, F and G). At each 

depth, three TDR probes were inserted at 120º from each other. A collector, equipped with a 

pressure transducer, was used to measure the volume of water coming out from the base of 

the monolith during each experiment (bottom flux). All devices were multiplexed and 

connected to a PC. Monitoring the hydraulic variables was possible using a custom-made 

software (developed at S.I.D.TA-Valladolid, Spain). 

A small rainfall-simulator was constructed to apply water uniformly at the top of the 

column using a 550 x 550 x 32 mm plexi-glass box equipped with 310 hypodermic needles 

(∅0.3 mm spaced 25 mm apart). Water was pumped to the rainfall-simulator from a main 

container. On the bottom of the monolith, a constant-head boundary condition was imposed 

by using a 5 cm saturated sand bed (73 µm), connected to a constant-level reservoir through a 

water-hose (Figure 1). 
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Figure 1. Experimental set-up for outflow experiments in the volcanic soil monolith. 

2.4.  Outflow experiments 

The laboratory experimental set-up allowed performing outflow experiments on an 

undisturbed soil column with controlled boundary conditions while monitoring different 

hydraulic variables. The top boundary condition consisted of irrigation applied 

homogeneously with the rainfall-simulator at the surface of the soil. To avoid soil dispersion, 

a 0.005 M CaSO4 (Klute and Dirksen, 1986) solution was used. To simplify we will refer to 

the latter as water. The bottom boundary was set at 10 cm, suction close to the average field 

values expected at that depth (Muñoz-Carpena, 1999). 

Throughout each outflow experiment, matric pressure head, soil water content and bottom 

flux were recorded at 15 minutes increments and then averaged at 1 hour intervals. Averaging 
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in time was possible, because it did not imply strong curve smoothing. However, for some 

soils subjected to particular boundary conditions, this may not be the case. The sensor 

measurement error for the three variables was estimated from their calibration in less than 

±1%. 

The soil water content was estimated using a specific TDR-calibration for the same soil 

used in this study (Regalado et al., 2002). Soil water content at each time and depth was 

obtained by averaging the values measured with the three TDR probes at each of the seven 

depths. 

A first outflow experiment was performed to obtain information about the water retention 

in the soil profile. Starting from near saturation conditions, the monolith was continuously 

irrigated at different flow rates. The flux was reduced in four steps (5 mm/h during 94 hours; 

2,7 mm/h during 32 hours; 1 mm/h during 41 hours, and 0.2 mm/h during 72 hours). 

Afterwards, irrigation was stopped and measurements continued until the soil profile reached 

hydraulic equilibrium (271 hours). By using distinct flow rates it was possible to monitor the 

hydraulic variables at different moisture conditions. Plotting soil water content versus matric 

pressure head data provided information about the water retention curve at the observation 

depths. Furthermore, these data, fitted to van Genuchten’s curve with the RETC code (van 

Genuchten et al., 1991), provided an initial guess of the hydraulic parameters in the 

optimization process. 

A second multi-step outflow experiment was carried out to obtain data for the inverse 

optimization of the hydraulic parameters. Four equal 5-liter irrigations were applied at a rate 

of approximately 5.25 mm/h. Each one took around 6 hours, while the time between 

irrigations was 18, 65 and 18 hours.  

Data corresponding to the first two irrigations of the second outflow experiment were used 

for calibration, while the rest of the data set served for validation. 

3. Results and discussion 

Water retention data at each soil depth obtained from the first outflow experiment was 

helpful to select the parameters to be optimized by inverse modeling with the second 

experiment. The first experiment suggested heterogeneities in the soil profile, where four 
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horizons (H1–H4) with different water retention can be identified (Figure 2). Table 1 shows 

van Genuchten parameters for those horizons.  
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Figure 2. Soil moisture retention curves observed in the monolith. Measured data (symbols) and fitted van 

Genuchten curves (lines). 

Table 1 
Initial values of van Genuchten soil moisture curve parameters based on first outflow 
experiment (Figure 2) 

Horizon Observation 
depths 

Depth 
(cm) 

θs 
(cm3/cm3)

θr 
(cm3/cm3)

α 
(cm-1) n R2 

H1 A,B 0-25.5 0.452 0.268 0.0120 1.473 0.9856 
H2 C,D 25.5-45.0 0.489 0.268 0.0223 1.290 0.9631 
H3 E 45.0-54.0 0.531 0.268 0.0489 1.193 0.9714 
H4 F,G 54.0-72.0 0.569 0.268 0.0454 1.166 0.7667 

 

The soil comes from a terraced banana field, where it has sustained continuous cultivation 

for the last 20 years. Changes in the water holding capacity can be attributed to organic 

matter incorporation to the soil (Vereecken et al., 1989), soil degradation due to saline water 

irrigation (Armas-Espinel et al., 2002), and surface compaction processes, which affect 

porosity (Dorel et al., 2000).  

A small experimental range of soil water content and matric pressure head was obtained 

and used for the inverse method. Although small, these ranges match those observed in the 

drip-irrigated banana plantation in this soil during normal conditions (Muñoz-Carpena, 
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1999). Therefore, under this high frequency irrigation technique, hydraulic properties near 

saturation are most important (Durner et al., 1999).  

Inverse optimization of all van Genuchten’s parameters with the suggested algorithms is 

impractical when working with four distinct horizons, since the number of parameters that 

describe the hydraulic functions increased four-fold up to 24 parameters (i.e. θs, θr, α, n, Ks 

and λ for each of the four horizons). To reduce the number of parameters to be optimized, λ= 

0.5 was assumed (Mualem, 1976). The large variability associated with Ks (Warrick and 

Nielsen, 1980) suggests its estimation by inverse modeling. In addition to Ks, the other 

parameters to optimize by the inverse procedure were based on a sensitivity analysis. 

Thereby, the sensitivity of the three model outputs (water content, matric pressure head and 

bottom flux) to the parameters of Table 1 was evaluated by calculating relative sensitivity 

coefficients according to Yeh (1986) and Haan et al. (1982). In addition, time-averaged 

coefficients were obtained following Inoue et al. (1998). Results showed that soil water 

content was mainly sensitive to the four saturated water contents, while matric pressure head 

was more sensitive to the four n shape parameters. The bottom flux was also sensitive to 

these parameters. Finally, we averaged the sensitivity coefficients among the three state 

variables (Figure 3). From Figure 3 we chose θs1, θs2, n3, and n4 for optimization. Thus, a 

total of 8 parameters were selected. Intervals delimiting the parameter search space for 

GMCS were set at [0.40–0.65] for θs (cm3cm-3) (according to Figure 2); [1.05–1.60] for n 

(according to the range that corresponds to USDA soil fine textures reported by Carsel and 

Parrish, 1988); and [1.0–40.0] for Ks (cm/h) (according to field measurements reported in 

Muñoz-Carpena, 1999). The other fixed hydraulic parameters needed in the model were set to 

the values of Table 1. For the same experimental plot, θr values at several depths were 

reported by Muñoz-Carpena et al. (1999) and at 15 cm by Armas-Espinel et al. (2002); the 

values at 15, 30 and 60 cm ranged between 0.219 and 0.330, showing no significant 

differences (at level 0.05), thus θr was fixed to the average value (0.268). 
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Figure 3. Averaged sensitivity for the van Genuchten parameters of Table 2. 

Figure 4 presents the uncertainty (CI95) associated with the estimated parameters when 

considering strategies based on all the seven observation depths available, (var)7. In general, 

combinations of two or three hydraulic variables, i.e. (hθ)7, (hq)7, (θq)7 and (hθq)7, improved 

the identifiability (i.e. short lengths and overlapping of CI95) of θs1, θs2, n3 and n4. In the case 

of Ks, identifiability was not so good, particularly for Ks3 and Ks4. Uncertainty of Ks 

estimations by inverse modeling was also reported by Durner et al. (1999) and Zurmühl and 

Durner (1998). They explained it based on the low sensitivity of the hydraulic conductivity 

function near saturation for any outflow/inflow experiment. The best strategy, (hθq)7, yielded 

θs1,=46.6±0.2%, θs2=49.4±0.3%, n3=1.273±0.013, n4=1.156±0.010, Ks1= 3.33±0.63 cm/h, 

Ks2= 12.00±2.76 cm/h, Ks3= 23.76±5.66 cm/h and Ks4= 16.17±1.21 cm/h.  

