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Agricultural systems are multi-dimensional and complex. In the context of 

advancing sustainable intensification (increase in production per unit of land while 

mitigating environmental and social impacts) in Sub-Saharan Africa (SSA),novel 

frameworks for evaluating the performance of agricultural systems must be more 

attentive to the heterogeneity of micro-scale decision-making and socio-economic 

factors affecting productivity, and to farm multifunctionality metrics by which 

performance can be further evaluated beyond yield.  

First, this work proposes a farm/household scale modeling framework that links 

social-ecological explanatory indicators (i.e., livelihood capitals, intensification decision-

making) to ecosystem services performance metrics (i.e., crop yield and soil health 

indicators). The framework was applied in two smallholder landscapes in SSA, for 210 

farming households in the Southern Agricultural Corridor of Tanzania, and 500 farming 

households in the Upper Ewaso Ng’iro basin of Kenya. Second, statistical and 

clustering analyses were conducted to identify patterns of relationships amongst 

livelihood capital, management intensity and ecosystem services indicators in both case 



15 

studies. Results from the analyses provided evidence of synergistic relationships 

between human-derived capital, farm input intensity and crop production across case 

studies. Third, a suite of methods including machine learning predictive modeling 

approaches, high dimensional factor importance analysis, and monte carlo filtering, 

were applied to one case study to inform the design of effective intervention strategies 

for sustainable intensification. The findings revealed highly interactive soil health 

indicators (i.e.,soil nutrient balances), household-level and landscape level human and 

physical capital indicators (i.e., labor, distance to river, dependency ratio, input use) as 

the most influential factors driving productivity. Effective intervention strategies able to 

successfully move all low productivity farms (86% with maize yield below 1.5 t/ha) to 

mid-productivity (89% with maize yield between 1.5 and 2.5 t/ha) and high productivity 

(10% with maize yield above 2.5 t/ha) encompassed nutrient imbalance remediation, 

soil health, farm/household physical and human capital development interventions. 

This work is new in linking livelihood strategies to ecosystem services 

relationships, and in successfully modeling productivity using such approaches. It 

makes a compelling case to agricultural scientists and policymakers for further 

integrating social-ecological approaches in agricultural systems modeling. 
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CHAPTER 1 
INTRODUCTION 

 
1.1 Background and Motivation 

Sustainably meeting food demands of a growing population is one of humanity’s  

greatest future challenge. Sub-Saharan Africa (SSA) comprises of fastest growing 

populations globally, and is projected to face serious food insecurity and livelihood risks 

by mid-century, placing significant pressure on the region to increase food production 

while preserving natural capital under rising climate and soil degradation risks 

(Bradshaw & Di Minin, 2019; Tully et al., 2015; Van Ittersum et al., 2016). Over the last 

two decades, agricultural extensification (expansion of cropland area) has played the 

larger role in the region’s increase in food production over agricultural intensification 

(increase in production per unit of input on existing cropland area) (Nin Pratt, 2015). 

Despite these efforts, average yields for staple grains grown across the region such as 

maize, wheat and rice are still low compared to global averages (Erenstein et al., 2022; 

Jayne & Sanchez, 2021; USDA, 2022; Yuan et al., 2021). If yield gaps for staple crops 

are to be narrowed while adverse effects of cropland expansion also mitigated, 

agricultural intensification will need to play the leading role in meeting the region’s 60% 

increase in food demand by 2050 (Jayne et al., 2018; Van Ittersum et al., 2016). More 

importantly, if natural capital (stocks of natural resources) and ecosystem services (the 

benefits people obtain from ecosystems’ natural resources) are to be sustained, and 

food insecurity and livelihood risks reduced in the region, sustainable intensification 

(SAI) (increase in production per unit of land while mitigating environmental and social 

impacts) will need to be at the forefront of advisable solutions (Godfray, 2015; Pretty & 

Bharucha, 2014).  
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Sustainable intensification practices are being widely promoted in SSA. Practices 

being promoted focus on soil and water conservation, improved nutrient management, 

and cropping systems diversity, among many others (Holden, 2018; Kuyah et al., 2021; 

Pretty et al., 2011). Conventional approaches to evaluating the performance of 

sustainable intensification strategies focus on comparing agronomic impacts of 

practices (Fortmann, 2011; Kuyah et al., 2021). More integrated approaches are 

recently proposed towards more a comprehensive suite of metrics able to capture the  

agronomic, environmental, socio-economic and sustainability dimensions of different 

agricultural systems (Mouratiadou et al., 2021; Musumba et al., 2021; Smith et al., 

2017). The Sustainable intensification framework has been mostly used for evaluating 

sustainable intensification practices in SSA (Eissler et al., 2021; Hammond et al., 2021; 

Musumba et al., 2021; Rahman et al., 2020). It considers a diverse set of indicators 

under their respective domains (productivity, economic, environment, human condition, 

and social) (Musumba et al., 2017, 2021). 

