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A Petrov-Galerkin (PG) finite element method was developed to solve the kinematic wave 
formulation of the overland flow equations. The resultant model uses quadratic basis functions and test 
functions that are modified by polynomials of cubic and quartic order, yielding a formulation that 
includes four PH parameters. The PG model was found to reduce the mean sum of square error of the 
solution compared to a conventional Bubnov-Galerkin finite element solution by about a factor of 3 as 
the Courant number (Cr) approached one. Good results were also achieved with the PG method for 
problems that resulted in shock formation, which are typical of many applied problems of concern. PG 
parmeters were found to depend strongly upon the Courant number and weakly upon the number of 
nodes in the system. Polynomial expressions were derived to approximate the PG parameters over the 
range 0 < Cr < 1. As the number of nodes in the system increased, a single-parameter version of the 
model yielded solutions approaching the accuracy of the four-parameter model. 

1. INTRODUCTION 

Overland flow routing is the term used to describe the 
movement of water over a surface and implies the calcula- 
tion of flow rates at positions along a hillslope at different 
time steps [Lane et al., 1987]. The movement of surface 
water can be described by continuity and momentum equa- 
tions applied to an incompressible fluid (Saint-Venant equa- 
tions). 

An accurate, stable, and efficient solution to the Saint- 
Venant equations is necessary for several common prob- 
lems. Originally, these equations were used to describe river 
and channel routing problems. Since then they have been 
applied to overland flow, watershed modeling, and runoff 
determination. Flow solutions of this type are also the 
foundation upon which sediment transport and nonpoint 
source pollutant transport models are based. 

Since overland flow processes are transient, the descrip- 
tion of such processes requires the simultaneous solution of 
a coupled system of partial differential equations. Simplifi- 
cation of the Saint-Venant equations is appropriate for many 
common problems. One such simplification is the kinematic 
wave approximation. Since its formulation by Lighthill and 
Whitham [1955] and its application to watershed modeling by 
Henderson and Wooding [1964] using the method of charac- 
teristics (MOC), many researchers have used the kinematic 
wave approach for runoff and overland flow problems [Brak- 
ensiek, 1967; Woolhiser, 1969; Eagleson, 1970; Liet al., 
1975; Borah et al., 1980]. 

Under certain conditions the kinematic wave equations 
give rise to sharp-front solutions, in which values of the 
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dependent variable change rapidly in space and time over a 
portion of the domain [Taylor, 1976; Ross et al., 1979; Vieux 
et al., 1990]. These sharp fronts have been termed kinematic 
shock waves [Lighthill and Whitham, 1955; Kibler and 
Woolhiser, 1972; Li et al., 1975; Singh, 1975; Borah et aI., 
1980; Zhang and Cundy, 1989]. While the method of char- 
acteristics is well suited to the solution of sharp-front prob- 
lems, the common occurrence of irregularly shaped domains 
with spatially varying properties has led to the routine 
application of Eulerian methods for solution of kinematic 
wave problems. However, Eulerian methods are prone to 
phase errors, oscillations in the solution, and numerical 
dispersion when used to approximate such sharp-front prob- 
lems [Zienkiewicz, 1977; Huyakorn and Pinder, 1983; Hro- 
madka and DeVries, 1988; Ponce, 1991]. Recent advances in 
Petrov-Galerkin (PG) finite element methods (FEMs) have 
resulted in reductions in such errors compared to conven- 
tional Eulerian formulation for advective-dominated trans- 

port and multiphase flow and transport problems [Wes- 
terink and Shea, 1989; Cornew and Miller, 1990; Mayer and 
Miller, 1990; Miller and Cornew, 1992]. The purpose of this 
work is to develop and evaluate a PG FEM solution for the 
kinematic wave equations. 

2. BACKGROUND 

2.1. Overland Flow 

Overland flow may be described by the classical Saint- 
Venant equations, which include a dynamic continuity equa- 
tion and a dynamic linear momentum equation applied to an 
incompressible fluid for a one-dimensional system, as [Bras, 
1990] 

Oh Oq 
--+m=r=i-f (1) 
Ot Ox 

26!5 
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Ov Ov Oh vr 
+ v + a = (s0 - (2) 

where h(x, t) is the vertical flow depth (meters); q(x, t) is 
the discharge per unit width (square meters per second); r is 
the rainfall excess, or lateral inflow (meters per second); i is 
the rainfall intensity (meters per second); f is the infiltration 
rate (meters per second); v is the depth-averaged velocity 
(meters per second); # is the gravitational constant (m/s2); 
So is the bed slope; Sf is the friction slope; x is the direction 
of flow (meters); and q = vh. 