Moreover, the correlation matrix for each strategy (not shown) showed high (>0.5) 

negative correlation between some parameters for (h)7, (θ)7, (hq)7, (q)7 and (θq)7.  
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Figure 4. Uncertainty interval overlapping for the different estimated parameters, according to the distinct strategies based on 7 observation depths. Solid lines with 
symbols represent CI95’s, while the dotted lines connect mean values.  
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 Calculated FEI values (Figure 5) show strategies (hθq)7, (θq)7, and (hθ)7 to be the best 

(highest index, respectively). As expected, including all information available in the objective 

function, i.e. (hθq)7, leads to best results. From these results we concluded, the adequacy of 

using soil water content data combined with other hydraulic variables (e.g. matric pressure 

head or bottom flux).  
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Figure 5. Comparison of strategies (var)7 based on the proposed FEI. 

The evaluation of the strategies was also complemented by visual inspection of simulated 

versus observed data. From the seven strategies only the three above-mentioned show a 

satisfactory fit. As an example, Figures 6–8 show model performance using (hθ)7 for soil 

water content and matric pressure head at the seven monitoring depths, and for bottom flux as 

well. From these figures, we concluded that model predictions were generally satisfactory. In 

addition, agreement between observed and predicted data for the three hydraulic variables is 

presented in Figure 9. 
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Figure 6. WAVE model fit to soil water content data corresponding to (hθq)7. 
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Figure 8. WAVE model fit to bottom flux data corresponding to (hθq)7. 
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Keeping in mind that we are interested in finding a suitable strategy (i.e. best results with 

lower costs), we tested if those strategies were statistically different. No significant 

differences (at level 0.05) were found between the nMSE’s corresponding to (hθ)7, (θq)7 and 

(hθq)7. 

Based on our previous results, we used the best alternatives [(hθ)L, (θq)L and (hθq)L] to 

test if reducing the number of measurement points (depths) would lead to acceptable results. 

First, we chose four observation depths (one per horizon) trying two different combinations 

of them: (var)4’{ACEG} and (var)4”{BDEF}. Second, combinations of three depths were 

considered: (var)3’{ADG}, (var)3”{AEG} and (var)3’”{BCF}.  
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Figure 10. Comparison of strategies (hθ)L, (θq)L and (hθq)L based on the proposed FEI. 

Parameter uncertainty (not shown) associated with θs1, θs2, n3 and n4 was similar to that 

found using all depths, (var)7. However, it increased for Ks, specially when using three 

depths, (var)3. On the other hand, by reducing the number of observation depths, high 

correlation between some parameters arises, particularly with the Ks. Finally the FEI values 

(Figure 10) for the six combinations and the three alternatives were considered. First, (var)3 

implied an important reduction of efficiency. Therefore, strategies with less observation 

depths are supposed to yield also reduced efficiency. Second, when using four observation 

depths, (var)4’ and (var)4”, a decrease in the calculated FEI was observed, too. However, no 

significant differences (at level 0,05) were found between (var)7 and (var)4. The estimated 

parameters obtained with each strategy are presented in Table 2. 
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Table 2 
Estimated soil hydraulic parameters and CI95 for all strategies  
Strategy θs1 θs2 n3 n4 KS1 KS2 KS3 KS4 

         
    ABCDEFG     

(h)7 0.461±0.009 0.536±0.018 1.839±0.331 1.273±0.058 3.44±0.76 9.52±1.73 11.22±2.90 16.49±3.06
(θ)7 0.456±0.005 0.486±0.004 1.287±0.027 1.158±0.012 0.44±0.03 29.19±5.89 30.34±11.24 2.18±0.60 
(q)7 0.405±0.019 0.536±0.014 1.641±0.333 1.088±0.100 5.20±0.19 3.43±2.09 25.00±3.68 43.11±7.76

(hθ)7 0.469±0.002 0.496±0.002 1.190±0.010 1.136±0.013 2.50±0.40 15.40±3.55 30.81±10.04 18.92±2.95
(hq)7 0.453±0.005 0.516±0.028 1.452±0.025 1.161±0.010 3.33±0.89 12.92±3.03 19.96±5.49 15.65±3.22
(θq)7 0.462±0.002 0.489±0.002 1.249±0.016 1.097±0.017 1.02±0.53 7.23±1.29 25.04±3.67 49.98±5.77

(hθq)7 0.466±0.002 0.494±0.003 1.273±0.013 1.156±0.010 3.33±0.63 12.00±2.76 23.76±5.66 16.17±1.21
         
    ACEG     

(hθ)4’ 0.471±0.003 0.494±0.003 1.185±0.016 1.111±0.012 4.30±0.59 6.45±1.17 27.17±5.29 23.61±3.87
(θq)4’ 0.466±0.002 0.492±0.003 1.211±0.012 1.122±0.010 1.96±1.32 12.17±8.18 22.08±1.11 27.95±1.44

(hθq)4’ 0.468±0.003 0.494±0.003 1.210±0.013 1.139±0.011 3.55±0.23 9.78±2.46 25.23±6.38 22.23±1.19
         
    BDEF     

(hθ)4” 0.467±0.003 0.497±0.003 1.163±0.017 1.103±0.013 1.41±0.27 11.96±1.80 27.05±4.67 22.49±1.59
(θq)4” 0.455±0.002 0.491±0.002 1.223±0.012 1.109±0.011 1.01±0.22 2.55±1.04 18.70±3.96 25.45±3.26

(hθq)4” 0.467±0.003 0.497±0.004 1.223±0.015 1.160±0.012 1.02±0.33 10.82±3.22 25.37±1.08 27.34±2.82
         
    ADG     

(hθ)3’ 0.474±0.002 0.492±0.002 1.483±0.034 1.124±0.013 5.52±3.45 16.93±4.68 39.95±11.93 12.01±6.82
(θq)3’ 0.469±0.002 0.480±0.002 1.673±0.045 1.094±0.035 1.90±0.82 19.23±8.31 22.94±1.26 36.30±10.33

(hθq)3’ 0.471±0.002 0.492±0.002 1.405±0.027 1.094±0.035 2.55±0.86 22.47±7.84 25.11±4.59 35.59±9.34
         
    AEG     

(hθ)3” 0.472±0.002 0.501±0.011 1.177±0.015 1.135±0.018 2.45±1.45 6.93±4.02 40.81±13.17 16.02±6.35
(θq)3” 0.469±0.003 0.475±0.014 1.204±0.013 1.101±0.013 1.00±0.32 8.87±5.20 22.93±1.59 34.64±7.81

(hθq)3” 0.471±0.003 0.500±0.011 1.215±0.012 1.117±0.010 2.21±1.08 9.37±6.84 25.13±2.12 43.76±15.63
         
    BCF     

(hθ)3’” 0.463±0.004 0.497±0.004 1.576±0.027 1.099±0.018 3.59±1.40 25.54±7.59 11.93±6.36 43.83±9.87
(θq)3’” 0.459±0.002 0.498±0.002 1.664±0.038 1.078±0.014 2.60±1.19 11.32±5.15 28.95±6.35 40.56±16.42

(hθq)3’” 0.461±0.003 0.501±0.004 1.535±0.031 1.134±0.011 3.73±1.40 25.78±9.61 8.39±8.22 18.31±6.35

 
 

Based on all this, measuring at only four depths (one per horizon) would be sufficient if 

soil water content data and either matric pressure head or bottom flux are used. From a 

practical point of view (lower cost, simplicity), using soil water content and suction readings 

at only four depths, i.e. (hθ)4, is desirable. In this context, despite the higher cost of using 

suction readings (digital tensiometers) when compared to monitoring bottom flux, they have 

the added benefit of providing information about the soil water retention curve. In addition, 

bottom flux measurements are in most cases impractical in a field situation, so h and θ 

(tensiometers and TDR) would be preferred.  
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4. Conclusions 

The suitability of alternative soil water flow monitoring strategies for the inverse 

estimation of the soil hydraulic parameters of a volcanic soil is analyzed. Inverse modeling is 

performed by coupling the GMCS-NMS algorithm to the flow module of the WAVE model. 