Although these approaches allow for a broader understanding of the relative 

performance of sustainable intensification practices across agricultural systems, they 

fall short of capturing relationships between farm characteristics, productivity, and 

sustainability performance, all crucial for a more comprehensive evaluation of farm 

performance. Farmers combine several management decisions about agricultural 

practices to achieve agronomic goals (Cassman & Grassini, 2020). These decisions 

about livelihood strategies are mainly based on their level of different capitals/resources 

(Pretty, 2008). Useful metrics are needed to capture the wide range of agricultural 

intensification strategies of smallholders. Furthermore, each strategy affects soil 
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ecosystem services functions necessary to achieve crop production differently, 

considering the heterogeneity of  the soil conditions of farms. Soil health metrics that 

pertains to soil sustainability, particularity in SSA where soil degradation challenges are   

notable, are important sustainability metrics to consider in farm performance (Tully et 

al., 2015; Vanlauwe et al., 2015).  

We have identified the following research gaps in our current knowledge on 

sustainable intensification evaluation in SSA: 

• The need to account for the heterogeneity of micro-scale decision-making and 

socio-economic factors that can affect farm performance.  

• The need to account for farm multifunctionality (i.e., relationships between many 

ecosystem service benefits of farming). 

These research gaps have informed a framework (Figure 1) for defining research 

questions around the evaluation of sustainable intensification in SSA. 

 

1.2 Conceptual Framework 

We propose a social-ecological system (interdependent human-natural systems) 

(Biggs et al., 2021)) framework ( Figure 1-3)  at the farm scale. This framework is a 

merging of the livelihood capital concept adapted from the Sustainable Livelihoods 

Framework (Jones et al., 2016; Scoones, 1998; Solesbury, 2005) (Figure 1-1) with the 

system approach to ecosystem service social-ecological concept (Figure 1-2) (B. Fisher 

et al., 2008; Jones et al., 2016), where natural capital and human-derived capitals (i.e., 

human, social, financial) are established as co-producers of ecosystem services via 
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interactions with users/beneficiaries. The framework integrates the following 

components:  

(1) Social-ecological factors (Figure 1-3) 

Livelihood capitals  (LC) - The livelihood base of the farm unit (i.e., farm household) 

gathers natural, human, social, financial, physical capitals (Figure 1-1) deployed in 

pursuing livelihood strategies such as agricultural intensification. Natural capital involves 

stocks of natural resources. These resources include water, soil, trees, and many 

others. Human capital  involves educational and training skills, and availability of labor. 

Social capital includes integration and networking through social or political institutions. 

Financial capital includes economic assets such as cash, credit, debts. Physical capital 

includes transportation and communication infrastructures, machinery assets (Carney, 

2003; Scoones, 1998; Solesbury, 2005). Data on human-derived capitals must be 

collected at the farm-household level, some data on infrastructure can be collected at 

the landscape scale. Capital levels are assessed using evaluation scores based on a 

set of indicators embracing the different types of capitals. 

Management Intensity Decision-making (MI) – To account for the heterogeneity of 

management decision-making at the farm/household scale, intensification strategies 

across diverse farms are quantified and characterized. Here, we propose two metrics of 

management intensity : a combined farm input intensity index and a soil management 

intensity index. The combined farm input intensity index is used to capture the intensity 

of farming practices. It is obtained by ranking the grouping structure of the use or no use 

of inputs based on their relative potential impact on productivity in the following order: 

fertilizer use > improved seeds use > mechanization > irrigation> pesticide use. The soil 
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management intensity index is obtained by ranking the grouping structure of practices 

based on their relative impact on soil disturbance in the following order:  soil tillage > 

residue retention practice. The indexes value increases with more combinations of 

practices.  

(2) Farm multifunctionality performance metrics (Figure 1-3) 

Ecosystem services (ES) – Farm performance is measured through ecosystem 

services to capture the multi-functional benefits of farming through yield and relevant 

on-farm ecosystem services, as productivity and sustainability performance metrics, 

respectively (Garbach et al., 2017; Robertson et al., 2014). We focus on food 

provisioning services (i.e., primary crops production), and two soil health related 

regulating services (i.e., soil carbon storage, soil water storage), and one soil health 

related supporting services (i.e., soil nutrient supply). Indicators were established for 

quantifying these services. Provisioning services were measured using crop yield. Soil 

health functions were established for regulating and supporting services. These soil 

health indicators were selected to best reflect the impact of  farm management practices 

on soils. Additional information on the soil health functions proposed are provided in 

Appendix A.  