Depending on the case studied, several implications of the 
momentum equation, equation (2), are possible [Bedient and 
Huber, 1988]. The kinematic wave equations result from the 
assumption that the hydrodynamic terms of the momentum 
equation are negligible, which is reasonable for the case 
where no backwater exists [Lighthill and Whitham, 1955]. In 
this case, the momentum equation becomes Sf = So. 

A constitutive relation is needed to express the discharge, 
q, as a function of h. Manning's equation is often used for 
this relation: 

(So) 1/2 
q(h) = • h 5/3 (3) 

where n is Manning's roughness coefficient. 
The numerical solution to the kinematic wave equations 

can be characterized in terms of three dimensionless param- 
eters [Lighthill and Whitham, 1955; Henderson, 1966; Wool- 
hiser and Liggett, 1967]: 

Fr = (9h)1/2 (4) 
LSog 

k= v2 (5) 

cat 
Cr = (6) 

Ax 

for 

Oq 5(S0) 
c .... h 2/3 (7) 

Oh 3n 

where Fr is the Froude number, k is the kinematic flow 
number, Cr is the Courant number, At is the temporal grid 
spacing, Ax is the spatial grid spacing, and c is the celerity of 
the kinematic wave [Lighthill and Whitham, 1955; Bras, 
1990]. 

The Fr is a ratio of inertial to gravitational forces. For 
normal floods in natural rivers, or overland flow processes, 
dynamic wave fronts attenuate very rapidly as long as Fr < 
1.5, and kinematic waves dominate the flood response. A 
kinematic wave does not dissipate, but it changes in shape 
(steepens) due to the dependency of the velocity on the 
depth. If the steepening process stops, the result is a 
monoclinal steady state wave [Henderson, 1966]. 

A restriction on the kinematic number of k > 10 ensures 

that the kinematic wave assumptions introduce less than a 
10% error in the solution [Woolhiser and Liggett, 1967]. 
Only for very flat (So < 0.002) or very steep (So > 0.10) 
slopes is the kinematic assumption violated. 

The Cr is a measure of the temporal discretization relative 
to the spatial discretization and the characteristic wave 
velocity of the system. The Cr affects the stability • 
accuracy of the solution in the explicit case and accuracy of 
the solution for the implicit case [Vieux and Segerlind, 1989; 
Blandford and Meadows, 1990; Mohtar et al., 1990]. A 
stability criterion for the explicit case requires Cr < 1, while 
solution accuracy improves as the Cr decreases to 0.2 
[Viessman et al., 1977]. Implicit formulations are uncondi. 
tionally stable, but the accuracy of solution improves as Cr 
decreases [Blandford and Meadows, 1990; Vieux et al., 
1990]. 

Two additional parameters of interest for case of steady 
rainfall over an impermeable plane are 

q m -' rL 

L ) 3/5 te -- ar2/3 (9) 

where L is the length of the domain, qm is the maximum 
discharge, t e is the time to equilibrium for a point a distance 
L away from the boundary, and a is the leading coefficient 
from Manning's equation, which may be defined as 

($0) 
a = (10) 

The initial and boundary conditions considered herein can 
be described as 

h(t=O, O--<x<L)=O (11) 

h(t > O, O) = h o (12) 

Note that the boundary condition can be modified for 
different cases. One case could be when no upslope inflow 
occurs (h 0 = 0) for a general overland flow problem, where 
x = 0 is the beginning of the slope. A second case could be 
a constant upslope inflow (h(t, x -0) > 0). A more realistic 
case is a boundary condition where h(t, x = 0) = h0(t), 
depending on the inflow hydrograph from an adjacent field 
upslope. Eulerian methods accommodate such changes in 
auxiliary conditions easily. 