Use is made of experimental data collected during two outflow experiments conducted in a 

large undisturbed soil column. The results from the first experiment show the existence of 

four well-defined soil horizons with different water retention curves. Using these results and 

a sensitivity analysis, the hydraulic parameters selected for inverse modeling are reduced to 8 

(saturated water content, θs, in the first two horizons, curve shape parameter, n, in the two 

others horizons, and saturated hydraulic conductivity, Ks of each horizon). Inverse 

optimization of these properties is successful using different monitoring strategies. The 

alternative strategies are based on the consideration of different hydraulic state variables and 

observation depths for the formulation of the objective function. Furthermore, by defining an 

integrated index to account for different evaluation criteria, the best strategies are easily 

identified. We may conclude that strategies based on the measurement of a combination of 

the hydraulic state variables reduce the uncertainty associated with θs and n. However, in 

general, estimated Ks show uncertainty that might be large in some cases due to the low 

sensitivity of the hydraulic conductivity function near saturation. 

Although inverse modeling using simultaneously soil water content (θ), matric pressure 

head (h), and bottom flux (q) data give the best results, monitoring of θ in combination with 

either h or q proofs to be sufficient, even if only four observation depths are considered. It 

must be noticed that, despite the higher cost of using suction readings (digital tensiometers) 

when compared to the monitoring of the bottom flux, they have the added benefit of 

providing direct information about the soil water retention curve. Thereby, if low cost bottom 

flux measurements are chosen, additional methods or surveys (e.g. profile description) might 

be needed to obtain prior information for the inverse procedure. 

Using synthetic data, based on estimated reference parameters, the procedure presented 

here can serve as a general method for assessing, at the experimental design stage, 

appropriate strategies to estimate the soil hydraulic parameters by inverse modeling. Since 

decisions about the type and number of observations required for inverse optimization are 

usually based on intuition, the procedure applied in this study represents an objective way to 

base such decisions on quantitative information. 
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Characterization of solute transport properties in an agricultural 

volcanic soil using TDR and inverse modeling   
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Abstract 

Volcanic soils have particular properties, which might influence solute transport. The use 

of TDR to monitor bromide breakthrough curves during a miscible displacement experiment 

in a large column containing undisturbed volcanic soil is presented. The soil solute transport 

parameters were estimated by using inverse optimization techniques. In general, no 

differences were found between the CDE and MIM transport approaches. Under the high soil 

moisture regime considered, bromide was found to move in the undisturbed soil column 

mainly by convection. Dispersion and non-equilibrium transport were only observed at the 

bottom of the monolith. Early solute breakthrough suggests possible preferential flow effects. 

Thereby, the risk of groundwater contamination by agrochemicals applied in this soil is 

expected to increase in this type of soils. 

 

Keywords: Canary Islands; Inverse modeling; Multilevel coordinate search; Parameter 

estimation; Volcanic soils; WAVE model. 
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1. Introduction 

The intensive use of agrochemicals has led to groundwater contamination in many areas of 

the world. This is a continuing problem requiring the minimization of leaching losses from 

agricultural fields. In addition to potential pollution, these losses imply a reduction in the 

efficiency of the soil-applied chemicals. The transport of such substances in the soil depends 

however on many factors such as type of soil, irrigation, rainfall, tillage, chemical 

management practices, etc. (Lee et al., 2001). In that context, numerical leaching models 

considering those factors (once field tested) are useful tools to understand the movement of 

solutes in the soil and evaluate the potential contamination of agricultural practices on 

particular agro-scenarios. However, application of these models requires the estimation of 

many parameters, which cannot be measured directly in some cases (Jacques et al., 2002). 

Moreover, when considering layered soil profiles, the number of parameters to estimate 

increases.  

Several approaches for description of the complex movement of solutes in the vadose zone 

have been proposed (Biggar and Nielsen, 1967; Coats and Smith, 1964; Jury, 1982; van 

Genuchten and Wierenga, 1976), and depending on the type of soil, the scale and the flow 

rate considered, some approaches are more suitable than others (Vanderborght et al., 2000).  

Taking all this into consideration, methodologies for an efficient estimation of solute 

transport model parameters are demanded. An increasingly used procedure is inverse 

modeling, where parameters are identified based on the minimization of an objective function 

containing the differences between simulated and measured data (Hopmans and Simunek, 

1999). For this purpose a global optimization algorithm needs to be coupled with the 

simulation model. Several classical optimization algorithms are available (Hopmans and 

Simunek, 1999), and new ones have been developed recently (Huyer and Neumaier, 1999). 

However, application of inverse simulation implies some difficulties that need to be 

overcomed. These limitations are related to parameter identifiability, non-uniqueness of the 

solution and robustness of the algorithm. 

While inverse optimization of soil hydraulic parameters is widespread, calibration of 

solute transport properties by this method is not so common. Indeed, inverse modeling 

requires a detailed (in time and/or space) and reliable data set (Jacques et al. 2002), however, 

obtaining detailed and reliable solute breakthrough curve data is often difficult (Risler et al., 
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1996) because traditional techniques for solute concentration measurements are not suitable, 

soil coring is destructive, and solution extractors are usually inappropriate for obtaining high 

quality data (Roth et al., 1990). 

Miscible displacement experiments are suitable for the calibration of solute leaching 

models, since they provide information about processes such as preferential flow, 

hydrodynamic dispersion, ion exchange and adsorption phenomena for solute transport under 

various flow rates and soil water content conditions (Ersahin et al., 2002). Usually, they 

involve the application of a tracer pulse in the soil surface, followed by measuring the solute 

flux and/or resident concentrations. For such experiments, time domain reflectometry (TDR) 

is becoming an increasingly used technique to measure soil water content and concentrations 

of conservative, saline solutes. It is a non-destructive and economic method (Kim et al., 

1998; Vanclooster et al., 1993; 1995) and enables continuous readings at different depths in 

the soil of water content and solute concentrations (Vanclooster et al., 1995). The use of TDR 

for characterizing solute transport in the soil has been reported by many authors in both 

laboratory (Ersahin et al., 2002; Heimovaara et al., 1993; Kim et al., 1998; Lee et al., 2001; 

Mallants et al., 1994; Muñoz-Carpena et al., 2003; Persson, 1997; Risler et al., 1996; 

Vanclooster et al., 1993; 1995; Vanderborght et al., 2000; Vogeler et al., 1996) and field 

studies (Jacques et al., 1998; Kachanoski et al., 1992; Rudolph et al., 1996).  

Volcanic soils are only present in 0.84% of the terrestrial surface. However, they are very 

important because they are amongst the most productive soils. In the Canary Islands these 

soils are crucial because 90% of the main crops (bananas and tomatoes) grow in them. These 

soils exhibit special properties due to the strong aggregation of particles, high concentration 

of Fe-oxihydroxides, and the presence of allophanic clays with large surface area and water 

affinity. The structure of these allophanic clays can be envisaged as hollow spherules so that 

the soil matrix is assumed to be divided into two regions: an intra-aggregate immobile region, 

where only diffusion controlled exchange of solutes between the inter-aggregate mobile 

region occurs. In this mobile phase, only convective-dispersive solute transport takes place. 

Evidence of the presence of mobile and imobile regions in the soil of this study were reported 

by Regalado et al. (2002) and Muñoz-Carpena et al. (2003). 

In this paper we study the characteristics of solute transport in an agricultural volcanic soil 

from a miscible displacement experiment using a bromide (KBr) pulse. Solute volume-

averaged resident concentrations were measured with TDR at different depths. Transport 
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properties were estimated by inverse modeling with the numerical model WAVE 

(Vanclooster et al., 1996) coupled with the global optimization algorithm, Multilevel 

Coordinate Search (Huyer and Neumaier, 1999). Two solute transport approaches were 

considered separately, the classical convection-dispersion equation (CDE) (Biggar and 

Nielsen, 1967) and the mobile-immobile model (MIM) (Coats and Smith, 1964; van 

Genuchten and Wierenga, 1976).  

