HYDROLOGY AND FISH POPULATION DYNAMICS IN THE OKAVANGO BASIN: MANAGING FOR
UNCERTAINTY IN A DATA POOR ENVIRONMENT

BY

ANNA McDANIEL CATHEY

A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

UNIVERSITY OF FLORIDA

2011



Chair: Rafael Mufioz-Carpena
Co-chair: Greg Kiker
Committee:

Mike Allen

Mark Brown

Mathew Cohen

Piotr Wolski

Contents

(00 F= o =Y R [N o o Yo [Tt o FSN TSRS 5
1Y Lo X HAVZ=) 1 [o] o HE TN 11
(0] oY [=Tox 1Y/ PUPUUPRROt 13
] (= A= A Lol L TR 13

Chapter 2. Uncertainty, sensitivity, and impacts for scenario modeling using the Pitman hydrologic

model in the OKaVanNg0 Basin ......c.c..uuiiiiiiiiiii ettt e e e e e e e e ar e e e e e e e e e e s e e saaabsbaaaaeeaaaaaeeas 19
Y o1 o - Yot A T U P OO PSRRI OU PR OPUPPPPROPPIN 19
O oY oo [ ot o T s IR T T T PSPPSR U RO PP OPPROP 20
P |V, =1 d o To o £ O OO T T PSPPSR PUPRPPRRN 26

2.1 The PIitmMan IMOE ... ..cii ittt ettt et e s bt e e st e e sbe e e sbaeesabeeesaneeas 26
P2 2 ] o1V A =Tl o] Y=Y [ Tot o] o ISP PP SRR 28
2.3 Morris Global SENSItIVItY ANAIYSIS ..oicvvieieiiiiiie e e e 34
2.4 FAST Variance Based Global Sensitivity ANalysis.......cuccuieiiiiiiiiiiiiiiiieeeeriier e esiee e esiee e e 35
2.5 Climate Change UNCEItaiNty ..ocuueiiiiciiiieeeiiiiieeesittee e ettt e e ssrre e e s ssbaeeeessabeeeeesnneeeesennsseeesssnnsens 36
B RESUIES ettt ettt ettt e et e bt e s b bt e e bbe e s bte e e hbee e bee e e bbeeebaeesnreeeanee 37
3.1 MOITIS IMEENOM .....ueiiieiiiee ettt ettt et e st e st e e sbe e e sabb e e sabeeesabbeesabeeesbeeesanes 37
3.2 FAST Variance Based Global Sensitivity ANalysis......ccccoecuiiieiiiiiiriiiiieee e 38
3.3 Climate Change UNCEITAINTY ..ooicuiieiiiiiiiiee ettt ettt e e s tee e e s stee e e s s sbeee e s e snteeeeesnbeeeesennees 41
B, CONCIUSIONS 1.ttt ettt ettt ettt ettt ettt ettt e e b e e s bt e e s bt e e e abbee s bbee s beeeebbeesabbeesnbeesabbeesanteesabbeesabbeenanseanas 42
YA Yol g o1 N Y] 1=To F=2=Y o Y=Y oL PRSP 45
RETEIEINCES .. ettt ettt ettt e s bt e s bt e e e bt e e s bbe e e bt e e s b be e s bb e e s bt e e e nbeeebteeenbeeenreas 45
L] o] LT T T T O T TP PP U TP OTOUUPTOPUPTOPPPTOUPPO 54
FIBUIE CaptiONS ..ttt s e e e e e e e e e e e e e eeeeeeeeeee et ettt e bbb b e bbb aas b aeeeseseaaeaaeaaaaaaneaees 59



Chapter 3. Objectively defining uncertainty in the face of data scarcity using a reservoir model of the

(0] N Lo T o MDY L = TR = o] £ V=T o - SRR 73
7Y o1 o - Yot AR T TP PO ST PP TP PPPTRPPPUPPIOt 73
B 1o} oo [¥ ot o T o ER RO T T T P TP PPTOPRPP 74
B Y, =3 1 s To o [ T TP PP U PP PUPT RPN 78

2.1 The Study Site: Okavango Delta, BOtSWaNa ........ccooeiiiiiiiiiiiieee ettt e e et rre e e e e e e e 78
2.2 THE ORI MOUEL ittt ettt et e bt e e sab e e sab e e s sabe e e sabeeesabeeesabeeesabeeesabeeesanes 79
2.3 Global Sensitivity and Uncertainty ANalysis .......occciiiiiiiiiie e erees e e seee e 82
2.4 MONTE CArlo FIEIING covieiiiee ettt e e e e e e e st te e e e s sabe e e e e snbeeeesennraeeesennnees 86
2.5 Selection of Prior Input Probability DistribUtioNns .........ccceviiviiiiiieiiiieie e 87
3. RESUIES @NA DISCUSSION ...eiutiieiiiieiiiee ettt e ettt e et e e sttt e sttt e sttt e sbeeesbeeesabeeesabeeesabaeesabeeesabeeesabeeesabenesanes 90
3.1 Modified Morris Global SeNnsitivity ANAlYSiS........ccciiiiiiiiieie i 90
3.2 FAST Variance Based Global SENSITIVILY ....cccuiiiiiiiiiieiiciiir et 91
3.3 MONEE Carlo FIEIING coeieeiieiee ettt e e e e e e e st te e e e e sabe e e e e snbee e e s ennbaeeesennseees 92
3.4 FAST Variance Based Global Uncertainty ANalysis........ccoccveiiiiieieiiiiieee e 93
A, CONCIUSIONS ..eeiitieeitite ettt ettt ettt e s bt ettt e sttt e s bt e e s abe e e s beeesabteesabeeesabeeesabeeesabeeesabeeesabeeesabeeeanbeeesabeeana 95
ACKNOWIEAZEMENTS ..eeiiiiiiiieiiciiiee ettt e st e e e st e e e st bt eeesaabaeeesasbaeeessassseeesessseeeeeennseeeesssnsens 97
RETEIENCES ...ttt e s et e s e e sttt e s b et e s a b e e s bt e e s be e e sabe e e sabb e e aa bt e e s be e e sabeeesabeeesabaeas 98
I o] (=T T T TP PP P TP PP SRR PPPPTPRN 104
FIBUIE CaPtioNS ..ttt e e s e s e e e e e e e e e e e eeeeete s et et e te e e bt bes b st sb s a e e e e e eeaeaeeans 109

Chapter 4. A fish population model for the Okavango Delta, Botswana: How the flood pulse drive

[oYe o181 X ToT o Ie 1V7 0 F= a4 Y[ of 3PP 119
1Y o1 £ - ot A O O T O OO O T OO TP P PO TR UPUTOPPROP 119
N [ 1 o e [V o1 { o o PP PUPUPOPPPPPPRNS 120
P Y/ =Y d o To o £ T T O O ST OO P PRSP PO UPPPOUPPRROPRO 126

2.0 FISN dat@ . ueeeeiiiieeiie ettt ettt e s e bt e e b e e e s bbe e e bbe e s bbeesbteeebbeesnreeennee 126
2.2 MOAEISEIUCTUIE «.eeiiieiie ettt ettt et e e bt e st e e s bbeesbbeesbeeessbeesabeeesnreeennes 128
2.3 Global Sensitivity and Uncertainty ANalysis.......cccieeiiiiiiieiiiiire e e e 132
P AV o o Ao - Y [o I 411 =Y o T o = SRRt 133
RN |V, [oTe [ I @ o] a1 F2- ) 4 Lo o SRR UPRRNY 134
2.6 Probability density FUNCHIONS ....uiiiiiiiiiee et e e st e e e s sabaeeeesnanes 135



B R OSUIES ettt et ettt e e e ettt e e e ettt ——eeeetta——eetttba—eetaat e eeettataaeetttraaaaes 140

3.1 Global SENSITIVITY ANGIYSIS..uuiiiiiiiieeiiiiccciiiie et e e e e e e e ser b ra e e e e e e e e e eeesanbrsraeaeeaaaeeeeans 141

3.2 MONtE Carlo fllEEIING ...t e e e e e e e e e e e e e e e e e e e aabt bbb e reeeaaeeaeaas 142

3.3 Global UNCertainty ANAIYSiS ..uuuiiiiii ittt ee e e et e e e e e e e e s e re e e e e e e e e e eeeeaabrsraaseeeaaeeeeaas 143

4. CONCIUSIONS 1.ttt ettt ettt ettt ettt e st e e s it et e s b et e sab e e e sabeeesabeeeambeeesabeeesabeeesmbeeesabeesnbeeesareean 143

YA Xol [ o XA T=To Fed o 1T o £ U R PUUSPPR 145
REFEIENCES ...ttt ettt ettt e s bt e e a et e s a bt e e s abe e e eabe e e sabe e e eabeeesabeeeaabeeesabeeesabeeenareeenares 146
- o] (=T PO PO PP PP U SPO PPN 156
TV {0 T o1 { o] LSOO TP P ST TTPPPPPPPP 158

(01 - T'o 1 4T g TR 6o Vol [ U1 T o - 171
LIMIEATIONS 1eeeiiiiiiii e e e e e e e e s s 174
Appendix A. ORI Reservoir Model High Performance Computing GSA/UA Script and Instructions ....... 176
Appendix B. Fish model data and COAE......cuuiiiiiiiiiiiii it e e e e et e e e s saraeee s 178



Chapter 1. Introduction

The Okavango Basin, located in southern Africa, is characterized as a large (530,000 kmz),
endorheic, and physiologically diverse basin that delivers a unique and ecologically important
flood pulse to the Okavango Delta. The Basin’s headwaters and the majority of the contributing
area begin in the more humid and steep Angola. The Basin is formed by two major Rivers the
Cubango and the Cuito River. The Cubango River forms part of the boundary between Namibia
and Angola before converging with the Cuito River to form the Okavango River. The Okavango
River then flows through the Caprivi Strip in Namibia where the topography is flatter and the
climate is drier than in the headwaters. After flowing through Namibia, the Okavango River
empties to the Okavango Delta, entirely contained within Botswana, which like Namibia is also
dry and extremely flat. Here, on the edge of the Kalahari Desert, is the Basin’s terminal end.

The water is evapotranspirated in the Delta before ever reaching the sea.

Average rainfall in the upstream Angolan portion of the Basin is as high at 1,300 mm yr’!, while
the two downstream basin nations, Namibia and Botswana, are much more arid with rainfall
averaging approximately 560 mm yr™ in Rundu, Namibia (Mendelsohn and Obeid, 2004).
Angola also has more topography, with elevations in this portion of the Basin ranging between
1,200 and 1,800m, while the Delta is exceptionally flat, with elevations ranging between 900
and 1,000m (Mendelsohn and Obeid, 2004). The eastern headwaters also have different
hydrologic characteristics from the western headwaters with the western headwaters

demonstrating more consistent base flows. The northwestern portion of the Basin is underlain



by volcanic and metamorphic rock while the northeastern portion is underlain by Kalahari
sands. Thus, the western headwaters are hydrologically flashier while the eastern headwaters

have higher base flows and less seasonal variability (Hughes et al., 2006).

Rainfall in the Angolan headwaters occurs between December and March. It takes two months
for the flood pulse to reach the top of the Delta and another four to five months for it to
attenuate through the Delta, finally reaching the distal ends in August. Flooding extents in the
Delta range from 6,000 — 12,000 km? (Wolski et al., 2006) and the entire alluvial fan is
approximately 40,000 km? (Gumbricht et al., 2005). The Delta is extremely smooth and flat
with maximum local relief generally less than 2 or 3 m (McCarthy et al., 2003; Gumbricht et al.,

2001).

Over 70 fish species (Kolding, 1996) live in the Okavango Delta and there are three main fishing
industries: subsistence, small scale commercial, and recreational (Merron 1991, Mosepele and
Kolding 2003). According to Mosepele (2001), 65% of the people in northern Ngamiland
depend on fish as a source of livelihood. Monitoring and preserving the health of this resource
is important for both economic and ecological reasons. In the Okavango Delta no studies have
been done to research how fish populations respond to the flood pulse. However, there have
been studies that show how the annual flood pulse produces other ecologic responses, such as
through nutrient enrichment, bursts in primary productivity, and hatching zooplankton (Hoberg

et al., 2002; Merron, 1991).

The Okavango Integrated River Basin Management Project (IRBM, 2009) is a transboundary

association between Angola, Namibia, and Botswana that promotes an adaptive approach to



management in the Okavango Basin. Adaptive Management (AM) can be loosely defined as
managing in an uncertain world with a built in plan for learning by doing (Walters & Holling,
1990). AM explicitly calls for the use of models and the acknowledgement of uncertainty
(Johnson et al., 1997; Walters, 1986; Walters & Holling, 1990). Models can’t be validated
because of the ubiquitous nature of uncertainty in observations and measurements (Saltelli et
al., 2008). However, models can be given pedigrees that assess their ‘fitness for purpose’.
Global sensitivity and uncertainty analysis (GSA/UA) and Monte Carlo (MC) filtering are three
tools that bring transparency to the modeling process and judge model quality. Uncertainty
analysis quantifies model reliability. Sensitivity analysis identifies the key factors that contribute
to the model’s uncertainty. MC filtering reduces uncertainty and may also improve the
description of uncertainty. Together these three methods add to transparency in modeling and

apply value to model results for their intended purposes. (Saltelli et al., 2008)

There are several approaches for conducting a GSA/UA on mathematical models ranging from
simple one-at-a time (OAT) variational methods to more sophisticated global techniques. With
OAT techniques the variation of the model output is explored through changing a single input at
a time. This traditional sensitivity analysis method is limited since it explores a prescribed (and
usually small) parametric range, can only consider a few inputs, and cannot account for

interactions between inputs (Saltelli et al., 2008).

When model responses are non-linear and non-additive, which is the case with most complex
models, OAT techniques are not sufficient and global techniques, which evaluate the input

factors concurrently throughout the entire parametric space, should be used (Saltelli et al.,



2008). Different types of global sensitivity methods may be selected based on the objective of
the analysis and the model structure (Cacuci, 2003; Saltelli et al., 2008). A model evaluation
framework around two global techniques, a screening method (Morris, 1991) and a
guantitative variance-based method (Saltelli, 1999), can be quite useful when faced with a large
number of inputs. This two-step process has been used in several recent model investigations
(Mufioz-Carpena et al., 2007; Muioz-Carpena et al., 2010; Fox et al., 2010; Jawitz et al., 2008;
Chu-Agor et al., 2011). The screening method culls the inputs so that only the most important
ones go on for further analysis in the quantitative variance based FAST sensitivity and
uncertainty analyses. The least important inputs are set to constants and ignored for further
analysis. This reduces model complexity and focuses effort on the most important aspects of

the model.

The Method of Morris (Morris, 1991) is an OAT sensitivity method, but because it explores the
entire parametric space, it is also considered a global method. The Morris method is qualitative
and is less computationally intensive than other quantitative methods, thus its use as a
screening tool to identify the most sensitive inputs. Morris proposes two sensitivity indices: p
represents the mean or general magnitude of effect of the uncertainty of an input on the model
output and o estimates higher-order relationships, such as nonlinear and interaction effects. o
gives the standard deviation of the results and represents the spread of the importance that
each input has based on the values chosen for the other inputs. The Modified Method of
Morris (Campolongo et al., 2007) has a number of improvements over the original Method of

Morris. It allows an analysis of models with multiple outputs, allows factors to be grouped, and



has a more effective sampling strategy at no additional computation cost. Furthermore, the

enhanced sensitivity index u* is approximately as good as indices based on variance methods.

Once the most sensitive factors are identified using the Modified Method of Morris, a
guantitative sensitivity analysis may be conducted on those most sensitive factors using the
Fourier Amplitude Sensitivity Test (FAST) (Cukier et al., 1978; Koda et al., 1979). FAST uses
Fourier analysis to decompose the variance of model outputs into first order variances for each
input. The Extended FAST technique (Saltelli et al., 1999) allows for the additional
guantification of higher levels of variance. These higher levels of variance describe the
interactions between inputs. Extended FAST defines S; as a measure of global sensitivity. S;is
the ratio between the variance attributed to a single input divided by the total model variance.
In a model where there are no interactions the sum of all Si’s across all inputs is equal to one.
In models where there are interactions this sum is greater than one. One limitation of the FAST
technique is that it cannot be used on factors that are interdependent (Crosetto and Tarantola,

2001).

Monte Carlo (MC) Filtering can be used to calibrate a model as well as decrease uncertainty

(Saltelli et al, 2008; Rose et al., 1991). In MC filtering, model outputs are classified as either
behavioral (B) or non-behavioral (E) based on whether or not they exceed some predefined

threshold. Two subsets of the input set X; are defined as X;/B and X,-/E. The two-sided Smirnov

test is used on each input factor independently to determine if X;/B is statistically different from

Xi/B. For this test, the null hypothesis is that the distribution of the inputs producing B is equal



to the distribution of inputs producing B. If X/Bis significantly different from Xi/B then a new

PDF can be assigned to the input based on X;/B.

The remote location of the basin and the recent civil war in Angola (1975-2002) has resulted in
sparse data sets and a high level of uncertainty regarding the basin’s diverse physiology,
climate, and hydrology. Most of the stream gauge data is intermittent and the basic physiologic
data are on rough scales and/or in discrete sampling locations. Therefore, issues of data
scarcity and resulting uncertainty are compounded in this area. When data for the inputs show
no apparent distribution, such as normal or triangular, its PDF can be set to uniform (Mufioz-
Carpena et al., 2007). The uniform distribution allows for equal probability of selection across
the defined range. Because of the data scarcity in this location this is generally the approach to
setting PDF’s for inputs in this work. This conservative approach inherently introduces
additional uncertainty. In response to this, this work will show that MC Filtering can be used to
objectively redefine and truncate prior PDFs within their predefined ranges and decrease model
uncertainty. This is especially useful because one of the largest critiques of the GSA/UA process
is the subjectivity through which the PDFs are defined. In data poor areas such as the
Okavango Basin this problem is exacerbated and the objective truncation of the PDFs is

particularly useful.

Equifinality is the principle that given a model with multiple inputs it is possible to get exactly
the same output with a variety of input sets (Beven, 2001, Beven and Freer, 2001). This is
sometimes referred to as ‘getting the right answer for the wrong reason.” Equifinality is an

important concept in hydrologic modeling due to the large number of inputs. It is especially

10



crucial in reference to predictive modeling. Predictive modeling often involves changes in state,
such as development and climate change scenarios. When the state of the system changes,
internal processes and relationships change. Following this, if a model is getting the right
answer for the wrong reason under one state, it is possible that it will no longer get the right
answer when internal processes change. Traditionally, the goal of inverse optimization
techniques is to find the optimal set of inputs for a given model to match some measured data
(Mertens et al., 2006). This is especially problematic when considering the issue of equifinality.
Though this work does employ inverse optimization style techniques, it does not seek an
optimal parameter set. Instead, it looks for evidence of these models as useful tools in the
presence of equifinality. This is done in two ways (1) through identifying best fit model input
sets and running these through non-stationary scenarios and (2) through identifying key inputs
which do not display equifinality. Through these two methods, insights into the confidence in

model behavior can be gained even in the presence of equifinality.

Motivation

As a transboundary Basin, there are conflicting management agendas in the Okavango
watershed. The IRBM transboundary project (2009) advocates for an adaptive approach to
management in the Basin. Adaptive Management explicitly calls for the acknowledgement of
uncertainty and the use of models. Uncertainty regarding physiographic, ecologic, and
hydrologic data in the Basin is especially high because of its large size, remote location, and
recent civil war in Angola. Several models have been calibrated in the basin and are being used

to assess climate change and development scenarios. Hughes et al., (2006) calibrated the

Pitman rainfall runoff model in the Okavango Basin. Uncertainty analysis has been conducted
11



on the Pitman model in several basins in South Africa (Hughes et al., 2010) however; no
GSA/UA has been conducted for this model in the Okavango Basin. The ORI (Okavango
Research Institute) reservoir model has been calibrated in the Okavango Delta (Wolski et al.,
2006) however; no GSA/UA has been conducted for this model in the Okavango Delta. Climate
change and development scenario modeling has been conducted using both the Pitman and
ORI models (Andersson et al., 2006; Wolski, 2009). Conducting a GSA/UA on these models will
provide a transparent qualification of their use for scenario modeling, enable model
simplification through identifying unimportant inputs, and provide a deeper understanding of

model structure and interactions.

Additionally, quantitative studies show how the annual flood pulse produces an ecologic
response in nutrients and zooplankton (Hoberg et al., 2002) and qualitative observations and
conceptual models have been proposed for how the flood impacts fish population dynamics
(Hoberg et al., 2002; Merron, 1991). A major recommendation in the Environmental Flow
Module Special Report for Fish (Mosepele, 2009) is for the development of a quantitative
relationship between the flood pulse and fish population dynamics in the Delta. A fish
population model has yet to be developed for the Delta. Conducting GSA/UA and MC filtering
during the development of a fish model will prevent over-parameterization, reduce uncertainty,
and allow for an investigation of evidence of the flood pulse as a driver despite issues of

equifinality.

12



Objectives
The objective of this work is to provide a transparent audit of the usefulness of hydrologic and

fish population models of Okavango Basin. Two hydrologic models will be investigates: one of
the Basin and one of the Delta, both of which have previously been developed and calibrated in
the area and are currently being used to test development and climate change scenarios. For
this research these two models will be analyzed for sensitivity, uncertainty, and ‘fitness for
purpose.” A fish population model for the Okavango Delta based on the annual flood pulse will
also be developed, calibrated, tested, and analyzed for sensitivity, uncertainty, and ‘fitness for
purpose.” This analysis will add depth of meaning to the climate change and development
scenarios that are being simulated using the existing hydrologic models. It will also corroborate
the existing conceptual models and qualitative observations that describe fish population

dynamics as being driven by the food pulsed hydrology of the Delta.
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Chapter 2. Uncertainty, sensitivity, and impacts for scenario
modeling using the Pitman hydrologic model in the Okavango
Basin

Abstract
Understanding and improving the reliability of models in watersheds in the presence of

uncertainty is crucial for applying hydrologic models in a responsible management context.