The conceptual framework proposed is explored in two case studies of 

smallholder farming systems (land size less than 2 hectares) (Lowder et al., 2016) in 

Sub-Saharan Africa: The Southern Agricultural Growth Corridor of Tanzania 

(SAGCOT) and the Upper Ewaso Ngiro Basin in Kenya. These regions are 

representative examples of complex social-ecological systems, characterized by 

heterogenous farming households operating under diverse agro-ecological 
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conditions, both facing pressure to increase food production while preserving natural 

resources. 

1.3  Research Questions, Objectives and Dissertation Outline 

Based on the research  gaps identified, this research aims to answer the following 

overarching research questions (RQ1, RQ2) and their research objectives (OB1, OB2, 

OB3, OB4) : 

RQ1: What are the relationships patterns between social-ecological factors (i.e., 

livelihood capitals, management intensity) and ecosystem services (i.e., crop yield, soil 

carbon and water storage, soil nutrient supply) in smallholder systems of SSA? 

OB1 : Test for significant trade-offs and synergies between ecosystem services, 

livelihood capitals, and management  intensity.   

OB2 : Identify dissimilar group of farms based on ecosystem services 

relationships and livelihood capitals/management intensity relationships. 

RQ2: Can social-ecological factors (i.e., livelihood capitals, management intensity), and 

soil health indicators (i.e., soil carbon and water storage, soil nutrient supply)  be good 

predictors of productivity (i.e., crop production) ? If so, how can these relationships be 

modeled to inform the design of intervention strategies able to boost farm productivity  

in smallholder systems of SSA? 

OB3 : Develop a predictive model able to establish relationships between 

productivity (i.e., crop yield), social-ecological factors (i.e., livelihood capitals, 

management intensity) and soil health indicators (i.e., soil carbon and water 

storage, soil nutrient supply) as explanatory variables. 
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OB4: Couple predictive model with Global Sensitivity and Uncertainty Analysis 

(GSUA) to test model reliability. 

OB5:  Use predictive model to guide the design of effective intervention 

strategies for boosting farm productivity. 

This dissertation is composed of five chapters. The first chapter addresses the 

development and application of the conceptual framework. Chapter 2 addresses RQ1 

and meets OB1 and OB2 of this research. In chapter 2, patterns of relationships 

between livelihood capitals/management intensity, and ecosystem services are 

assessed in the two case studies using correlation analysis towards identifying 

synergies and trade-offs between indicators, and using self-organizing map clustering 

algorithms, towards capturing intricate non-linear relationships that characterize farms 

as human-natural systems. It focuses on uncovering the linkages between social-

ecological factors, productivity and soil health metrics. Chapter 3 addresses RQ2 and 

meets OB3 and OB4 of this research. In Chapter 3, predictive machine learning models 

are developed to test their ability to predict the productivity level of farms (using crop 

production as a key performance metric), based on social-ecological factors (i.e., 

livelihood capitals, management intensity and soil health indicators (i.e., soil carbon and 

water storage, soil nutrient supply) as explanatory factors. Global Sensitivity Analysis 

(GSA) is used to identify influential factors of the best performing model. Chapter 4 

addresses RQ2 and meets OB5 of this research. In Chapter 4, the best performing 

model is used to inform the design of effective strategies for increasing productivity in 

the studied SSA smallholder systems, using decision-support tools such as Global 

Sensitivity and Uncertainty Analysis (GSUA) and Monte Carlo Filtering (MCF). Chapter 
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5 summarizes the findings of this research and concludes with limitations and future 

works. 
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Figure 1-1. The  Five capital of the Sustainable Livelihood Approach (Ashley & Carney, 1999) 
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Figure 1-2. The system approach to ecosystem service social-ecological concept (Jones et al., 2016) 
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Figure 1-3. Conceptual diagram of the social-ecological framework used in this research.
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CHAPTER 2 
IDENTIFYING PATTERNS OF RELATIONSHIPS BETWEEN ECOSYSTEM 

SERVICES AND LIVELIHOODS INTENSIFICATION STRATEGIES IN SMALLHOLDER 
LANDSCAPES: CASE STUDIES IN SAGCOT TANZANIA AND THE UPPER EWASO 

NGIRO BASIN KENYA 
 

2.1 Introduction 

Sustaining natural capital and ecosystem services while addressing the increase 

in global food demand is a  global grand challenge. Smallholder farmers across Sub-

Saharan Africa and Asia (accounting for 80% of the world’s farmers) play a key role in 

the global food system and will face significant pressure to increase food production. 