2. Materials and methods 

2.1.  Experimental set-up 

The solute transport study was conducted on an undisturbed volcanic soil that was taken 

from a banana (Musa accuminata cv. ‘Giant Cavendish’) field in Tenerife (Canary Islands, 

Spain). The plantation was under a shadehouse and drip irrigated. The soil presents well-

defined andic characteristics together with strong natural micro-aggregation that translate to 

large water retention, porosity and saturated hydraulic conductivity. In fact, the soil can be 

classified as an Andisol (USDA Soil Taxonomy) (Regalado et al., 2002). In a previous study, 

Ritter et al. (2003) reported in the same monolith four horizons with different water retention 

behavior and estimated the soil hydraulic properties of each horizon by inverse modeling 

(Table 1). 

 
Table 1 
Hydraulic parameters for the undisturbed volcanic soil column 

Horizon Observation 
depths 

Thickness
(cm) 

θs 
(cm3/cm3)

θr 
(cm3/cm3)

α 
(cm-1) n Ks 

(cm/h) 
H1 A,B 0-25.5 0.466 0.268 0.0120 1.473 3.33 
H2 C,D 25.5-45.0 0.494 0.268 0.0223 1.290 12.00 
H3 E 45.0-54.0 0.531 0.268 0.0489 1.273 23.76 
H4 F,G 54.0-72.0 0.569 0.268 0.0454 1.156 16.17 

 

A custom-made device was used to insert a stainless steel cylinder (∅45 cm x 85 cm x 0.4 

cm thickness) into the soil to extract a column of undisturbed soil. Once inserted into the soil, 

the cylinder was isolated by excavating around it. During transportation, the top and the 

bottom of the soil column were covered with appropriate caps. Figure 1 presents a scheme of 

the laboratory experimental set-up. The soil monolith was equipped with 21 TDR probes (3 

waveguides ∅0.3x20 cm, and 2.5 cm separation) for measuring soil water content and solute 

concentration at seven depths (denoted as A, B, C, D, E, F and G). They were located at 10 
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cm apart on the vertical direction starting from the top. At each depth, 3 TDR probes were 

inserted at 120º from each other to increase the sampling region and ensure the detection of 

the solute plume and obtaining effective 1-D concentrations by averaging. All probes were 

muliplexed and connected to a TRASE TDR device (Soilmoisture, Inc.). At the same 7 

depths, two solution extractors were inserted in the monolith. A suction of 60 cbar was 

applied to the 14 extractors to sample the soil solution at certain time intervals. Temperature 

was monitored with a thermistor inserted in the soil. 
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Figure 1. Experimental set-up for transport experiments in the volcanic soil monolith. 

 

The soil monolith was placed onto a 5 cm saturated sand bed (73 µm), which was 

connected to a constant-level reservoir through a water-hose. Thus, by setting the reservoir at 

a distance in the vertical direction from the bottom of the column, a constant suction head 

was applied. Irrigation was applied on the top with a small-rainfall simulator that was 

constructed using a 550 x 550 x 32 mm plexi-glass box equipped with 310 hypodermic 
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needles (∅0.3 mm spaced 2.5 cm apart) glued through the bottom. The solution was pumped 

to the rainfall-simulator from a main container. A collector, equipped with a pressure 

transducer, was used to measure the volume of water coming out from the base of the 

monolith during each experiment.  

A custom-made software (developed at S.I.D.TA-Valladolid, Spain) was used to perform 

readings automatically. 

2.2.  Miscible displacement experiments 

Before starting the experiment, the monolith was irrigated with a background solution. 

This was a solution of 0.005 M CaSO4 (Klute and Dirksen, 1986) to avoid soil dispersion. 

Afterwards, approximately one pore volume of tracer solution of 0.016 M KBr was applied at 

a flow rate of 1.8 mm/h during 250 h and the solution changed to the background solution for 

an additional 710 h.  

Resident concentrations at the seven observation depths were estimated from TDR 

measurements. This approach is based on the assumption that the soil bulk electrical 

conductivity (ECa) and the electrical conductivity of the soil solution (ECw) are linearly 

related for a constant water content and salinity levels between 1–50 dS/m (Rhoades et al., 

1976; 1989; Ward et al., 1994). Furthermore, assuming a linear relationship between the 

electrical conductivity and concentration of the soil solution, the relative concentration at any 

depth and time, can be described by: 

iwow

iww

io

i

ECEC
ECtzEC

CC
CtzCtzc

,,

,),(),(),(
−

−
=

−
−

=  (1) 

where c(z,t) and C(z,t) are the relative and absolute concentration at depth z and time t, 

respectively; and subscripts o and i denote input and initial concentrations, respectively. 

Muñoz-Carpena et al. (2003) found that, according to the equation proposed by Rhoades et 

al. (1976), ECw can be best estimated in this volcanic soil from soil water content (θ) and ECa 

measurements:  
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−
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where ECs is the apparent electrical conductivity of the soil solid phase, which usually is 

considered constant for each soil; a and b are fitted parameters. Both ECa and θ can be 

measured with TDR. For this soil, Muñoz-Carpena et al. (2003) obtained a= 1.876, b= -0.512 

and ECs= 0.112 dS/m. 

According to Nadler et al. (1991), ECa (dS/m) is related to the impedance of 

electromagnetic wave moving through the soil as follows: 

t
cable
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a f

ZZ
KEC

−
=  (3) 

where Kcc is the cell constant of the TDR probe (m-1); Z is the soil bulk impedance (Ω); 

Zcable is the impedance (Ω) due to cable, connectors, multiplexer and TDR device; ft is a 

temperature correction factor (ft=1 at 25 ºC). Performance of the application of the method in 

this soil is given in Muñoz-Carpena et al. (2003).  

The Kcc and Zcable (for 50 Ω coaxial cable) of each TDR probe were obtained by 

immersing them in different KBr solutions of known concentration (Heimovaara et al., 1995) 

ranging from 0.5 – 4.0 dS/m. The background electrical conductivity ECw,i at concentration 

Ci, was obtained from the initial conditions before the tracer application. On the other hand, 

since the solute pulse applied was long enough, the ECw,o at concentration Co, was estimated 

from the TDR readings corresponding to the maximum (saturation) of the breakthrough curve 

(Mallants et al., 1994; 1996). 

2.3.  The forward numerical model 

In this study we used the mechanistic-deterministic WAVE model (Vanclooster et al., 

1996). This code simulates the one-dimensional transport of solute and water in the vadose 

zone. Transient flow is described with the one-dimensional, isothermal Darcian flow equation 

in a variably, saturated, rigid porous medium, using the mass-conservative scheme of 

Richards equation proposed by Celia et al. (1990). The soil moisture retention curve is 

assumed to be of the form given by van Genuchten (1980), while the unsaturated hydraulic 

conductivity function is simulated with the van Genuchten-Mualem model (Mualem, 1976; 

van Genuchten, 1980). 
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Considering equilibrium (i.e. homogeneity and perfect solute mixing), the solute transport 

of a non-sorbing, non-reactive solute in a one-dimensional flow system reduces to the 

convection-dispersion equation (CDE): 
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where C is the soil solute concentration [ML-3]; θ is the soil water content [L3L-3]; t is the 

time [T]; z is the vertical distance from the soil surface [L]; D is the apparent dispersion 

coefficient [L2T-1] and v the average pore water velocity [LT-1].  D accounts for both the 

chemical diffusion and the hydrodynamic dispersion coefficients (Wagenet and Hutson, 

1989): 
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where Do is the chemical diffusion coefficient of the considered solute in pure water [L2T-

1] and λ is the hydrodynamic dispersivity [L], which is a material constant independent of 

flow rate. 