The Okavango Basin is a large and remote watershed (530,000 km?) that delivers an annual
flood pulse to the Okavango Delta, an internationally renowned wetland. Sparse data sets and
large gaps in knowledge regarding the diverse basin physiography and hydrology are a major
concern in the Basin. An important step toward sustainably developing the water resources of
the Okavango Basin is through an exploration of the potential hydrologic scenarios and
inherent uncertainty of their modeled outcomes. This work presents two-tiered regionalized
examination of the Pitman hydrologic model for the Okavango Basin in southern Africa through
a state-of-the-art global sensitivity and uncertainty analysis (GSA/UA). The Pitman model is a
monthly rainfall/runoff model that is widely used in southern Africa especially in ungauged
basins. In this work, the 24 sub-basins are grouped into two regional arrangements to compare
the significance of the choice of arrangement. The Morris GSA method is first used to
qualitatively rank the importance of the inputs and then the variance-based Fourier Amplitude
Sensitivity Test (FAST) GSA/UA method is used to quantitatively identify the most sensitive
inputs in terms of contributed variance to simulated outputs. Model uncertainty is investigated
under a climate change scenario, which predicts increasing temperature and rainfall in the next

thirty years. Results show that inputs related to infiltration, temporal rainfall distribution,
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groundwater runoff, and the evaporation coefficient are the most important in the model.
Additionally the western headwater is the most important region. Results also show that the
choice of regional arrangement does not make a significant difference in the model outcome.
Introducing climate change conditions to the watershed increases uncertainty by approximately
18%. These results and conclusions are especially useful within the context of Adaptive
Management when interpreting model uncertainty, determining the usefulness of model

predictions in a non-steady-state condition, and focusing monitoring and management efforts.

Keywords: Sensitivity analysis, uncertainty analysis, Okavango, Pitman, scenario modeling,

hydrologic modeling, regionalization, Morris Method, FAST method, Adaptive Management

1. Introduction

Hydrologic modeling is widely used in management programs for predicting the impacts of
development and climate change on water supply for both human and environmental needs
(Beckers et al., 2009; Hughes, 2002; Jayakrishnan et al., 2005; Koster et al., 2000; Stiegliz et al.,
1997, Wolksi 2009). These models can’t be truly validated because of the ubiquitous nature of
uncertainty in observations and measurements (Beven and Binley, 1992). However, they can
be given pedigrees that judge their quality as a function of their fitness for purpose’ (Saltelli et
al., 2008). Global sensitivity and uncertainty analysis (GSA/UA) are tools used during model
analysis to judge model fitness under different applications. Uncertainty analysis quantifies the
overall uncertainty of a model and sensitivity analysis identifies the key factors that contribute
to that uncertainty. Using these tools, a modeler can assign the level of confidence to a model

for its intended purpose. (Saltelli et al., 2008)
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The Okavango Basin is a large and remote watershed (530,000 km?) that delivers an annual
flood pulse through the Okavango River from Angola, through Namibia, and then into
Botswana, which contains the Okavango Delta. The Okavango Basin has a distinct and
heterogeneous physiological and climatic organization. Rainfall rates, geology, and topography
vary considerably throughout. Rainfall in the Angolan headwaters is 1,300 mm yr* but only 560
mm yr in downstream Namibia and Botswana (Mendelsohn and Obeid, 2004). The Angolan
headwaters are also mountainous, with elevations ranging between 1,200 and 1,800m, while
the Botswana portion of the Basin is extremely flat, with elevations ranging between 900 and
1,000m (Mendelsohn and Obeid, 2004). The eastern headwaters also behave differently from
the western headwaters with the western headwaters having more consistent base flows.
Rainfall is evenly distributed within the Basin from the east to the west (Wilk et al., 2006).
However, the geology is different and can explain this difference in the base flow behavior
(Hughes et al., 2006). The western portion of the Basin is underlain by volcanic and
metamorphic rock while the eastern portion is underlain by Kalahari sands. Thus, the western
headwaters are hydrologically flashier while the eastern headwaters have higher base flows

and less seasonal variability.

As a transboundary basin, each of the three countries that contain portions of the Okavango
River values the resource in a different way. Angola is upstream basin state and the major land
holder. Namibia owns a sliver of land in the middle. Botswana contains the terminal end and
the famed Okavango Delta, which is an international Ramsar site (Ramsar, 2011). The different

values that the three countries place on the Okavango Basin and their different physiographic
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environments create challenges for management of the resource. As the three countries
develop and face climate change they must find ways to equitably distribute the river flows.
Hydrologic models can be useful in this circumstance because they can simulate hydrologic
response to proposed development and climate change. However, without an uncertainty
analysis managers cannot contextualize the uncertainty of these models and they may provide
unjustified confidence regarding the predictability of the system. Additionally, the remoteness
of the basin and the recent civil war in upstream Angola (1975-2002) has resulted in sparse data
sets and a high level of uncertainty regarding the diverse basin physiography and hydrology.
Most of the gauge data is intermittent and the basic physiographic data are on rough scales
and/or discrete sampling locations (Hughes et al, 2006). Therefore, issues of data scarcity and

uncertainty are compounded in this location.

The Pitman model (Pitman, 1973; Hughes et al., 2006) (Figure 1) was developed in southern
Africa specifically for ungauged catchments (Hughes, 1995). It is widely used in the area and
has been calibrated and validated in the Okavango Basin (Hughes et al., 2006). An uncertainty
and sensitivity analysis for the Pitman model has been conducted for four basins in South Africa
(Hughes et al., 2010). The results of this analysis show that uncertainty and sensitivity in the
Pitman model varies from basin to basin depending on physiography and climate. This current
research builds upon these results and involves a GSA/UA of the Pitman rainfall runoff
hydrologic model specifically for the Okavango Basin emphasizing the issue of data scarcity

regarding basin physiography.
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This GSA/UA is specifically applied with management purposes in mind such as interpreting
model uncertainty under stationary conditions and climate change scenarios, identifying gaps in
knowledge, and focusing monitoring efforts. The Okavango Integrated River Basin
Management Project (IRBM, 2009) promotes and adaptive approach to management in the
Okavango Basin. Adaptive Management (AM) can be loosely defined as managing in an
uncertain world with a built in plan for learning by doing (Walters & Holling, 1990). AM
explicitly calls for the use of models and the acknowledgement of uncertainty (Johnson et al.,

1997; Walters, 1986; Walters & Holling, 1990).

The publication AM for Water Resources Project Planning (NRC, 2004) offers six elements of
successful AM programs: (1) management objectives are routinely revised (2) a model of the
system is developed and revised (3) a range of management choices are investigated (4)
outcomes are monitored and evaluated (5) mechanisms for learning are incorporated into
future decisions (6) a collaborative structure for stakeholder participation and learning is
constructed and revised. GSA/UA is useful in three of these steps. In step (2) models can be
revised through inputs identified in sensitivity analysis. The unimportant inputs can be set to
constants to avoid over-parameterization and simplify the model structure (Saltelli et al., 2008).
For this work, inputs will be defines as any variable that is not a time series. In step (3)
uncertainty analysis can be used to evaluate management outcomes and assign value to the
model. In step (5) mechanisms for learning can be based on gaps in knowledge that are

identified through sensitivity analysis. (Saltelli et al., 2008)
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There are various approaches for conducting sensitivity analyses on mathematical models
ranging from simple one-at-a time (OAT) variational methods to more sophisticated global
techniques. With OAT variational derivative techniques the variation of the model output is
examined through the variation of one model input at a time. Sometimes, as an alternative, a
crude variational approach is selected in which, incremental ratios are taken by moving factors
one at a time from the base line by a fixed amount (for example, 5%) without prior knowledge
of the factor uncertainty range. These traditional sensitivity analysis methods are limited since
they explore a fixed parametric range, can only consider a few inputs, and do not take into

account interaction between inputs (Saltelli et al., 2005).

When model responses are non-linear and non-additive, as with most complex models, these
simple derivative techniques can be misleading and global techniques that evaluate the input
factors of the model concurrently over the entire parametric space (described by probability
density functions) should be used. Different types of GSA/UA methods can be selected based
on the objective of the analysis (Cacuci et al., 2003; Saltelli et al., 2000; Saltelli 2004). This study
proposes a model evaluation framework (Mufioz-Carpena et al., 2007; Mufioz-Carpena et al.,
2010; Fox et al., 2010; Jawitz et al., 2008; Chu-Agor et al., 2011) around two such modern global
techniques, a screening method (Morris, 1991) and a quantitative variance-based method
(Cukier et al., 1978; Saltelli et al., 1999). This two-step method only considers inputs and does
not investigate structural uncertainty or sensitivity. The screening method allows for the
identification of the most important inputs and a resulting reduction of inputs, based on this

importance, for further investigation the quantitative variance-based Extended Fourier
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Amplitude Sensitivity Test (FAST). This two- step process is useful because of the computational
time that is required in using the FAST method. Both the Morris and FAST methods are pre and
post processed in the software Simlab (2011). The proper use of global sensitivity methods can
yield three main products for the Okavango application: (1) an assurance of the model’s
behavior (confidence in theoretical behavior), (2) a ranking of importance of the parameters for
different outputs, and (3) the identification of the type of influence of the important
parameters (first or higher order interactions) (Saltelli, 2008). These products can aid managers

through assigning confidence in model results and strategically allocating monitoring efforts.

Through uncertainty analysis, alternative model scenarios can also be investigated. Equifinality
is the principle that given a model with multiple inputs it is possible to get exactly the same
output with a variety of input sets (Beven, 2001, 2006; Beven and Freer, 2001). This is
sometimes referred to as ‘getting the right answer for the wrong reason.” Equifinality is an
important concept in hydrologic modeling due to the large number of inputs. It is especially
crucial in reference to predictive modeling. Predictive modeling often involves changes in state
such as development and climate change scenarios. When the state of the system changes, i.e.
non-stationary, internal processes and relationships change. Following this, if a model is getting
the right answer for the wrong reason under one state, it is possible that it will no longer get
the right answer when internal processes change. Therefore, any predictive model that
investigates a change in state should incorporate an analysis that quantifies the change in
uncertainty that accompanied that change in state. This assigns confidence in model results for

management purposes.
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In this work, a global sensitivity and uncertainty analysis (GSA/UA) of the Pitman model in the
Okavango Basin will be conducted to explore the uncertainty of the model under stationary and
non-stationary conditions as well as identify the inputs that are most responsible for that
uncertainty. The specific objectives of this work are threefold. The results of these analyses
will be used to (1) quantify the uncertainty of the model results, (2) identify the most important
or most sensitive inputs and regions, and (3) investigate the degree of equifinality in the model
and assess the impacts of this equifinality on the use of the model in a practical predictive
capacity. Two objective functions are analyzed in this process: the mean annual flow and the
Nash-Sutcliffe coefficient of efficiency (ceff) (Nash and Sutcliffe 1970) which evaluates the
model’s goodness of fit by comparing the modeled and measured monthly flow. These results
will yield important products for managers. (1) Confidence in model results is assigned so that
managers can use the model along with additional lines of evidence in an informed manner. (2)
Gaps in knowledge are identified allowing for strategic monitoring to close those knowledge
gaps. (3) The uncertainty of the predictive capacity of the model under a climate change

scenario is assessed so that confidence in climate change scenarios can be assigned.

2. Methods

2.1 The Pitman Model
The Pitman model (Pitman, 1973) is a semi-distributed monthly time step rainfall runoff

watershed model developed in southern Africa (Figure 2). Since its inception the model has
undergone a number of revisions, the most recent being the addition of more explicit surface
water/groundwater interactions (Hughes, 2004). The model has also been integrated into

SPATSIM (Spatial and Time Series Information Modeling), a GIS platform to facilitate spatial
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analyses (Hughes et al., 2002; Hughes and Forsyth, 2006). The Pitman model is one of the most

commonly used rainfall runoff models in southern Africa.

Data requirements for running the Pitman model (Figure 2) include monthly rainfall and
evaporation time series, basin and sub-basin delineations, and physical characteristics for each
sub-basin such as soil transmissivity and storativity, slope, interception and soil absorption
rates. Additionally, optional anthropogenic inputs and lags include abstractions by irrigation,
dams, and reservoirs. Storage processes such as interception, soil moisture holding capacity,
and groundwater systems are simulated as simple water storage tanks within each sub-basin.

Kapangaziwiri (2008) provides a more detailed description of the general model.

The Pitman model has been set up and calibrated in the Okavango River (Hughes et al., 2006).
This calibration will be used as a baseline for the following sensitivity and uncertainty analysis.
In the model, the Okavango River Basin, above the Delta, was divided into 24 sub-basins.
Seventeen of these sub-basins have stream gauges at their outlet. However, most of these
records were discontinued prior to 1975 and only two of the downstream-most gauges, which
are located in Namibia and Botswana, have continuous contemporary data. The model was
calibrated over the period of 1960 and 1972 and validated between 1991 and 1997. Rain gauge
measurements were used in calibration (Hughes et al., 2006). Because of the civil war in Angola
(1975-2002), which contains the majority of the watershed, rain gauge readings were
discontinued. TRMM (Tropical Rainfall Measuring Mission) SSM/I (Special Sensor Microwave
Imager) remotely sensed rainfall measurements are available for the entire watershed from

1991 to 1997 (Wilk et. al, 2006) and were used for model validation (Hughes et al., 2006). The
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Hargreaves equation (Hargreaves and Allen, 2003) was used to calculate actual
evapotranspiration from the water equivalent of extraterrestrial radiation, temperature, and
the difference between mean monthly maximum and minimum temperatures. Soil parameters
for the Basin were obtained from FAO (Food and Agricultural Organization of the United
Nations) data. Geologic and topographic inputs are derived from USGS data (Persits et al.,
2002). Water abstractions are based on population density and are assumed to be negligible.
The Pitman model was manually calibrated by Hughes et al. (2006) to surface flows in the Basin
where gauges are. Calibration parameters included surface runoff, soil moisture storage,
groundwater recharge, and soil moisture evaporation. The three objective functions that were
used to minimize the difference between observed and simulated follows during calibration
include the coefficient of determination (ceff) and the mean monthly percentage of error
(Hughes et al., 2006). The calibrated Pitman model simulated outflow at the downstream

Mukwe sub-basin with a ceff of 0.851 and a mean monthly error of +1.7% (Hughes et al., 2006).

2.2 Input Factor Selection
Ideally, different probability distributions would be produced for each of the model inputs in

each of the 24 sub-basins based on measured physical variability. However, due to the lack of
data in the area there is little basis for defining different PDF’s for each of the sub-basins. On
the other hand, lumping the Basin as a whole and producing one PDF for each of the inputs
would disregard its physical heterogeneity. Therefore, a regional approach was taken. The
Basin was split into regions based on geology, topography, and rainfall and PDF’s for each of the
inputs are produced in each of the regions. Two regional approaches were taken in order to

compare the importance of the regionalization concept: a) one with three regions and b) one
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with five regions (Figure 3). In the three region approach the basin was separated into eastern
headwaters, western headwaters, and southern receiving waters. The eastern and western
headwaters are geologically different from each other and both receive higher rainfall rates
than the southern receiving waters. This regional approach mimics the same regionalization
that is referred to by Hughes et al. (2006) in the calibration of the model. In the five region
approach the southern region was subdivided into the middle basins, Omatako basins, and
southern basins. These subdivisions reflect the difference in rainfall and topography in the
area. The subdivision of the southern region in the five regional approach also reflects the fact
that the Omatako River is hydrologically unique and though it is hydrologically connected, it is
now considered a fossil river and there is no record of it contributing flow to the system (Crerar,

1997).

Probability density functions (PDF’s) were developed for nineteen inputs in the Pitman model
(Table 1). The basin is a fairly pristine system, so inputs regarding anthropogenic disturbances
such as dams and reservoirs were not considered. Uniform distributions were assigned to all of
the input PDF’s. This is considered to be the most conservative approach when there is a lack
of data available for describing specific types of distributions (Mufioz-Carpena et al., 2010). In
an ideal situation PDF’s are based on experiments, literature values, physical bounds, or expert
opinion. For example, Kapangaziwiri and Hughes (2008) developed an estimation method for
inputs into the Pitman model based on physiological basin characteristics that are largely
defined by South Africa’s Agricultural Geo-referenced Information System (AGIS, 2007).

However, compared to South Africa, the Okavango Basin is located in a remote area and there
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is significantly less data available and fewer experts in the area. Additionally, many of the
inputs are empirical (though physically relevant) and are used as scaling factors or describe the
shape of relationships among system components. As a result of the lack of data and the
empirical nature of the inputs, the true physical ranges of these inputs are largely unknown.
When information is lacking, PDF’s can be bound by some standard percentage of the
calibrated value. For this reason the inputs were categorized as having low, medium, and high
uncertainty. The inputs that were identified as having low uncertainties were bounded by +15%
of the calibrated value, medium +30%, and high £45% of the calibrated values. Each input for
each sub-basin within a region is varied independently from its calibrated value within its
assigned uncertain range based on the regional value assigned by the matrix. In an area where
more data is available autocorrelation tests could be done to show dependence between data
in each sub-basin. However, here no such data exists and inputs are assumed independent. The
results of the GSA/UA are largely dependent upon the input PDF’s and setting these PDF’s is
extremely important. The following paragraphs define the input factors and the rationale

behind the PDF’s that were developed from them.

Monthly rainfall in the Pitman model is disaggregated into four sub-monthly inputs that use the
rainfall distribution input factor (RDF) to describe the temporal heterogeneity of the input
distribution. Lower RDF's create even temporal rainfall distributions and higher values result in
flashier and heavier rainfall events within each month. In the calibrated model, RDF was set to
0.7 for each sub-basin. Hughes et al. (2003) used values in the Kafue Basin that ranged

between 0.6 and 1.28. The Kafue Basin is located approximately 800 km northeast of the
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Okavango Basin in Zambia. The Okavango Basin covers a large area going from mountainous
temperate headwaters to flat semi-arid receiving waters. It is unlikely that monthly rainfall is
distributed the same way in the headwaters as it is in the southern portions of the basin. The

uncertainty for this input was set to medium.

In the model, interception (Figure 2) is defined for the two different vegetation types (P/1 and
PI2). Vegetation type 1 represents non-forested land cover and vegetation type 2 is forested.
Pitman (1973) asserts that interception in southern Africa can ranges between 0 and 8
mmday . De Groen (2002) considers a range of 2-5 mmday ™ but cites that established
thresholds for South Africa are 1 to 2 mmday " and as much as 7 mmday ™ when litter
interception is included. In the calibrated model the interception rates are set to 1.5 for
vegetation type 1.0 and 4.0 for vegetation type 2. This is a physically based input but is only
allowed to range across two vegetation types. The uncertainty for these two inputs was set to

medium.

Evapotranspiration is based on the ratio between potential and actual evaporation at different
levels of soil moisture (R), the area of the sub-basin covered by type 2 vegetation (AFOR), a
factor that scales the evapotranspiration for vegetation type 2 (FF), and the riparian strip factor
(RSF). R determines the shape of a linear relationship between actual and potential
evaporation loss at different moisture storage levels. The value of R is bounded between 0 and
1. Actual evaporation is calculated according to Eq. 1 where PE is potential evaporation, S is
current soil moisture storage, and ST is the maximum soil moisture storage. R is a physical

parameter, but there is little data for the area and the uncertainty level was set to medium.
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AFOR represents the percent of the basin covered by type 2 vegetation. The GLC2000 land
cover map from the Global Vegetation Modeling Unit (GLC, 2000) was used to derive these
parameters. Because AFOR is based on remotely sensed data, its uncertainty was set to low.
FF allows type 2 vegetation to have greater ET than type 1 and is set to 1.3 in all of the sub-
basins. This categorizes the entire Okavango Basin by two types of vegetation. Its uncertainty
is set to medium. RSF determines the water loss due to evapotranspiration in areas adjacent to
the channel. There is a great deal uncertainty associated with RSF as it is a fairly empirical input

with very little data available for verification. Its uncertainty level was set to high.

In the Pitman model, infiltration is governed by the amount of monthly rainfall and the inputs
ZMIN and ZMAX. ZMIN and ZMAX provide boundary conditions for a triangular distribution of
absorption rates. If rainfall is greater than the absorption rate defined by that month’s rainfall
then overland runoff occurs. ZMIN and ZMAX are manually fitted to approximate the Kostiakov
(1932) equation to calculate infiltration. The Kostiakov equation is an empirical model that
assumes infiltration decreases in time during a rainfall event according to a power function.
The uncertainty for these inputs was set to high because of the empirical nature of the
equation, the differences in scale between rainfall events and the model’s monthly time step,

and the lack of data describing the soils in the area.

Soil moisture storage is represented by the maximum depth of water storage (ST). If ST (mm) is

filled, then the additional rainfall becomes runoff. The uncertainty for ST was set to medium

32



because there is some physical evidence for relative differences in these values based on the
geology of the region but there is still very little data regarding actual values. Hortonian
overland flow is calculated according to two inputs: the runoff generated at the maximum soil
moisture (FT) and a power function that allows a nonlinear relationship between runoff and soil
moisture (POW). Kapangaziwiri (2008) give values for FT (mm month™) ranging between 0.4
and 43.4 for basins with low drainage density and 0.4 to 72.3 in basins with high drainage
density. The model was calibrated with values ranging from 0 to 38 with a great deal of
variation between regions. Because this range is so large, the uncertainty for FT was set to
high. POW simulates the curve that represents how runoff slows as moisture in the soil
decreases. Values for POW in the calibrated model vary between 2.5 and 4.0. There is little

data describing accurate values for this input and its uncertainty was set to high.

Groundwater recharge in the Pitman model is one-dimensional and governed by the rate of
recharge at the maximum soil moisture storage (GW) and a power function that describes the
non-linear relationship between recharge and soil moisture (GPOW). GW is the groundwater
equivalent to FT and GPOW is the groundwater equivalent to POW. Xu and Beekman (2003)
compiled literature values on ranges of groundwater recharge in southern Africa. They found
maximum rates ranging from 4.2 to 420 mm month™. Because this range is so large, the

uncertainty for GPOW and GW was set to high.

There are a number of additional groundwater accounting parameters in the model: drainage
density (DDENS), transmissivity (T), storativity (S), the depth of the aquifer below the channel at

which groundwater ceases to flow (RWL), the groundwater slope (GWS), and the riparian strip
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factor (RSF). Kapangaziwiri (2008) states that estimates of drainage density from 1:250,000
maps are three times greater than those from 1:50,000 maps. T (m*d™) is equal to the soil
permeability time the aquifer thickness. Milzow et al., (2009) cites that the aquifer thickness in
the Okavango Delta varies between 70 and 400m. S (m?) is equal to the product of specific
storage and aquifer thickness. According to Singhal and Gupta (1999) storativity in unconfined
aquifers generally ranges between 0.05 and 0.30. Milzow et al., (2009) use a specific yield (or
drainable porosity) of 0.05 in a MODFLOW model of the Okavango Delta. The calibrated values
of S ranged between 0.001 and 0.05 throughout the basin. The uncertainty for DDENS, T, S,

RWL, and GWS are set to medium.