The rainfall excess, r, is the rainfall rate less the infiltra- 
tion rate, which may be expected to vary in space and time 
for typical field conditions. The infiltration rate can be 
handled using any of the approximate methods available 
such as Green-Ampt, Philip, Holtan and Horton [Skaggs et 
al., 1969] or a more exact method based on a solution to 
Richards's equation [Richards, 1931]. Schmid [1989] inves- 
tigated the implicit assumption in the model that infiltration 
is independent of overland flow so that only the weak 
coupling of both processs is taken into account. He found 
that the errors introduced were in most cases smaller than 

5% and always less than 11%. Compared to the uncertainty 
introduced by spatial variability in subsurface conditions, 
the weak coupling assumption seems appropriate. 

2.2. Solution Methods 

Solutions of kinematic wave equation problems have been 
formulated and applied for almost 40 years. Characteristic, 
finite difference, finite element, and control volume finite 
element methods have been used in these solution schemes. 
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A detailed description of each of these solutions is beyond 
the scope of this work. However, several results of solutions 
in the literature pertain to the development of new methods. 

For domains in which model parameters are not spatially 
variable, the method of characteristics (MOC) is an appro- 
priate solution approach [Izzard, 1946; Lighthill and 
writham, 1955; Henderson and Wooding, 1964; Wooding, 
1965; Crawford and Linsley, 1966; Woolhiser and Liggett, 
1967]. The success of the MOC is not surprising. The 
kinematic wave equation is a hyperbolic partial differential 
equation, a class of problem for which the MOC is well 
suited. Others have extended the MOC to irregularly shaped 
domains and temporally variable model parameters [Eagle- 
son, !970; Harley et al., 1970; Singh, 1976; Woolhiser, 1975; 
Sherman and Singh, 1976; Borah et al., 1980; Parlange et 
al., 1981; Cundy and Tento, 1985; Eggert, 1987; Woods and 
Ibbitt, 1988; Sander et al., 1990]. 

While MOC solutions are theoretically attractive, practi- 
cal problems associated with extension to field conditions 
have inhibited the widespread use of the MOC [Ross, 1977; 
Zhang and Cundy, 1989; Sander et al., 1990]. Surface slope 
(So), roughness (n), and rainfall excess (r) are parameters 
that vary in space. When such changes are abrupt, discon- 
tinuities in h, or kinematic shocks, result [Kibler and Wool- 
hiser, 1972]. While such problems can be solved using the 
MOC [Borah et al., 1980; Hunt, 1987], a more common 
approach has been to use Eulerian methods, i.e., finite 
differences [Stoker, 1953; Brakensiek, 1967; Liggett and 
Woolhiser, 1967; Amein, 1968; Amein and Fang, 1970; 
Kibler and Woolhiser, 1972; Price, 1974; Li et al., 1975; 
Zhang and Cundy, 1989], finite elements [Judah, 1972; Ross 
et al., 1979; Vieux and Seger!ind, 1989; Blandford and 
Meadows, 1990; Vieux et al., 1990; Goodrich et al., 1991], 
mixed formulations (MOC and finite differences) [Singh, 
!975], or a control volume scheme [Mohtar et al., 1990]. 

While Eu!erian methods allow for the simple incorporation 
of spatially variable parameters, they are not well suited to 
the solution of hyperbolic equations. Recent work has sug- 
gested using Eulerian solution methods with refined spatial 
and temporal discretization and smoothed values of spatially 
variable parameters to avoid numerical errors associated 
with kinematic shocks [Ponce, 1991; Vieux et al., 1990]. 

Upstream weighting methods have been used to reduce 
errors associated with the application of Eulerian methods to 
sharp-front problems [Hughes, 1978; Heinrich and Zienk- 
iewicz, 1977; Wait and Mitchell, 1985]. In particular, recent 
advances have been made in applying PG methods to solve 
advective-dominated transport problems [Westerink and 
Shea, 1989; Cantekin and Westerink, 1990; Cornew and 
Miller, 1990; Miller and Cornew, 1992] and multiphase flow 
and transport problems [Mayer and Miller, 1990]. The suc- 
cess of these applications suggests that similar methods may 
be applicable to kinematic wave problems. 