Breakthrough curves could present asymmetry or tailing, which cannot be described using 

the CDE. Thereby an alternative two-domain model was proposed (Coats and Smith, 1964; 

van Genuchten and Wierenga, 1976). This model, also known as the mobile-immobile model 

(MIM) considered the soil water content divided into two regions. Convective-dispersive 

transport is only assumed in the mobile water domain. The water in the immobile region is 

not available for convective solute transport, but acts like a source or sink of solute for the 

mobile one. The solute exchange between both regions is diffusion controlled and described 

by a first-order rate exchange process. The MIM for transient water flow and for a non-

sorbing, non-reactive solute is written as follows (Vanclooster et al., 1996): 

)()()(
imm

mmm
mm

mm CC
z
Cv

z
CD

zt
C

−+
∂

∂
−








∂
∂

∂
∂

=
∂

∂ ωθθθ
 (6) 

)()(
imm

imim CC
t
C

−−=
∂

∂ ωθ
 (7) 

 97



where Eq. (6) describes the solute transport in the mobile region and Eq. (7) in the 

immobile domain. The subscripts m and im indicate the mobile and immobile soil regions 

[ML-3], respectively. Dm is the dispersion coefficient in the mobile phase [L2T-1] and ω is the 

mass-transfer coefficient, which controls the exchange between both regions [T-1]. 

2.4.  Formulation of the inverse optimization problem 

The estimation of parameters by inverse modeling involves the minimization of a suitable 

objective function, that expresses the differences between observed and predicted values of 

one or more system response variables (Hopmans and Simunek, 1999). This method requires 

the coupling of a foward simulation model and an algorithm for global minimum search. The 

optimization procedure is based on three steps that include:  i) parameter perturbation; ii) 

forward modeling and iii) objective function evaluation. These steps are repeated until certain 

predefined criteria are fulfilled. The minimization of the objective function is a non-linear 

problem that can be formulated as a generalized least squares problem when it is assumed 

that measurement errors follow a multivariable normal distribution with zero mean and 

known variance-covariance matrix. In general, the error covariance matrix is unknown a 

priori and further assumptions are needed. Thus, when the differences between observed and 

predicted values (residuals) are independent and the observation types considered have 

difference variances, it leads to a weighted least squares problem (Carrera and Neuman, 

1986; Hopmans and Simunek, 1999) and the objective function is formulated as follows: 
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where Y*(z,ti) are measurements of resident concentration at time ti and depth z; Y(z,ti,b) 

are the corresponding model predictions using the parameter vector b; n is the number of 

measurements for each depth and nz denote the number observation depths; wi,j is a weighting 

factor associated with individual measurements (Vrugt et al., 2001). 

To account for the uncertainty associated with the estimated parameters we used linear 

regression analysis, which, although restrictive and only approximately valid for non-linear 

problems, it provides some information about parameter confidence intervals. This analysis 

involves the estimation of the parameter variance-covariance matrix, which is used to 

calculate 95% parameter confidence intervals, based on Student’s t-distribution, and the 

parameter correlation matrix. The variance-covariance matrix is estimated from the Jacobian 
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matrix, whose elements are obtained by forward difference approximation with 1% parameter 

variation. Details of the formulation can be found elsewhere (Hopmans and Simunek, 1999; 

Lambot et al., 2002).  

The global optimization algorithm, GMCS, proposed by (Huyer and Neumaier, 1999) was 

used here to minimize the objective function. Previous studies (Lambot et al., 2002, Ritter et 

al., 2002; 2003) showed that the GMCS combined sequentially with the Nelder-Mead-

Simplex (NMS) algorithm (Nelder and Mead, 1965) was a useful tool for the estimation of 

the soil hydraulic parameters. The code used in this study was the one developed by Lambot 

et al. (2002) and later modified by Ritter et al. (2003). In addition, for the optimization of the 

solute transport parameters we further changed this code to couple the GMCS-NMS 

algorithm with the solute transport module of the numerical WAVE model. 

The goodness of fit of the simulation performed with the optimized parameters was 

evaluated with the normalized mean squared error (nMSE) (Wilson, 2001) and visual 

inspection of observed and predicted breakthrough curves. The normalized MSE per range of 

observed values (nMSE) expresses the proportion of the variance about the 1:1 line compared 

to the variance of the observed data (σo
2) and is calculated as follows: 
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Fixing the chemical diffusion coefficient (Do) of bromide to 1.797 cm2/day (Lide, 1998), 

we considered first the CDE approach and performed inverse optimization of the 

hydrodynamic dispersivity (λ) for the seven observation depths in the monolith. The 

parameter search interval was set to [0 – 100 mm]. Secondly, we used the MIM approach. 

Since the dispersivity is viewed as material constant (Jacques et al., 2002), to reduce the 

number of parameters to optimize, the dispersivities in the monolith were set equal to the 

values obtained with the CDE approach. Moreover, considering that the mass-transfer 

coefficient (ω) depends on the flux conditions rather than on soil properties (Álvarez-Benedí 

et al., 1999), we assumed the same ω for the whole profile. Thereby, θm for the seven depths 

and ω were estimated by inverse modeling. The search intervals were set at [0 – 1] for θm and 

[0 – 1 h-1] for ω. 
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3. Results and discussion 

The use of the TDR technique to monitor the bromide transport in this volcanic soil was 

successful. As an example, Figure 2 shows for the middle depth in the monolith, the 

breakthrough curves measured with TDR (three probes) and those obtained from the solution 

extractors.  
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Figure 2. Breakthrough curves (BTC) observed at the middle of the monolith with TDR (lines) and with 
solution extractors (symbols). 

These results confirm the applicability of TDR to estimate in this volcanic soil the 

electrical conductivity of the soil solution quickly and nondestructively. Furthermore, using 

Nadler et al. (1991) approach together with a calibrated Rhoades et al. (1976) model may be 

a good choice. 

Figure 3 presents the breakthrough (BTC) curves obtained from TDR readings at the 

seven observation depths. It is clearly seen how the solute front displaces at each observation 

depth. At the flow rate applied, the solute pulse is immediately detected at the first depth. 

However it needs around 8 days to reach the bottom of the monolith. 
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Figure 3. Average breakthrough curves (BTC) at the seven observation depths. BTC obtained from TDR 
(symbols) and BTC simulated by the WAVE model with CDE (bold lines) and with MIM (dashed lines). 
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Symmetrical BTCs are observed at depths A, B, D and E, suggesting equilibrium solute 

transport. On the other hand, asymmetrical curves indicate the presence of some type of non-

equilibrium transport process (Mallants et al., 1994). Moreover, except for depths F and G, 

BTCs at the other depths show early appearance, which suggests that convective transport is 

the main process. The slow solute pulse arrival at depth G indicates strong non-equilibrium 

conditions. 

Characterization of transport can be further investigated with the parameters estimated by 

inverse modeling (Table 2). Results using the CDE approach indicate low dispersivity values 

for the first five depths. A large λ was obtained for the depth G. Because of the large 

uncertainty associated with these parameters, only qualitative information can be obtained 

from them. Especially for depths B and C, confidence intervals cannot be calculated, because 

for a 1% parameter change, no variation in the model output is obtained. This illustrates a 

problem of parameter identifiability. Thus, more than one combination of dispersivities for 

the seven observation depths will lead to the same model response. 

Table 2 
Inverse simulation results using CDE and MIM 

Depth A B C D E F G 
        
    CDE    

  λ (mm) 4.29±2.15 0.92± ~ 2.04± ~ 2.07±14.64 5.91±4.93 10.58±6.95 100±737.48 
nMSE 0.0080 0.0284 0.0212 0.0095 0.0176 0.0166 0.4803 

        
    MIM    

θm/θ 0.919±0.023 1.000±0.000 0.996±0.000 1.000±0.000 0.999±0.000 0.951±0.033 0.760±0.055
ω  (h-1) 3.6·10-4±2.1·10-4 
 nMSE  0.0073 0.0296 0.0252 0.0135 0.0215 0.0185 0.3064 

        
 

Using the parameters of Table 2, the model describes satisfactorily the breakthrough 

curves at all depths, except at depth G. This is deduced from the calculated nMSE (Table 2) 

and from the visual inspection of simulated and observed BTCs (Figure 3). In general, model 

predictions for the ascendant part of the curves are better than for the descendant ones. The 

lag observed in the measured data at depth G, which causes model predictions to deteriorate, 

may be explained by some unexpected reactive behavior of Br-. A possible explanation could 

be based on the high Al and Fe oxyhydroxides contents in this volcanic soil (Muñoz-Carpena 

et al., 2003). Br- adsorption may occur since these oxyhydroxides exhibit increasing positive 

surface charge below the pH of its zero point of charge (Brooks et al., 1998). Thus leading to 
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a retardation in the breakthrough of the Br- pulse. However, no explanation is found to 

support the fact that this effect is only observed at the bottom of the monolith. 

