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Abstract

The extensive eastern boundary of Everglades National Park (ENP) in south Florida (USA) is

subject to one of the most expensive and ambitious environmental restoration projects in history.

Understanding and predicting the water quality interactions between the shallow aquifer and

surface water is a key component in meeting current environmental regulations and fine-tuning

ENP wetland restoration while still maintaining flood protection for the adjacent developed areas.

Dynamic factor analysis (DFA), a recent technique for the study of multivariate non-stationary

time-series, was applied to study fluctuations in groundwater quality in the area. More than two

years of hydrological and water quality time series (rainfall; water table depth; and soil, ground

and surface water concentrations of N–NO3
�, N–NH4

+, P–PO4
3�, Total P, F�and Cl�) from a small

agricultural watershed adjacent to the ENP were selected for the study. The unexplained variability

required for determining the concentration of each chemical in the 16 wells was greatly reduced by

including in the analysis some of the observed time series as explanatory variables (rainfall, water

table depth, and soil and canal water chemical concentration). DFA results showed that

groundwater concentration of three of the agrochemical species studied (N–NO3
�, P–PO4

3�and

Total P) were affected by the same explanatory variables (water table depth, enriched topsoil, and
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occurrence of a leaching rainfall event, in order of decreasing relative importance). This indicates

that leaching by rainfall is the main mechanism explaining concentration peaks in groundwater. In

the case of N–NH4
+, in addition to leaching, groundwater concentration is governed by lateral

exchange with canals. F�and Cl� are mainly affected by periods of dilution by rainfall recharge,

and by exchange with the canals. The unstructured nature of the common trends found suggests

that these are related to the complex spatially and temporally varying land use patterns in the

watershed. The results indicate that peak concentrations of agrochemicals in groundwater could be

reduced by improving fertilization practices (by splitting and modifying timing of applications)

and by operating the regional canal system to maintain the water table low, especially during the

rainy periods.

D 2005 Elsevier B.V. All rights reserved.
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1. Introduction

In the first half of the 20th century a complex drainage canal system was built in

south Florida to protect urban and agricultural areas against flooding. However, this

regional water management also led to the draining of protected natural wetland areas

in the adjacent Everglades National Park (ENP) creating a negative impact on the

environment. In an attempt to restore the wetland ecosystem of the ENP, the Combined

Structural and Operational Project (CSOP) and the Comprehensive Everglades

Restoration Plan (CERP) are being implemented along the extensive eastern boundary

with the developed area (agricultural and urban) (SFWMD, 2004). The goal of these

plans is to enhance water deliveries into the ENP while maintaining flood protection

for developed areas. In addition, water quality is at the core of the restoration effort.

Surface waters entering the ENP must not exceed a maximum regulatory level of total

phosphorous of 0.010 mg l�1 and other chemicals must be monitored as well (Florida

Senate Bill 0626ER, 2003). Implementation of these projects is complex and requires

detailed understanding of the hydrological processes involved. Predicting the water

quality interactions between surface water flow in the canals and the shallow and

extremely permeable Biscayne Aquifer (Fish and Stewart, 1991) is a special priority for

ecosystem restoration of the Everglades and flood protection of urban and agricultural

areas. Previous studies in the area (Genereux and Guardiario, 1998, 2001; Genereux

and Slater, 1999) have shown the complexity of the groundwater system with

extremely permeable materials and evidence of a very dynamic interaction between

canals and the aquifer. Muñoz-Carpena et al. (2003), based on preliminary hydrological

data (1-year) obtained in an agricultural area located at the boundary of the ENP,

reported the almost instantaneous response of the groundwater to canal and rainfall

inputs in the area as well as evidence of water quality interaction between canals, the

shallow aquifer and land use. Detailed data sets containing temporal variation of

hydrological and water quality variables have the potential to be used to understand the

surface–groundwater–land use interactions in the area. However, interpretation of

results from data analysis based on visual inspection and descriptive statistics is
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difficult and may not be sufficient, especially when dealing with multivariate time

series.

Chemical fluctuations in shallow groundwater typically result from different

cumulative effects, such as land use and associated chemical concentration in the topsoil,

net vertical recharge (affected by leaching rainfall), local depth to groundwater, lateral

recharge from ground or surface water sources, etc. Although some of these effects can be

measured accurately, it is impractical to measure others, i.e., those with unstructured

spatial and temporal distribution. An example of this is land use in an intensive

commercial horticulture setting managed by different farmers. Typically land parcels can

be combined or used independently for different crops and management practices

(chemical application times and rates, irrigation, etc.), which vary from farmer to farmer.

These combinations change from year to year depending on marketing, farmer specialty or

preferences, etc. This generates the need for estimations by indirect methods applied to

observed water quality data at fixed observation sites (Márkus et al., 1999).

Although standard multivariate analysis techniques are useful tools and can be

adapted to analyze time series to obtain information about the interactions between

variables, the time component of the data is ignored. A preferred method for studying

multivariate time series is dynamic factor analysis (DFA), because it allows estimating

common patterns and interactions in several time series and studying the effect of

explanatory time-dependent variables as well (Zuur et al., 2003b). Multivariate time

series may be analyzed as response variables assuming that there are common driving

forces behind them, i.e., latent effects that determine the variation of the individual

observations with time. These latent effects can be described by trends and/or

explanatory variables. Dynamic factor analysis is a specialized time series technique

originally developed for the study of economic models (Geweke, 1977) that has been

recently used with variations in disciplines like psychology (e.g., Molenaar, 1985,

1989; Molenaar et al., 1992) and economics (Harvey, 1989; Lütkepohl, 1991). Lately,

Zuur et al. (2003a), Zuur and Pierce (2004) and Erzini (2005) used dynamic factor

analysis for fisheries applications, while Mendelssohn and Schwing (2002) applied it to

large oceanographical time series. Although dynamic factor analysis has been recently

applied in hydrology to identify common patterns of groundwater level (Márkus et al.,

1999; Ritter and Muñoz-Carpena, 2005), there is no previous application to water

quality studies. Analysis of large water quality datasets is complex because of the many

effects affecting the chemical concentration variation in the system. DFA can be an

effective methodology to handle such datasets and identifying the dominant effects

controlling such variation.

