

OKLAHOMA STATE UNIVERSITY Biosystems and Agricultural Engineering Department

Understanding the Key Drivers for Effective Mitigation of Runoff with Vegetative Filter Strips

Garey A. Fox, Ph.D., P.E. Oklahoma State University Stillwater, OK, USA

AIM: Advancing Intelligent Mitigation ECPA workshop Brussels, Belgium – October 22, 2008

OKLAHOMA STATE UNIVERSITY Biosystems and Agricultural Engineering Department

Organization of Presentation

- VFS Overview
- Key Drivers
- Prediction tools for pesticide mitigation in runoff

OKLAHOMA STATE UNIVERSITY Biosystems and Agricultural Engineering Department

VFS Overview

- Retention/Detention:
 - Infiltration
 - Hydraulic Resistance
- Advantages:
 - Overland flow and dissolved pollutants reduction and delay
 - Decrease in sediment transport capacity
 - Sediment/particles deposition

OKLAHOMA STATE UNIVERSITY Biosystems and Agricultural Engineering Department

Key Drivers: Hydrologic Response

- Infiltration is governed by...
 - Soil physical properties
 - Vegetative cover
 - Antecedent moisture content
 - Rainfall intensity/Inflow
 - Slope and width
- Hydraulic resistance a function of...
 - Vegetation type and characteristics
 - Inflow volume
 - Slope and width

Used with permission of Rafael Munoz-Carpena

OKLAHOMA STATE UNIVERSITY Biosystems and Agricultural Engineering Department

Quantifying Hydrologic Response

- Infiltration:
 - Easier to quantify for uniform infiltration into homogenous soil
 - Additional complexity with macroporosity and preferential flow
- Hydraulic Resistance/Surface Flow:
 - Easier to quantify for sheet flow
 - Additional complexity with concentrated flow/flow convergence

Used with permission of V. Nuutinen and K. Butt

OKLAHOMA STATE UNIVERSITY Biosystems and Agricultural Engineering Department

Hydrologic Drivers

∆Q = Infiltration = (Runoff Entering + Preciptation) – Runoff Leaving

 ΔE = Sedimentation = Sediment Entering – Sediment Leaving

OKLAHOMA STATE UNIVERSITY Biosystems and Agricultural Engineering Department

Key Drivers: Sediment/Contaminant

- Contaminant Property (Pesticide):
 - Phase distribution factor

$$K_{d} = \frac{K_{oc}(\% OC)}{100}$$
 $F_{ph} = \frac{Q_{i}}{K_{d}E_{i}}$

K_{oc} = organic carbon sorption coefficient

K_d = distribution coefficient

- Sediment:
 - Percent clay content of incoming sediment

OKLAHOMA STATE UNIVERSITY Biosystems and Agricultural Engineering Department

Prediction Tools for Diffuse Contaminants

- Largely based on physical characteristics of the buffer system...
 - SWAT Buffer width: $\Delta P = 0.367 (W_B)^{0.2967}$
 - USDA suggests correlation between percent pesticide reduction and K_{oc}
 - Liu and others (2008) Correlation to buffer slope and width – R² = 0.23

 ΔP = Pesticide Reduction (%)

OKLAHOMA STATE UNIVERSITY Biosystems and Agricultural Engineering Department

Survey of Literature

- Effectiveness of VFS compiled from 127 published journal articles
- Event-scale studies
 - 5 publications for model development
 - 5 publications for model evaluation

OKLAHOMA STATE UNIVERSITY Biosystems and Agricultural Engineering Department

Model Development Dataset

- 47 observations: alachlor , atrazine , chlorpyrifos, metolachlor, and permethrin
- ΔP ranging from 22 to 100%
- VFS widths ranged from 3.0 to 20.1 m (VFS width in the primary direction of flow)
- Natural and simulated rainfall and runoff events
- Soils with % clay content from 21 to 30%

OKLAHOMA STATE UNIVERSITY Biosystems and Agricultural Engineering Department

Model Development $\Delta P = f(\Delta Q, \Delta E, \ln(F_{ph} + 1), \% C)$

- Buffer width not statistically significant predictor
- Buffer width captured by ΔQ

OKLAHOMA STATE UNIVERSITY Biosystems and Agricultural Engineering Department

Model Analysis – K_{oc}

- High mobility pesticides (low K_{oc}) - ΔQ - Infiltration
- Low mobility pesticides (high K_{oc})