When using the MIM approach, no significant improvement is achieved. The estimated 

θm/θ (Table 2) indicate that for the first six observation depths, all the pore space contributes 

to the convective transport process. Comparison between the calculated nMSE for both 

approaches shows that basically only at depth G the MIM is preferred (0.4803 vs 0.3064). 

Considering the whole profile, this implies a small decrease in nMSE  from 0.0640 to 0.0481. 

 Figure 3 shows also model predictions using the MIM. For the first six depths, they are 

similar to those obtained with the CDE. At depth G, although the lag above-mentioned, the 

model matches the upper part of the BTC. Thus, at the bottom of the soil column non-

equilibrium transport is expected. 

From all these results it can be concluded that solute transport in this volcanic soil is mainly 

by convection. In addition, the early appearance observed in the BTCs suggests the presence 

of macropores and preferential flow (Nielsen and Biggar, 1962). This might be in 

contradiction with the solute transport properties expected in volcanic soils with high 

allophanic clays content. In these soils water is predominantly held in capillaries and 

micropores (immobile water) rather than in external clay surfaces (mobile/free water) 

(Rousseaux and Warkentin, 1976). However, although the volumetric fraction of free water is 

small (<20%), at high water contents (θ>30% in this soil), there is a transition where larger 

pore spaces between micro-aggregates are filled with mobile water (Regalado et al., 2002), 

and this fraction starts to dominate the transport of solutes. This upper range of moisture in 

these soils is typically the most relevant in agricultural and contaminant transport scenarios. 

On the other hand, bromide transfer diffusion between mobile and immobile region may be 

reduced by coatings on the interface of these regions. Clayey and silty coatings are a 

widespread phenomenon particularly in illuvial horizons. Thereby, the clay or silt films that 

coat pore surfaces in structured soils may affect ion diffusion and significantly influence 

preferential solute transport (Köhne et al., 2002).  

Consequently, agricultural practices in these soils would have more potential for 

contamination of groundwater resources. 
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4. Conclusions 

Monitoring of bromide transport along a volcanic soil profile during a miscible 

displacement experiment using TDR probes at seven observation depths was successful. 

Transport properties were estimated by inverse optimization with the WAVE model and the 

GMCS-NMS algorithm. Both approaches for describing the movement of a non-sorbing, 

non-reactive solute in the soil, the classical CDE and the MIM, were used. Under the high 

soil moisture regime considered, bromide was found to move in the undisturbed soil column 

mainly by convection processes. Dispersion and non-equilibrium transport were only 

observed at the bottom of the monolith. At this depth a delay in the breakthrough curve was 

observed, so that the model could not describe solute dynamic well. This phenomenon could 

not be sufficiently explained. Results suggested that preferential flow might be present. 

Thereby the pollution potential of agrochemicals applied at the soil surface might be large. 
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DISCUSIÓN 

Los resultados obtenidos en cada uno de los capítulos tratados en este trabajo se comentan 

a continuación de manera conjunta. 

El estudio detallado de las propiedades físicas y químicas de un suelo de origen volcánico 

en una parcela agrícola comercial en la isla de Tenerife (Canarias) indicó que éste presenta 

características ándicas, las cuales se traducen básicamente en baja densidad aparente y fuerte 

micro-agregación natural que conducen a una porosidad, retención de agua y conductividad 

hidráulica saturada altas. Estas propiedades condicionan potencialmente el flujo y transporte 

de contaminantes a través del suelo, especialmente en condiciones de horticultura intensiva y 

continua (todo el año). 

El seguimiento de variables hidrológicas y de diferentes especies de nitrógeno (orgánico, 

N-NO3 y N-NH4) en dicha parcela, bajo un cultivo de plátanos, permitió evaluar el efecto de 

las prácticas de riego y abonado sobre este suelo. El balance hidrológico realizado mostró 

que del agua que se pierde y abandona el perfil del suelo, gran parte se produce durante los 

meses de mayor aplicación de riego (aspersión) o tras periodos largos de lluvia, alcanzando 

valores que suponen el 18 % del total del agua aplicada (lluvia + riego). El estudio 

hidrogeológico de la zona indicó que este suelo, que se haya dispuesto en terrazas, se 

encuentra situado sobre diversas capas de basalto fracturado, de manera que el agua que 

abandona el perfil percola rápidamente a través de vías preferenciales con lo que tiene el 

potencial de recargar el acuífero rápidamente y por lo tanto de contaminarlo. No obstante, 

antes de alcanzar el acuífero este agua es interceptada por el flujo subterráneo de la zona 

diluyéndose en una proporción 1:4. 

La estimación de los requerimientos de lavado con un sistema de riego por aspersión y 

para rendimientos potenciales de la platanera entre 90-100%, sugieren fracciones de lavado 

entre 15-20%. Por lo tanto, en este caso no sería conveniente reducir el volumen de agua 

aplicado con el riego. 

Debido a las elevadas concentraciones de nitratos por exceso de abonado observadas en la 

disolución del suelo (50-120 mg/l N-NO3), el lixiviado transporta entre 48-52% del nitrógeno 

total aplicado anualmente como fertilizante al cultivo (fertirrigación). Comparando las 

concentraciones de N-NO3 en la base del perfil del suelo con aquellas medidas en muestras 

recogidas en un manantial situado en los acantilados de la zona (a menor altitud sobre el nivel 
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del mar que la zona de cultivo), se deduce una dilución de N-NO3 en una proporción de 0.60. 

Este valor no se corresponde con la relación de 0.25 mencionada anteriormente y obtenida a 

partir de un estudio isotópico realizado en la zona. Sin embargo, hay que considerar que este 

último no considera i) la variabilidad temporal, ii) el efecto de escala regional implícito en las 

muestras recogidas del manantial y iii) el tiempo de tránsito desde la base del perfil del suelo 

hacia al manantial a través del material volcánico fracturado. 

Los resultados mostraron por tanto un exceso de aplicación de abonos nitrogenados al 

cultivo, que sugiere la revisión de las prácticas de fertilización, siendo recomendables 

aplicaciones más frecuentes y en menor cantidad. Otra alternativa para reducir las pérdidas de 

nitrógeno por lixiviación implicaría reducir el volumen de agua que abandona el perfil del 

suelo. Sin embargo, en este caso, esta práctica no es conveniente debido a la fracción de 

lavado que se requiere para mantener la salinidad del suelo en niveles adecuados. 

La obtención de datos hidrológicos en este escenario agrícola (capítulo 1) permitió la 

aplicación de un modelo numérico para describir el movimiento de agua a través del perfil 

del suelo, el cual presentaba tres horizontes (0 – 20; 20 – 50; 50 – 70 cm). El gran número de 

parámetros que requiere este modelo se determinó en parte de forma experimental y en parte 

por procedimientos de calibración. La realización de un análisis de sensibilidad aportó 

información para la selección de aquellos parámetros que son más susceptibles de ser 

optimizados. Así, se decidió determinar simultáneamente, para los tres horizontes, tres 

parámetros hidráulicos: humedad residual (θr) y los parámetros de forma de la curva de 

retención de humedad (α y n). 

En la estimación de estas propiedades, se realizó una comparación entre el procedimiento 

directo y dos métodos indirectos de calibración: a) “prueba y error” y b) optimización o 

simulación inversa. Para estos últimos se usaron las series temporales de humedad de suelo 

medidas en los tres horizontes. La evaluación de los métodos se hizo cuantitativamente 

mediante la raíz del error cuadrático medio (RMSE) y de forma cualitativa a través de la 

inspección visual de las predicciones del modelo frente a los valores medidos. El método 

directo resultó inadecuado, mientras que con la simulación inversa se obtuvo los mejores 

resultados. 