The objective of this study is to apply DFA to study the interactions between monthly

water quality time series and other hydrological variables obtained at an intensively

monitored small agricultural watershed along the boundary of the ENP. Four

agrochemical species of nitrogen and phosphorus, plus two natural tracers, Fluoride

(F�) and Chloride (Cl�), were included in the analysis. The analysis was conducted in

three steps: i) identification of common trends of groundwater quality; ii) inclusion of

explanatory variables in the dynamic factor model; and iii) study of interactions between

ground and surface water quality and canal management, hydrology and land use

components.
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2. Materials and methods

2.1. Experimental set-up

The study was conducted in the Frog Pond area, a small watershed of 2023 ha

located along the boundary of Everglades National Park (ENP) in Homestead, Florida

(Fig. 1). This public land was leased for the last 11 years to a group of growers that

farmed under restricted conditions (low inputs and limited flood protection). The area is

delimited by two canals that belong to the South Florida Water Management District

(SFWMD) regional network: C-111 (West) and L-31W (East) (Fig. 1). Water level in

both canals is regulated by remotely operated structures S-177 (spillway) and S-175

(culvert), respectively. Under CSOP operations, water level in canal L-31W is

maintained high in order to increase water delivery into the ENP, while pushing

agricultural return flows away to the east. This system influences surface and

groundwater flow patterns and elevation in the area. Although farming practices vary

with crop (sweet potato, sweet corn, green beans, malanga, okra, squash) and by

individual farmer, the cropping season for the entire Frog Pond extends from the end of

September through April, coinciding with the dry season.

An extensive monitoring network distributed across the southern portion of the Frog

Pond watershed (780 ha south of the Torcise ditch, Fig. 1) was developed for this study.

The first experimental phase of the University of Florida (UF) monitoring network was

initiated in February 2002 with the installation of 10 instrumented wells for measuring

water elevation, two rain gauges, soil moisture sensors and an automatic weather station

along a 1.6 km transect. Groundwater levels were registered every 15 min by auto-logging

pressure transducers compensated for temperature effects and atmospheric pressure

(Solinst Inc., Canada). Fifteen minute rainfall readings were made with two auto-logging

tipping-bucket rain gauges (Onset Computer Corp., USA) located at points 1 /3 and 2 /3 of

the way along the main transect. A sampling location for each canal (C-111 and L-31W)

was selected at each end of the transect.

In a second experimental phase started in February 2003, six additional instrumented

wells were added north and south of the original transect and included in the water quality

protocol described below (Fig. 1). These new wells were added to study the possible

perturbations introduced by the newly constructed detention pond when operation started

in summer 2003. To date, the detention pond has only been filled in June 2003. Surface

water elevations in the canals were continuously recorded by a simple self-contained

automatic recorder developed for this purpose (Schumann and Muñoz-Carpena, 2003).

The loggers in the two canals were attached to custom-made steel and wood platforms

(6�1 m) supported by pillars anchored in the banks and the bottom of the canal. Further

details about the experimental area and set-up can be found in Ritter and Muñoz-Carpena

(2005).

Surface and groundwater quality grab samples were collected in acid cleaned and pre-

labeled 500 ml bottles every two weeks at each monitoring location (2 canals and 16 wells

for the second phase; 2 canals and 10 wells for the first phase). QA/QC field and

laboratory procedures were followed at all times (FL-DEP, 2002). The samples were stored

in the field in a cooler with ice and transported to the laboratory within 2 h. The water
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Fig. 1. The Frog Pond water quality monitoring network. Water quality samples were obtained from the transect

and additional wells (UF), platforms and canal loggers locations (UF).
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samples were prepared immediately on receipt and transferred in refrigeration before

analysis. The samples were analyzed for concentrations of orthophosphate [P–PO4
3�], total

phosphorus [TP], ammonia–nitrogen [N–NH4
+] and nitrate–nitrogen [N–NO3

�] using an

Autoanalyzer (AA3, Bran+Luebbe, Buffalo Grove, IL). In addition, fluoride [F�] and

chloride [Cl�] were analyzed by ion chromatography (Dionex 500, Dionex Corporation,
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Sunnyvale, CA). Analytical precision for these elements was better than 3% RSD

(Relative Standard Deviation).

Soil samples were collected every 6 months, at the beginning and end of the cropping

season (i.e., at the end and beginning of the rainy season), from the land adjacent to each

well. The soil samples were air-dried, grinded, sieved (b2 mm) and stored in plastic-lined

paper bags before chemical analysis. Soil samples were digested according to US-EPA

method 3050A and analyzed for TP. Nitrogen species (N–NO3
� and N–NH4

+) in soils were

extracted with 2 M KCl and analyzed using an Autoanalyzer. Fluoride, chloride and water

soluble P in soil were extracted with water (1 :5 soil to water ratio) and analyzed using an

ion chromatograph.