3. SOLUTION FORMULATION 

Based upon results achieved for other sharp-front prob- 
lems [Westerink and Shea, 1989; Cantekin and Westerink, 
1990; Cornew and Miller, 1990; Mayer and Miller, 1990] a 
PG approach may be formulated to solve the kinematic wave 
equations. The formulation is a straightforward extension of 
methods that have been developed and applied successfully 
to problems that pose many of the same numerical difficul- 

ties as the kinematic wave equations. However, evaluating 
the improvements offered by such a method, determining 
optimal parameters for the approach, and testing the ap- 
proach on shock-type problems are not trivial and are 
necessary to advance the understanding of such Eulerian 
strategies for solving kinematic wave problems. 

Equation (1) may be written in a weak weighted residual 
form as 

Wi +m_ r dx =0 
Ox 

i- 1,---, nn (13) 

for trial solutions described over an element of the form 

•1 ne 

l•(x) = • Nj(x)hj 
j--I 

(14) 

(15) 

where W i is a weighting, or test, function corresponding to 
node i; Nj are standard Lagrange polynomial basis func- 
tions; n,• is the number of nodes in the domain, •; and nne 
is the number of nodes in an element. Resolving the time 
derivative using a variably weighted finite difference approx- 
imation gives 

f• W•[/•t+l + O•t(. O•t+• Ox 

/+1 dx 
dx (16) 

where I is a time step index; 0 is a time-weighting coefficient, 
which is equal to 0.5 for Crank-Nicolson weighting; and the 
captial subscript, I, on W is used to denote a system of 
equations (one equation for each of the nodes in the domain). 

The basis functions may be specified as quadratic La- 
grange polynomials in natural coordinates (-1 -< s e _< 1) for 
every element by 

3 

= (17) 

which yields piecewise continuous basis functions of the 
usual form [Zienkiewicz, 1977]. 

The weighting functions are modified by cubic (M3) and 
quartic (M4) functions giving [Westerink and Shea, 1989] 

Wi(•) = Nl(se) - a cM3(•) - • cM4(s e) (18) 

W2(•) = N2(se) + 4cz rnM3(s e) + 4,/•rnM4(s e) (19) 

for 

W3(•:)-- N3(s •) - a cM3(•) -/3cM4(•) (20) 

5 

M3(•) =• sc(• + 1)(•- 1) (21) 
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Fig. I. Comparison of q-based solutions to the kinematic wave equation for the case of a constant rainfall over an 
impermeable plane. 
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M4(• ) = -•-• (•4_ •2) (22) 
The constants ac, /3½, a m, and /3m are PG parameters 
required to specify the form of the weighting functions for 
the comer element (• = +-1) and midelement (•: = 0) nodes, 
respectively. 

The PG finite element solution yields a system of linear 
equations of the form 

[.Ax](h}/+ 1,m + 1 _. (b} -- (bl} l q- (bn} I+ 1,rn (23) 

where m is the iteration level of the solution, [A] is a banded 
coefficient matrix that contains only linear terms, {b} is a 
vector that contains all terms evaluated at the l time level 

and the • term evaluated at the new time level but lagged an 
iteration level, {bt} • is the linear portion of {b), and 
{b n} z+ •,rn is the nonlinear portion of {b}. 

The global matrix [A] and vectors {hi} l and {bn} 

0.02 

0.015 

0.01 

0.005 

:'"• ø Iwagaki's (1955) 
•o •.o • Borah's (1980) 

0 20 40 60 80 100 

Time (s) 
Fig. 2. Comparison of model simulation results and experimental data [lwagaki, 1955] for a three-slope domain (Table 

1, case 2). 
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TABLE 1. Summary of Simulation Parameters 

Case Section L, m r, rrds t r, s n So n n Ax, m At, s Cr Fr k 

ß -- 15.0 3.33 x 10 -6 t s 0.048 0.0576 51 0.3 3.60 
1 8.0 1.08 x 10 -3 30 0.009 0.0200 9 1.0 0.42 
2 8.0 6.38 x 10 -4 30 0.009 0.0150 8 1.0 0.42 
3 8.0 8.00 x 10 -4 30 0.009 0.0100 8 1.0 0.42 
1 7.5 3.33 x 10 -6 1500 0.048 0.0576 26 0.3 3.60 
2 7.5 3.33 x 10 -6 1500 0.100 0.0576 25 0.3 3.60 
1 5.0 3.33 x 10 -6 1500 0.100 0.0400 17 0.31 6.24 
2 5.0 3.33 x 10 -6 1500 0.100 0.0100 16 0.31 6.24 
3 5.0 3.33 x 10 -6 1500 0.100 0.0025 16 0.31 6.24 
--- 10-50 1.00 x 10 -6 t s 0.006-0.007 0.01-0.02 11-201 0.25-1.0 0.07-9.9 
ß -- 25.0 1.00 x 10 -6 t s 0.00647 0.0137 51 0.5 0.18-3.7 