2.3 Morris Global Sensitivity Analysis
The GUA/GSA of the Pitman model begins with a qualitative screening assessment using the

Morris Method (Morris, 1991). The PDF for each model input (X;, i = 1,2,...k) is divided into p
discrete levels. A matrix of model runs is then formed by selecting values OAT from the PDF’s in
trajectories that efficiently sample throughout input space for each PDF. Though the sensitivity
calculation is one-at-a-time derivative, it may actually be considered global because it samples
throughout the multivariate parametric space. The elementary effects (F;) are obtained
according to the equation below, where A represents the step size across the levels.

o VXX X X X) = (X X 0 X))
’ A (2)

Morris proposes two sensitivity indices: y; and g; for each input. The index W represents the
average magnitude of change in the model output resulting from varying each input within its

PDF. This is essentially the direct importance or significance of the input. Because the model is

34



run in batch with varying inputs sets, each u; depends on all of the other inputs and can vary in
each model run. Thus, g;is the standard deviation of y;, and estimates higher-order
relationships such as nonlinear and interaction effects. The Modified Method of Morris
(Campolongo et al., 2007) has a number of improvements over the original Method of Morris.
It allows for an analysis of models with multiple outputs, allows factors to be grouped, and has
a more effective sampling strategy at no additional computation cost. Furthermore, the
enhanced sensitivity index u* is approximately as good as indices which are based on variance

methods (Campolongo et al., 2007).

2.4 FAST Variance Based Global Sensitivity Analysis
Once the most sensitive factors are identified using the Modified Method of Morris, a more

guantitative sensitivity analysis was conducted on only the most sensitive factors using the
variance-based Fourier Amplitude Sensitivity Test (FAST) (Cukier et al., 1978; Koda et al., 1979).
FAST uses Fourier analysis to decompose the variance of a model output into variances for each
input. The Extended FAST technique (Saltelli et al., 1999) allows for the quantification of higher
levels of variance. These higher levels of variance describe the interactions of inputs. V(Y)is
the summation of the first order variance in each input and also the residual which is the
variance attributed to all interactions. Thus, V(Y) describes the total variance of a single input

including higher levels of variance (Eq. 3).

V=DV + 2V DVt Vi

i<j i<j<l (3)
FAST also defines S;as a measure of global sensitivity. S;is the ratio of the variance that is
attributed to a single input divided by the total model variance. In a model in which there are
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no interactions the sum of all S;’s across all inputs is equal to one. In models where there are
interactions this sum will be greater than one. For the extended FAST GSA/UA, a model is run
for C = Mk iterations, where k is the number of inputs, an M is a value that ranges between
100’s and 1000’s (Saltelli et al., 1999). Since the extended FAST method uses a randomized
sampling procedure, it provides an extensive set of outputs that can be used in the global,
Monte-Carlo type uncertainty analysis, of the model. Thus, PDF’s, cumulative probability

functions (CDFs), and percentile statistics can be derived for each output of interest.

2.5 Climate Change Uncertainty
The previous methods are used to show how the model behaves under stationary conditions.

However, models are often used to model non-stationary scenarios such as climate change
where the baseline conditions change. Under these conditions, the original validation may no
longer be valid. This section presents a method to investigate the change in model uncertainty
under a non-stationary climate change scenario. The best fit model simulations (ceff > 0.70) are
inspected to identify the variety of input scenarios that provide a good model fit in the
stationary simulation. A threshold ceff of 0.70 is chosen which allows 0.31% of the runs (466)
to be included as best fit simulations. This number was determined to be appropriate for both
optimizing the definition of ‘optimal’ model outputs while at the same time maximizing the
number of passable simulations. These simulations are chosen from the FAST three region
model and are selected only from those runs that have a ceff of greater than 0 in each of the
three regions. The three region version is chosen over the five region version because the
model was originally calibrated using the three region approach. Wolski’s (2009) climate

change projections predict that temperature in the Okavango Basin will increase between 2.3
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and 3°C and rainfall will increase between 0 and 20% within the next 30 years. For this work, a
scenario that involves an increase in temperature of 2.6°C and an increase in rainfall of 15% will
be considered. The uncertainty is compared between the original scenario and the climate
change scenario. The goal of this exercise is not to calculate the uncertainty of the climate
change scenario, but rather the difference between the uncertainty of the model under
stationary versus a possible non-stationary changing scenario.

3. Results

The Morris and FAST GSA/UA methods were run using a three region approach that includes
the western headwaters, eastern headwaters, and southern basins as well as a five region
approach in which the southern basin is subdivided into middle, Omatako, and southern
regions (Figure 3). The objective functions are the mean annual flow and the ceff of the

monthly flows.

3.1 Morris Method
In the Morris Method three region approach the importance of both direct effects (x axis) and

indirect effects or interactions (y axis) is evident (Figure 4). The western region contributes the
most important inputs. Also of interest are the inputs ZMAX and RDF which are important in all
three regions. These inputs relate to rainfall and interception (Table 1). The inputs that are less
important are identified and set as constants in the next quantitative and more computationally
intensive variance-based sensitivity analysis. A cutoff of 0.2 on the direct effect axis was used
to separate the important inputs from the less important. This cutoff excludes the inputs that
are clustered around the origin and for clarity are not labeled. Though this cut-off is based on

visual inspection, the low level of importance shown for some of the input factors that are still
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included later in the following variance-based analysis demonstrates that the cutoff is

satisfactory.

In the Morris Method five region approach, as with the three region approach, both the direct
and indirect effects are important as evidenced by the even spread on both the x and y axes
(Figure 5). Similarly, ZMAX and RDF continue to be important in most of the five regions. A
cutoff at 0.1 on the direct effects axis is used to distinguish important inputs for further analysis
in the FAST GSA/UA (Table 2). Again, as with the three region approach, the unimportant
inputs are set to constants in future analyses. The low level of importance shown for some of
the input factors that are still included in the following analysis demonstrates that the cutoff is

satisfactory.

The regional approaches are compared to identify how regionalization affects input importance
(Table 2). The addition of the Omatako and middle regions does have an effect on the GSA
results; however this effect is not as overwhelming as might be expected given the proportional
size of the new regions. Only two inputs from the Omatako region and one from the middle

region fall above the cutoff for important inputs in the five regional approach.

3.2 FAST Variance Based Global Sensitivity Analysis
After the Morris Methods narrowed down the most important inputs, the variance-based FAST

analysis was then used to quantitatively compute the uncertainty and sensitivity in the three
and five regional approaches. The same two objective functions were considered: the mean
annual flow and the ceff. Again the ceff is the preferred objective function because it is able to
take into account the monthly variation in flow. However, when conducting the uncertainty
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analysis the use of the ceff becomes problematic because the uncertainty is measured between
regions. This comparison is not practical for three reasons. The first reason is that measured
data is required to compute the ceff and in the eastern headwaters and Omatako region there
is a limited amount of measured flow data. During calibration, 12 to 69 monthly measured flow
values were available for calibration in the middle reservoirs and none were available in the
Lower Omatako (Hughes et al., 2006) . The second problem is that the sub-basins must
confluence in order to compute a ceff for an entire region. In the eastern headwaters and the
middle region the sub-basins do not confluence. Finally, given the calibrated inputs (Hughes,
2006), the eastern headwater region underestimates monthly flows and results in a poor model
fit and a low ceff. In the equation for the ceff the numerator and denominators are both
squared, and as a result the poorer fit runs have exaggerated values for the ceff. Because of
these issues, the uncertainty analysis is conducted using the mean annual flow as the objective
function when comparing regions. But when the uncertainties of the regional approaches are
compared at the southern terminus of the River, the ceff is used as the objective function. For

the GSA these issues are not a problem and the ceff is the objective function.

For the GUA the mean annual flow is presented as regular and also normalized by the regional
catchment areas. This is done because the contributing area for the southern region is much
larger and actually contains the water from the eastern and western Regions and so it has
larger flows and as a result larger uncertainties associated with those flows (Figure 6). Through
normalization the differences in the flow variability due solely to the sizes of the regions are

negated.
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Normalizing the three regions by their areas shows the southern region becoming relatively
more certain and the eastern region relatively less certain (Figure 6). Normalizing the five
regions by their areas shows the southern region becoming more certain and the eastern and
western region becoming less certain (Figure 6). Omatako shows very little normalized
uncertainty, which is likely due to the small quantity of water that it contributes due to its arid
climate. The three and five region ceff’s of the monthly flow at the southern outlet are also
compared (Figure 7). This analysis shows that the addition of two regions does not add to the
uncertainty of the model results and are therefore somewhat superfluous from a management
perspective. The statistics of the uncertainty analysis confirms the similarities (Table 3). This
table can also be used to compare the results of this study to those of Hughes et al. (2010). In
Hughes study the ceff that the Pitman model produced for the uncertainty analysis ranged
between 0.21 and 0.83 in various South African Basins. However, here the mean is 0.23 to
0.25. The comparatively poor fit that is achieved in the Okavango Basin is likely due to selection
of probability distributions that were defined in this study and the catchment size. This study
assigned uniform distributions to the inputs while Hughes et al. (2010) used triangular
distributions. Additionally, this is a much larger watershed with 24 sub-basins while the Hughes

study focused on smaller watersheds (174-898 km?) with a maximum of three sub-basins.

The quantitative FAST GSA was also conducted for both of the regional simulations (Figures 8
and 9). In each of these simulations ZMAX in the western region is the most important input.
Additionally, the western RDF, southern RDF, and southern ZMAX show a high level of

importance in each regional simulation. Both of the regional simulations display a relatively
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large degree of interactions and higher order indexes which is in agreement with the Morris

results.

3.3 Climate Change Uncertainty
Hydrologic models are frequently used to predict conditions under non-stationary scenarios. In

these situations the original validation performed under the stationary conditions may not be
valid. This issue is possibly exacerbated when there are equifinality concerns as there may be
many equally probably input sets that are able to simulate equally good outputs and no way of
distinguishing between them. When the state of the system then changes and internal
relationships are modified, what was once an equinfinal result, may no longer be so.
Investigating the degree of equifinality and the change in uncertainty between a stationary and
non-stationary scenario (such as climate change) gives insights into the usefulness of the

Pitman model as a predictive tool.

For this analysis, the best fit model simulations from the FAST three region GSA/UA were
isolated to identify the variety of input scenarios that provide a good model fit. Similar to
Gupta et al.’s (1998) depiction and Hamby and Tarantola’s (1999) cobweb plots, input
trajectories are shown that map the top 30 model simulations (Figure 10). The lines in this
figure serve to demonstrate the various trajectories that best fit input sets may take as well as
the vales themselves. The lack of pattern or trend shows that there are many varying input
sets that are able to create a good model fit and thus a high level of equifinality. This is
expected given the data scarcity, the resulting widely varying output PDF’s, and the large

number of inputs. The best fit GUA model simulations (ceff > 0.70) were then run through a
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climate change scenario based on Wolski’s (2009) projections and the uncertainty was
compared between the original scenario and the climate change scenario. In the climate
change scenario rainfall was increased by 15% and temperature was increased by 2.6 degrees
throughout the basin. The goal of this exercise was not to calculate the uncertainty of the
climate change scenario, but rather how the uncertainty of the model changes under a possible
non-stationary condition. Results show an average increase in flow between the original
simulations and the climate change simulations by 28%. The uncertainty is also increased with
an 18% wider 95% confidence interval. This demonstrates that the uncertainty of the model
increases by 18% under this non-stationary condition. It is unclear this increased uncertainty is
related to the added input of rainfall versus the changing relationships between storages and

flows within the model due to changing hydrologic patterns.

4. Conclusions
Evaluating model uncertainty and identifying gaps in knowledge are important for the Adaptive

Management process. Doing so gives managers a measure of confidence in model results and
identifies areas for strategic monitoring whereby model results can be improved. This two-step
and multi-tiered regionalization GSA/UA of the Pitman model highlights the most important
and least important inputs, quantifies model uncertainty, compares regional groupings, and
explores the uncertainty of a non-stationary model scenario. The conclusions are useful when
interpreting model uncertainty, determining the usefulness of model predictions, identifying

gaps in knowledge, and focusing monitoring efforts.
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Through the sensitivity analysis, the most important and least important inputs were identified
within each region. The inputs are qualitatively ranked free of regional specification based on
the ceff (Table 4). The ranking is based on the summation of the Morris u* and o sensitivity
indexes in both regional simulations for each input. The most sensitive inputs are GPOW, RDF,
ZMAX, FF, and GW. The least sensitive inputs are T, S, RWL, DDENS, and GWS. Input
importance is also mapped on the model structure to identify the most important processes
(Figure 11). This map shows that rainfall distribution, catchment absorption,
evapotranspiration, and groundwater recharge are the most important processes and
groundwater runoff is the least important process. This map is especially useful in the NRC
(2004) Adaptive Management processes step 2: developing and revising the model. Using the
GSA results, the most sensitive inputs (i.e. GPOW, RDF, ZMAX, FF, and GW) should be focused
on first through additional research and monitoring. This will close the data gap, narrow the

PDF’s, and decrease the number of input combinations that will create equally good model fits.

Another point of interest is the large number of important inputs from the western region in
both the three and five region simulations (Figure 12). This is likely the result of the distribution
of rainfall in the northern portion of the basin and the larger size of the western headwater
region relative to the eastern headwater region. The majority of the rain falls in the
headwaters and this initial input drives much of the system. In the calibrated model, the
eastern and western headwaters receive on average between 1000 and 1280 mm of rainfall yr*
while the southern region receives between 540 and 640 mm yr. Additionally, the western

region is much larger than the eastern region and occupies 22% of the total basin the 11% that
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is occupied by the eastern region. Because of the importance of the headwater regions,

monitoring efforts that seek to improve model results should focus on these areas.

The uncertainty analysis that is normalized by the regional areas shows that the flows at the
downstream outlet are more certain than those in the headwater regions. This is not
necessarily intuitive as one might initially think that uncertainty would be compounded in the
downstream direction. This effect may be due to the more arid climate in the southern portion
of the watershed. In this region there is less input of water and more evapotranspiration. The
southern reaches of the rivers are losing reaches with the sum of the calibrated mean annual
flow in the eastern and western headwaters summing to 10,128 m>x10° and the mean annual
flow at the southern outlet at Mohembo only 8,465 m>x10° (Hughes et al., 2006). Thus, since
there are fewer important hydrologic inputs in the southern portion of the basin, the certainty
of the mean annual flow, when normalized by the area of the contributing basin, is increased in
the downstream direction. This reinforces how focusing monitoring efforts in the headwaters

will strategically decrease model uncertainty.

Given the data scarcity, and resulting wide PDF’s that were set for the inputs, there are multiple
input sets that can simulate the same goodness of model fit. This issue of equifinality was
further analyzed to evaluate the effects that it may have on using the model in a predictive
capacity for climate change projections. It was shown that, after isolating the best fit model
simulations, the 95% confidence interval of the average annual flow increased by 18% between
the original simulations and the climate change simulations. Thus, the uncertainty in the model

is compounded under a changing state such as climate change. It is unclear whether this
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increase in uncertainty is due to the increased rainfall, the changing hydrologic relationships, or
both. A manager may interpret this as an 18% increase in uncertainty between predictions
under stationary and this climate change scenario. This level of uncertainty is significant in the

context of management decisions.

Data scarcity presents many challenges for modelers and policy makers when calibrating,
interpreting model results, and applying models in predicative and dynamic capacities.
However, there are ways of managing for these challenges. Adaptive Management is
specifically designed for determining a course of action within the context of uncertainty. The
tools presented here are couched within the context of Adaptive Management and
guantitatively analyze model uncertainty in the light of practical management issues. This work
identifies which inputs should be focused on to reduce model uncertainty (GPOW, RDF, ZMAX,
FF, and GW) and also shows there is an 18% increase in uncertainty when applying the model to
a non-stationary climate change scenario. Thus, the model is shown to have significance and

applicability even in the presence of high levels of uncertainty and equifinality.
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Tables

Table 1. Input factor PDF's for the two regional simulations. [Low +15%, Medium +30%, High +45% of calibrated

values.]

Parameter Description Uncertainty
RDF™) Rainfall distribution function Medium
PI1 (mm mo™) Interception for veg type 1 Medium
PI2 (mm mo™) Interception for veg type 2 Medium
AFOR™! Percent area covered by veg type 2 Low
FFRix) Evaporation scalar for veg type 2 Medium
ZMIN (mm mo™) Minimum infiltration rate High
ZMAX (mm mo™) Maximum infiltration rate High

ST (mm) Maximum soil moisture storage Medium
pow*! Power function for unsaturated runoff High

FT (mm mo™) Maximum unsaturated zone runoff High
GW (mm mo™) Maximum groundwater runoff High
R Actual versus potential evaporation Medium
GPoOW™ Power function for groundwater runoff High
DDENS (km km™) Drainage density Medium
T (m%d?) Transmissivity Medium
S Storativity Medium
GWS™ Groundwater slope Medium
RWL (m) Rest water level Medium
RSF (%) Riparian strip factor High

*) Denotes unitless input
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Table 2. Important inputs for the 3 and 5 regional approaches. A v indicates importance. Gray shading
indicates agreement in importance/unimportance between the three and five region approaches.

Three Regions Five Regions

Process Input West East South | West East South middle Omatako
Rainfall RDF v v v v v v v
Interception Pi1

PI2 v

ZMIN v v
Infiltration TMAX % % % % % % %

L. RSF v

:E;:)potransplratlon AFOR v

FF v v v v
Actual/Potential ET | R 4
Unsaturated storage POW Y Y

FT v v v
Unsat. GW storage ST v v v

GW v v v v
Groundwater (GW) GPOW v v v v
storage T

S

RWL
GW discharge DDENS
Interbasin flow GWS




Table 3. Comparison of the three and five region uncertainty analyses for two objective functions (1) the ceff for
monthly flow at Mohembo and (2) the Mean Annual Flow in MCM at Mohembo.

. SEM Skew Kur
Mean Median SD .
o Y K
. -3 -3

coefficient 3 Region 0226 0411 9.77e° 498° 316 136
of Efficiency 5 pagion 0252 0405 7.88° 4.02° -320 152
Mean 3 Region 8399 8327 1941 165 0472  0.290
AnnualFlow 5 pooion 8365 8242 1791 136 0398  0.275

SD = standard deviation; SEM = standard error of the mean; Skew = skewness, kurt = kurtosis
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Table 4. Ranking of importance of input variables

(%) Uncertainty

Rank™* Input of PDE (%)

1 RDF Medium

2 ZMAX High

Important 3 GW High
4 FF Medium

5 GPOW High

6 ST High

7 R Medium

8 P12 Medium

Medium 9 FT High
Importance 10 ZMIN High
11 POW High

12 AFOR Low

13 PI1 Medium

14 DDENS Medium

15 S Medium

Less 16 T Medium
Important 17 RSF High
18 GWS Medium

19 RWL Medium

(+) Importance designated by the Morris Method through a total sum of first and higher order
interactions. Important greater than 10, 10 < Medium importance < 1, Low importance < 1.

Gex) | ow 1+15%, Medium +30%, High +45% of calibrated values.



Table 5. Stationary versus climate change confidence intervals (Cl). Units in flow (MCM).

Stationary Climate Change % Difference
Lower 95% ClI 7,373 9,923 29%
Average 8,108 10,822 28%
Upper 95% ClI 8,897 11,747 29%
Cl width 1,523 1,824 18%
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Figure Captions
Figure 1. Location Map

Figure 2. Model conceptualization.

Figure 3. (a) three and (b) five regional simulations of the Okavango Basin.

Figure 4. Morris Method three region GSA results for the ceff of monthly flow at Mohembo.
Figure 5. Morris five region sensitivity analysis for the ceff of monthly flow at Mohembo.

Figure 6. FAST uncertainty analysis for annual mean monthly flow at the outlet of each of the
regions. Flow is shown as (a) three region regular, (b) three region normalized by catchment
area, (c) five region regular, and (d) five region normalized by catchment area.

Figure 7. Uncertainty analysis of ceff’s for the three and five region approaches.

Figure 8. FAST three region sensitivity analysis for the ceff of the monthly outflow at
Mohembo. First order sensitivity in grey, higher orders in black, and the total sensitivity as the
entire bar.

Figure 9. FAST five region sensitivity analysis for the ceff of the monthly outflow at Mohembo.
First order sensitivity in grey, higher orders in black, and the total sensitivity as the entire bar.

Figure 10. Cobweb plot of best fit model trajectories. Input values are normalized (0-1) by the
ranges of their assigned PDF’s. Each line represents one of the top 30 best fit lines from the
three region simulation. These runs are chosen only from those that have a ceff greater than 0
in all regions.

Figure 11. Map of the model structure and the identification of the most important processes.
Black fill indicates the most important inputs, dark grey is medium importance, light grey is low
importance, and white indicates no importance (boundary conditions or outputs). Structure
adapted from Kapangaziwiri (2008) and Hughes et al. (2006).

Figure 12. Total sensitivity of ceff for outflow at Mohembo for (a) 3 and (b) 5 regional scenarios.
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Chapter 3. Objectively defining uncertainty in the face of data
scarcity using a reservoir model of the Okavango Delta,
Botswana

Abstract
Sensitivity and uncertainty analysis are tools that give mangers quantifiable confidence in

model results and give modelers and researchers guidance for optimizing models. The
Okavango Delta in Botswana is a large and unique inland Delta and one of the most pristine
large wetlands in Africa. The Okavango Research Institute (ORI) hydrologic model is a linked
reservoir model that is overlaid by a GIS grid model that was developed to simulate the affect
that the annual flood pulse has on the Delta. This model has been calibrated and validated in
the Delta however; a formal sensitivity and uncertainty analysis has not yet been conducted on
the model. The objective of this research is to conduct a global sensitivity and uncertainty
analysis (GSA/UA) on the ORI hydrologic model of the Okavango Delta in order to identify the
most important model inputs, to quantify the uncertainty in the model output, and objectively
define prior probability distributions through Monte Carlo Filtering. This research applies two
GSA/UA methods to the ORI model: the modified Method of Morris and the extended FAST
technique. The Morris method is a qualitative GSA screening technique and the extended FAST
method is a quantitative variance based GSA/UA technique. One of the largest criticisms of the
GSA process is the rather arbitrary methods for establishing probability distributions (PDFs).
Through this work, Monte Carlo Filtering is shown to be an objective method for redefining
prior PDFs and reducing model uncertainty. Results indicate that the most important inputs are

the volume thresholds, which determine the volume at which water will begin to spill out of
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each reservoir, followed by the floodplain porosity, which is important for infiltration, and the
island extinction coefficient, which is used to simulated transpiration. There is one reservoir,
Ngogal, which is highly interconnected and may be considered a keystone reservoir. Monte
Carlo filtering was used as an objective method for reassigning the PDFs and reducing model
uncertainty. These results identify Nqogal as a critical area for monitoring and managing
within the Delta, refine and reduce model uncertainty, and present a general method, useful

beyond this work, for objectively developing input PDFs especially where data is scarce.