2.2. Dynamic factor analysis, DFA

Time series are time dependent data showing a systematic and a non-systematic

variation. These are usually analyzed by decomposing the information, so that both

types of variations (systematic and non-systematic) can be characterized. DFA is a

statistical technique for the analysis of multivariate time series that first received this

name from the pioneering work of Geweke (1977). It has been designed to identify

underlying common trends or latent effects in several time series and interactions among

them. Moreover, the DFA scheme used here (Zuur et al., 2003b) allows for evaluation of

the effect of explanatory variables. DFA is similar to other dimension reduction

techniques like factor analysis or redundancy analysis, but it takes into account the time

component and thus it is designed to be used with non-stationary time series. Notice that

these conventional multivariate statistical methods usually require independent observa-

tions, which is not the case for time series (Márkus et al., 1999). In addition, the order in

time series is an important characteristic that must be taken into account, however

conventional methods handle unordered data. The difference between DFA and the latter

techniques is that in DFA the axes are restricted to be latent smoothing functions over

time. The analysis is based on the so-called structural time series models (Harvey, 1989)

that allow describing the time series of measured data of N response variables with a

Dynamic Factor Model (DFM) given by:

N time series ¼ linear combination of M common trendsþ level parameter

þ explanatory variables þ error component: ð1Þ

The aim of DFA is to choose M as small as possible but still obtaining a reasonable

fit. M should be much smaller than N, because although increasing the numbers of

common trends leads to a better model fit, it results in more information that needs to be

interpreted. The mathematical formulation of this DFM is given by (Lütkepohl, 1991;

Zuur et al., 2003b):

Sn tð Þ ¼
XM

m¼1

cm;nam tð Þ þ ln tð Þ þ
XK

k¼1

bk;nmk tð Þ þ en tð Þ ð2Þ

am tð Þ ¼ am t � 1ð Þ þ gm tð Þ ð3Þ
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where sn(t) is the value of the nth response variable at time t (with 1V nVN);
am(t) is the mth unknown trend (with 1VmVM) at time t; cm,n represents the

unknown factor loadings; ln is the nth constant level parameter for displacing up

and down each linear combination of common trends (i.e., it is the intercept term in

the regression DFM); bk,n stands for the unknown regression parameters (with

1V kVK) for the K explanatory variables mk(t); en(t) and gm(t) are error components

that are assumed to be independent of each other and normally distributed with zero

mean and unknown covariance matrix. The error covariance matrix was selected

here as a diagonal matrix. Notice that with this DFM (Eqs. (2) and (3)) if seasonal

or cyclic components are present in the time series, they will be masked and included in

the trend component (Eq. (3)). The unknown parameters were estimated using the

Expectation Maximization (EM) algorithm (Dempster et al., 1977; Shumway and

Stoffer, 1982; Wu et al., 1996). Technically, within the DFA framework, the trends are

modeled as a random walk (Harvey, 1989) and estimations are performed using the

Kalman filter/smoothing algorithm and the EM method, while the regression

parameters associated with the explanatory variables are modeled as in linear

regression (Zuur and Pierce, 2004). It is worth noting that the incorporation of

explanatory variables results in a complete, unified description of the DFM within

the EM framework (Zuur et al., 2003b). These techniques are implemented in the

statistical software package Brodgar v2.3.3 (www.brodgar.com), which was used in

this study. A complete and detailed description of this technique is given in Zuur

et al. (2003b).

Results from the DFA were interpreted in terms of the estimated parameters cm,n and

bk,n, the canonical correlations, and match between model estimations and observed

values. The goodness-of-fit of the model can be assessed by visual inspection, the

coefficient of efficiency (Nash and Sutcliffe, 1970) and Akaike’s Information Criterion

(AIC) (Akaike, 1974). The coefficient of efficiency (Ceff) has been widely used to

evaluate the performance of hydrologic models. It compares the variance about the 1 :1

line (perfect agreement) to the variance of the observed data (see Appendix A). The AIC

is a statistical criterion for model selection. It combines the measure of fit with a penalty

term based on the number of parameters used in the model. If more parameters (i.e.,

number of trends or explanatory variables) are used, the model fit is better, but the penalty

for the extra parameters is higher as well. The smallest AIC indicates the most appropriate

model.

The common trends, am(t), are functions that represent the patterns in the data that

cannot be described with the explanatory variables included in the model. Factor

loadings cm,n indicate the weight of a particular common trend in the response time

series, sn. In addition, the comparison of factor loadings of different time series allows

for detection of interactions between the different sn. Canonical correlations

coefficients (qm,n) are used to quantify the cross-correlation between the response

variables (sn) and the common trends (am). The terms bhighQ, bmoderateQ, and bweakQ
correlation are usually applied to |qm,n| N0.75, 0.50–0.75, and 0.30–0.50, respectively.

The influence or weight of each explanatory variable vk on each sn is given by the

regression parameters, bk,n. Standard errors for the regression parameters are also

included.

http://www.brodgar.com
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2.3. Water quality and hydrological time series and analysis procedure

2.3.1. Response variables

Sixteen groundwater chemical concentration (mg l�1) time series for each chemical

were obtained from the wells located along the main transect (T_w1–T_w10), south of the

transect (S_w11, S_w12, S_w13) and north of it (N_w14, N_w15, N_w16) (Fig. 1). These

were considered as response variables. Each of these biweekly time series was averaged

monthly. This smoothing procedure favors the underlying common trends against local

peaks and thus facilitates the analysis. Therefore, monthly averaged data (non-stationary)

from a period of over 2-years (26 months, April 2002–May 2004) were used.

2.3.2. Explanatory variables

From a practical standpoint groundwater chemical variation is a function of chemical

inputs, outputs and transformation. In the case of drained agricultural lands like those in

the study, we can differentiate between two groups of chemicals based on their source.

Products not used in agricultural production (here F�and Cl�) constitute the first group.

Typically, the concentration changes for this group will be driven by lateral inflow and

outflow to and from the canals, atmospheric deposition in coastal areas followed by

rainfall leaching, chemical transformation, etc. For the second group, the agrochemicals

(here N–NH4
+, N–NO3

�, P–PO4
3, and TP), the relatively large concentration at which they

are applied will frequently mask most of their natural variability. Shallow groundwater

concentration for this group will be dominated by leaching from the topsoil which in

turn depends on crop applications, mobility of the product, topsoil enrichment

(saturation), rainfall, and the length of the transport flow path (water table depth),

among other effects.