(Lowder et al., 2014). In order to increase food production, they will need to employ 

agricultural intensification strategies able to increase production per unit of land 

(Godfray et al., 2010; Pretty & Bharucha, 2014; Vanlauwe et al., 2014). These 

strategies may involve efforts that aim at prioritizing productivity over soil health, which 

may positively or negatively affect the supply of all ecosystem services on farms, thus 

limiting the multifunctional benefits of farming (Aryal et al., 2022; Rodríguez et al., 

2006). Common synergies and trade-offs demonstrated in the literature are amongst 

provisioning and regulating services (Aryal et al., 2022). In the case of farm level 

ecosystem services of interest (Chapter 1) trade-offs relationships are generally 

observed between crop production and water storage or carbon storage(Bennett et al., 

2009; Morizet-Davis et al., 2023; Power, 2010). Understanding interactions between 

ecosystem services across social-ecological systems continue to be a research priority. 

Several studies revealed trade-off and synergistic relationships between ecosystem 

services across a span of provisioning, regulating, and supporting services, and across 

multiple scales, however they show some inconsistencies as these relationships can be 
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context and scale dependent  (Qiu et al., 2018, 2021). Agricultural intensification 

strategies of farmers are important drivers of farm level ecosystem services (Pretty, 

2008; Robertson et al., 2014). Additionally, land use intensity can play a key role in 

mediating ecosystem services relationships at the landscape and regional scales (Qiu 

et al., 2021).Understanding the relationships between farm/field level social-ecological 

factors (i.e., livelihood capitals, management intensity indicators) and ecosystem 

services, as applied in our framework (Chapter 1) is imperative (Paruelo & Sierra, 

2023). Although many studies have analyzed the relationship between livelihood and 

ecosystem services (Agarwala et al., 2014; J. A. Fisher et al., 2014), very few have 

linked farming intensity to livelihoods and ecosystem services. This work aims to apply 

the framework proposed in this dissertation (chapter 1) to assess synergistic/trade-offs 

relationships between social-ecological factors (i.e., livelihood capitals, management 

intensity) and ecosystem services (i.e., crop yield, soil carbon storage, soil water 

storage, soil nutrient supply) in the two smallholder systems proposed, the SAGCOT 

and the Upper Ewaso Ng’iro regions.  

The  first objectives of this study is to assess synergistic and trade-off 

relationships between ecosystem services, livelihood capitals, management intensity 

across case studies. We hypothesized common ecosystem service relationships 

studied in the literature such as synergistic relationships between provisioning services 

and supporting services, trade-off relationships between provisioning and regulating 

services. We also hypothesized synergistic relationships between farm intensity and 

provisioning services, trade-offs relationships between farm intensity/livelihood capitals 

and regulating services. The second objective of this study is to identify patterns of 
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relationships between ecosystem services and livelihood/intensification strategies 

characterizing each case study, to confirm synergies and trade-offs tested for in the first 

objective. 

2.2 Materials and Methods 

2.2.1 Study Regions 

The Southern Agricultural Growth Corridor of Tanzania (SAGCOT) is a region selected 

by the Tanzania government in 2010 for boosting agricultural productivity and ensuring 

the commercialization of smallholder agriculture. The region has been undergoing 

significant agricultural transformation to expand 350,000 hectares of agricultural land 

into production by 2030 in six established development clusters (Scholes et al., 2013) 

(Figure 2-1). 

The Upper Ewaso Ng’iro north catchment in Laikipia (Upper Ewaso) is the largest river 

basin in Kenya. It drains the northern and northwestern slopes of Mount Kenya, 

covering an approximated area of 220,000 km2. The region spans an impressive 

ecological gradient stretching from forested and humid Mount Kenya across the Laikipia 

plateau to the dry Samburu plains. Economic development, increasing population, and 

climatic variability in the region has significantly increased competing water demands 

amongst various groups (crop producers, pastoralists, ranchers) over the last three 

decades (Figure 2-1).  