1.00 0.505 3390. 
0.55 2.37 2.58 
0.60 2.18 3.17 
0.62 1.89 2.98 
0.76 0.471 2950. 
0.64 0.261 8180. 
0.74 0.198 5680. 
0.56 0.114 3740. 
0.44 0.064 2330. 
0.05-1.00 1.50 500. 
0.05-1.00 1.50 500. 

Here tr is the duration of rainfall, and ts is the time simulated. 

result from the summation of elemental contributions of the 
form 

where 

ne 

n,:l 

ne 

$bn•) 1 ( b/}/: Z tel 
he----1 

Fte 

(b n} 1 + 1,rn _. Z #9nell+ 1,m c-- ella 

ne:l 
, 

•n e 
FA"'] - [e 2 

[j.l• W1N1 d• I 1 W•N2 d• f•-x W1N3 d•] 
1 

•f l_ 1 W2N 1 d• f l_ 1 W2N 2 d• f l W2N3 d• ' 

Lxl W3.N1 d• fl__ 1 W3N 2 d•: j. 1 W3N3 d• -1 

(24) 

(25) 

(26) 

(27) 

{beSe}l- 2 
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Fig. 3. Comparison of q-based solutions for a two-roughness coefficient domain and a limited duration rainfall (Table 

1, case 3). 
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Fig. 4. Comparison of q-based solutions for a three-slope domain and a limited duration rainfall (Table 1, case 4). 

n e is an clement index, and ne is the number of elements in 
the domain. 

For a given time step solution, l + 1, (23) was solved using 
Picard iteration and a direct banded solver [Allen et al., 
1988] until 

max IhJ + "m+l - hJ +l'rn I 
< s (30) 

where the error tolerance, s, was set equal to 10 -•ø in this 
study. 

SOLUTION VALIDATION 

Kinematic wave solutions were solved in two forms: (1) 
the depth of flow (h = h(t, x)) over the surface at each time 
step, or h based; and (2) the outflow at the end of the domain 
for each time step (q= q(t, x = L)), or q based, which 
describes a hydrograph. Both of these forms of the solution 
are useful for a variety of applications. 

As a check of the accuracy of the PG solution, a simplified 
case was considered first. In this case a constant r, S 0, and 
n exist for a period of time sufficient to build an equilibrium 
profile over the surface. For these simplified conditions, an 
analytical solution can be derived by integrating the steady 
state form of (1), after substituting Manning's equation for q, 
which gives [Henderson and Wooding, 1964; Woolhiser, 
1975] 

Error 

TABLE 2. Summary of Errors for Case 4 
...... 

PG FEM QBG FEM LBG FEM 

MSE-q 1.13 x 10 -13 1.74 x 10 -13 1.95 x 10 -13 
ME 3.31 x 10 -6 3.31 x 10 -6 3.63 x 10 -6 
MAE 1.92 x 10 -7 2.63 x 10 -7 2.64 x 10 -7 

QBG, quadratic Bubnov Galerkin; LBG, linear Bubnov Galerkin. 

q = a (rt)5/3 0 < t < t e 
q = qm t > t e (31) 

For the h-based form, an analytical solution based on the 
method of characteristics [Henderson and Wooding, 1964] is 

h = min , rt t •> 0 (32) 

Model validation was performed using physical and model 
parameters summarized in Table 1 as case 1 conditions. 
Figure 1 shows results of the standard Bubnov-Galerkin 
linear and quadratic finite element solutions; a PG finite 
element solution, using optimal parameters described below: 
and the MOC analytical solution, along with the errors 
associated with the approximate solutions compared to the 
analytical solution. These graphs illustrate that the PG 
method reduces the amplitude of the oscillations compared 
to Bubnov-Galerkin solutions. 