Based on this, five observed time series were used as potential explanatory variables in

the DFA: a) rainfall (aR) (mm day�1); b) water table depth (WTD) (m NGVD 29); c) soil

chemical concentration (Soil) (mg kg�1); and d) chemical concentrations in the canals

bordering the area (C-111 and L-31W) (mg l�1).

To approximate the rainfall that can potentially produce leaching of a chemical to the

aquifer, the adjusted rainfall (aR) was calculated as the ratio between monthly rainfall and

number of rainy days in the month. Typically a four-month rainy season occurs in the area

from June–September, where over 60% of the total annual precipitation is collected. Since

during the wet season it rains almost daily in the area, the adjustment only affects the dry

season when sometimes intense and isolated events with a large leaching potential occur.

Due to the high cross-correlation between the two field rain gauges (0.95, p b0.001), the

average of the two time series from both devices was used (Fig. 1). The Soil, WTD, C-111

and L-31W explanatory variables were obtained directly from field observations and

sample analyses.

2.3.3. Analysis procedure

DFA was applied on standardized time series, because this facilitates the interpretation

of factor loadings and the comparison of regression parameters. Although normality of

data is beneficial for DFA, it is not strictly necessary (Zuur et al., 2003a). The analysis was

conducted in three incremental steps. First, an exploratory analysis was conducted by
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visual inspection of the observed data and calculation of cross-correlation among all

variables (response and explanatory) for each chemical, with the aim of identifying

relevant explanatory variables for the agricultural and non-agricultural chemicals being

studied. Second, different DFMs were compared based on AIC and Ceff. These models

were derived by incrementally adding the number of common trends and by testing

different combinations of explanatory variables. To choose the dbestT model, a compromise

was sought between AIC, goodness-of-fit (Ceff) and minimum number of common trends

and explanatory variables needed. Third, results from the DFA performed for each

chemical with the selected models were discussed.
3. Results and discussion

3.1. Experimental time series

A total of 772 water quality samples (excluding field and instrument blanks) were

collected during the experimental period, resulting in a total of 5404 concentration values

used in this study. Figs. 2 and 3 depict the standardized values for the chemicals studied

and Table 1 summarizes the results for the ground (wells) and surface (canal C-111 and L-

31W) samples. These figures allow for a quick visual comparison among the elements and

the potential explanatory variables identified in the first step of the analysis.

P–PO4
3� and TP average concentrations and ranges were markedly different in surface

and groundwater (Table 1). Mean concentrations of TP in surface waters exceeded the

0.010 mg l�1 regulatory level, in 70–74% of the canal samples (40/57 and 42/57 samples

for C-111 and L-31W, respectively). Average concentrations and ranges of both P analyses

from canal L-31W closely matched those obtained from C-111 canal. These concentrations

in water samples from the monitoring wells were the highest during June–September

(summer rainy season), although some isolated peaks occurred in both winter crop

seasons, typically associated with large rainfall events (Figs. 2 and 3). The June–

September high concentrations indicate a rapid mobilization (leaching) from the topsoil

enriched by fertilizers after the crop season. On the other hand, the peaks at the beginning

of the crop season can be attributed to the fertilizer just applied to the soil (in pre-planting)

and leached by the intense rainfall event.

Average [N–NO3
�] in all surface and groundwater samples were below 10 mg l�1 (U.S.

drinking water standard) except for one sample collected in well 2 (June 5, 2002) and

another in well 3 (June 19, 2002). On a monthly basis, the higher groundwater nitrate

concentrations were again observed during the rainy seasons, with a second (smaller)

increase at the beginning of the winter crop seasons (Fig. 3). Nitrate concentrations in the

canals were lower than in the groundwater by around one order of magnitude.

[N–NH4
+] in groundwater suggests an inverse pattern to that of nitrate, i.e. the peak

ammonia concentrations were generally higher when the nitrate was low (Fig. 3). Average

ammonia concentrations in both ground and surface waters were similar (Table 1).

Average concentrations of other natural tracer elements analyzed (F�and Cl�) were low

and within natural and regulatory levels (McCutcheon et al., 1992). Surface and

groundwater concentrations were similar for both elements. The similar concentration
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Table 1

Descriptive statistics for chemicals studied in ground and surface watersa

Wells C-111 L-31W

[F�] 0.18F0.08 (0.06–0.74) 0.21F0.08 (0.11–0.44) 0.19F0.08 (0.09–0.41)

[Cl�] 39.70F8.51 (8.00–60.73) 46.76F10.84 (30.00–79.38) 44.25F11.65 (25.00–79.23)

[N–NH4
+] 0.20F0.15 (0.01–1.03) 0.12F0.08 (0.03 –0.40) 0.13F0.06 (0.03–0.26)

[N–NO3
�] 0.42F0.89 (0.002–10.46) 0.05F0.03 (0.02–0.10) 0.05F0.04 (0.01–0.14)

P–PO4
3� 0.04F0.06 (0.001–0.42) 0.003F0.002 (0.001–0.01) 0.003F0.002 (0.001–0.01)

[TP] 0.08F0.09 (0.01–0.60) 0.02F0.01 (0.003–0.04) 0.02F0.01 (0.002–0.04)

a AverageF standard deviation; Range in parenthesis; Values expressed in mg l�1.
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ranges in surface and groundwater for [N–NH4
+], [Cl�], and [F�], suggest a possible

interaction between canals and wells. Although N–NH4
+ is considerably less mobile than

Cl�and F�, transport of this element can be facilitated by the large hydraulic conductivity

and preferential flow paths of the gravelly soil and porous limestone rock (Genereux and

Guardiario, 1998, 2001).