 $-\Delta E$, F_{ph} – Sedimentation, Phase Distribution Factor

OKLAHOMA STATE UNIVERSITY Biosystems and Agricultural Engineering Department

Model Evaluation Dataset

- 120 measured ΔP ranging from 8.0 to 100%
- Atrazine, cyanazine, diflufenican, isoproturon, lindane, metolachlor, metribuzin, pendimethalin, and terbuthylazine
- VFS widths ranged from 0.5 to 20.1 m
- Soils with % clay content from 12 to 45%

OKLAHOMA STATE UNIVERSITY Biosystems and Agricultural Engineering Department

Buffer Width Equation (SWAT)

 Does not adequately predict VFS efficiency by itself

OKLAHOMA STATE UNIVERSITY Biosystems and Agricultural Engineering Department

Model Evaluation

 Improved prediction capability by accounting for hydrologic response

OKLAHOMA STATE UNIVERSITY Biosystems and Agricultural Engineering Department

Use of Empirical Equations

- Parameters for estimating ΔP , such as ΔQ and ΔE , not easily predicted
- Uncalibrated VFS model that predicts ΔQ and ΔE
 - Vegetative Filter Strip Modeling System, VFSMOD
 - Finite-element, field-scale, storm-based model
- Routes incoming hydrograph and sedigraph
- Infiltration Green-Ampt
- Sediment trapping GRASSF

OKLAHOMA STATE UNIVERSITY Biosystems and Agricultural Engineering Department

VFSMOD Critical Parameters

- Soil Hydraulic Parameters (K_{sat}, θ_o and θ_s)
 Impacts infiltration
- Roughness Coefficient (Manning's n)
 - Impacts hydraulic resistance
 - Impacts timing of the peak runoff and not the total runoff volume
 - Default values of Manning's n for closest vegetation type

OKLAHOMA STATE UNIVERSITY Biosystems and Agricultural Engineering Department

VFSMOD Critical Parameters

- Rainfall volume and duration and entering runoff volume and duration
- Concentration of sediment in the entering runoff (C_s)
- Characteristics of the sediment
- Characteristics of the VFS

OKLAHOMA STATE UNIVERSITY Biosystems and Agricultural Engineering Department

VFSMOD – ΔQ and ΔE

 VFSMOD able to predict runoff and sediment reduction

OKLAHOMA STATE UNIVERSITY Biosystems and Agricultural Engineering Department

VFSMOD/Empirical Equation – ΔP

Combined
 VFSMOD/empirical
 equation able to
 predict VFS
 performance

OKLAHOMA STATE UNIVERSITY Biosystems and Agricultural Engineering Department

Potential Questions

- What about the effect of flow uniformity?
 - Can the procedure account for concentrated flow?
- Are the empirical regression parameters transferable?
 - Evaluation with additional data sets

OKLAHOMA STATE UNIVERSITY Biosystems and Agricultural Engineering Department

Chlorpyrifos/Atrazine Study

- Two Factors:
 - Flow Volume
 - Sheet vs.
 Concentrated
 Flow

OKLAHOMA STATE UNIVERSITY Biosystems and Agricultural Engineering Department

Chlorpyrifos/Atrazine Study

 VFSMOD able to predict uniform and concentrated flow runoff

OKLAHOMA STATE UNIVERSITY Biosystems and Agricultural Engineering Department

Chlorpyrifos/Atrazine Study

 VFSMOD able to predict sediment reduction

OKLAHOMA STATE UNIVERSITY Biosystems and Agricultural Engineering Department

Chlorpyrifos/Atrazine Study

 Combined VFSMOD/empirical equation able to predict VFS performance

OKLAHOMA STATE UNIVERSITY Biosystems and Agricultural Engineering Department

Chlorpyrifos/Atrazine Study

• Treatment effects for pesticide reduction (%):

OKLAHOMA STATE UNIVERSITY Biosystems and Agricultural Engineering Department

Conclusions

- Key Drivers: Hydrologic response
- Physical VFS characteristics and pesticide reduction correlations insufficient to predict buffer efficiency in practice
- Combined mechanistic model (VFSMOD) with empirical trapping efficiency equation

Appropriate for both uniform and concentrated flow

OKLAHOMA STATE UNIVERSITY Biosystems and Agricultural Engineering Department

Understanding the Key Drivers for Effective Mitigation of Runoff with Vegetative Filter Strips

Questions?