1. Introduction
Because models are simplifications of reality they are inherently uncertain. Ignoring model

uncertainly undermines the value of a model for its use in the decision making process (Beven,
2006a). Understanding this uncertainty is important for several reasons. Understanding
uncertainty allows decision makers to acknowledge the reliability of models when weighing the
risk of various decisions (Saltelli et al., 2008). In addition, identifying sensitive factors allows for
the optimized allocation of resources for future data collection leading to the refinement of the
input values and a reduction of model uncertainty. Sensitivity analysis can also provide an
understanding of how input factors interact within the model structure. In a complex model,
these interactions may not be obvious and may have important impacts on the model output

due to their non-additive nature. (Saltelli et al., 2008)

Adaptive Management (AM) acknowledges uncertainty through a cyclical process that adapts
and improves based on continuous monitoring and assessment of goals and is advocated for

complex problems (Walters and Holling, 1990). Modeling is an integral part of the AM process
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as models are able to simulate large scale experiments and scenarios. As a cyclical process,

through AM models are continuously improved based on new information.

Global Sensitivity and Uncertainty Analysis (GSA/UA) and Monte Carlo Filtering (MCF) are two
tools that can be used to systematically understand and reduce the uncertainties within a
model and thus, assess and improve the model’s reliability (Scott, 1996; Saltelli et al., 2008).
GUA quantifies model uncertainty and GSA apportions the total model uncertainty to each of
the inputs. One of the biggest criticisms of GSA/UA is the rather arbitrary setting of prior PDFs.
MCEF can be used to objectively redefine prior PDFs to make the results of the uncertainty
analysis more realistic when there is no physical or empirical data to base the PDFs on
otherwise. This is particularly an issue in data scarce areas where there is little data available
for defining the PDFs. Using MCF to redefine prior PDFs based on realistic or acceptable model
results gives an objective way to set prior PDFs. This is particularly useful for management
purposes because only realistic model results are investigated. Redefining these PDFs allows a
GUA that more accurately represents the calibrated values and gives insights into the inner

working of the model.

This paper presents the work of a GSA/UA and MCF on a reservoir model in the Okavango
Delta, Botswana. The Okavango Basin is a large transboundary watershed in southern Africa.
Within the Basin, the Okavango River feeds the Okavango Delta, which is a large inland delta.
The Delta is an alluvial fan that spreads out on the edge of the Kalahari Desert. The water from

the Basin is evapotranspirated in the Delta and never reaches the sea. This inland Delta and its
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hydrology are particularly important and unique because it supports a diversity of wildlife and

people who otherwise exist in an extremely dry environment (Kgathi et al., 2006).

From 1975 to 2002 Angola, the largest landholder in the basin, has been in a civil war and as a
result economic development in the area has been limited (Kgathi et al., 2006). Current peace
in the area has removed previous barrier for development and commercial expansion and the
impacts on natural resources that may follow may be imminent. Additionally, climate change
projections show various scenarios for the future of the area which could alter the current
flooding patterns of the Delta (Milzow et al., 2010, Wolski 2009). As policy makers in the area
face management decisions, the availability of a hydrologic model that can simulate flows
within the Delta with some known degree of certainty will give managers the appropriate

confidence in predictive modeling scenarios.

The relatively empirical approach of the reservoir model has persisted due to the Delta’s
remote location, its large size, and the fact that the topography has little relief. The Delta is
located in northwest Botswana, no roads traverse the area, and trips to the internal portion are
possible only by air or boat. Furthermore, the system is quite large. Flooding extents in the
Delta range from 6,000 — 12,000 km? (Wolski et al., 2006) and the entire geologic alluvial fan is
approximately 40,000 km? (Gumbricht et al., 2005). The area also is extremely smooth and flat.
Maximum local relief is generally less than 2 or 3 m (McCarthy et al., 2003; Gumbricht et al.,
2001) and the standard deviation of transects are approximately 5°/1 km/km (Gumbricht et al.,
2005). Therefore, as in most wetlands, flow direction and inundation area is determined by

very slight changes in elevation. Traditional techniques that measure changes in elevation over
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this scale do not capture the shallow relief. Furthermore, temporal variations in flow are
caused by poorly understood and hard to model processes such as hippopotami movements,

sedimentation, and vegetation. Overall, data scarcity is a significant issue in this area.

A reservoir modeling approach has often been used to simulate flows in the Delta (Dincer et al.,
1987; SMEC, 1990; Scudder et al., 1993; Gieske, 1997; WTC, 1997; Wolski et al., 2006). A
review of these models can be found in Kiker et al. (2008) and Wolski et al. (2006). In the ORI
model, flows in the Delta are routed through linked reservoirs. The ORI links the reservoir
model to a GIS grid model which floods individual | km? pixels. The inundated status of each
pixel is based on probabilities gathered from historical satellite imagery of the flooding extents.
This model was developed specifically for the Okavango Delta and the outputs include reservoir
flooding extents as well as outflows from the distributaries. The ORI model has been calibrated
and tested (Wolski et al., 2006); however, neither a formal uncertainty nor sensitivity analyses
have been conducted on the model. Such an uncertainty and sensitivity analysis will give
reliability in the model providing managers with confidence in model results. This process will

also identify key areas and processes for managing and monitoring.

Outputs from the ORI model have been used by policy makers in the area (DEA, 2008). The
Okavango Delta Management Plan (2008) references the use of this model for predicting the
impacts of abstractions, seismic activity, climate change, and channel clearing. This model is

currently being used to predict climate change scenarios (Wolski, 2009).

The objectives of this paper are to assess the ORI model’s to model uncertainty, provide

confidence in model results, and identify areas where future work may enhance model
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performance. This is done by conducting a GSA/UA and MCF on the model. Prior probability
density functions (PDFs) will be developed to represent the range of plausible values for any
given input. Inputs factors here will be defined as non-time series variables in the model. The
GSA/UA will use a framework in which the Modified Morris GSA (Morris, 1991; Campolongo et
al., 2007) screening method will be employed followed by the quantitative extended FAST
GSA/UA technique (Cukier et al., 1978; Koda et al., 1979; Saltelli et al., 1999). Monte Carlo
Filtering (Saltelli et al., 2008) will be used to objectively redefine PDFs and refine model
uncertainty. Through this methodology, the sensitivity and uncertainty of the model will be
guantified, model uncertainty will become more accurate and precise, and a deeper
understanding of the model structure and reliability will be gained. For the purposes of this
research and in accordance with Wolski et al.’s original calibration (2006), the average
inundation area of the Delta as well as the individual reservoirs will be the objective function.
This takes into account not only the entire Delta, but also the individual reservoirs and their
behaviors. The inundation area is an appropriate objective function because in the absence of
good topographic data it is a proxy for volume, and is an important social and ecological factor

with regards to floods and droughts.

2. Methods

2.1 The Study Site: Okavango Delta, Botswana
The Okavango Basin is a large transboundary [maximum flooding extents 12,000 km? (Wolski et

al., 2006)] watershed located in southern Africa that is shared between three countries: Angola,
Namibia, and Botswana (Figure 1). River flow originates in the Angolan portion of the Basin

where rainfall ranges from 1600 mm yr in the north to 600 mm yr in the south. Ninety-five
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percent of the runoff generating area is contained within Angola (Hughes et al, 2006). The two
downstream basin nations: Namibia and Botswana are much more arid with rainfall averaging
approximately 450 mm yr'’. Angola is also more mountainous, with elevations ranging between
1,200 and 1,800m, while the Botswana portion of the Basin is extremely flat, with elevations

ranging between 900 and 1,000m.

Water flows in a delayed annual flood pulse through the Okavango River from Angola, through
Namibia, and then into Botswana, which contains the Okavango Delta. Rainfall in Angola occurs
between December and March. It takes two months for this flood pulse to reach the top of the
Delta and another four to five months to attenuate through the Delta, finally reaching the distal
ends from August through October (Wolski et al., 2006). This water never finds the sea and
instead spreads out over the flat alluvial fan that is the Okavango Delta and is then evaporated

on the border of the Kalahari dessert.

2.2 The ORI model
Wolski et al.’s ORI model (2006) is the most recently developed linked reservoir model created

specifically for the Okavango Delta (Figure 2 and 3). The ORI model represents flood duration,
flood frequency, flooding extents, and outflow from the Boro River at Maun (Figure 2). The
model operates on a monthly time step. Flow is input at the top of the Delta according to
gauge data. The volume of water in each reservoir is then simulated by the continuity equation
where Vis the volume of water, / is inflow, ET is evapotranpiration, P is precipitation, Q is

outflow, and Qjy is infiltration to groundwater (Wolski et al., 2006).

av
G=1—ET+P—Q—Quns €Y
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The inundated area is related to the volume of water through a power relationship. In this
equation A is the inundated area, V is the volume of water, and n and b are empirical

coefficients which are based on topographic data.

A =nVPb (2)

Upstream reservoirs may have several outlets and can feed more than one downstream
reservoir. Model inputs for each reservoir include area, topography, evaporation, and flow
variables (Table 1 and Figure 3). Some of these inputs are constant throughout the model
(extinction depths, porosities, and n in the area/volume relationship), and some vary between
the reservoirs (b in the area/volume relationship, delay, rainfall ratio parameter, and
groundwater reservoir areas), and some vary between the reservoir connections (flow
resistance and volume threshold). Outputs from the reservoir model include monthly

inundation area and outflow from the Boro distributary.

Groundwater flow and infiltration processes are represented by a series of sub-reservoirs
including the surface reservoir, two floodplain groundwater reservoirs, and two island
groundwater reservoirs. Water in the surface reservoir infiltrates into the floodplain
groundwater reservoirs. Water in the floodplain groundwater reservoir then flows to the island
groundwater reservoirs. The second island and second floodplain groundwater reservoirs are

activated based on the volume of the flood.

Actual evaporation is based on potential evapotranspiration. Transpiration is not simulated

with specific regard to types of plants. Evapotranspiration in non-inundated areas uses the
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concept of an extinction coefficient which simulates a linear decrease in the rate of
evapotranspiration with depth from the surface. There is little meteorological data available
for the interior of the Delta. However, a weather station in Maun, on the border of the Delta,
has time series data from 1970 to the present. The model uses the Penman-Montieth equation
(Allen et al., 1998) to calculate the reference crop transpiration. These calculations were
adjusted based on weather station measurements made inside the Delta and also with
measurements from an eddy covariance system located at Maun and Mxaraga (Wolski et al.,

2006).

Rainfall is input over the inundated areas of the Delta based on an inverse distance-weighted
relationship between two weather stations in the area. The rainfall ratio parameter is used to
vary the rainfall in the reservoirs based on this relationship. In the model, rain within the Delta

is not simulated as falling on the non-inundated areas and cannot directly raise the water table

The ORI model links this reservoir model to a GIS model to simulate the spatial distribution of
the flood. The GIS model is based on satellite imagery of flooding extents. A Gaussian
probability density function (PDF) was assigned to each pixel describing the likelihood of the
pixel being inundated given the size of a flood. Then, given a volume of water in the reservoir
model each pixel is assigned an inundation/non-inundation status based on the more likely

probability.

The model was calibrated manually through trial and error adjustments of the inputs (Wolski et
al., 2006). The objective functions for calibration were the flooding extents and outflow from

the Boro River. The estimation of flooding extents is derived from satellite imagery available
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from McCarthy et al. (2003). The Delta was gridded and in each image cells were assigned a

flooded/non-flooded status. Outflow from the Boro River is gauged in the river.

Results from the ORI model show good correlation with observed data. The model produces a
monthly inundation area that compares to observed data with a root mean squared error
(RMSE) of 528 km? and a correlation coefficient of 0.90 for the entire Delta (Wolski et al.,
2006). Additionally, the outflow at Maun shows a RMSE 0f 11.8 M m3/month and a correlation

coefficient of 0.91 when compared to observed flows (Wolski et al., 2006).

2.3 Global Sensitivity and Uncertainty Analysis
There are a number of different approaches available for conducting a sensitivity analysis on

models ranging from simpler one-at-a time (OAT) variational methods to advanced global
techniques (Salteli et al., 2008). With OAT techniques the variation of the model output is
investigated through changing a single model input at a time. This traditional sensitivity analysis
method is limited since it usually explores a small parametric range, can only consider a few

inputs, and does not account for interactions between inputs (Saltelli et al., 2008).

When model responses are non-additive and non-linear, as with many complex models, simple
OAT techniques are not appropriate and global techniques that evaluate the input factors of
the model concurrently over the whole parametric space (described by probability density
functions) are more appropriate. Different types of global sensitivity methods can be selected
based on the objective of the analysis (Cacuci, 2003; Saltelli et al., 2008). This study uses a
model evaluation framework around two such modern global techniques, a screening method
(Morris, 1991) and a quantitative variance-based method (Saltelli et al., 1999). This two-step
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process has been used in the examination between input output relationships in several
environmental investigations (Mufioz-Carpena et al., 2007; Mufioz-Carpena et al., 2010; Fox et
al., 2010; Jawitz et al., 2008; Chu-Agor et al., 2011). The screening method allows an initial
reduction in the number of inputs to use in the more computationally intensive quantitative
FAST sensitivity and uncertainty analyses. Global sensitivity methods can yield four main
products for the Okavango application. (1) GSA can be used to explore model behavior and give
an assurance of the absence of errors (Saltelli et al., 2008). (2) GSA provides a ranking of the
importance of the inputs. This is useful in prioritizing future data collection and calibration
techniques (Saltelli et al., 2008). (3) GSA also indentifies the type of influence of the important
inputs (first order or higher interactions) (Saltelli et al., 2008). (4) An uncertainty assessment of
the model can also be used as the basis for the risk assessment of proposed management

scenarios.

2.3.1 Modified Method of Morris

The GSA/UA of the ORI model begins with a qualitative screening assessment using the Method
of Morris (Morris, 1991). The Morris method is less computationally intensive than other
guantitative methods and is therefore used to screen for the most sensitive or important
inputs. The least important inputs are then set to constants and the most important inputs are
further examined using the FAST quantitative GSA/UA. Each model input (X;; i =1,2,...k) is
assigned a PDF which is divided into p levels. An input matrix is formed that describes the
region of experimentation with k factors and p levels. Values are selected from this matrix for

model simulations according to an efficient sampling trajectory. When performing the Morris
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method, the model is run for n(k+1) iterations, where k is the number of inputs and n may vary

between 4 and 10.

The probability distribution function (PDF) of elementary effects (F;) is obtained through
randomly sampling values in the parameter space (Xy, Xz,...,X;) and then computing according to
Eq. 3.

y(Xi""’Xi—laXi:A7Xi+1""’Xk)_y(x)

F, =d(X)=
A (3)

Morris proposes two sensitivity indices: p is the mean of F;representing the general magnitude
of effect of the uncertainty of an input on the model output and o is the standard deviation of
Fi, which estimates higher-order relationships such as nonlinear and interaction effects. This
standard deviation represents the spread of the importance that each input is responsible for

based on values chosen for the other inputs.

The Modified Method of Morris (Campolongo et al., 2007) has a number of improvements over
the original Method of Morris. It allows an analysis of models with multiple outputs, allows
factors to be grouped, and has a more effective sampling strategy at no additional computation
cost. Under the Morris method elementary effects are local OAT measures but this method
may actually be considered global because u* is an average of the elementary effects.
Therefore, the sensitivity index pu* is approximately as good as indices based on variance
methods. On the Morris scatter plots the x axis ranks the direct or first order of input factor

importance and the y axis ranks the higher order interactions of the input factors. These higher
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order interactions represent the range of the importance of an input that depends on the
values for the other inputs.

2.3.2 Quantitative Variance-Based FAST Global Sensitivity and Uncertainty Analysis

Once the most sensitive factors are identified using the Modified Method of Morris, a more
guantitative sensitivity analysis is conducted on the most sensitive factors using the Fourier
Amplitude Sensitivity Test (FAST) (Cukier et al., 1978; Koda et al., 1979). FAST uses Fourier
analysis to decompose the variance of model outputs into first order variances for each input.
The Extended FAST technique (Saltelli et al., 1999) also allows for the quantification of higher
levels of variance. These higher levels of variance describe the interactions between inputs.
V(Y) describes the summation of the first and higher order interactions as the total variance of a

single input according to Eq. 4.

V=DV + 2V DVt Vin

i<j i<j<l (4)

Vis then the summation of the first order variance for all of the inputs (V;) and also the residual
which is the variance attributed to all interactions (Vi j etc). FAST also defines S; as a measure of
global sensitivity. S;is the ratio of the variance that is attributed to a single input divided by the
total model variance. In a model in which there are no interactions the sum of all Si’s across all
inputs is equal to one. In models where there are interactions this sum will be greater than
one. One limitation of this variance-based technique is that it cannot be used on factors that
are interdependent (Crosetto and Tarantola, 2001). When performing the extended FAST
GSA/UA, a model is run for C = fM iterations, where M is a number between 100’s and 1000’s

and fis the number of inputs (Saltelli et al., 1999).
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Both the Modified Method of Morris and Extended FAST rely upon sampling values from PDFs
for each uncertain input factor and running the model based on these sampled data sets.
SimLab v3.2.6 (SimLab, 2011) software was used to sample input PDFs and construct sets of
model inputs. The model is then run multiple times based on the input sets created by SimLab.
The model results are combined into SimLab with the inputs to obtain to Method of Morris

statistics and FAST indexes.

2.4 Monte Carlo Filtering
Monte Carlo Filtering (MCF) is an additional method that can be used to decrease uncertainty

(Saltelli et al., 2008; Rose et al., 1991). The Okavango is an area where data is particularly
scarce and as a result the prior PDFs are wide and rather arbitrary. MCF can be used to
objectively redefine and truncate prior PDFs to reduce and refine uncertainty. In MCF, a

threshold is established such that model outputs are classified as either behavioral (B) or non-
behavioral (B). Based on whether or not the output exceeds the behavioral threshold, two

subsets of the input set X; are defined as X;/B and X/B.

To determine if X;/B is statistically different from Xi/B the two-sided Smirnov test is used on

each input factor independently. The null hypothesis (H,) is that the distribution of the inputs
producing B is equal to the distribution of inputs producing B. Following, hypotheses with

£.(X.|B)and f (X.|B)asthe PDFs for input factor X; are:

H,: f,(X,|B)=f,(X,| B) (5)

H,:f,(X,|B)# f,(X,|B) (6)
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The Smirnoff test statistic is:

d,, (X)) =sup, || F, (X, | B)= F, (X, | B)| o)

F is the cumulative distribution function for input factor, X;, sup is the maximum vertical

distance between the behavioral and non-behavioral cumulative distributions, and || is the
absolute value. Alarge value for d,, ,implies that f, (X;|B)and f (X, | B) are statistically

different from each other and also that X; is an important factor in defining the behavior of the

model. (Saltelli et al., 2008)

2.5 Selection of Prior Input Probability Distributions
A careful and methodical selection of the prior PDFs for each input is especially important

because it can be the most subjective step in this process and has significant impacts on the
results. Probability distributions are determined based on literature values and expert opinion.
When the data for the inputs shows no apparent distribution such as normal or triangular, a
uniform PDF allows for equal probability of selection across the defined range (Mufioz-Carpena
et al., 2007). Because of the lack of data that would suggest otherwise and in the spirit of
conservatism, uniform distributions are used as the default prior distribution type. In an area
where more data is available autocorrelation tests could be done to show dependence

between data. However, here no such data exists and inputs are assumed independent.

The area volume relationships for the reservoirs, n and b;, were based on 2 foot contour
topographic data. The inputs n and b;are empirically fit according to Eq. 2. In the calibrated

model, n is set to 25 and b; ranges between 0.62 and 0.76 depending on the reservoir, i.
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Because of the absence of literature values regarding these inputs and the empirical nature of
their derivation, the PDFs for n and b; are each designated as uniform, and vary by some
percentage around the calibrated value. The uniform PDF for n is set to Uniform (£20%) of the
calibrated model. Setting PDFs for b; is more problematic since, as a power exponent, varying b;
by £+ 20% of the calibrated values makes the model fail occasionally. As a result, the
uncertainty associated with these inputs is set to a more limited distribution: Uniform (£10%)
of the calibrated value. In the absence of literature values or other expert opinion the default
PDFs for the remainder of the inputs are assumed to range between +£20% of the calibrated

value.

The volume threshold input factors, v,;, where a is the upstream reservoir and z is the
downstream reservoir, determine at what level water flows from one reservoir to another.
These inputs are empirically derived and were used to calibrate the model (Wolski et al., 2006).
There are 20 volume threshold inputs. Due to the absence of literature values describing
ranges of probably values for these inputs, the PDFs are set to uniform, varying +20% of their

calibrated values.

Each reservoir is divided into an area of floodplain and island so that groundwater flow
between the two areas can be represented. There are 16 floodplain, fa;, and 16 island area
inputs, ia;. The PDFs for the area for floodplains and islands within each reservoir is set to

uniform, varying +20% of the calibrated values.

The island and floodplain extinction depths, idet and fdet, are important for evapotranspiration,

empirically represent rooting depth, and one value for each is used to represent the entire
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Delta. The calibrated value was 20m for the floodplains and 5m for the islands. There are no
literature values for extinction depths in the Okavango Delta or surrounding areas. However,
literature values of modeled and measured values in for extinction depths in other areas vary
between 1.5 and 60m (Shah et al. 2007, Niswonger et al., 2006, and Owe and Brubaker, 2000).
This large range limits the capability of generating a probability distribution based on good
physical data. Consequently, uniform distributions of £20% of the calibrated values are

assigned for the island and floodplain extinction depths.