3.2. Dynamic factor analysis

3.2.1. Analysis of cross-correlation

Cross-correlation results (not shown) were obtained for both [Cl�] and [F�]. In general,

concentrations of these anions in all of the wells had a moderate to high correlation among

each other. [F�] and [Cl�] in the canals also showed moderate cross-correlations with the

concentrations in 70% of the wells. The cross-correlations between the two canals were

high for both chemicals (0.88).

As with [F�] and [Cl�], the canals were cross-correlated for ammonia [N–NH4
+] (0.68),

and 75% of wells generally presented a moderate cross-correlation coefficient with the

concentrations in the canals. In addition, 25% of the wells were cross-correlated with

WTD. Nitrate concentrations [N–NO3
�] were correlated to aR, Soil, and WTD for 25–44%

of the wells, regardless of their location. Both [P–PO4
3�] and [TP] were correlated with aR,

Soil, or WTD for all the wells but one.

Because concentrations in canals C-111 and L-31W for some chemicals (N–NH4
+,

F�and Cl�) were correlated, only the corresponding concentration in canal C-111 was

used in the DFAs herein. This explanatory variable will be denoted with the label Canal.

3.2.2. DFM selection

Various models can be analyzed according to the number of common trends used and

the different combinations of explanatory variables added to the DFM. Table 2

summarizes the models tested for describing the concentrations of each chemical at the

observation wells. [F�] were best described with three common trends (minimum

AIC=768), whereas a DFM with a single trend and aR, and [F�]Canal as explanatory

variables resulted in a similar AIC=763. Using a model with a single common trend

would be satisfactory to predict [Cl�] (minimum AIC=513, Ceff=0.81), but the addition

of the explanatory variables aR, and [Cl�]Canal in the model further decreased the AIC to

485. When no explanatory variables were considered, the AIC values suggested that [N–

NH4
+] are best described with two common trends. The model could be improved by



Table 2

Selection of dynamic factor models based on performance coefficients

Chemical Trends vk AIC Ceff
a

F� 1 795 0.52

2 778 0.64

3 768 0.76

4 780 0.83

1 aR, Canal 763 0.64

Cl� 1 513 0.81

2 518 0.86

1 aR, Canal 485 0.84

N–NO3
� 1 924 0.34

2 886 0.53

3 856 0.70

4 837 0.74

5 828 0.81

6 824 0.83

7 847 0.83

1 aR, Soil, WTD 902 0.52

2 aR, Soil, WTD 842 0.66

3 aR, Soil, WTD 826 0.77

N–NH4
+ 1 935 0.35

2 800 0.62

3 807 0.68

1 aR, Soil, WTD 971 0.44

1 Soil, WTD, Canal 782 0.59

2 aR, Soil, WTD 836 0.66

2 Soil, WTD, Canal 779 0.69

P–PO4
3� 1 716 0.67

2 666 0.79

3 658 0.84

4 633 0.88

5 649 0.90

1 aR, Soil, WTD 689 0.75

2 aR, Soil, WTD 632 0.83

TP 1 844 0.51

2 838 0.60

3 825 0.68

4 828 0.78

1 aR, Soil, WTD 822 0.63

2 aR, Soil, WTD 794 0.72

Best model indicated in bold characters.
a Ceff was calculated with the combined set of predictive vs. observed values for all the wells.

R. Muñoz-Carpena et al. / Journal of Contaminant Hydrology 80 (2005) 49–70 61
including the following explanatory variables: Soil, WTD and [N–NH4
+]Canal. This is not

the case for [N–NO3
�] where, if only common trends were considered, six were required to

obtain the best model (minimum AIC=824). However, by adding the best combination of
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explanatory variables (aR, Soil, and WTD) only three common trends were needed to

obtain a similar AIC. For [P–PO4
3�], the model containing no explanatory variables that

resulted in the lowest AIC used four common trends, while only two trends were necessary

when including aR, Soil, and WTD as explanatory variables. The DFM without

explanatory variables that best described [TP] in the wells used three common trends.

When adding the same explanatory variables as for [P–PO4
3�] (i.e. aR, Soil, andWTD) one

common trend would be sufficient to reach the same low AIC.

For all chemicals it was shown that by including the explanatory variables in the DFMs,

these contributed to explaining the variation in concentration and thereby the number of

common trends had been reduced. The introduction of the explanatory variables changes

the Ceff by increasing its value for ammonia and chloride and decreasing it for the other

chemicals. Note that in all cases, the resulting Ceff were acceptable (0.63–0.84). Based on

this, the best DFMs using the corresponding explanatory variables were selected (in bold

characters, Table 2). Among all the chemicals studied, results derived from the DFA are

only included for three of them: the natural tracer [F�], [N–NO3
�] and [P–PO4

3�]. Thereby,

Tables 3–5 summarize the results from the best models obtained to predict chemical

variations in the sixteen wells.