A complex shock-producing case was studied by Iwagaki 
[1955]. Runoff was measured from a three-plane cascade, 
which was made out of a three-section metal flume, with 
characteristics summarized in Table 1 as case 2 conditions. 

Over each section of the flume, a different rainfall rate was 
applied and then stopped at 10, 20, and 30 s in three separate 
experiments. Borah et al. [1980] proposed a kinematic wave 
shock-fitting model (MOC) to simulate this case. The 30-s 
rainfall problem was simulated using the Petrov-Galerkin 
model, with inputs summarized in Table 1 as case 2 condi- 
tions. The results shown in Figure 2 illustrate a good agree- 
ment among the experimental data, the Borah et aI. [1980] 
shock-fitting model, and the PG model developed in this 
work. Borah et al. [1980] note that a standard finite differ- 
ence method tends to smooth such shocks. The PG method 
performs well in this case, depicting a shock in the solution 
comparable to the MOC, with only minimal oscillations even 
for a relatively coarse discretization (25 nodes). It should be 
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noted that some variation is expected between the experi- 
mental data and kinematic wave solutions, since Fr > 1.5 
andk< !0. 

An additional check was performed for the case of a plane 
with two equal sections with different Manning's rough- 
nesses and a constant rainfall, stopping at 1500 s to produce 
a recession hydrograph (case 3 in Table 1). A shock is 
formed at the change of roughness point (7.5 m). This 
translates into a change of slope in the hydrograph. Figure 3 
shows a comparison between all three FEMs studied (linear, 

quadratic, and Petrov-Galerkin). A similar simulation was 
set up for a three-plane cascade with a uniform roughness 
and all the other parameters the same as in the previous case 
(case 4 in Table 1). Figure 4 shows the shock in the rising 
hydrograph caused by the three-slope case. The PG method 
reduced the amplitude and duration of the errors compared 
to the linear and quadratic FEM solutions, though all meth- 
ods perform reasonably well. The solutions were compared 
with a finely discretized solution (10,000 nodes) to determine 
errors associated with each method (Table 2). 
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Fig. 6. Optimal values of am for the PG method. 
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Fig. 7. Optimal values of/3c for the PG method. 

Four measures of q- and h-based error were used to judge 
solution accuracy in this work: mean square error for the 
h-based solution 

Z Z (h•j- hl.) 2 cj 

/=lj=l 
MSE-h .............. 

• t•n 

mean square error for the q-based solution 

(33) 

at 

Z (q)- 
I--1 

MSE-q .... 
/•t 

maximum error 

ME = max I q} - qc•l 
and mean absolute error 

(34) 

(35) 
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Fig. 8. Optimal values of/•m for the PG method. 
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TABLE 3. Least Squares Fits of Petrov-Galerkin Parameters 

Parameter a 0 a I a 2 a3 

ac -0.00863106 0.0710183 -0.205402 
a m 0.0302084 -0.0225457 -0.0722190 
/3 c -0.0486437 0.369278 - 1.22373 
•m --0.0616601 0.174084 --0.0489402 

r 2 

Here PG parameter equals Y•--0 ak xk. 

0.223070 0.989 
0.0637837 0.992 
0.160394 0.999 
0.00902134 0.994 

/l t 

• Iq)-q•cl 
1=1 

MAE = (36) 
/•t 

where ttt is the number of time steps, the subscriptfdenotes 
the fine-grid (nn = 10,000) approximation, and the subscript 
c denotes a coarse-grid approximation. 

The validations presented in this section used optimal PG 
parameters (ac, am, [•c, •m)' Methods used to determine 
these optimal parameters, the resulting parameter values, 
and implications for trends in the optimal values are dis- 
cussed in the following sections. 

5. PARAMETER ESTIMATION 

An important problem associated with application of the 
PG method is determination of the PG parameters (ac, am, 
tic, [3m) as a function of relevant system parameters. 
Truncation error analysis, Fourier analysis, and numerical 
minimization procedures are typically used [Westerink and 
Shea, 1989]. Each method has advantages and disadvan- 
tages, but minimization procedures, sometimes called nu- 
merical experimentation, have the advantage of acting more 
directly on the quantity of concern: the difference between a 
model prediction and the true solution. Truncation analysis 
usually concentrates on the elimination of low-order trunca- 

tion error, assuming that the importance of error terms 
decreases as order increases. Recently, Miller and Cornew 
[1992] found a significant nonmonotonic error contribution 
from increasing order terms for an advective-dominated 
transport problem. Fourier analysis methods can yield in- 
sight into a problem in terms of errors related to frequencies 
of a solution, but these have not generally been used to 
quantitatively predict PG parameters [Westerink and $hea, 
1989; Cornew and Miller, 1990; Miller and Cornew, 1992]. 