The reservoir time constant input factor, k,;, is equivalent to surface flow resistance. As with
the volume thresholds, there are 20 reservoir time constant inputs in the model. These values
vary between 0.02 and 5. This input factor was used to originally calibrate the model (Wolski et
al., 2006). In the absence of literature data regarding values for the reservoir time constant in
the Okavango Delta, the prior PDFs are designated as uniform, varying +20% of the calibrated

value for each reservoir.

Soil porosity is represented as two input factors in the model: island (ipor) and floodplain (spor)
soil porosity. In the model, these factors are constant throughout the Delta, are not reservoir
dependant, and are each set to 0.3. Literature values show soil porosity varying between 0.29
and 0.59 in the Okavango Delta (Wolski and Savenije, 2006) and between 0.43 and 0.49 in
Kalahari Sands (Wang et al., 2007). Based on these literature values, the PDF for both the island

and floodplain soil porosities are set to be uniform varying between 0.29 and 0.59.

The delay input factor, delay;, is an empirically derived discrete switch that slows the water flow

and is turned on in four of the reservoirs in the calibrated model. This input was used in
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calibrating the model. For the sensitivity analysis, the delay inputs which are turned on the

calibrated model are set to turn on or off with a probability of 50%.

Rainfall is input into the model using meteorological data collected from Maun and Shakawe.
An inverse distance-weighted coefficient was used to allow for proportional differences in
rainfall amounts in each of the 16 reservoirs, m. In the calibrated model, values for m range
between 0 and 0.9. To investigate the full range behaviors that this input may have on the

model these inputs are assigned uniform PDFs that range between 0 and 0.9.

3. Results and Discussion

3.1 Modified Morris Global Sensitivity Analysis
With 114 inputs, the model was run 1150 times using the Morris method (Table 1). Two

general conclusions were drawn from the Morris method sensitivity analysis (Figure 4). First,
because the inputs are scattered on both the o and u* axes, both direct (first order) and
indirect (higher order) effects are important.  Second, a ranking of input significance on the

inundated area output is determined.

The results showed that there are nine inputs which stand out as the most sensitive, each
falling above 300 on the direct and indirect axis of the Morris graph (Figure 4). These most
sensitive inputs are: the island extinction coefficient (idet), the floodplain soil porosity (fpor),
the exponential coefficient in the area volume relationship for Xudum (bs), and the volume
thresholds for the linkages between the Ngogal and: Boro (v,s), Manuachiral (v,;), Xudum
(v25), Thaoge (v24), Ngoga2 (v23), and Selinda (v,9). From the strong sensitivity of these six

volume thresholds, the importance of this type of model input is apparent. There are a total of
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20 volume thresholds in the model. In the Morris analysis, six of the 20 volume thresholds
stood out as highly sensitive inputs and they all flow out of the Nqogal reservoir (Figure 4).
There are a total of seven volume thresholds that flow out of Nqogal. The one volume
threshold that originates from Ngogal but is not highly sensitive is linked to the Boro reservoir
where there are duplicate links to the Nqoga reservoir. This double link in the Boro, which
splits the flow between Nqogal and the Boro, is unique in the Nqgogal reservoir and may
explain why this volume threshold did not display the same level of sensitivity. Nqogal is a
keystone reservoir that has important influence in determining how the flood is routed
between the reservoirs and is responsible for much of the sensitivity in the model. The
identification of Ngogal as a keystone reservoir and the volume thresholds as important inputs
has management implications. This area should be focused on for monitoring and managing
because it is likely that changes in this area could affect how the water is apportioned to the

downstream reservoirs.

3.2 FAST Variance Based Global Sensitivity
The subset of the most sensitive inputs identified in the Morris method was selected for further

investigation in using the Extended FAST method (Table 2). For this GSA/UA, the model was run
8,289 times, while varying the nine most sensitive inputs that were identified in the Morris
method (idet, fpor, bs, Vi, V27, Vas, Vag, V23, and vag), throughout the parameter space that was
defined by the probability distributions. All other inputs were set to constants. As with the
Morris analysis, the output of interest is the flooding extents for each reservoir as well as for

the entire Delta.
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The FAST GSA corroborated the Morris results showing that while the higher order interactions
within the model are important, the first order interactions dominate the model’s behavior
(Figure 5 and 6). The higher order interactions account for approximately 20% of the totally
model sensitivity. In the FAST GSA the first order interactions are all relatively similar while the
higher order interactions vary somewhat between the inputs. The fact that each of the
important volume thresholds flowing out of the Nqogal reservoir has similar levels of
importance shows that, for management purposes, this entire reservoir should be monitored

for changes and protected from disturbance.

3.3 Monte Carlo Filtering
Using the results from the FAST GSA, MCF was conducted to objectively reduce model

uncertainty. For MCF, the FAST results were filtered to find simulations that matched within
+50% of the calibrated output (average inundation area) for each reservoir. Behavioral
solutions were sought where each reservoir’s average inundation was within this range. No
single GSA result produced a simulation in which all of reservoirs were within £50% of the
calibrated values. The inputs were examined to find the source of this issue. The important
volume thresholds, va3, Va4, Va5, V27, and vagare all for spillover from Nqogal into various
reservoirs. All prior PDFs for these inputs were set to +20% based on the empirical nature of
the model structure and the lack of data providing physical evidence. The original calibrated
values for these thresholds range from 580 to 700. For each GSA simulation, each of the
volume thresholds was randomly set within the same range of £20% and water was diverted
between the reservoirs. It was determined that no behavioral solutions were found because

the PDFs were too large and when the volume thresholds in va4, Vs, V2, and vogwere set to
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opposite ends of their distributions, the water was spilling into one of the reservoirs and drying
out the others. For this reason, the PDFs for the important volume thresholds were truncated

to £10% and the GUA was rerun.

Originally, £50% was chosen as the behavioral threshold goal but this resulted in a minimum
number of behavioral solutions even after the truncation of the in important volume threshold
PDFs. Increasing the behavioral threshold to +60% of the calibrated value increased the
number of behavioral solutions thus, increasing the likelihood of finding statistical differences
between behavioral and non-behavioral distributions. The truncation of the important volume
threshold PDFs resulted in 103 out of 8,289 simulations meeting the behavioral criteria. The
two-sided Smirnov test showed that the behavioral distributions for v,3, and v,7were
significantly different from the non-behavioral distributions. These are two highly linked
reservoirs (Figure 3). The new filtered PDFs for v,3, and v,; displayed somewhat triangular
distributions (Figure 7). New normal PDFs were assigned with v,3 T ~ (585, 645, 715) and v,, T~

(522, 616, 638). The FAST GSA/UA was rerun with the new prior distributions.

3.4 FAST Variance Based Global Uncertainty Analysis
The FAST MCF GUA results were normalized by the maximum inundation area to be able to

compare the results across reservoirs. The results revealed a range of responses to the
uncertainty analysis amongst the internal reservoirs (Figure 8). The upstream reservoirs and
Maunachiral demonstrated the least amount of uncertainty. This uncertainty increases in the
middle and downstream eastern reservoirs and reaches its maximum in the western reservoirs.

This trend mirrors the physical dynamics in the Delta where the upstream areas are more
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confined, permanently flooded, and display little variation, while the downstream areas are
seasonally flooded and exhibit more variation in their annual flooding extents. Furthermore, in
the FAST results some of the reservoirs display a Gaussian distribution (Mborga and Khwai) and

some have long tails (Selinda).

After MCF, confidence intervals, standard deviations, standard error of the mean, skewness,
and kurtosis for the flooding extents for each reservoir and the entire Delta were constructed
to examine the variance (Table 2). This data shows the varying levels of uncertainty in the
reservoirs. As was shown in Figure 8, the upstream reservoirs vary minimally and the
downstream reservoirs displaying much more uncertainty. As can be seen in the standard
deviation of the total Delta, the uncertainty in the total Delta is not the summation of the
uncertainty in the individual reservoirs. This may be due to the fact that the inputs for this
uncertainty analysis have little to do with the water balance and are more related to where the
water is moving around within the different reservoirs. In the various simulations the total

volume of surface water is changed less than which reservoirs the water is routed to.

The MCF GUA was compared to the original GUA (Figure 9 and Table 3). MCF reduced
uncertainty in all of the reservoirs except two (Panhandle and Nqogal) (Table 3). These two
reservoirs are both upstream from where the effects of the important volume thresholds
should be felt. Reduction of uncertainty downstream from Nqgogal varied between 13 and
189%. Thus, MCF was used to objectively truncated the prior PDFs and reduce the model
uncertainty improving the precision of the results. Additionally, the MCF produced modeled

results that more closely represented the calibrated ranges (Figure 9). After the MCF, the
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results cluster around the calibrated values more so than before this additional analysis.

Therefore, MCF enhanced both the accuracy and the precision of the uncertainty analysis.

4. Conclusions
This GSA/UA of the ORI reservoir model provides important insights into the sensitivity and

uncertainty of the ORI model and into reservoir models in general. These insights are useful for
modelers when in interpreting and defining model uncertainty and for policy makers through

providing insights into model reliability and identifying important areas of the system.

Managers may use the results of a sensitivity analysis to strategically monitor and identify and
optimize model reliability. The Adaptive Management process is a cyclical process that is
constantly modeling, monitoring, learning and improving. This work has identified important
areas for study that will optimize the learning process. The greatest hindrance to modeling the
hydrology of the Delta, as shown by this work, is the lack of topographic data. This sensitivity
analysis highlights the importance of volume thresholds in the ORI reservoir model and
particularly the keystone reservoir Nqogal. Future monitoring efforts, which are aimed at
improving model performance, should be focused on understanding the topography of this
area and how water is routed from this area to the distributaries. Managers should be aware
that any changes in the Ngogal area may have dramatic downstream consequences.
Additionally, the MCF reduced uncertainty which improves model reliability and adds
confidence to model results which is helpful for managers when making decisions based on

these results.
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This exercise was useful for modelers because it reduced model uncertainty and also identified
the importance of model inputs. During this sensitivity analysis a number of inputs were shown
to be relatively insensitive and have little impact on the model outputs. Insensitive inputs
include kg, ia;, and m;. In future modeling efforts these inputs may be ignored or set to
constants in order to simplify modeling and calibration without compromising accuracy.
Conversely, the inputs: v,,, idet, and fpor were found to be particularly sensitive. Additionally,
Ngogal was identified as a keystone reservoir. Future calibration efforts should start by
adjusting these inputs within their likely bounds. In particular v,, was found to be quite
sensitive and future efforts may focus on obtaining physically determined values for v,,. Doing
so may not only improve the model but will also result in a more physically representative

model.

Ivanovi¢ and Freer (2009) point out that it is especially difficult to objectively test the
uncertainty of inputs for empirical models and that most methods proposed thus far have been
subjective (Beven, 2006b; Beven et al., 2007; Goldstein and Rougier, 2009). Pappenberger and
Beven (2006) also make the point that uncertainty analyses may be too subjective to be of
practical use. In this work MCF was used in conjunction with GSA/UA to explore how PDFs can
be objectively set and model uncertainty reduced. This is especially an issue in data poor areas.
MCF was used to objectively redefine prior PDFs based on behavioral outputs and decrease
uncertainty. This is a function of the structure of the reservoir model and the uniform
distribution of the inputs. In the GUA, changing the volume thresholds shifted water from one

reservoir to another in a physically unrealistic manner. When the thresholds were given
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uniform distributions and assigned values on opposite ends of their distributions, one reservoir
would fill up while the others remained empty. Thus, the narrow uncertainty bounds clustered
around the origin in the original GUA for these inputs. Changing these input PDFs based on the
behavioral distributions narrowed their ranges and forced the majority of the inputs toward the
calibrated values. This reduced uncertainly and it moved the outputs closer toward the
calibrated valued (Figure 9). Therefore, this MCF method successfully redefined the behavioral
PDFs so that the model outputs more closely resembled the calibrated values in precision and

accuracy.

In conclusion, this work has technical and management implications by presenting an objective
way of defining prior PDFs, reducing model uncertainty, and identifying important areas for
study. As the ORI model is used and refined in the future, these points can optimize how the
model is improved. The MCF method for defining prior PDFs is a generic tool that can be used

to improve any GSA/UA application, especially in data poor areas.
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Tables

Input Units Prior PDF cv Description
fdet m u(4,6) 5 Floodplain extinction depth
Spatially idet m uU(16,24) 20 Island extinction depth
Uniform fpor % U(0.29,0.5) 0.3 Floodplain soil porosity
ipor % U(0.29,0.5) 0.3 Island soil porosity
n Unitless U(20,30) 25 Area/volume coefficient (Eq. 2)
1 by Unitless U(+20%*) 0.62
2 b, Unitless U(+20%*) 0.71
3 bs Unitless U(+£20%*) 0.76
4 b, Unitless U(+20%*) 0.73
5 bs Unitless U(+£20%*) 0.76
6 b Unitless U(+£20%*) 0.76
7 b, Unitless U(+£20%*) 0.72
8 bg Unitless U(+20%*) 0.72 Area/volume coefficient (Eq. 2)
9 bg Unitless U(+20%*) 0.73
10 bio Unitless U(+20%*) 0.73
11 b1 Unitless U(+20%*) 0.73
12 b1, Unitless U(+20%*) 0.73
13 bis Unitless U(+20%*) 0.71
14 b4 Unitless U(+£20%*) 0.72
15 bis Unitless U(+£20%*) 0.72
16 bis Unitless U(+20%*) 0.73
1 Viia Mm?®  U(+20%*) 500
2 Vi1b Mm?®  U(+20%*) 2000
3 Va1 Mm?®  U(+20%*) 580
4 Vaa Mm?®  U(+20%*) 700
5 Va3 Mm?®  U(+20%*) 700
6 Vas Mm?®  U(+20%*) 400
7 Vas Mm?®  U(+20%*) 700
8 Vag Mm?®  U(+20%*) 700
9 Vs Mm> U(+20%*) 650 Volume threshold
10 Vs Mm?®  U(+20%*) 250
11 Vs Mm?®  U(+20%*) 350
12 V1 Mm?®  U(+20%*) 450
13 Ve Mm?®  U(+20%*) 500
14 Vo3 Mm?®  U(+20%*) 210
15 Vo1 Mm?®  U(+20%*) 300
16 V7, Mm?®  U(+20%*) 300
17 V73 Mm?®  U(+20%*) 300

104



Input Units Prior PDF cv Description

18 Vs Mm?®  U(+20%*) 300

19 Vis Mm> U(+20%*) 700 Volume threshold
20 Vie Mm?®  U(+20%*) 700

1 K11a Months  U(+20%*) 0.3

2 k1 1b Months  U(+20%*) 5

3 ka1 Months U(£20%*) 1.5

4 ki Months U(£20%*) 1

5 ka3 Months U(+20%*) 4

6 koa  Months U(+£20%*) 0.12

7 kas Months U(£20%*) 3.8

8 Ky Months U(£20%*) 1.5

9 ka7 Months U(£20%*) 1

10 ks Months  U(£20%*) 3 Resistance to flow (residence time)
11 ks Months  U(+20%*) 0.1

12 ke:  Months U(+£20%*) 0.09

13 ke  Months U(+£20%*) 0.02

14 kes  Months U(+£20%*) 0.02

15 k71 Months U(£20%*) 1.7

16 k.o  Months U(+20%*) 0.8

17 k73 Months U(£20%*) 1

18 kg Months U(£20%*) 5

19 kis  Months U(+20%*) 0.1

20 kie  Months U(+20%*) 0.3

1 delay; Binary D(0,1) 1

2 delay,  Binary D(0,1) 1 Delay input for units
3 delay;  Binary D(0,1) 1

4 delay, Binary D(0,1) 1

1 m; % U(0.1,0.9) 0.1

2 m, % U(0.1,0.9) 0.5

3 m3 % U(0.1,09) 0.8

4 ma % U(0.1,0.9) 0.4

5 ms % U(0.1,09) 0.8

6 Me % U(0.1,09) 0.8

7 m; % U(0.1,0.9) 0.5

3 M % U(0.1,0.9) 0.4 Rainfall ratio input
9 Me % U(0.1,0.9) 0.4

10 M1o % U(0.1,09) 0

11 M % U(0.1,09) 0

12 M1 % U(0.1,09) 0

13 M3 % U(0.1,09) 0

14 M1a % U(0.1,0.9) 0.9

15 Mis % U(0.1,0.9) 0.9
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Input Units Prior PDF cv Description
16 Mie % U(0.1,0.9) 0 Rainfall ratio input
1 fa, km?>  U(+20%*) 184
2 fa, km?>  U(+20%*) 100
3 fas km®>  U(+20%*) 152
4 fas km®>  U(+20%*) 138
5 fas km®>  U(+20%*) 321
6 fag km®>  U(+20%*) 348
7 fa, km?>  U(+20%*) 100
3 fag km? U(+20%*) 140 Floodplain groundwater reservoir
9 fas km?>  U(+20%*) 92 area
10 faso km?>  U(+20%*) 1
11 fai km®>  U(+20%*) 100
12 fas km?>  U(+20%*) 100
13 fais km®>  U(+20%*) 100
14 fa km®>  U(+20%*) 206
15 fass km?>  U(+20%*) 84
16 fae km®>  U(+20%*) 300
1 ia, km?>  U(+20%*) 41.4
2 ia, km>  U(+20%*) 7.8
3 ias km?>  U(+20%*) 18
4 iay km?>  U(+20%*) 133.2
5 ias km®>  U(+20%*) 176
6 iag km?>  U(+20%*) 141
7 ia; km?>  U(+20%*) 25.2
8 iag km? U(x£20%*) 18 Island groundwater reservoir area
9 iag km>  U(+20%*) 47.4
10 iago km®>  U(+20%*) 0.6
11 ia km?>  U(+20%*) 6
12 ia, km?>  U(+20%*) 6
13 T km?>  U(+20%*) 6
14 E km®>  U(+20%*) 160.8
15 iags km?>  U(+20%*) 48.6
16 S km®>  U(+20%*) 50

Table 1. ORI model input factors. The factors that are reservoir dependent have individual PDFs for

each reservoir.

U = uniform continuous distribution, D = uniform discrete distribution, CV = calibrated value

*PDF Varies between +20% of the calibrated model
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Table 2. Uncertainty analysis statistics of aerial flooding extents after MCF.

Reservoir Mean  Median Lower Upper SD* SEM* Skew* Kur*
95% CI*  95% CI*
Panhandle 788.9 789.1 785.3 792.2 2.1 0.0 -0.2 -0.9
Ngogal 492.7 492.7 489.7 495.8 1.9 0.0 0.1 -1.0
Ngoga2 488.2 499.3 178.9 693.2 157.1 1.7 0.5 -0.7
Thaoge 340.1 239.1 83.3 821.7 246.5 2.7 0.9 -0.1
Xudum 775.5 780.5 86.8 1883.0 550.5 6.1 0.6 -0.5
Boro 912.5 791.1 373.4 1621.5 414.1 4.6 0.4 -1.2
Maunacharial 483.6 483.8 477.0 488.8 3.5 0.0 -0.3 -04
Maunacharia2 319.7 306.8 188.0 474.6 81.6 0.9 0.3 -0.5
Selinda 243.1 78.0 10.9 872.2 274.5 3.0 1.2 0.3
Mborga 455.4 426.4 340.4 411.9 143.1 1.6 0.6 -0.1
Khwail 220.7 206.6 117.8 360.3 69.8 0.8 0.5 -0.4
Total Delta 5504.8 5485.0 4920.0 6171.0 357.5 3.9 0.3 -0.2

* Cl = confidence interval, SD = standard deviation; SEM = standard error of the mean; Skew = skewness,

kurt = kurtosis
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Table 3. Width of 95% Confidence Interval for Average Flooding Extents (km?)
Original Prior PDF MCF PDF % Difference

Panhandle 5.5 6.9 21.2%
Nqogal 5.4 6.1 12.5%
Nqoga2 815.1 514.3 -45.2%
Thaoge 1863.3 738.3 -86.5%
Xudum 2210.0 1796.1 -20.7%
Boro 1428.5 1248.1 -13.5%
Maunacharial 411.0 11.8 -188.8%
Maunacharia2 526.5 286.6 -59.0%
Selinda 1621.1 861.3 -61.2%
Mborga 884.3 71.6 -170.0%
Khwail 384.4 242.5 -45.3%
Delta 2167.8 1251.0 -53.6%
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Figure Captions
Figure 1. Okavango Basin Location Map.

Figure 2. The ORI model. Adapted from Wolski et al., 2006.

Figure 3. Diagram of the ORC reservoir model nodes and links. Adapted from Wolski et al.,
2006.

Figure 4. Morris method GSA results for the inundation of the entire Delta. Volume/area
coefficient for Xudum (bs), island extinction coefficient (idet), floodplain porosity (fpor), volume
threshold between Nqgogal and: Nqoga2 (v»3), Thaoge (v24), Xudum (vzs), Boro (va6),
Maunachiral (v,;), and Selinda (v29). Labels for the less important inputs are omitted for clarity.

Figure5. FAST GSA first and grouped higher order (R) proportional results for the inundation of
the entire Delta. Volume/area coefficient for Xudum (bs ), island extinction coefficient (idet),
floodplain porosity (fpor), volume threshold between Ngogal and: Ngoga2 (v,3), Thaoge (v24),
Xudum (vzs), Boro (vzs), Maunachiral (v,,), and Selinda (vy9).

Figure 6. FAST first order and higher order, and total order GSA results for the inundation of the
entire Delta. Volume/area coefficient for Xudum (bs), island extinction coefficient (idet),
floodplain porosity (fpor), volume threshold between Ngogal and: Ngoga2 (v,3), Thaoge (v24),
Xudum (v,5), Boro (va6), Maunachiral (v,7), and Selinda (v,9). The height of the entire bar is the
total sensitivity.

Figure 7. Frequency histograms for values for a) v,7 and b) v,3 resulting in behavioral outputs.
New triangular distributions based on these results are also shown.

Figure 8. FAST GUA grouped by upstream, middle, eastern, and western reservoirs. Values are
normalized by the maximum flooding extents in each reservoir for comparison. Refer to Figures
2 and 3 for the exact locations.