[F�] was predicted satisfactorily (0.50bCeffb0.89) in 81% of the wells (Table 3). The

factor loadings (c1,n) and the regression parameters (baR,n and bCanal,n) represent the relative

weight of the common trend and each explanatory variable in the model, respectively. For

most of these wells, the c1,n and the q1,n indicate that the inclusion of the explanatory

variables does not reduce the importance of the common trends, so that these contained

information that is necessary to determine [F�] variations in the area. However, both aR and

Canal have influence in the concentration changes observed in the wells. The results from

DFA of [Cl�] (not shown here) indicate a satisfactory model fit for all the sixteen wells

(0.64bCeffb1.00). The c1,n and the q1,n suggest that the common trend is also important for
Table 3

DFA results for [F�] in the sixteen wells

sn c1,n ln baR,n bCanal,n q1,n Ceff,n

T_w1 0.54 0.00F0.54 0.25F0.15 0.54F0.16 0.80 0.81

T_w2 0.33 0.00F0.34 0.00F0.13 0.70F0.13 0.58 0.78

T_w3 0.49 0.00F0.50 �0.11F0.18 0.30F0.19 0.66 0.56

T_w4 0.55 0.00F0.55 0.11F0.15 0.47F0.17 0.79 0.77

T_w5 0.49 0.00F0.50 �0.20F0.19 0.19F0.20 0.63 0.50

T_w6 0.58 0.00F0.58 �0.35F0.17 0.16F0.18 0.72 0.72

T_w7 0.28 0.00F0.32 �0.15F0.21 0.18F0.22 0.37 0.22

T_w8 0.31 0.00F0.33 �0.49F0.16 0.23F0.17 0.42 0.58

T_w9 0.41 0.00F0.41 0.29F0.13 0.70F0.14 0.69 0.78

T_w10 0.30 �0.02F0.31 0.08F0.10 0.77F0.11 0.63 0.87

S_w11 0.25 �0.11F0.28 0.10F0.18 0.81F0.14 0.50 0.81

S_w12 0.41 0.04F0.47 �0.37F0.35 �0.07F0.27 0.35 0.19

S_w13 0.60 0.33F0.63 �0.71F0.33 0.32F0.55 0.22 0.38

N_w14 1.29 0.65F1.28 0.24F0.32 1.61F0.48 0.70 0.89

N_w15 �0.09 �0.12F0.21 �0.99F0.25 �0.90F0.44 �0.06 0.64

N_w16 �0.35 0.02F0.38 �0.48F0.22 0.91F0.38 �0.67 0.70



Table 4

DFA results for [N–NO3
�] in the sixteen wells

sn c1,n c2,n c3,n ln baR,n bSoil,n bWTD,n q1,n q2,n q3,n Ceff,n

T_w1 0.14 0.09 �0.05 0.01F0.22 0.14F0.17 �0.02F0.25 �0.64F0.27 0.14 0.03 0.03 0.53

T_w2 0.52 0.52 �0.15 0.04F0.75 0.11F0.13 0.61F0.28 �1.11F0.24 0.70 0.00 0.03 0.99

T_w3 0.52 0.56 �0.15 0.04F0.78 �0.13F0.18 0.83F0.34 �1.09F0.31 0.65 0.04 �0.08 0.76

T_w4 0.11 0.71 0.09 �0.01F0.71 �0.08F0.19 0.44F0.34 �0.49F0.32 0.19 0.67 �0.42 0.70

T_w5 �0.29 0.35 0.24 �0.04F0.54 �0.07F0.18 0.01F0.30 �0.09F0.30 �0.39 0.74 �0.38 0.59

T_w6 �0.52 0.17 0.11 �0.04F0.62 0.45F0.15 0.14F0.27 0.28F0.26 �0.48 0.76 �0.56 0.80

T_w7 0.01 0.59 0.41 �0.04F0.75 �0.19F0.19 0.08F0.35 �0.28F0.33 �0.10 0.75 �0.21 0.66

T_w8 0.26 �0.08 0.94 �0.06F1.24 0.16F0.19 0.26F0.39 �0.37F0.34 �0.18 0.05 0.75 0.96

T_w9 0.01 0.25 0.61 �0.05F0.78 0.14F0.20 0.21F0.34 �0.36F0.33 �0.23 0.50 0.14 0.60

T_w10 �0.36 0.38 0.06 �0.04F0.58 �0.35F0.15 �0.25F0.27 0.00F0.26 �0.44 0.79 �0.57 0.81

S_w11 0.65 �0.22 �0.12 �0.40F0.77 0.51F0.18 0.09F0.33 �0.81F0.28 �0.14 �0.11 0.60 0.96

S_w12 0.82 0.00 0.09 �0.35F0.96 �0.03F0.20 0.47F0.38 �1.34F0.33 �0.19 �0.01 0.72 0.94

S_w13 0.84 0.30 �0.29 �0.46F0.98 �0.10F0.18 �0.21F0.38 �1.26F0.32 �0.08 �0.07 0.32 1.00

N_w14 �0.29 0.38 �0.34 0.72F0.78 0.13F0.40 0.96F0.70 �0.86F0.53 �0.20 0.11 �0.32 0.26

N_w15 �0.53 0.05 0.99 0.16F1.24 0.48F0.23 0.38F0.48 0.44F0.40 �0.43 0.68 0.73 1.00

N_w16 0.02 1.54 0.01 1.37F1.52 0.42F0.32 1.82F0.65 �1.44F0.55 0.15 0.83 0.02 1.00
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Table 5