 El procedimiento de “prueba y error”, aunque tiene la ventaja de ser más flexible, 

presenta los inconvenientes de que consume mucho tiempo; resulta difícil saber en qué 
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dirección modificar los parámetros (sobre todo si hay interacción entre ellos); el resultado 

depende de los valores iniciales; es muy subjetivo y no asegura encontrar el mejor conjunto 

de parámetros. Además, no permite cuantificar la incertidumbre asociada a los parámetros 

estimados. 

Por el contrario, el uso de un algoritmo de optimización inversa potente, como es el 

Global Multilevel Coordinate Search combinado secuencialmente con un Nelder Mead 

Simplex (GMCS-NMS), acelera el proceso de calibrado, ya que no depende de valores 

iniciales y dentro del espacio de búsqueda (definido por los intervalos de los parámetros) no 

prueba todas las combinaciones, sino aquellas con mayor probabilidad de ser la solución. Es 

una técnica menos subjetiva y por sus características encontrará de forma más eficiente el 

mejor conjunto de parámetros.  

No obstante, la eficacia de las técnicas de optimización inversa depende del planteamiento 

del problema. El planteamiento está condicionado entre otras cosas por las condiciones del 

suelo que se investiga, el rango y tipo de condiciones de contorno, la estructura del modelo, 

la magnitud del error en las mediciones y el número de parámetros a estimar. 

Las diferencias observadas entre los parámetros estimados mediante los procedimientos 

indirectos mencionados y las determinaciones realizadas experimentalmente en laboratorio 

(método directo) se explican debido a fenómenos relacionados con la estructura del suelo, 

que generalmente influyen en el movimiento de agua a escala de campo, pero que 

difícilmente están representados a la escala de pequeñas muestras inalteradas como en las que 

usualmente se realiza la determinación directa. A esto hay que añadir que los métodos 

indirectos permiten obtener parámetros efectivos en el rango de aplicación del modelo de 

simulación. 

En consecuencia, el procedimiento de calibración usando técnicas de optimización inversa 

resulta prometedor frente al procedimiento tradicional de “prueba y error” y a los métodos 

directos. Sin embargo, para aplicar esta técnica es conveniente disponer de información 

previa sobre los parámetros a optimizar así como usar datos de varias variables de estado que 

contengan información suficiente para estimar dichos parámetros. 

En el estudio de las variables hidrológicas en la parcela comercial de platanera, se 

observan discrepancias respecto a la cuantificación de las pérdidas de agua por lixiviación. 

Por un lado, en el capítulo 1, éstas se estiman en 237 mm a partir del establecimiento del 
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balance hidrológico mensual en la parcela. Por el contrario, cuando se aplicó el modelo 

WAVE usando los parámetros hidráulicos optimizados por simulación inversa, la cantidad de 

agua que abandona el perfil del suelo se cuantificó en 424 mm. 

Esta diferencia se explica lógicamente debido a los métodos de cálculo empleados. En 

primer lugar, el modelo determina el flujo en la base del perfil por resolución numérica de las 

ecuaciones que gobiernan el movimiento de agua en el suelo. Este valor de 424 mm es 33 

mm superior al que se puede obtener por diferencia entre los componentes del balance 

hidrológico que también proporciona el modelo (error de balance= 33 mm). 

En segundo lugar, comparando los componentes hidrológicos acumulados al final del 

periodo que se estiman en el capítulo 1 con aquellos obtenidos con WAVE, se observa que la 

diferencia entre los valores de flujo es debida en un 77% al error en el cálculo de la 

evapotranspiración actual (ETa) y en un 23% al error en la estimación de la variación de la 

humedad en el suelo. Mientras que el modelo calcula la variación de humedad diariamente, 

en el capítulo 1, este componente se determinó por diferencia entre los valores de humedad 

mensuales, que resultan del promedio a partir de datos diarios. 

Con respecto a la ETa, el modelo la estima con base en una función que describe la 

extracción de agua por las raíces y que depende del potencial matricial del suelo. En el 

capítulo 1, sin embargo, la ETa se calculó como sigue: 





<∆++
≥

=
0;

0;
BALWRP

BALET
ET C

a                donde  BAL = (P + R) – (ETc + ∆W) 

siendo P precipitación, R riego, ETc evapotranspiración potencial del cultivo y ∆W la 

variación del contenido de humedad de suelo. 

Este hecho ilustra la utilidad que tiene el uso de un modelo de simulación validado para la 

predicción de los procesos de flujo en el suelo. 

Conociendo el potencial y las limitaciones de la calibración por simulación inversa 

(capítulo 2), resulta interesante estudiar qué variables y en qué cantidad se necesitan medir 

para realizar la optimización de parámetros con el mínimo coste y esfuerzo. En este contexto, 

puede aplicarse un procedimiento en el que se analicen alternativas o estrategias basadas en 

el uso de datos correspondientes a diferentes variables de estado y distintos puntos de 

medida. La identificación de la estrategia más adecuada se facilita mediante el uso de un 
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índice basado en el grado de incertidumbre asociado a los parámetros estimados y en el error 

cuadrático medio entre los datos observados y los valores simulados por el modelo con esos 

parámetros. 

Generalmente las decisiones a la hora de establecer la estrategia de muestreo para obtener 

la información necesaria para la calibración de parámetros están basadas en simple intuición. 

Este procedimiento puede servir para fundamentar cuantitativamente esas decisiones. Para 

ello, durante la fase de diseño, pueden usarse datos sintéticos. Estos datos se generan con el 

modelo de simulación usando parámetros de referencia obtenidos en la literatura para 

condiciones similares o a través de funciones de transferencia.  

El procedimiento se ilustró y validó con datos reales en la simulación inversa de las 

propiedades hidráulicas de una columna de suelo inalterado (monolito) a partir de 

experimentos de flujo. Un primer experimento permitió identificar cuatro horizontes con 

diferente comportamiento hidrológico, aportando así información útil sobre las propiedades 

hidráulicas del suelo. Un segundo experimento sirvió para estimar los parámetros por 

optimización inversa. 

Se definieron varias estrategias basadas en el uso de los datos correspondientes a 

diferentes variables hidráulicas y a distintas profundidades de medida en la columna (hasta 

siete). Las variables consideradas fueron: contenido de humedad de suelo(θ), succión (h) y 

flujo recogido en la base de la columna (q). Con base en un análisis de sensibilidad se 

seleccionaron un total de 8 parámetros para su optimización: conductividad hidráulica 

saturada en los cuatro horizontes, humedad a saturación en los dos horizontes superiores y el 

parámetro de curva n en los dos horizontes inferiores. 

Los mejores resultados se obtuvieron al combinar información de las tres variables 

hidráulicas. Sin embargo, el uso de mediciones de θ conjuntamente con datos de h o q 

conduce también a resultados satisfactorios. Con respecto al número de profundidades de 

medida, se observó que éstas se pueden reducir hasta cuatro (una por horizonte). 

En cuanto a las propiedades hidráulicas estimadas en el monolito, los valores de humedad 

a saturación (θs) en cada horizonte siguen una tendencia cuadrática con la profundidad, como 

se puede ver en la siguiente gráfica. 
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Esto puede explicarse por procesos de compresión del suelo que conducen a cambios en su 

porosidad. La compresión en los suelos agrícolas puede darse de forma natural como 

consecuencia de su textura y del régimen hídrico al que están sometidos. Por otro lado, este 

efecto se observa también al aplicar fuerzas mecánicas sobre la superficie del suelo. En este 

caso la distribución de presiones en el perfil, justo debajo del punto de aplicación, es de tal 

manera que la presión se reduce de forma cuadrática con la profundidad (Hillel, 1998). 

Una vez estimados los parámetros hidráulicos y obtener así una buena descripción de los 

procesos hidrológicos en el suelo de estudio (capítulo 3), es posible determinar las 

propiedades que rigen el transporte de solutos en dicho suelo. La descripción de este proceso 

es complicada y es conveniente simplificar el problema para solutos no-sorbibles y no-

reactivos. 

En una columna de suelo volcánico inalterado, de grandes dimensiones se lleva a cabo un 

experimento de desplazamiento de bromuro. El seguimiento mediante TDR del movimiento 

del bromuro a lo largo del perfil del suelo se realiza con éxito a siete profundidades. Para ello 

resultó apropiado el uso del modelo de Nadler et al. (1991) junto con el modelo de Rhoades 

et al. (1976), calibrado para este suelo volcánico. 