Figure 9. Comparison of original GUA and MCF GUA: Ngogal, Maunachiral, and Mborga. In
each graph the calibrated average inundation for each reservoir is also indicated.
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Figure 5.
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Figure 8.
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Chapter 4. A fish population model for the Okavango Delta,
Botswana: How the flood pulse drive population dynamics

Abstract
The hydrology of the annually flood pulsed Okavango Delta in Botswana is theorized to be a

main driver for fish population dynamics. A common theory explaining this phenomenon is the
Flood Pulse Concept which describes a lateral connection between the channel and floodplain
and a biological response to floodplain inundation corresponding to the release of terrestrial
nutrients. This work tests that theory in the Okavango Delta by developing and applying a
guantitative model of fish population dynamics with the flood pulse as the major driver.
Because of their commercial importance, tilapia and in particular Oreochromis andersonii,
Tilapia rendalli, and Oreochromis macrochir are used as indicator species. The model runs on
an annual time step where age cohorts are tracked over time. Density dependant recruitment,
mortality, and vulnerability to catch are simulated. Model results are compared to commercial
gill net data.- In this data poor environment there is a high level of uncertainty and resulting
equifinality and so an optimal input set is not sought. However, clues to the flood as a driver of
fish population dynamics are explored. This work uses an unbiased inverse optimization
routine that searches throughout the parametric space for the best model solutions. For model
evaluation, prior probability density functions (PDFs) were established for each input. Global
sensitivity analysis was then used to identify the inputs that were the most important in
determining the model outcome. It can be argued that the definition of prior PDFs is arbitrary.
Therefore, Monte Carlo filtering was used to redefine and truncate some of the important prior

PDFs. Model results give a best fit of a coefficient of efficiency of 0.64 and a coefficient of
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determination (R?) of 0.64. The most important inputs relate to mortality, catch vulnerability,
and growth. There is a high level of equifinality in the inputs that set the baseline population
for the fish. However, the only input that directly relates the inter-annual dynamics of fish
recruitment to the flood pulse converges to an optimal value. At this optimal value modeled
recruitment is almost doubled between low and high flood years. This provides evidence that

the flood is indeed a major driver of fish population dynamics in the Delta.

1. Introduction
The Okavango Delta in Botswana is a large inland delta located in an arid climate that

experiences an annual flood pulse from its upstream watershed (Figure 1). Flooding extents in
the Delta range from 6,000 — 12,000 km? (Wolski et al., 2006) and the entire alluvial fan is
approximately 40,000 km? (Gumbricht et al., 2005). The Okavango Delta is home to over 70 fish
species (Kolding, 1996) and there are three main fishing industries in the Delta: subsistence,
small scale commercial, and recreational (Merron 1991, Mosepele and Kolding 2003).
Mosepele (2001), states that 65% of the people living in northern Ngamiland (which
encompasses the entire Delta) depend on fish as a source of livelihood. Monitoring and
preserving the health of this resource is important both economically for the people who fish
here and ecologically for the fish and other wildlife that depend on the annual flow of water

during the dry season.

Environmental flows are criteria that describe the degree to which a natural hydrologic regime
must be maintained in order to preserve valuable features of an ecosystem (Tharme and King,

1998; King et al., 1999, Tharme, 2003). Environmental Flows have been developed for the
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Okavango Delta and a special report was published specifically on fish (Mosepele, 2009). A
major recommendation in the report is for the development of a quantitative relationship
between the flood pulse and fish population dynamics in the Delta so that managers can
understand feedbacks between the hydrology of the Delta and fish population dynamics. Fish
population models are often used to track populations and predict responses to management
decisions in other locations (Walters and Martel, 2004; Rogers et al., 2010; Walters et al., 2008).

A fish population model has yet to be developed for the Okavango Delta.

The Flood Pulse Concept (Junk et al., 1989) (FPC) describes an ecological response to flood
pulsed hydrology where nutrient availability is linked to the inundation of the floodplain. In the
FPC the aquatic/terrestrial transition zone (ATTZ) is the area where the aquatic environment
meets the terrestrial environment. On an incoming and outgoing flood the ATTZ is a ‘moving
littoral.” On an incoming flood, as the water inundates the floodplain, the ATTZ has high inputs
of nutrients from terrestrial sources such as vegetation and detritus. This leads to high primary
productivity in the ATTZ. The FPC, the inputs of nutrients, and high primary productivity in the
ATTZ iterates with each flood and it is hypothesized that fauna can adapt to take advantage of

the increased food availability (Junk et al., 1989).

Research investigating the influence of the flood pulse on fish populations throughout the
world has been conducted with a variety of results (Mérona and Gascuel, 1993; King et al.,
2003; Gaff et al., 2004; DeAngelis et al.1997). Much of this research shows that these
relationships are complex and difficult to quantify. King et al. (2003) investigated floodplain

usage by fish in the Murray Darling Basin, Australia where there is annual inundation via snow
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melt as well as a historical notion that the flood pulse is a major driver for fish populations.
Through sampling, these authors noted that floodplain utilization by fish was not as
pronounced as expected. They proposed a more complex system and suggested a model based
on optimum conditions for floodplain utilization including: temperature, flood pulse
predictability, the rate of change in the hydrograph, and inundation duration and area.
However, the flood pulse in the Murray Darling Basin may be less predictable than in the
Okavango Delta implying that the fish in the Murray Darling may be more opportunistic and less
consistent in their behavior. Additionally, the hydrology of the Murray Darling has been
significantly altered and it is possible that the ecological interactions are somewhat unbalanced

because of these anthropogenic changes.

The Everglades also experiences an annual flood pulse during the rainy season which has been
theorized to be a driver for fish populations (Gaff et al., 2004 and DeAngelis et al., 1997).
DeAngelis et al. (1997) constructed a mechanistic model, Across Trophic Level System
Simulation Landscape Fish model (ALFISH), that spatially predicts fish populations based on the
flood pulse. Here, a fish model is built on top of a spatially explicit hydrologic model that
simulates the annual flood pulse. Periphyton, macrophytes, detritus, mesoinvertebrates, and
macroinvertebrates are all modeled as well as two fish functional groups: big fish and small fish.
As the flood rises, modeled fish move into the floodplain in response to increased food
availability. Then, as the flood recedes, modeled fish move to find refugia and mortality
increases as a result of crowding and predation. Four types of mortality are simulated:

background mortality, density dependent mortality, predation by the large fish, and failure to
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find refugia. The fish life cycle is simulated according to the von Bertalanffy age/length/weight
relationships (von Bertalanffy, 1957). Gaff et al. (2004) critique ALFISH concluding that
inundation area is not the only driver for fish populations and that there may be other
parameters that are also important. They state that the best model fit that ALFISH is able
achieve is an R? of 0.88 for water depth and 0.35 for fish density. However, an R%of 0.35
between fish density and water depth reflects empirical data showing that the hydrology only

accounts for 20-40% of the variability in the sampled fish population density.

Mérona and Gascuel (1993) investigated statistical relationships between commercial fish catch
and the annual flood in the Amazonian floodplain. They found three interesting relationships.
(1) There was a positive correlation between catch and the flood peak three years prior, which
they speculated as associated with recruitment. (2) There was a correlation between catch and
the water level during its rise two years prior that was possibly associated with competition. (3)
There was a correlation between catch and severe low water stage two years prior that likely
due to increased mortality. They were able to produce a statistical model with three variables
that explained more than 83% of the variability in the annual fish abundance. Similar to the

Okavango, this system experiences a regular and predictable flood pulse.

In the Okavango Delta no quantitative studies have been conducted to specifically show how
fish respond to the flood pulse. However, there have been studies in the Okavango that show
how the annual flood pulse produces an ecologic response in other ecological aspects (Hoberg
et al., 2002; Merron, 1991). Hoberg et al. (2002) provide a food web conceptual model for

ecological responses to the annual flood pulse in the Delta. They measured a ‘first flush” effect
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at the onset of the flood which results in a release of nutrients. During the rising flood there
was a burst in nutrients, primary production, and phytoplankton. Concentrations of nitrogen
rose from 1.5 to 3.5 mg I'* and phosphorus rose from 125 to 450 ug I™*. Primary production
reached its peak at 300 pug C I d"* and maximum chlorophyll a values were 24 pg chla I"*
(Hoberg et al., 2002). The authors went on to state that resting zooplankton eggs hatched
when they were submerged by the floodwater and fed on the abundant phytoplankton and
other food sources provided by the burst in primary production. Peak concentrations of
zooplankton went from 0.1 to 10 mg DW I"* during the rise of the flood and reached up to 90
mg DW I"! at the extreme near-shore edges. A qualitative analysis of the fishes’ response to
the flood was also conducted (Hoberg et al., 2002). Of the tilapiine species: O. andersonii, T.
rendalli, and T. sparrmanii were noted as following the rising flood into the study area.
Juveniles were also seen with an increasing frequency just after the peak of the flood. Gut
analysis of the fishes showed that smaller fish fed on more zooplankton indicating the
importance of the “first flush’ effect for the juveniles. At the end of the flood season very few
fry were observed with the conclusion that they migrated out of the area before the connection
with the main river system was lost. Merron (1991) related spawning period to the flood pulse
in the Okavango Delta. He proposed that the higher the magnitude of the annual flood, the
longer the water is retained on the floodplain, leading to a longer spawning period and greater
overall production of fish. Additionally, Mosepele et al. (2009) proposed that survivability for
smaller fishes is increased in dense floodplain vegetation types because the vegetation provides

protection from predators.
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Thus, data shows that other aspects of the ecology of the Delta are driven by the flood pulse,
there are qualitative indications that the fish depend on the flood pulse, other models have
been built to describe fish population dynamics as affected by flood pulse, and there is a stated
management need for a model that links the flood pulse to fish population dynamics. In
response to these issues and needs, this work will produce a fish population of the Okavango
Delta that is driven by the annual flood pulse. The model will be inverse calibrated to
objectively investigate best fit model input sets. Traditionally, the goal of inverse optimization
techniques is to find the optimal set of inputs for a given model to match some measured data
(Mertens et al., 2006). Beven and Binley (1992) and Beven (1993) comment on the limitations
of the concept of an optimal parameter set. Beven and Freer (2001) coined the term
‘equifinality’ to refer to the fact that there may be many input sets that all lead to an equally
acceptable mode simulation. These inputs may come from different places in their defined
parametric space and there may be no way to distinguish between the equally acceptable input
sets. This work does not seek an optimal parameter set. Instead, it looks for evidence of the
flood as a driver for fish population dynamics despite equifinality. It does this through
investigating key inputs that are directly related to the inter-annual variability of fish population

dynamics versus the baseline population size.

This work will use global sensitivity and uncertainty analysis (GSA/UA) in two ways. It will use
GSA to identify unimportant inputs that can be set to constants without affecting the model,
thus simplifying the model. One of the largest critiques of GSA/UA is the rater arbitrary

methods for setting the prior probability distributions (PDFs). This work will use Monte Carlo
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(MC) Filtering (Saltelli et al., 2008) to objectively redefine the prior PDFs within their predefined
defined physical bounds based on realistic model results. Additionally, this method reduces

model uncertainty (Saltelli et al., 2008).

The objective of this work is to produce a mechanistic fish population model for the Okavango
Delta that is driven by its annual flood pulse. Because of their commercial importance, breams
(tilapia) and in particular O. andersonii, T. rendalli, and .0 macrochir are used as indicator
species. Model results are compared to commercial gill net data from 1996 to 2005. Probability
distribution functions (PDFs) are developed for each model input. For this work, inputs will be
defined as any non-time series variable. Global Sensitivity Analysis (GSA) is used to identify
inputs that are important for determining model results. Unimportant inputs are set to
constants and Monte Carlo (MC) filtering is used to refine important input PDFs. This
mechanistic model is used to test the conceptual model that fish population dynamics are

driven by the flood pulse.

2. Methods

2.1 Fish data
Commercial catch data are available from January 1996 to December 2005. Fish were caught

in gill nets and the daily catch per unit effort (CPUE) was recorded. The CPUE is defined as the
number of fish caught per gill net per day. Because a relatively standard gear is used
throughout this catch, CPUE can be used as a rough indicator of fish density. These data
however, were not collected for experimental purposes, which can cause discrepancies. Since

the fish data that is available only includes fish counts and does not contain age, weight, or
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length values the data that is necessary for simulating monthly spawning dynamics was not
sufficient and an annual model was deemed most appropriate for this situation. Additionally,
the fishermen may set their nets where they believe the fish densities will be the highest
biasing the data set. Furthermore, gill nets select for particular fish size fish because of the
mesh size. Thus, fish of some sizes are more vulnerable to catch than others. Fish were also
caught in the northern portion of the Delta in the Panhandle where flooding is more confined

and the effect of the annual flood is less pronounced (Figure 1).

For the purposes of this model, the maximum annual CPUE is the objective function that will be
used to compare measured data to modeled data. In order to compute this from the modeled
data, the fish must be divided by an inundated area. This is done using in the Okavango
Research Institute (ORI) hydrologic model of the Delta (Wolski et al., 2006). The ORI model is a
linked reservoir model that simulates flooding extents in the Delta. One of the reservoirs in the
model explicitly represents the Panhandle, where the fish data was collected. This reservoir is
not the reservoir that was of focus for model calibration, nor is it a reservoir of high variability
as it is an area that is more channelized and permanently inundated than the lower Delta
proper. Because of these reasons, in each year the total modeled vulnerable population is
divided by the average of the minimum flooding extents simulated in the Panhandle. This

produces an overall better model fit than dividing by the annual minimum flooding extents.

The fish that were caught were not recorded to the level of species. Instead, breams, which are
an informal category that make up a significant proportion of the commercial fishing industry,

were lumped into one category. Breams include all of the major Cichlidae species. According
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to Mosepele et al. (2003) Cichlidae is the principal family of fish in both subsistence and
commercial gill net fisheries. The three species with the highest indexes of relative importance
for the commercial gill net fishery are all tilapia (part of the Cichlidae family) and include in
order of importance: (1) O. andersonii, (2) T. rendalli, and (3) O. macrochir. For the purposes of
this work, these three fish species will be used as a representative species to base parameters
such as maximum age and growth functions, with particular importance placed on O.

andersonii.

2.2 Model structure
This work describes the development of an annual time step fish population model driven by

the flood pulse in the Okavango Delta (Figure 2). Fish are divided into annual age classes which
are tracked over time. The model structure uses the Beverton and Holt (1957) stock
recruitment relationship (Eq. 1) to estimate recruitment, where R, ,, is the number of recruits
per year per age class, P, ,, is the potential recruits per year per age class (a function of the
stock size), and @ and 8 are parameterized unitless von Bertalanffy parameters (1957). a/f
describes the maximum recruitment at a high stock and a describes the maximum

recruitment/stock at a low stock.

atPen
1+B¢Ptn

Rt+1,n -

(1)

P, , is given by Eq. 2 where N, ,, is the number of fish per year and age class, e is fecundity

(number of eggs hatched), and b is the number of broods per season.

P, = Neneb (2)
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Three constants are required to parameterize the Beverton and Holt equation: one point along
the Beverton and Holt curve where recruitment is constant (N, o), survivability (S) (yr'"), and the

Goodyear Compensation Ratio (CR) (Goodyear, 1977). The steady state condition of the

Beverton and Holt equation is given as Eq. 3:

Nio = NeoS + Rep (3)
Thus, Rp (constant recruitment, used for calibration) can easily be found by Eq. 4:

Reo = (1= S)Nep (4)

CR represents the maximum compensatory increase in juvenile survival as the stock size is
decreased. a can be derived from CR and the steady state juvenile survival rate (R; o /Ny o)

(Walters and Martel, 2004) (Eq. 5) such that:

a = (CR) 3 )

Nto

And B can be derived from (Walters and Martel, 2004) (Eqg. 6):

CR-1

B: = (6)

Nto

The fish population’s response to the flood is simulated through recruitment. In order to relate
recruitment to the flood a modification was made to the Beverton and Holt density dependant
recruitment relationship such that the number of fish is proportional to the annual maximum
inflow (Eq. 7). In this equation, F, is the maximum inflow in a given year (M m?yr?), Fis the

average of the annual maximum inflows (M m? yr''), and ¢; is a scaling coefficient (Fish yr'age’
g
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flooding extents™). This does not change the actual population within the fish in the matrix,
but does change the population for the calibration of a and B and calculations for recruits in
each time step (Eq. 8, 9, 10, and 11). In these equations the (*) represents factors effected by

the flood coefficient but which are not actually changed in the matrix.

Niow = Neo + (F, — F)c, (7)

Rio = (1 = S)Ney. (9)

Nio = NoS + Rep (8)
R¢o

a; = (CR)— (10)
Nt 0«

CR-1
Be = Neo. (11)

The result is a change in the carrying capacity of recruits and rate of recovery between high and

low flood years (Figure 3).

In each time step, after recruitment is calculated, mortality is calculated. Each age experiences
mortality according to the Beverton and Holt (1959) relationship (Eq. 12). In this equation N is
the number of fish, Z represents total mortality (yr'l), k is a growth coefficient (unitless), t is
the time step (yr), and n is the age class (yr). The exponential function results in higher
mortality in younger age classes. Z is divided into two parts: natural mortality (M) and fishing

mortality (F) where Z = M + F.
Nt,n = Nt—l,n—lexp(_ZkAt) (12)
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Various studies point to an allometric relationship between body weight and mortality
(Peterson and Wroblewski, 1984; McGurk, 1986; Lorenzen, 1996). de Graaf et al. (2005)
showed that this relationship can also be related to body length using the von Bertalanffy
(1957) length/weight relationship where M,, is the mortality at unit length (yr* cm™), L is body
length in cm, and a and (8 are the previously mentioned von Bertalanffy parameters (unitless)

(Eq. 13).
M = M,a %3103 (13)

Length at a given age is calculated according to the von Bertalanffy equation, where L,, is the
length at age n (yr) and k is the same growth coefficient in Eq. 10 (unitless), and L, is the

asymptotic length (Eq. 14).
L, = Lo, (1 — exp~kAn) (14)

Not all fish are equally vulnerable to catch because of the size selective gear. Once the
modeled fish population is calculated, the vulnerability to catch of each age class is computed.
A dome shaped double logistic model (Allen et al., 2009) is used where V}, is the vulnerability
(unitless) at age n (yr'l), TL is the average length (cm) at age n, L;,,, is the lower length (cm) at
50% vulnerability, SD,,,, is the standard deviation of the distribution for L;s,, Lp;gn is the
upper length (cm) at 50% vulnerability, and SDy; 45, is the standard deviation of the distribution

for Lpign (EQ. 15).

1 1
—(TL—LLOW)/ —(TL—LHIGH)/
SDLOW SD

V, = (15)

HIGH

1+exp 1+exp
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The measured maximum annual CPUE generally occurs at the annual low flood when the fish
are most concentrated in a smaller area. In order to get a similar measure of density, the
vulnerable fish were divided by an area of inundation in the Panhandle where the fish were

caught. Surprisingliy, dividing the fish by the ORI modeled average minimum area of inundation

in the Panhandle reservoir provided a better fit than the ORI modeled annual minimum area of

inundation in the Panhandle. There may be several explanations for this apparent discrepancy.
The ORI model was calibrated to the larger Delta and in particular the Boro reservoir and not
specifically the Panhandle. So, there may be more model error in the flooding extents in the
Panhandle as it was not the focus of the model calibration. The Panhandle is also less dynamic
than the larger Delta and more channelized. Therefore, dividing the fish by a constant areal
value is somewhat consistent with the physical characteristics of the site. This portion of the
model could easily be made dynamic to investigate the impact of inter-annual inundation, if fish
data for the larger Delta was made available. For each year, the modeled annual maximum
CPUE is compared to the measured annual maximum CPUE using the coefficient of efficiency

(Nash and Sutcliffe, 1970) which is the objective function of the model.

2.3 Global Sensitivity and Uncertainty Analysis
Global sensitivity and uncertainty analysis (GSA/UA) is used to apportion the variation of model

outputs onto the model inputs based on prior distributions. The extended FAST GSA/UA
method (Cukier et al., 1978; Koda et al., 1979) uses Fourier analysis to decompose the variance
of a set of model outputs into first order variances for each input. For this method, the model

is executed C = Nk times, where k is the number of inputs and N is a number that ranges
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between 100’s and 1,000’s (Saltelli et al., 1999). The extended FAST technique (Saltelli et al.,
1999) allows for the additional computation of higher levels of variance which describe the
interactions between the inputs (Eq. 14). Here, V(Y) describes the total variance of a single

input including first and higher levels of variance.

V)=V + 20+ Dyt

i<j i<j<l

(14)

FAST also defines S;as an index of global sensitivity. S; is the ratio of the variance that is
ascribed to a single input divided by the total model variance. In a model where there are no
interactions, the sum of the S;’s across all of the inputs is equal to one. In models where there
are interactions this sum is greater than one. Note that inputs used in this method must be

independent and are assumed so for this work.

2.4 Monte Carlo filtering
Using the results of the FAST GSA/UA, MC filtering (Saltelli et al., 2008) was used to filter out

the unrealistic outputs or non-behavioral results and redefine the prior distributions based on
the realistic outputs. MC Filtering divides the outputs into ‘behavioral’ (B) and ‘non-
behavioral’ (B) based on a threshold that is defined by the user. The B / B status is mapped
back to the inputs and two subsets of each model input, X;, were defined as X;|B and X;|B
based on their behavioral /non-behavioral status. The behavioral subset contains n elements
and the non-behavioral subset contains 71 elements such that n + 7 = N where N is the
number of model simulations. The PDFs f(X;|B) and f(X;|B) are then assigned. The two-

sided Smirnov test is performed to check the significance of the difference between the two
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distributions £ (X;|B) and f(X;|B). In the Smirnov test the test statistic d, 7 is defined by Eq.

15:
dnn(X;) = supllE,(X;|B) — Fr(X;|B)I| (15)

The null hypothesis for this test is f(X;|B) = f(X;|B). The null hypothesis is rejected at a
significance level, a. A small a for a particular input indicates a high importance of that input

for driving the behavior of the model (Saltelli et al, 2008).

For this work, the two-sided Smirnov test was also used to narrow the range of the prior
distributions for each of the important inputs as defined in the GSA. If the null hypothesis was

rejected, the prior distribution was reassigned based on f (X;|B).