A minimization on an h-based PG solution was performed 
using 

/it /ln 

I __ hlmj)2 rain • • (hai 
ae,/3c,C•m,/•m l= 1 j= 1 

(37) 

where h a is the analytical solution for depth as a function of 
space and time, and h m is the PG model solution for depth as 
a function of space and time. 

The optimization problem described by (37) was solved 
using a Levenberg-Marquardt method (LMDIF) from the 
M!NPACK mathematical libraries [Garbow et al., 1980] on a 
Convex C240 supercomputer. The minimization procedure 
was solved repeatedly for varying values of Cr, Fr, and k. 
The validity of the results was verified by selecting different 
starting conditions of the parameters sought and by perform- 
ing a grid search analysis to inspect the error surface. 
LMD!F proved to be a robust and reliable estimator of the 

6,10 -14 

.c: 4'10'14 
i 

2,10 -14 

ø ' lin51 

ø quads1 • 
• Pg51 • 
o .... Pg201 //• 

0.2 0.4 0.6 0.8 1 

Courant number, Cr 

Fig. 9. MSE-h as a function of model formulation, described in Table 4 (Table 1, case 6). 
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1.5,10 -ls 

cr 1,10 -15 
I 

5,10 -16 

•o lins• 
= -quad51 
"- ' Pgs• 

•ø Pg201 
=' mpg20• 

0.2 0.4 0.6 0.8 

Courant number, Cr 

Fig. 10. MSE-q as a function of model formulation, described in Table 4 (Table 1, case 6). 

PG parameters that minimized the objective function, equa- 
tion (37). 

Results from the minimization procedure showed that the 
PG parameters were not only a function of the Cr, but also 
of the number of nodes in the domain (nn). However, the 
parameters were independent of Fr and k. That is, identical 
optimal PG parameters were determined for a given Cr 
regardless of the Fr and the k. Upon confirming this finding 
by an extensive grid search, optimizations were performed 
for 0.05 < Cr < 1.00 in increments of 0.05 and 11 <- nn < 

201 (Table 1, case 5). This process yielded 200 sets of 
optimal PG parameters as a sole function of Cr and nn. 
Figures 5-8 summarize optimal values from this parameter 
estimation, while least squares regression of each PG param- 
eter value (for the 201 node case) against Cr yielded the 
results given in Table 3. 

6. DISCUSSION 

As the number of nodes increases, optimal values of the 
PG parameters shown in Figures 5-8 become insensitive to 

3,10 -7 

2,10 -7 

1,10 -7 

'" ø linsl 
_ o quad51 

•' Pgsl 

ø Pg201 

Courant number, Cr 
Fig. l 1. ME as a function of model formulation, described in Table 4 (Table 1, case 6). 
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1.5,10 -8 

1,10 -8 

5,10 -9 

lin51 

quads1 
Pgs• _• 

"ø ' Pg201 

0.2 0.4 0.6 0.8 1 

Courant number, Cr 

fuacfio• of model fo•uisfioa, described i• •sblc 4 (Tsbic ], cssc 6). 

increased discretization for ac, a,•, and/3m. Based upon 
this observation, simulations were performed to evaluate 
solution errors as a function of PG parameter values and Cr. 
Case 6 in Table 1 summarizes simulation parameters for 
results shown in Figures 9-13, while Table 4 summarizes 
model formulations investigated. 