DFA results for [P–PO4
3�] in the sixteen wells

sn c1,n c2,n ln baR,n bSoil,n bWTD,n q1,n q2,n Ceff,n

T_w1 0.31 0.05 �0.12F0.36 �0.02F0.12 1.17F0.20 �0.18F0.15 �0.27 0.04 0.83

T_w2 �0.15 0.35 �0.04F0.37 0.07F0.18 0.03F0.24 �0.67F0.20 �0.22 0.15 0.52

T_w3 0.03 0.30 �0.09F0.32 0.18F0.09 0.71F0.17 �0.33F0.12 �0.44 0.29 0.93

T_w4 0.16 0.21 �0.11F0.32 0.03F0.11 0.94F0.18 �0.25F0.14 �0.35 0.24 0.84

T_w5 �0.09 0.33 �0.05F0.33 0.30F0.12 0.32F0.19 �0.48F0.14 �0.39 0.20 0.85

T_w6 �0.47 0.51 0.03F0.63 0.31F0.13 �0.33F0.34 �0.65F0.21 �0.60 0.33 0.99

T_w7 0.46 �0.11 �0.13F0.49 �0.06F0.16 1.20F0.27 �0.09F0.20 �0.01 �0.09 0.70

T_w8 0.13 �0.01 �0.04F0.16 0.26F0.12 0.74F0.12 �0.28F0.12 �0.31 �0.11 0.79

T_w9 �0.35 0.43 0.01F0.50 0.08F0.16 �0.05F0.29 �0.63F0.21 �0.54 0.29 0.75

T_w10 �0.19 0.43 �0.05F0.44 �0.04F0.14 0.15F0.25 �0.79F0.19 �0.37 0.26 0.80

S_w11 0.07 1.11 �0.68F1.15 0.13F0.25 �0.44F0.94 �2.09F0.40 0.31 �0.18 0.99

S_w12 0.60 0.80 �0.81F1.16 0.03F0.26 0.52F1.05 �1.66F0.40 0.49 �0.20 0.97

S_w13 1.40 �0.18 �0.62F1.44 �0.49F0.30 2.62F1.11 �0.50F0.49 0.47 �0.45 1.00

N_w14 0.87 �0.21 �2.38F1.13 �0.55F0.37 �1.54F1.37 �0.88F0.43 0.15 �0.38 0.48

N_w15 0.00 0.49 2.00F0.52 0.40F0.12 3.50F0.47 �0.37F0.18 0.15 �0.26 0.99

N_w16 �0.65 1.22 0.52F1.27 0.55F0.28 �0.29F0.94 �1.55F0.44 0.12 0.07 0.96
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this model, especially for the transect wells. Regression parameters for the concentration in

the canals (bCanal,n) presented the largest values, but [Cl�] are also affected by the aR.

The model fit for [N–NH4
+] was successful in 81% of the wells with Ceff values

ranging from 0.55 to 1.00 (results not shown). Canonical correlation coefficients indicate

that the two common trends are only important for describing [N–NH4
+] in the wells

south and north of the transect (0.36b |q1,n|b0.83). While these wells have a positive

correlation with the first trend (0.36bq1,n b0.68), they are negatively correlated to the

second trend (�0.49Nq1,n N�0.83). For the transect wells the explanatory variables

generally determine the observed variation in [N–NH4
+], while the influence of the

common trends is minor. Regression parameters show that Canal is the most important

variable in the transect wells, while Soil has more impact in the southern wells and

WTD in the northern wells. Results obtained from the DFA on [N–NO3
�] (Table 4) show

a satisfactory model fit (CeffN0.50) in all the wells but N_w14. The low Ceff value

obtained for this well reduces the global Ceff compared to the one for the DFM without

explanatory variables (0.83 vs 0.77, Table 2). Although the inclusion of the explanatory

variables partially describes [N–NO3
�] changes, each of the three common trends

remained important for explaining the [N–NO3
�] variability. No relationship between

these common trends and the spatial layout of the different wells is observed (cf. qm,n in

Table 4). In general, WTD and aR are the explanatory variables with the largest and

smallest influence, respectively.

The [P–PO4
3�] model performance (Table 5) was satisfactory, with Ceff above 0.70 in all

but two wells (T_w2 and N_w14). The explanatory variables included in the model contain

information necessary to describe [P–PO4
3�] changes in the well, so that the influence of the

common trends is reduced to 25% of the wells. WTD and Soil are the variables that most

affect [P–PO4
3�] in groundwater, while aR has less influence. This is also the case for TP,

but the trend still affects 44% of the wells (results not shown). Model performance for [TP]

was acceptable for 81% of the wells with Ceff ranging from 0.53 to 0.99.
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Fig. 4. Model fit for the chemicals studied in three representative wells, located in the transect (T_w6), south of

the transect (S_w11) and north of it (N_w16). North and south wells installed in second experimental phase

(February 2003).
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Fig. 4 illustrates the satisfactory model fit derived from the DFA with explanatory

variables for each chemical. The three representative wells presented correspond to a

location in the transect itself (T_w6), a location south of the transect (S_w11) and one

north (N_w16) of the experimental area.



Table 6

Summary of relative effect of explanatory variables and trends on groundwater chemical variation

Chemical aRa Canala WTDa Soila Trendsb Ceff

F� 2 1 – – (1)** 0.64

Cl� 2 1 – – (1)** 0.84

N–NH4
+ – 1 [transect] 2 1 [south] (2)** [north/south] 0.69

N–NO3
� 3 – 1 2 (3)** 0.77

P–PO4
3� 3 – 1 2 (2)** 0.83

TP 3 – 1 2 (1)* 0.63

a The relative importance for each explanatory variable is quantified in increasing order from 1 to 3.
b The number of common trends is given in parenthesis. Asterisks denote the relative importance of the common

trends based on qn, where *, **, *** correspond to an average qn =0.3–0.5, 0.5–0.75, N0.75, respectively.
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3.2.3. Influence of the explanatory variables on groundwater quality

Table 6 presents a matrix summarizing the interactions of the model components for

each chemical studied. Three of the agrochemical species analyzed (N–NO3
�, P–PO4

3� and

TP) were affected by the same explanatory variables. In order of decreasing relative

importance a small water table depth, followed by enriched topsoil and occurrence of a

leaching rainfall event affected the increase in groundwater concentration for these

chemicals. These variables indicate that leaching by rainfall is the main mechanism

explaining concentration peaks. Topsoil and canal concentrations, followed by water table

depth resulted in variation of the ammonia groundwater concentration. This suggests that

the dominant processes affecting variation in this case are different than for the other

agrochemicals. In addition to leaching, variation is induced by lateral exchange between

canals and groundwater for this element. Ammonia transport is facilitated in this

environment by the large hydraulic conductivity and preferential flow paths of the gravelly

soil and porous limestone rock (Genereux and Guardiario, 1998, 2001). Water table depth