2.5 Model Optimization
PDFs were developed for each input based on literature values and date when available. The

model was run iteratively sampling inputs from the PDFs using the extended Fourier amplitude
sensitivity test (FAST) sampling routine (Cukier et al., 1978; Koda et al., 1979; Saltelli et al.,
1999) with SimLab software (SimLab, 1999). This sampling routine is an unbiased method that
samples throughout the parametric space and is able to highlight the variety of input sets that
result in good fit model simulations. Sensitive inputs were identified and uncertainty was
measured. MC filtering (Saltelli et al, 2008) was used to filter out unacceptable model
simulations as defined by the coefficient of efficiency and prior distributions were refined based
on the inputs that generated the acceptable simulations. Insensitive inputs were set to
constants. The GSA was rerun with the new prior distributions and varying only the important

inputs.
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2.6 Probability density functions
Inherent to these methods is the importance of the selection of the prior PDFs. Regardless of

the internal mathematics within the model, assigning a wider PDF to an input makes it more
sensitive. Accordingly, much effort was devoted to assigning appropriate PDFs for each input
based on best knowledge for each factor. In an area where more data is available
autocorrelation tests could be done to show dependence between data. However, here no such
data exists and inputs are assumed to be independent. These inputs include mortality
parameters, the Goodyear compensation ratio, vulnerability parameters, age at maturity,
fecundity, broods per season, inflow, and the inflow scaling coefficient (Table 2). When the
data for the inputs shows no apparent distribution such as normal or triangular, the PDF can be
set to uniform (Mufoz-Carpena et al., 2007). The uniform distribution allows for equal

probability of selection across the defined range.

Within the model, mortality is handled in two ways (1) overall mortality for the
parameterization of the Beverton and Holt Stock recruitment equation (Eq. 3) and (2) the

allometric relationship between fish length and mortality for each age class (Eq. 15).

In the Beverton and Holt stock recruitment relationship (Eq. 1) mortality is given as a constant,
Z = M + F where Z is total mortality (yr), F is fishing mortality (yr'"), and M is natural
mortality (yr'l). Estimates of the total number of fishermen in the Okavango Delta in the 1990s
was approximately 5,000 with 300 of those being gill net fishermen, and only 40 full-time
commercial fishers (Mosepele, 2001; Kgathi et al., 2005). Because of the small scale of

commercial and subsistence fishing in the Okavango Delta and the low efficiency of the gear
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fishing pressure in the Delta is fairly light (Mosepele and Kolding, 2003; Kgathi et al. 2005).

Thus, for the purposes of this research F will be considered negligible.

Neglecting F, the prior distribution for M is defined based on literature values (Table 1). Values
of M for tilapiine species were compiled from a number of studies including the three indicator
species in the Okavango Delta. These values range between 0.67 and 1.39 for the indicator
fishes in the Okavango Delta. Based on these data, the PDF for Z was set to Uniform (0.67,

1.39).

The growth coefficient k varies from 0.25 to 1.0 from a number of studies including the three
indicator species in the Okavango Delta (Table 1). Based on these data, the PDF for k was set to

Uniform (0.25, 1.0).

The allometric relationship between mortality and fish body length (de Graaf et al., 2005)
calculates a decreasing rate of mortality with increasing body length. The four inputs required
for calculating mortality according to the allometric relationship are the mortality at unit weight
(y'e™), M,,, the von Bertalanffy parameters a and 8 parameters, and asymptotic length (cm),
L. The original value for M,, was given as a constant 3 (Lorenzen, 1996). More recently, it has
been determined that M,, should be estimated for each species (de Graaf et al., 2005; Lorenzen,
2001). de Graaff et al. (2005) used values of M,, ranging between 1 and 4.5 for species with
survival rates between 50 and 80%. Based on the values of Z chosen for the PDF survivability
for these fishes ranges between 25 and 50%. The PDF for M,, was set so that ranges similar to
the values that were defined for Z through the literature could be achieved. Based on this

analysis the PDF for M,, was set to Uniform (3, 8)
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Mosepele and Nengu (2003) show values for the von Bertalanffy a and 8 parameters for the
three indicator species specific to the Okavango Delta. For O. andersonii a is given as 0.004 and
p is 3.424, for O. macrochir a is 0.014 and [ is 3.106, and for T. rendalli a is 0.026 and [ is
2.911. Based on Mosepele and Nengu’s (2003) ranges for the von Bertalanffy parameters, PDFs

for a and B were established: a Uniform (0.004, 0.026) and 8 Uniform (2.911, 3.424).

According to Mosepele and Nengu (2003) in the Okavango Delta, L. for O. andersonii is 53cm,
for T. rendalli it is 47cm, and for O. macrochir it is 40cm. From these values, the PDF for L. was

set to Uniform (40, 53).

The Goodyear compensation ratio (CR) (Goodyear, 1977) describes the rate at which fecundity
changes following a depletion in stock (usually from exploitation). Smaller values of CR result in
a higher rate of recruitment in a depleted stock. According to Walters et al. (2008), when
recruitment compensation is not especially strong the CR is less than 20. Walters et al. (2007)
state that long lived benthic species likely have CR’s in the range of 10 to 50. In Myers et al.’s
(1999) meta-analysis of a variety of fish (mostly pelagic species) values for CR ranged from 1.4
to 123.5 with an average of 18.6. A meta-analysis of stock-recruitment data by Goodwin et al.
(2006) showed CR is in the range of 5 to 100. Most specifically, Goodwin et al.’s (2006) analysis
showed that values for CR in perciformes varied between 3 and 50. Based on these analyses,

the PDF for CR was set to Uniform (3, 50).

A dome shaped double logistic vulnerability catch curve (Allen et al., 2009) was used to model
the vulnerability of fish at different lengths and corresponding age classes (Figure 4). This

mimics the size selective nature of the gill nets. The catch curve was parameterized from
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inspection of a smaller dataset of commercial catch from the Okavango Delta where fish length
was available (Mosepele, 2009). A histogram of caught fish length was produced and a
corresponding catch curve was developed with PDFs for each of the parameters. The PDFs for
the lengths and standard deviation at the upper end of the curve were set to include a wider
and higher distribution to account for the mortality that is occurring and also to test for a
logistic vulnerability shape versus a dome shape. Based on inspection, the PDFs were set as
follows: Ly, is Uniform (23, 25), S§D,,,, is Uniform (1, 3), Lp; 4y, is Uniform (28, 60), and SDy;4p,

is Uniform (10, 30).

The model calculates recruitment per time step based on the number of mature fish in that
year. Several studies have investigated the age at which cichlids become mature in southern
Africa. Dudley (1974) measured the total length and sexual maturity of O. andersonii in the
Kafue floodplains. He found that that during the years of his study, no fish under 26 cm were in
spawning condition, three out of 64 fish from 26-29 cm were in spawning condition, and more
than 30% of larger males and 40% of larger females were in spawning condition. Dudley also
aged the fish with annual ring formations. He concluded that O. andersonii usually spawn after
the age of four and very rarely under the age of three. Similarly, Van der Waal (1976) found
that in the Zambezi River the minimum size for sexual maturity in O. andersonii was 25 — 27 cm.
Hay et al. (2000) also measured the minimum size of for sexual maturity in O. andersonii in the
Okavango River Namibia which they found to be 13 cm for males and 26 cm for females. Based
on these literature values, with emphasis on the ring formation as better measure of age than

length, and a PDF for age a sexual maturity was set to Normal (4.25, 0.5).
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Fecundity refers to the number of eggs hatched per brood. According to Mortimer (1960) O.
andersonii, between 17 and 25 cm in length, lay 349 to 567 eggs in ponds. Additionally,
Chandrasoma and De Silva (1981) found intraovarian egg counts in T. rendalli ranged between
760 and 6,160 in a lake in Sri Lanka. And Marshall (1979) found that O. macrochir can produce
1,000 to 5,000 eggs within their ovaries and may mouthbrood up to 800 eggs in Lake
Mcilwaine, Zimbabwe. According to these data and, the PDF for fecundity was set to Uniform

(350, 800).

Several sources state that these indicator species may lay more than one brood per season.
Skelton (1993) stated that T. rendalli and O. andersonii both raised several broods each
summer. Naesje et al. (2004) described that T. rendalli may lay several broods each season in
the Kwando River, Namibia. Mortimer (1960) examined O. andersonii for physiological
indications of having multiple broods per season. This study did not find physiological
indications of multiple broods. However, the same study also observed two instances in ponds
where one breeding pair spawned twice in one season. From this literature, the PDF for broods

per season in the model was set to Uniform (1, 2).

Any measured data is inherently flawed, including the gauged inflow. The ORI hydrologic model
results give a correlation coefficient of 0.90 (Wolski et al., 2006). Based on this, a Uniform PDF

was assigned to the annual maximum inflow as £10% of the measured values.

The flood coefficient (c) is a scaling factor with the units Fish yr'* age™ flooding extent™ that
describes how recruitment changes with the magnitude of the flood (Eq. 7). There is no

literature to support values for this coefficient and this research is the first investigation into
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the quantitative effects of the flood on fish populations in the Okavango Delta. A trial and
error investigation into the appropriate ranges for this coefficient was conducted prior to the
GSA to get a sense of the values that would drive the model into a behavioral fit. Values for
this coefficient ranging between 5 and 25 create acceptable model outputs. Therefore, the PDF

for the flood coefficient was set to Uniform (5, 25).

3. Results
With 16 inputs, the model was run 39,952 times for the GSA/UA using the FAST methodology

before MC Filtering. In this set of simulations, when comparing annual measured and modeled
CPUE, the model achieved a maximum coefficient of efficiency of 0.64 and an R’ of 0.77 (Figure
5). These results are relatively promising compared to Gaff et al.’s (2004) study which achieved

an R? of 0.35 in the Everglades where fish density was modeled in response to water depth.

The PDFs in the dome shaped double logistic curve for catch vulnerability were set wide enough
so that a dome shape as well as a logistic shape could be approximated. The MC filtering
showed Lhigh tending toward the upper ranges of the established PDF (42—60cm) which makes
the shape of the vulnerability catch curve approach a logistic and tend away from a dome
shaped curve. This should be verified using field data. Additionally, the commercial catch
histogram shows that the majority of fish caught are between 27 and 32 cm long. According to
Mosepele and Nengu’s (2003) growth coefficient (k) for O. andersonii, a fish of this length
would be approximately 1 year old. However, according to Dudley’s (1974) growth coefficient
(k) for O. andersonii, a fish of this length would be approximately 4 years old. This is a rather

wide range in ages. Also according to Dudley, O. andersonii usually reach maturity after the age
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of 4. This has important management implications because fish should be protected up to the
age of maturity to promote recruitment. Because of the implications for recruitment and the
sensitivity of k in the model, it is important to get a better indication of the value of k for the
indicator species in the Delta. This would aid in setting size limitations and promoting

recruitment of fishes in the Delta.

3.1 Global Sensitivity Analysis
According to the FAST GSA results (Figure 6), The most important factors in this model in order

of importance, are: k (growth factor), M, (mortality at unit length), and Lhign (upper length at
50% vulnerability). These are also highly interactive inputs (Figure 7). Inputs that contributed
less than 3% of the total model sensitivity include: maturity, fecundity, broods per season, Liow,
SDiow, SDhign, flood coefficient, and inflow coefficient (Figure 7). These unimportant inputs
were set to constants in the next round of MC Filtering. Additionally, in future modeling efforts

less emphasis may be placed on these inputs because of their relative lack of importance.

The flood coefficient, which determines the relationship that flow has on recruitment, is not
one of the most sensitive inputs. However, this is the only input that directly relates
recruitment and population size to the flood. All of the other inputs are related to the overall
size of the population. To get density, which is the objective function, the total population is
divided by the area of inundation for each year. Therefore, density is going to be dynamic in
each model run even if the population is static. So, even if the flood coefficient was set to zero,
density would still be dynamic. However, the flood coefficient is the only input that relates to

the inter-annual variability of the population size to the flood size through recruitment. A
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scatter plot of the flood coefficient and the coefficient of efficiency shows that the coefficient
of efficiency converges at 0.64 at a flood coefficient of 15 (Figure 8). This is where the model
obtains an optimal fit. At a value of 15, the number of recruits varies between 7,300 and
14,200, approximately doubling the number between low and high flood years (Figure 9). Thus,
there are many ways to get a baseline population level by manipulating all of the other inputs
and a high level of equifinality in this portion of the model. But there is only one way to change
the dynamics which is through the flood coefficient and this value converges to an optimal

value and less equifinality in this portion of the model.

3.2 Monte Carlo filtering
All of the outputs were mapped to their corresponding inputs so that the inputs that created

the best fit outputs could be better understood. A threshold of a coefficient of efficiency of
0.50 was set with any model outcome greater than or equal to 0.50 defined as behavioral and
any output less than 0.50 defined as non-behavioral. 0.50 was strategically chosen as a
threshold as a tool for model optimization. Using this threshold, of the 39,952 runs 329 were
shown to be behavioral. This optimized the solutions that fell into the behavioral category
while at the same time ensured that there were enough values in the behavioral range to
employ the two sided Smirnov test. The two sided Smirnov test showed that of the 8 important
inputs, 7 had distributions where the behavioral inputs were significantly different from the
non-behavioral inputs: Lhign, My, k, @, B, Lo, and Z. The 7 significantly different distributions did
not display uniform shapes but rather triangular shapes. Triangular posterior input PDFs were
developed for each of the inputs that were shown to be significantly different between the

behavioral and non-behavioral inputs through the two-sided Smirnov test (Figure 10).
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3.3 Global Uncertainty Analysis
The model was rerun through the FAST GSA/UA with the unimportant inputs set to constants

and the posterior triangular PDFs were assigned to the inputs: Lnigh, My, k, @, B, Lw, and Z. The
model results showed similar optimization from before the MC Filtering with a maximum
coefficient of efficiency of 0.64 and a maximum R® of 0.64. Through MC filtering model
uncertainty was reduced from and average coefficient of efficiency of -19.4 to -5.4. The
minimum coefficient of efficiency was reduced from -306.5 to -202.4. The 95% confidence
interval was reduced from 0.10 to —48.4 in the original simulation to 0.59 to —23.01 in the MC

Filtered simulation (Figure 11 b and Figure 12).

4. Conclusions
The objective of this work was to test the conceptual model that fish population dynamics in

the Okavango Delta is driven by the annual flood pulse through a mathematical simulation. It
was found that there is one input in the model (the flood coefficient) that directly drives the
inter-annual variability in fish population. The inter-annual variability in the real population is
relatively small. However, simulating this inter-annual variability is the foundation of this work
(Figure 8). The flood coefficient’s sensitivity is low and may be regarded as a relatively
‘unimportant’ input. However, this does not mean that the effect of the flood and the flood
coefficient is not important for producing the best fit model simulations. The most important
inputs in the model are all related to the average or baseline vulnerable population size,
whereas the flood coefficient is the only input that creates variability in the population
between years. All of the other inputs (besides k) exhibit major issues of equifinality. They do

not converge and are able to vary throughout their ranges while still achieving best fit results.
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Thus, the average population size can be modeled in various ways. However, the value for the
flood coefficient converges toward a single solution. Thus, the inter-annual variability can only
be modeled in one way. In order to achieve a model fit that approximates the average
population (coefficient of efficiency of 0.5), you only need to get the baseline population
correct. However, in order to get the best model fit, and reach a coefficient of efficiency above
0.5, both the baseline population and the inter-annual variability must be modeled correctly.
The fact that the model is able to simulate a coefficient of efficiency of 0.64 provides evidence
that the flood is an important driver in the system despite the fact that there is equifinality in

portions of the model.

To reduce uncertainty, MC filtering was applied to the initial inverse optimization routine. The
important prior distributions were re-set to triangular distributions where the behavioral inputs
were found to be significantly different from the non-behavioral inputs based on the two sided
Smirnov test. Lhigh, My, k, a, B, Lo, and Z were all found to have significantly different behavioral
inputs and were assigned triangular distributions. This method reduced model uncertainty by
reducing the 95% confidence interval from a width of 48.5 to 23.6. This is useful and allows the
modeler in a data poor environment to focus in on likely values within the ranges of physically
acceptable PDFs. The modeler can then work in tandem with the biologist to ensure that the
new PDFs makes sense in a real biological setting providing converging lines of evidence for a

more accurate depiction of the system and its interactions.

Several limitations can be identified in this work. The fish data was from commercial catch and

not experimental data and so fisherman preferences, knowledge, and other human variables
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may play into the data. The data contained only counts of tilapia fish and was not accompanied
with age, length, or weight and so seasonal interpretations of responses to flooding were
impractical. The data came from the Panhandle which is more permanently flooded and is less
dynamic than the larger Delta. Additionally, the ORI hydrologic model which simulates the
inundation area was not specifically calibrated to the Panhandle reservoir and was more
focused on the larger Delta. Finally, the variability of the annual fish population is not
exceptionally dynamic. The maximum annual CPUE only fluctuates between 26 and 39. In
heavily fished areas, fish populations are often much more dynamic, lending to more variability
to model. In spite of these limitations, this model was still able to simulate fish population
dynamics to within a coefficient of efficiency of 0.64. In addition to this the flood coefficient,
which is the only input that affect the inter-annual variability in the population size, converges
toward a single value. At a value of 15, this flood coefficient is responsible for approximately
doubling recruitment between low and high flood years. Thus, this mechanistic model
corroborates the conceptual model (Merron, 1991; Mosepele et al., 2009) and qualitative
observations (Hoberg et al. (2002) made about fish response to the flood pulse in the Okavango

Delta.
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Tables

Table 1. Natural mortality (M) and growth coefficients (k) for selected tilapiine species.

Species M(yr?)  K(yr?) Location Reference
Oreochromis andersonii 1.39 1.0 Okavango Delta, Botswana Mosepele and Nengu (2003)
Oreochromis andersonii 0.67 0.25 Okavango Delta, Botswana Booth et al. (1995)
Oreochromis macrochir 1.5 1.0 Okavango Delta, Botswana Mosepele and Nengu (2003)
Oreochromis macrochir 0.95 0.42 Okavango Delta, Botswana Booth et al. (1996)

Tilapia rendalli 1.22 0.78 Okavango Delta, Botswana Mosepele and Nengu (2003)
Serranochromis angusticeps 1.46 1.0 Okavango Delta, Botswana Mosepele and Nengu (2003)
Serranochromis robustus 1.21 0.83 Okavango Delta, Botswana Mosepele and Nengu (2003)
Oreochromis niloticus 0.254 Lake Victoria, Kenya Getabu (1992)
Haplochromis anaphyrmus 1.45 0.671 Lake Malawi, Mozambique Tweedle and Turner (1977)
Haplochromis mloto 0.92 0.55 Lake Malawi, Mozambique Tweedle and Turner (1977)
Lethrinops longipinnus 1.69 0.571 Lake Malawi, Mozambique Tweedle and Turner (1977)
Lethrinops parvidens 1.20 0.487 Lake Malawi, Mozambique Tweedle and Turner (1977)
Tilapia esculenta 1.75 0.28 Lake Victoria, Kenya Garrod (1963)
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Table 2. List of inputs and initial distributions.

Input Units Distribution
1 Z yrt U(0.67, 1.39)
2 K unitless U(0.25, 1.0)
3 M, yriem® u(3, 8)
4 unitless U(0.004, 0.026)
5 B unitless U(2.911, 3.424)
6 Lo cm™ U(40, 53)
7 CR unitless U(3, 50)
8 Low cm™ u(1, 3)
9  SDiow cm™ U(23, 25)
10  Lhign cm™ U(28,60)
11  SDhigh cm™ U(10, 30)
12 Maturity yr N(4.25, 0.5)
13 Fecundity eggs U(350, 800)
14 Broods yrt u(1, 2)
15 Inflow M m? yr? U(-10%, +10%)
16 Flood coefficient unitless u(5, 25)
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Figure Captions
Figure 1. Site location. The Okavango Delta, with fish sampling sites marked with stars.

Figure 2. The conceptual model.

Figure 3. A demonstration of the response in recruitment as a result of the change in annual
maximum flood. The rate of recovery and the carrying capacity increases during smaller floods.
Flood;>Flood,>Floods.

Figure 4. An example of the dome shaped double logistic curve (Allen et al., 2009) for catch
vulnerability. Liow =2, SDiow = 2, Lhigh = 45, SDhigh = 10. Histogram data from Mosepele, 2009. (a)
shows the dome shaped curve and (b) shows the curve approaching a logistic shape. Both
shapes are possible within the bounds of the defined PDFs.

Figure 5. The best fit model simulation for the initial inverse optimization. Coefficient of
efficiency of 0.64.

Figure 6. First order sensitivity for the coefficient of efficiency of the modeled fish density
compared to the measured CPUE from the first inverse optimization.

Figure 7. First and higher order sensitivities for coefficient of efficiency of modeled fish density
compared to measured CPUE from first inverse optimization.

Figure 8. Ranges of values for the flood coefficient (c) creating behavioral outputs. Note that c
converges toward a single value in the highest values for the coefficient of efficiency.

Figure 9. The effect of the flood and the flood coefficient on recruitment. (c = 15)

Figure 10. Important inputs whose behavioral distributions are significantly different from the
non-behavioral distributions. These graphs show histograms of the behavioral distributions and
their newly defined triangular prior distributions.

Figure 11. All GUA results. (a) unfiltered (b) MC filtered. Because of the scale on the x axis (-
400 — 1 with 50 unit increments labeled), coefficient of efficiencies greater than 1 are
undetectable. Therefore, Figure 12 shows a blowup of results with coefficient of efficiencies
greater than 0.

Figure 12. Uniform and MC Filtered GUA outputs with a coefficient of efficiency greater than 0.
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Chapter 5. Conclusions
This research involving the GSA/UA and MC filtering of the ORI, Pitman, and Okavango Delta

fish models provides important insights into the use of these tools not only for model building
and simplifying but also as tools for reducing uncertainty, measuring the quality of models for
management purposes, and corroborating ecological theories in the presence of model
equifinality. GSA/UA is a tool that is traditionally used to aid modelers by identifying important
inputs and setting unimportant inputs to constants. This allows the modeler to avoid over-
parameterization and simplify models and also enables the modeler to focus on the most
important inputs for further study. GSA/UA also often provides important insights into model
inner workings that may aid in model development. All of these aspects of GSA/UA were
accomplished in this work. However, a broader application of the use of these tools allowed

additional insights to be garnered from these methods.

The GSA/UA and MC filtering of the ORI reservoir model provided valuable insights into the
sensitivity, uncertainty, and inner workings of the ORI model and into reservoir models in
general. The importance of volume thresholds was recognized; the keystone reservoir was
identified; PDF’s were refined; and a monitoring strategy for decreasing model uncertainty and
increasing predictive capabilities was presented. MC filtering also decreased model uncertainty
and brought the outputs closer to the calibrated values. These insights are useful for both
modelers and policy makers in understanding the system and making decisions regarding model

scenarios of climate change and development.
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The Morris screening coupled with the FAST quantitative two tiered regionalization GSA/UA of
the Pitman model highlighted the most important and least important inputs, quantified model
uncertainty, compared regional groupings, and explored the uncertainty of an alternative
model scenario. The conclusions are useful especially within the context of Adaptive
Management when interpreting model reliability, determining the usefulness of model
predictions, identifying gaps in knowledge, and focusing monitoring efforts. The most sensitive
processes in the model have to do with rainfall distribution, catchment absorption,
evapotranspiration, and groundwater recharge, and groundwater runoff is the least important
process. The most important regions are the more humid headwater regions where the
majority of the flow originates. The importance of each input is also compared to the
uncertainty that was defined for the PDF’s (low, medium, high). Generally, the inputs that were
assigned high uncertainties were more important than those with medium or low uncertainties.
This highlights the fact that the width of the input’s PDF has an influence on its importance

because inputs with a wider PDF are able to vary over a larger parameter space.