El grado de simetría que presentan la mayoría de las curvas de ruptura obtenidas sugiere 

condiciones de equilibrio. Además, el frente abrupto de estas curvas indica que posiblemente 

el principal mecanismo de transporte sea por convección. Esta hipótesis se confirma 

estimando las propiedades de transporte mediante la aplicación de técnicas de simulación 
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inversa usando el modelo WAVE y el algoritmo de optimización global GMCS-NMS. 

Considerando la aproximación clásica de transporte convectivo-dispersivo (CDE) se obtiene 

que, con valores de dispersividad bajos, WAVE describe satisfactoriamente el movimiento de 

bromuro a través del monolito. Por otro lado, al aplicar la aproximación basada en dos 

regiones (inmóvil-móvil, MIM), se obtiene que una fracción alta de poros contribuye al 

transporte convectivo. 

En la base del monolito se observa una curva de ruptura diferente a lo comentado 

anteriormente. En primer lugar, ésta muestra un retraso que sugiere que el bromuro está 

reaccionando con la matriz del suelo. Esto podría explicarse por el alto contenido de 

oxihidróxidos de hierro y aluminio presentes en este suelo volcánico, que a pH inferiores al 

punto de carga cero, muestran cargas positivas que pueden retener el bromuro. Sin embargo, 

no se comprende por qué este fenómeno no se observa en el resto de la columna de suelo. En 

segundo lugar, la curva de ruptura presenta un tramo ascendente de pendiente no abrupta que 

puede asociarse a un transporte convectivo dispersivo y en condiciones de no-equilibrio. Esto 

se deduce igualmente a partir de los parámetros estimados para esta profundidad. 

El predominio del transporte convectivo puede estar en contradicción con lo que cabría 

esperar en suelos volcánicos con alto contenido en arcillas alofanas. En estos suelos el agua 

se encuentra principalmente retenida en microporos (agua inmóvil). Sin embargo, a 

contenidos de humedad altos el agua se encuentra también en macroporos. Esta fracción de 

agua móvil, aunque menor, es la que condiciona en mayor medida el transporte de solutos 

(Regalado et al., 2002). El rango alto de humedad al que se hace referencia coincide con 

aquel que se da frecuentemente en estos suelos bajo escenarios agrícolas.  

Por otro, lado también se ha citado (Köhne et al., 2002) que el transporte preferencial de 

solutos en suelos estructurados puede estar favorecido por la presencia de una fina capa 

arcillosa que recubre la interfase entre las regiones móvil e inmóvil impidiendo la difusión 

del anión a la zona intragregados. Estas capas son frecuentes en aquellos horizontes de 

iluviación. 

En general, el frente abrupto de las curvas de ruptura observadas en el monolito puede 

estar relacionado con un transporte preferencial de solutos. En consecuencia se deduce que, 

en este tipo de suelo, el potencial contaminante por agroquímicos pueda ser mayor. 
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Como consecuencia de lo estudiado en los diferentes capítulos, la descripción de procesos 

mediante modelos numéricos y la calibración de los mismos con técnicas de optimización 

inversa son técnicas prometedoras, sobre todo debido a la disponibilidad de ordenadores cada 

vez más potentes y al desarrollo de herramientas que permiten el seguimiento de variables de 

forma automática y con costes relativamente asequibles. La limitación del número de 

propiedades que se pueden optimizar, sugiere que, de todos los parámetros que necesita un 

modelo, se determine el mayor número posible de aquellos a los que éste es menos sensible 

utilizando otros métodos (medición directa, estimación a partir de funciones de transferencia, 

literatura, etc.) Así, la simulación inversa podrá centrarse en los parámetros para los que el 

modelo presenta mayor sensibilidad. 
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CONCLUSIONES 

En este trabajo titulado Optimización de la simulación del transporte de agua y solutos en 

suelos volcánicos para la evaluación de la contaminación de aguas y suelos por 

agroquímicos se han obtenido las siguientes conclusiones: 

- El estudio detallado de las propiedades físico-químicas de un suelo agrícola en una zona 

de platanera en la parte Norte de la isla de Tenerife, así como el seguimiento realizado de 

las variables hidrológicas y contenidos nitrógeno han permitido estudiar el funcionamiento 

hidrológico de este escenario y evaluar las prácticas agronómicas. 

- El suelo presenta características ándicas que condicionan el flujo y el transporte de 

nitrógeno a través de la zona no saturada. 

- El citado estudio indicó que el 48-52% del total de abono nitrogenado aplicado al cultivo 

anualmente no es usado por la planta, sino que abandona el suelo hacia el acuífero. 

-  Estas pérdidas de nitrogeno se concentran en los periodos de lluvia y/o fertirrigación 

intensos. 

-  Debido a los requerimientos de lavado necesarios para mantener la salinidad del suelo en 

niveles adecuados, el control de la contaminación del acuífero por nitratos implica 

solamente una revisión de las prácticas de abonado (cantidad, frecuencia, técnica de 

aplicación, etc.) y no la reducción de la fracción de lavado. 

- La aplicación de un modelo para la simulación del flujo en un escenario típico agrícola del 

Norte de Tenerife usando propiedades hidráulicas determinados experimentalmente en 

laboratorio puede conducir a resultados inexactos. 

- Esto es debido a que el uso de parámetros determinados experimentalmente en laboratorio 

en pequeñas muestras de suelo no reflejan el efecto que los fenómenos estructurales tienen 

a escala de campo. 

- La estimación de esos parámetros por métodos indirectos resulta más apropiada en este 

contexto. 

- Entre los métodos indirectos, el uso de la optimización inversa usando el algoritmo 

GMCS-NMS resulta ser una técnica eficiente y preferible al procedimiento tradicional de 

“prueba y error”.  
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- Para mejorar la efectividad de la calibración mediante optimización inversa, es necesario 

disponer de información previa sobre los parámetros a optimizar así como usar datos de 

diferentes variables de estado que contengan información suficiente para estimar dichas 

propiedades. 

- En el diseño de una estrategia adecuada de seguimiento de variables y obtención de datos 

para simulación inversa, se recomienda aplicar en la fase de diseño experimental un 

procedimiento que permita analizar diferentes alternativas de muestreo usando datos 

sintéticos.  

- El uso de un índice basado en criterios de evaluación, como el propuesto, facilita la 

comparación entre estrategias.  

- Igualmente, la obtención previa de información sobre las propiedades hidráulicas del suelo 

a partir de experimentos o cualquier otro método resulta ventajosa para el diseño. 

- El procedimiento para establecer la estrategia de muestreo apropiada se ilustró con éxito 

en la optimización de los parámetros hidráulicos de un monolito a partir de experimentos 

de flujo y usando el algoritmo GMCS-NMS acoplado al modelo númerico WAVE.  

- El análisis de varias estrategias basadas en distintas profundidades de medida y en la 

combinación de variables de estado (humedad de suelo, succión y flujo en la base del 

monolito), indicó que para la optimización inversa de las propiedades hidráulicas del 

suelo, son suficientes solamente cuatro profundidades de medida y la combinación de 

datos de humedad de suelo junto con datos de succión o de flujo en la base de la columna.  

- El seguimiento conjunto del flujo y del transporte de bromuro en un suelo volcánico puede 

realizarse con éxito mediante la aplicación de la técnica de TDR. 

- La caracterización del transporte de bromuro a partir de las curvas de ruptura obtenidas 

mediante TDR y con la aplicación de técnicas de simulación inversa indica que, bajo las 

condiciones de contorno aplicadas, el bromuro se mueve en este suelo volcánico 

principalmente por convección. 

- El tipo de curvas de ruptura observadas se asocia con procesos de transporte preferencial, 

con lo que se puede esperar que el potencial contaminante de los agroquímicos aplicados a 

este suelo sea mayor. 
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- La combinación de modelos de simulación con algoritmos de optimización inversa y el 

uso de mediciones detalladas de diferentes variables de estado, resulta una técnica 

prometedora para la identificación de procesos y de parámetros. 
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