Figure 9 shows that the MSE-h is less for the PG method 
than for the standard quadratic method for all discretiza- 
tions. The reduction in error is a maximum for Cr = 1, with 
a 65% reduction observed for the tailored PG run compared 

to a linear FEM solution. Figure 9 also shows comparisons 
for MSE-h as a function of PG parameters used. The lowest 
errors were achieved for optimal parameters based upon the 
number of nodes in the system (51). However, using optimal 
PG parameters from a 201-node case for a 51-node system 
increased the solution errors only slightly. This is significant 
because it reduces the functional dependence of the optimal 
PG parameters to just one variable, Cr. It should be noted 
that for a very small number of nodes (nn (20), the 
difference between the optimal and approximate PG solu- 

50 

40 

o. 20 
o 

lO 

0 0.2 0.4 0.6 0.8 1 

• o lin51 
_ • • quad51 

•\ •' 'Pg51 
•/\ ø Pg2o1 

Courant number, Cr 

Fig. !3. CPU times as a function of model formulation, described in Table 4 (Table 1, case 6). 
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TABLE 4. Model Formulation Summary 

Case Method Optimal Parameters 

lins• 
quads1 
Pgsl 
Pg2o• 
mpg2o• 

Linear Bubnov-Galerkin FEM 

Quadratic Bubnov-Galerkin FEM 
Quadratic Petrov-Galerkin FEM 
Quadratic Petrov-Galerkin FEM 
Modified Quadratic Petrov-Galerkin* FEM 

... 

optimal for nn -- 51 
optimal for n n -- 201 
optimal for n n -- 201 

*Single-parameter PG model (a c = ot m = •tn "' 0). 

tions described above is greater than shown for this 51-node 
case. Figure 10 shows a similar trend for MSE-q. 

The previous observation that ac, am, and/3m approach 
zero as the number of nodes increases(Figures 5-8) suggests 
a second level of simplification. This modification is to set all 
PG parameters to zero except for/•c, giving test functions of 
the form 

Wl(f) •- Ni(•:) -/• cM4(•) (38) 

W2(•) -- N2(•) (39) 

W3(•) '- N3(•)- • cM4(• :) (40) 

Use of these functions reduces the computational effort 
compared to the full PG method, while still increasing the 
accuracy and rate of convergence of the solution over the 
standard quadratic method. Results from this simplification 
are shown in Figures 9 and 10 by the run noted as mpg201. 

The trends noted above for MSE are consistent with 
results obtained for other measures of error as well. ME and 

MAE errors are shown in Figures 11 and 12, respectively. 
All methods are mass conserving, so mass balance error was 
negligible for all problems analyzed in this work, therefore 
not a good measure of solution accuracy. 

CPU timing results are shown in Figure 13 for a 5!-node 
system and a simulation time needed to reach a steady state 
condition. The CPU times are dependent upon the number of 
time steps taken to approach steady state conditions (i.e., 
Cr) and the number of iterations needed to converge at each 
time step. For Cr < 0.8, the standard quadratic model (quad) 
required the least CPU time. However, the CPU time for the 
quadratic model increased rapidly for Cr > 0.8. A similar 
trend in CPU time was observed for the optimal PG simula- 
tions (Pg51) as a function of Cr > 0.8. The lowest CPU time 
for all methods occurred for Cr • 0.60. In view of the error 

results shown in Figures 9 to 12, this suggests efficient 
solutions can be obtained using the PG method in terms of 
both CPU time and solution error at Cr = 0.6. 

7. CONCLUSIONS 

A quadratic Petrov-Ga!erkin (PG) solution to the kine- 
matic wave overland flow equations was developed and 
compared to standard linear and quadratic Bubnov-Galerkin 
finite element solutions and an analytical solution derived 
from the method of characteristics. Model results were 

investigated for both water depth profiles (h based) and 
outflow hydrographs (q based). The PG method required the 
determination of four parameters, which were evaluated 
using a Levenberg-Marquardt method. The PG method 
decreased the mean sum of square error by about 65% 
compared to a conventional Bubnov-Galerkin linear finite 

element approximation for a Courant number (Cr) of 1. 
Encouraging results were also found for shock-type pr0b 
lems, which result from variations in surface slope or rough. 
ness. The four PG parameters in the formulation depended 
strongly upon the Cr and weakly upon the number of nodes 
(nn) in the system. A reasonable approximation to the 
optimal solution was achieved using parameters based upon 
a fixed number of nodes (nn - 201). Good solutions were 
also achieved using a single-parameter simplification of the 
general PG model, Minimum CPU times were achieved for 
Cr • 0.6 for all formulations investigated. 
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