Because of the data scarcity in the Okavango Basin, and resulting wide PDFs that were set for
the inputs in the Pitman model, there are multiple input sets that can simulate the same
goodness of model fit. The issue of equifinality was evaluated to understand the effects that it
may have on using the model in a predictive capacity for climate change scenarios. The most
practical best fit model simulations were run under a climate change scenario and the 95%
confidence interval of the average annual flow increased by approximately 18% between the

original simulations and the climate change simulations.
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A fish population model driven by the flood pulse was developed for the Okavango Delta. The
fish model integrated GSA/UA and MC filtering in the development stages. The most important
factors in this model were Mu (mortality at unit length), Lhigh (upper length at 50%
vulnerability), and k (growth factor). These were also highly interactive inputs. The model’s
high level of interaction was derived from both the interplay between the inputs in each time
step and an internal inter-annual feedback loop. The least important inputs in the model were
maturity, fecundity, the number of broods per season, the flood coefficient, SDjow, and Liow.
These inputs were set to constants for model simplification. The flood coefficient is an
unimportant input. However, this does not mean that the effect of the flood and the flood
coefficient is not important for producing behavioral outputs. The most important inputs in the
model are related to the overall population size, whereas the flood coefficient is the only input
that relates solely to inter-annual population dynamics. The fact that the flood coefficient
converges toward a value that produces the best fit in the model provides evidence that the
flood is an important driver in the system. Moreover, all of the other inputs (besides k) show
major issues of equifinality. They do not converge and are able to vary throughout their PDF

ranges while still achieving best fit solutions.

After the GSA/UA was conducted and the unimportant inputs were set to constants in the fish
model, MC filtering was performed. The prior distributions were re-set where the behavioral
inputs were found to be significantly different from the non-behavioral inputs based on the two
sided Smirnov test. Lnigh, Mu, k, @, B, L, and Z were all found to have significantly different

behavioral inputs and were assigned triangular distributions based on the distribution of the
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behavioral inputs. This method reduced uncertainty and is useful in a data poor environment
allowing the modeler to focus on likely values within the ranges of physically acceptable PDFs.
The modeler can then work with ecologists to ensure that the model makes ecological sense

and provide converging lines of evidence for theories of system interactions.

Data scarcity presents many challenges for modelers and policy makers when developing,
calibrating, interpreting model results, and applying models in predicative and dynamic
capacities. However, there are ways of managing for these challenges. Adaptive Management
is specifically designed for determining a course of action within the context of uncertainty.
The tools presented here are couched within the context of Adaptive Management and
guantitatively analyze model uncertainty in the light of practical management issues. The issue
of data scarcity is acknowledged upfront and at the same time, uncertainty is reduced, model

quality is assigned, and evidence of ecological theory is supported in spite of equifinality.

Limitations
Models are by nature simplifications of reality. Thus, as they are useful in understanding the

world in a simpler fashion, they also introduce uncertainty. The human brain in fact views
reality through a conceptual filter and every model, measurement, and connection that we
perceive is inherently uncertain. GSA/UA is intended to shed light on this uncertainty. There
are two major limitations associated with the GSA/UA in the work contained in this body of
research. This work only investigates the uncertainty and sensitivity of model inputs. It does
not address the uncertainty in model structure or time series data. In addition, there is

inherent uncertainty in the PDF’s that are developed for these inputs. As was shown in the
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Pitman model, the width of the PDF has an impact on the importance of the input. In a data
poor environment it is particularly difficult and often impossible to define PDF’s for inputs
based on evidence and data. In the absence of data, PDF’s can be based on + some percentage
and also given a ranking such as high, medium, and low uncertainty. This uncertainty in the
PDF’s introduces uncertainty in the GSA/UA. Accordingly, an uncertainty analysis of the

uncertainty analysis could be conducted; however that is beyond the scope of this work.

MC filtering was shown to be a useful tool in reassigning prior PDF’s and reducing uncertainty.
However, this method is based on setting a rather arbitrary threshold for behavioral outputs.
Arguments can be made for setting this threshold. For example in the ORI case, the threshold
was set by balancing inputs and outputs. The input PDF’s were truncated within reason to get a
number of behavioral outputs. In the fish model the threshold was set to calibrate the model
to an optimal range. Nonetheless, the threshold is a cutoff, a line drawn in the sand. A

continuum based on the degree of behavior would be a better filter.
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Appendix A. ORI Reservoir Model High Performance
Computing GSA/UA Script and Instructions

The following script is used to run the ORI model (Wolski et al., 2006) in batch on the UF High
Performance Computing (HPC) system. Essentially, for the GSA the ORI program is run in batch.

The batch is broken up into smaller jobs to run more quickly. Each smaller job has a .job file

associated with it. The program, Wine is used to run the Windows based Visual Basic program

on the HPC Unix machine.

File name: Delta.job
Begin script:

#! /bin/sh

#PBS -N testjob

#PBS -o testjob.out

#PBS -e testjob.err

#PBS -M acathey@ufl.edu
#PBS -l nodes=1:ppn=1
#PBS -l walltime=30:10:00

date
hostname

echo "Changing directory to work area"
cd /scratch/ufhpc/acathey/ORISA/MCF/delta400
pwd

HH
## Create dummy display
HH
echo "Picking a unique display"
ncpus="grep vendor_id /proc/cpuinfo | wc -I’
display=1
while [ Sdisplay -le Sncpus | ; do
if [ 1 -e /tmp/.XS{display}-lock ] ; then
break
fi
display="expr Sdisplay + 1°
done
echo "Unique display found: Sdisplay"

176



echo "Firing up dummy X server"
Xvfb :${display} > /dev/null 2>&1 &
jobs

export DISPLAY=:S{display}

Hi

## Actual program commands
Hi

echo "Invoking wine"

wine delta.exe

echo "Done"

date

HH
## Clean up after ourselves
HH

echo "Killing dummy X server"
kill -TERM %1

# This should already be cleaned up, but just in case

rm -f /tmp/.X${display}-lock
rm -f /tmp/.X11-unix/X${display}
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Appendix B. Fish model data and code

Table 1. Modeled fish populations and measured data. Measured data from Mosepele, 2009.

Date 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005
Total Modeled 19,467 19,866 21,600 23,565 22,352 24,198 23,172 23,172 26,164 25,965
Population

Modeled Fish 28 28 31 34 32 35 34 33 37 37
Density

Sampled CPUE 26 29 30 31 34 38 31 36 39 34
Modeled yr 1 6,052 7,021 8,541 9,375 6,856 9,432 7,567 7,567 10,837 8,717
Modeled yr 2 4,463 3,937 4,567 5,556 6,099 4,460 5,016 5,016 4,922 7,049
Modeled yr 3 2,525 2,977 2,626 3,046 3,706 4,068 4,093 4,093 3,346 3,283
Modeled yr 4 1,742 1,704 2,009 1,772 2,056 2,501 2,007 2,007 2,762 2,258
Modeled yr 5 1,975 1,181 1,155 1,362 1,201 1,394 1,861 1,861 1,361 1,872
Modeled yr 6 869 1,341 802 784 925 816 1,151 1,151 1,264 924
Modeled yr 7 740 591 911 545 533 628 643 643 782 859
Modeled yr 8 531 503 401 619 370 362 377 377 437 532
Modeled yr 9 368 361 342 273 421 252 290 290 256 297
Modeled yr 10 201 250 245 232 185 286 167 167 197 174
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Table 2. Monthly sampled catch per unit fish data used for validation (Mosepele, 2009)

Date CPUE Date CPUE Date CPUE Date CPUE
Jan-96 20.3 Aug-98 23.0 Mar-01 16.1 Oct-03 36.5
Feb-96 26.7 Sep-98 25.0 Apr-01 18.3 Nov-03 26.6
Mar-96 7.8 Oct-98 27.3 May-01 19.1 Dec-03 23.5
Apr-96 8.7 Nov-98 30.0 Jun-01 23.5 Jan-04 19.1
May-96 13.4 Dec-98 21.3 Jul-01 20.6 Feb-04 10.3
Jun-96 14.6 Jan-99 19.8 Aug-01 204 Mar-04 10.6
Jul-96 22.5 Feb-99 15.7 Sep-01 23.8 Apr-04 15.1
Aug-96 15.3 Mar-99 15.4 Oct-01 36.9 May-04 28.9
Sep-96 26.3 Apr-99 14.3 Nov-01 37.5 Jun-04 24.3
Oct-96 26.3 May-99 21.8 Dec-01 32.0 Jul-04 28.1
Nov-96 22.2 Jun-99 18.2 Jan-02 24.1 Aug-04 38.9
Dec-96 22.8 Jul-99 22.6 Feb-02 22.8 Sep-04 28.3
Jan-97 21.2 Aug-99 21.4 Mar-02 16.1 Oct-04 28.2
Feb-97 19.4 Sep-99 31.3 Apr-02 15.7 Nov-04 21.3
Mar-97 16.7 Oct-99 25.7 May-02 19.9 Dec-04 30.3
Apr-97 15.1 Nov-99 19.0 Jun-02 19.1 Jan-05 33.9
May-97 17.7 Dec-99 13.2 Jul-02 19.8 Feb-05 22.2
Jun-97 20.7 Jan-00 21.1 Aug-02 18.4 Mar-05 14.2
Jul-97 19.4 Feb-00 21.4 Sep-02 22.5 Apr-05 14.5
Aug-97 17.9 Mar-00 27.3 Oct-02 21.4 May-05 17.4
Sep-97 23.8 Apr-00 30.7 Nov-02 27.3 Jun-05 21.0
Oct-97 28.7 May-00 14.7 Dec-02 30.7 Jul-05 24.4
Nov-97 26.9 Jun-00 20.7 Jan-03 30.9 Aug-05 16.1
Dec-97 21.7 Jul-00 21.3 Feb-03 29.6 Sep-05 29.6
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Jan-98

Feb-98

Mar-98

Apr-98

May-98

Jun-98

Jul-98

22.4

22.6

14.6

10.4

13.2

15.8

19.4

Aug-00

Sep-00

Oct-00

Nov-00

Dec-00

Jan-01

Feb-01

24.1

24.8

34.0

33.0

27.0

27.4

17.1

Mar-03

Apr-03

May-03

Jun-03

Jul-03

Aug-03

Sep-03

21.9 Oct-05

12.2 Nov-05

11.5 Dec-05

12.1

20.4

25.0

24.0

25.7

343

20.3
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Fish Model Code (Visual Basic)

Main Module

Public do_hydro_model As Boolean
Public do_veg_model As Boolean
Public workdir, mapdir As String
Public noftsteps As Integer

Public evapdata As Integer

Public file_suffix As String

Sub Main()

docalcflag = True

workdir = "H:\HOORCfishModel\annual\annual SA for Cal MC constantkz3" 'CurDir
mapdir = workdir & "maps\"

evapdata =2

file_suffix ="_2008"

'file_suffix =" _baseline"

'file_suffix =" _csiro"

file_suffix ="_had"

'file_suffix ="_ccc"

file_suffix ="_gldf"

'file_suffix=""

'Call hydro_model.hydro_model_main
Call fish_model.fish_model_main

End Sub

Fish Module

Public file_flood, file_inflow, file_out, file_fish, d_file, GSA_out As String
Public flood() As Integer

Public inflow() As Variant

Public total_flood(), maxflood(), minflood() As Double

Public recdate(), fl(), infl() As Variant

Public unitcode() As Integer
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Public population_matrix() As Double

Public caught_pop() As Double

Publicy, ts, month, start, nofyears, lifespan As Integer
Public reck(400000), Ihigh(400000), deGraafM(400000), deGraafa(400000), deGraafb(400000),
k(400000), z(400000), Linf(400000) As Double

Public runs, G As Variant

Public recruits(400000) As Variant

Public Spawners() As Double

Public maxinflow(), mininflow(), minet(), maxet() As Double
Public et() As Double

Public stop_error As Integer

Public EndSub As Label

Sub fish_model_main()
DoEvents

file_flood = workdir & "\out_area_2008.csv"
file_inflow = workdir & "\input_2008.csv"

Call getnoftsteps
nofyears = Int(noftsteps / 12) ' this is the number of years to analyse

start=5

MaxLength =53

lifespan =10

ReDim recdate(noftsteps)

ReDim total_flood(noftsteps), maxflood(noftsteps), minflood(noftsteps) As Double 'flood in
km”2

ReDim inflow(noftsteps) As Variant 'inflow in MCM at mohembo
ReDim fish_biomass(lifespan, noftsteps) As Double 'biomass is in tons
ReDim fish_length(lifespan) As Double ‘fish length in cm

ReDim population_matrix(lifespan, noftsteps) As Double

ReDim total_pop(noftsteps) As Double

ReDim et(noftsteps) As Double

ReDim caught_pop(noftsteps), write_pop(noftsteps) As Double

ReDim Spawners(noftsteps) As Double

runs = 39944

Call read_inflow
Call read_hydro_results
Call GSA
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'Call noGSA
End Sub

Sub GSA()
file_out = workdir & "\Data\fish_GSA" & ".csv"
Open file_out For Output As #2

file_GSAinputs = workdir & "\Data\inputs2.sam"
Open file_GSAinputs For Input As #3

Input #3, buzz

Input #3, buzz

Input #3, buzz

Input #3, buzz

ForG=1Toruns
Input #3, recK(G), Ihigh(G), deGraafM(G), deGraafa(G), deGraafb(G), z(G), k(G), Linf(G)
'maturity(G) = Round(maturity(G))

Next G

Close #3

For y = start To nofyears
Ify>41Andy <52 Then

Write #2, "ts " & y + 1954,

End If

Nexty

Write #2,

llow =23.5

sigmalow = 1.8

sigmahigh = 20

ForG=1Toruns
stop_error=0
For y = start To nofyears
Call make_fish

For N =1 To lifespan
L = Linf(G) * (1 - Exp(-N) * k(G))
vulnerable =1/ (1 + Exp(-(L - llow) / sigmalow)) - 1 / (1 + Exp(-(L - Ihigh(G)) /
sigmahigh))
If vulnerable < 0 Then vulnerable =0
caught_pop(ts) = caught_pop(ts) + population_matrix(N, ts) * vulnerable
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Next N

Ify>41 Andy <52 Then
If stop_error =1 Then
Write #2, 99999,
Else

Write #2, caught_pop(y) / 700, '(minflood(y) * sflood(G)), '700,

End If
End If

Nexty

Write #2,

ReDim caught_pop(noftsteps) As Double
Next G
Close #2
Close #99
End Sub
Sub noGSA()
file_out = workdir & "\fish_biomass_2008" & ".csv"
Open file_out For Output As #2

'ceff =0.637

maturity(1) = 4.189057665
fecundity(1) = 735.7842698
broods(1) = 1.359830489
recK(1) = 14.9926638

z(1) = 1.298389041

llow(1) = 23.8242803
sigmalow(1) = 1.48082475
lhigh(1) = 36.67651807
sigmahigh(1) = 26.46092243
coef(1) = 12.89298458
Linf(1) = 47.09325197
deGraafM(1) = 4.844473799
inflow10(1) = 1.086765657
deGraafa(1) = 0.022612467
deGraafb(1) = 3.35601894

maturity(G) = Round(maturity(G))

'set headers in excel file

Write #2, "",

For ts = 1 To lifespan
Write #2, "age " & ts,
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Next ts
Write #2,

G=1

For y = start To nofyears
Call make_fish

Nexty

For y = start To nofyears
Form=1To 12
ts=(y-1)*12+m
Write #2, "ts " & ts,
For N =1 To lifespan
L = Linf(G) * (1 - Exp(-N * k(G)))
vulnerable =1/ (1 + Exp(-(L - llow(G)) / sigmalow(G))) - 1 / (1 + Exp(-(L - lhigh(G)) /
sigmahigh(G)))
Write #2, population_matrix(N, y) * vulnerable,
Next N
Write #2,
Next m
Nexty
Close #2

Call write_to_excel

End Sub
Sub make_fish()

ts=y '(y-1) * 12 + month
ReDim Spawners(noftsteps) As Double

'‘Average max annual flooding extents in the panhandle = 876.2 km2, average = 801.6, min
=704.4

'‘Average max annual inflow for all years = 1529, for fish data years = 1328
'‘Average min annual inflow for all years = 350.7, for fish data years = 269.8
'‘Average avg annual inflow for all years =774

'‘Average max ET for all years = 190.5, avg = 126.1, min = 63.4
Ntl = 25000

broods = 1.5

maturity = 4.5

fecundity = 600
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coef =13

No = Nt1 + (maxinflow(ts) - 1529) * coef
Ro = (1 - Exp(-z(G) * k(G))) * No

reca = recK(G) * Ro / No

recb = (recK(G) - 1) / No

If ts =5 Then 'calculate the age structure for the first year
For N =1 To lifespan
If N=1Then
population_matrix(N, ts) = Ro
Else
L = Linf(G) * (1 - Exp(-N * k(G)))
zL = deGraafM(G) * deGraafa(G) A -0.3 * L~ (-0.3 * (deGraafb(G))) 'ge Graaf et al
(2005) Simulation of Nile Tilapia in Ponds, used Mu of 1
population_matrix(N, ts) = population_matrix(N - 1, ts) * Exp(-zL * k(G))
End If
Next N
Else  'calculate the age structure for the rest of the years
For N = 1 To lifespan
If N=1Then
For n2 = maturity To lifespan
Spawners(ts) = Spawners(ts) + population_matrix(n2, ts - 1)
Next n2
On Error GoTo EndSub

Spawners(ts) = (Spawners(ts) * coef) * fecundity * broods
population_matrix(N, ts) = reca * Spawners(ts) / (1 + recb * Spawners(ts))

Else
L = Linf(G) * (1 - Exp(-N * k(G)))
zL = deGraafM(G) * deGraafa(G) » -0.3 * L A (-0.3 * (deGraafb(G))) 'ge Graaf et al
(2005) Simulation of Nile Tilapia in Ponds, used Mu of 1
population_matrix(N, ts) = population_matrix(N - 1, ts - 1) * Exp(-zL * k(G))

End If
Next N
End If

Exit Sub
EndSub:
stop_error=1
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End Sub
Sub getnoftsteps()

Open file_flood For Input As #1
' check number of time steps
noftsteps = -1

Do While Not EOF(1)
Line Input #1, temp
noftsteps = noftsteps + 1
Loop
Close #1

End Sub

Sub read_inflow()

Dim infl(6) As Variant

ReDim maxinflow(noftsteps)
ReDim mininflow(noftsteps)
ReDim maxet(noftsteps)
ReDim minet(noftsteps)

Open file_inflow For Input As #11

For t =1 To noftsteps

Input #11, infl(1), infl(2), infl(3), infl(4), infl(5), infl(6)

inflow(t) = infl(2)
et(t) = infl(5)
Next t
Close #11

Fory =1 To nofyears

maxinflow(y) = inflow((y - 1) * 12 + 1)
mininflow(y) = inflow((y - 1) * 12 + 1)
maxet(y) = inflow((y - 1) * 12 + 1)
minet(y) = inflow((y - 1) * 12 + 1)

Form=1To 12
ts=(y-1)*12+m

If inflow(ts) > maxinflow(y) Then

maxinflow(y) = inflow(ts)
End If
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If inflow(ts) < mininflow(y) Then
mininflow(y) = inflow(ts)
End If

If et(ts) > maxet(y) Then
maxet(y) = et(ts)
End If

If et(ts) < minet(y) Then
minet(y) = et(ts)
End If
Next m

Nexty
End Sub
Sub read_hydro_results()

ReDim fl(11, noftsteps) As Variant
ReDim recdate(noftsteps) As Variant

Open file_flood For Input As #10
Input #10,a,b,c,d, e, f,q, h,i,J, k, L

For t =1 To noftsteps

Input #10, buzz, recdate(t), fl(1, t), fl(2, t), fl(3, t), fl(4, t), fI(5, t), fl(6, t), fl(7, t), fI(8, t), fl(9, t),
fl(10, t), fl(11, t)

total_flood(t) = fl(1, t) '+ fl(4) + fI(5) + fl(6) + fl(11) + fl(2) + fl(3) + fl(9) + fl(7) + fI(8) + fl(10)
Next t
Close #10

Fory=1To nofyears-1
maxflood(y) = total_flood((y-1) * 12 + 1)
minflood(y) = total_flood((y - 1) * 12 + 12)

Form=1To 12
ts=(y-1)*12+m

If total_flood(ts) > maxflood(y) Then
maxflood(y) = total_flood(ts)
End If
188



If m =1 And total_flood(ts + 12) < minflood(y) Then
minflood(y) = total_flood(ts + 12)
End If

If m =2 And total_flood(ts + 13) < minflood(y) Then
minflood(y) = total_flood(ts + 13)
End If

If m = 12 And total_flood(ts) < minflood(y) Then
minflood(y) = total_flood(ts)
End If

If m = 11 And total_flood(ts) < minflood(y) Then
minflood(y) = total_flood(ts)
End If

Next m
minflood(y) = (total_flood((y - 1) * 12 + 11) + total_flood((y - 1) * 12 + 12) + total_flood((y) *
12 + 1) + total_flood((y) * 12+ 2))/ 4

Nexty
End Sub

Sub write_to_excel()
'this writes the bucket model to excel

Set objExcel = CreateObject("Excel.Application")

Set objWorkbook1 = objExcel.Workbooks.Add(workdir & "\fish_biomass_2008.csv")

Set objWorkbook2 = objExcel.Workbooks.Open(workdir & "\Data\results.xlsx")
objExcel.Visible = True
objWorkbook1.Worksheets("fish_biomass_2008").Range("A1:k645").Copy
objWorkbook2.Worksheets("fish_biomass_2008").Range("A1:k645").PasteSpecial Paste =
xIValues

objWorkbook1.Application.CutCopyMode = False

objWorkbook1.Close

Set objExcel = Nothing

End Sub
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