(related to leaching opportunity when couple with rainfall) affected wells north and south

of the transect differently (Table 6). Previous work (Ritter and Muñoz-Carpena, 2005) has

shown that the water table in the northern wells is consistently higher (smaller WTD) than

in the southern wells. [F�] and [Cl�] are mainly affected by periods of dilution by

rainfall and by exchange with the canals. Since model fit (Ceff in Table 6) and the

correlation of the common trends was generally only moderate (weak for TP), it can be

concluded that much of the groundwater chemical variation observed is successfully

accounted for by the explanatory variables included in each model. The remaining

effect of the common trends did not show spatial structure across the area (except for

ammonia). Since the combination of different land parcels, crops and farmers results in

unstructured agrochemical use patterns (crop, irrigation and fertilization scheduling and

rates, etc.) across space and time, this suggests that the land use effect is encompassed

in the unexplained variability represented by the common trends.
4. Summary and conclusions

Multivariate time series of hydrological and water quality variables were obtained

from a small agricultural watershed located at the boundary of Everglades National Park
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(ENP). Two drainage canals from the regional water management network delimit this

area and are operated under environmental restrictions. Several projects seek the

restoration of the wetland ecosystems of the ENP by enhancing water deliveries into the

Park while maintaining flood protection in the adjacent agricultural fields. In addition,

surface water entering the ENP must satisfy the current regulatory standards (b0.010 mg

l�1 of Total P). In this context, monitoring and analysis of the variation of chemical

concentrations in surface and groundwaters can provide a better understanding of land

use and natural variables affecting the water quality in the area. Dynamic Factor

Analysis was performed on monthly averaged time series of soil and ground and surface

water concentrations of different chemicals (fluoride, chloride, ammonia–nitrogen,

nitrate–nitrogen, orthophosphate, and total phosphorus) from 18 locations in the area.

A technique for the analysis of multivariate non-stationary time-series, DFA was

conducted as follows. Firstly, cross-correlations among all time series for each chemical

were determined. This preliminary procedure allowed identifying relevant explanatory

variables for each chemical. However, although cross-correlation coefficients serve as an

exploratory tool and provide a measure of the relationship between paired data sets, it

does not properly capture simultaneous interactions of multivariate time series. This can

be achieved with Dynamic Factor Analysis (DFA). Secondly, a series of DFAs was

performed for each chemical to identify the combination of common trends that best

describes changes in concentration over time and in sixteen wells across the field. Both,

orthophosphate and nitrate concentrations required the largest numbers of trends (four

and six, respectively). This suggests that various latent effects influence in a different

way the groundwater concentration of these agrochemicals across the area. The number

of common trends required to determine the concentration of each chemical in the wells

was greatly reduced by including time series of explanatory variables in the DFA. These

were rainfall (aR), water table depth (WTD), agrochemicals concentration in the soil

(Soil) and concentrations in the canal bordering the watershed (Canal). Fluoride and

chloride concentrations were influenced by rainfall and especially by the canal

concentration, and by one trend representing an unidentified (latent) effect. Ammonia–

nitrogen concentrations were affected by WTD, Soil and Canal, but Canal was

especially important in describing concentrations in the transect wells, while Soil had

more effect in the southern wells and WTD in the northern wells. This corresponds with

the more frequent flooding conditions present in the northern part of the area, promoting

direct transport from the topsoil to the groundwater. Two trends were needed, which

represent unidentified effects governing ammonia concentrations in the wells south and

north of the transect. For the rest of the agrochemicals (nitrate, orthophosphate and total

phosphorus), concentrations were affected by the same explanatory variables that were,

in order of decreasing importance, WTD, Soil and aR. However, these variables only

partially described concentration changes for some of the wells, so that common trends

were also required. The common trends affected the groundwater concentrations of these

agrochemicals without any spatial structure. This is likely a consequence of varying land

use patterns in this watershed. The combination of different land parcels, crops and

farmers results in different management patterns (crop, irrigation and fertilizer schedules

and rates, etc.) across space and time. This land use effect is encompassed in the

unexplained variability represented by the common trends.
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Since WTD and Soil are conditioned by land management practices, peak

concentrations of agrochemicals in groundwater could be reduced by improving

fertilization practices (reduction and splitting) and by maintaining a low water table,

especially during the rainy periods. In this context it is worth mentioning that observed

concentrations of total phosphorus in canal surface waters exceeded the regulatory

standards in 70–74% of the samples.
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Appendix A. Coefficient of efficiency

The coefficient of efficiency, Ceff (Nash and Sutcliffe, 1970), also known as the

Nash–Sutcliffe coefficient, is defined as the ratio of the mean square error to the variance

of the observed data, subtracted from unity (Legates and McCabe, 1999). Here, it was

expressed as follows:

Ceff ¼ 1� MSE

r4ð Þ2
¼ 1�

Xls

i¼1

s tið Þ4� s tið Þ½ �2

Xls

i¼1

s tið Þ4� s̄4½ �2
ðA:1Þ

where s(ti)* and s(ti) are the observed and the predicted chemical concentrations in

water samples obtained from the monitoring wells at time ti, respectively; ls is the length

of the observed data set; and (r*)2 is the variance of the observed chemical

concentration. The coefficient of efficiency compares the variance about the 1 :1 line
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(perfect agreement) to the variance of the observed data. Notice that for non-regression

models the Ceff does not represent the proportion of sum squares (i.e., deviation of the

observed values to their mean) explained by the model, and it ranges from �l to 1.

Thereby Ceff=1 implies that the plot of predicted vs. observed values matches the 1 :1

line. Ceff values b0.5 indicate that the model is not adequate.
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