2.2.2 Data Collection and Processing 

Data on soils, climate biodiversity, household socio-economic condition and assets, 

and farming practices for the SAGCOT case study were collected by the Vital Signs 

Project, a large-scale data collection initiative led by Conservation International on 

agriculture, environment, and human well-being in the region (http://vitalsigns.org/atlas). 

http://vitalsigns.org/atlas
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The collected data were processed and analyzed by the Innovation Lab for 

Collaborative Research on Sustainable Intensification Innovation Lab(SIIL) indicator 

project repository at the University of Florida (https://gitlab.com/gklarenberg/siil-

environmental-indicators). The SIIL focused on developing a generic indicator 

framework across five sustainability domains (productivity; economic, environmental, 

human condition, and social) and four scales (field, farm, household, and landscape) 

(Musumba et al., 2021). Overall sampling took place from 2012 to 2016 in landscapes 

of10 x 10 km located within each of the six SAGCOT development clusters, to account 

for their unique land use and land cover characteristics, and livelihood  and ecological 

diversity (Figure 1-1). Data were collected at the field and farm scale for 10 e-plots (1m 

by 1m scale plots that were randomly selected) in each landscape. Soils data were 

collected for  a total of 60 e-plots within the landscapes, and 328 e-plots outside the 

landscapes (i.e., the semi-natural area). In addition to the environmental data collected 

from each landscape, three households were surveyed per e-plot, and their respective 

fields were sampled. A total of 210 household were surveyed and 371 cultivated fields 

sampled for soil testing. Additional soil properties data were estimated at 30 m 

resolution, such as depth to bedrock, bulk density, and cation exchange capacity were 

collected for the central locations of the e-plots from the Innovative Solutions for Digital 

Agriculture database (https://www.isda-africa.com/isdasoil) (Hengl et al., 2021). The 

data were accessed using the Africa soil and Agronomy data cube repository on GitLab 

(https://gitlab.com/openlandmap/africa-soil-and-agronomy-data-cube).The compiled 

dataset was carefully examined by evaluating missing data and outliers. The number of 

missing data for the variables varied from 1 to 33, less than 25% of the of the total 

https://gitlab.com/openlandmap/africa-soil-and-agronomy-data-cube
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number of observations. K-nearest neighbor algorithm was used to impute missing 

values. 

The Upper Ewaso Ngiro in Laikipia, Kenya used a different sampling framework than 

the SAGCOT. Data on livelihood and socio-economic conditions of farmers, farming 

practices, environmental conditions and food security were collected through a 

household survey undertaken in 2020 by the Nature Conservancy (TNC Kenya) in 

conjunction with the Centre for Training and Integrated Research in arid and semi-arid 

development (CETRAD).The sampling strategy was defined to best represent the 

social-ecological diversity of the basin. Sampling was informed by the agro-ecological 

zones and main land use systems of the region, the history of settlement and crop 

production in the upper and middle watershed, and land use/ land cover changes in 

recent years. A total of 500 households were surveyed across sub-humid, humid, and 

semi-arid zones. The survey dataset was also examined for missing data and outliers. 

The number of missing data for the variables varied from 2 to 109, less than 25% of the 

of the total number of observations. K-nearest neighbor algorithm was used to impute 

missing values(Stekhoven & Bühlmann, 2012). Farm fields were not directly sampled 

due to time constraints. Soil properties data (i.e., depth to bedrock, clay content, bulk 

density, extractable aluminum, total organic carbon, extractable calcium, Iron, 

Potassium, Magnesium, CEC, total  nitrogen, organic carbon, phosphorous, sulfur, 

stone, content, zinc extractable, pH, sand content, silt, content, texture, class), all 

estimated at 30 m resolution were collected for the 500 farm households locations from 

the Innovative Solutions for Digital Agriculture database (https://www.isda-

africa.com/isdasoil) (Hengl et al., 2021). The data were accessed using the Africa soil 
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and Agronomy data cube repository on GitLab (https://gitlab.com/openlandmap/africa-

soil-and-agronomy-data-cube). 

Summary statistics of livelihood capitals, management intensity of farm households 

surveyed are provided in Table 2-2 and Table 2-3. 

2.2.3 Ecosystem Indicators 

Ecosystem services indicators proposed in our framework (Chapter 1) were 

established for quantifying ecosystem services. We focus on the following across the 

two case studies: one provisioning service (primary crops grown by farmers in the 

regions), two regulating services (soil carbon storage, soil water storage), and one 

supporting service (soil nutrient balance/supply). Maize and rice yields were considered 

for the SAGCOT, and maize and potato yield for upper Ewaso Ngiro. Soil carbon 

storage is determined using the “less is better” standardizing function on a soil carbon 

deficit indicator. The soil carbon deficit indicator is defined as the ability of the soil to 

store additional carbon and is estimated as the difference between the maximum 

potential carbon that can be associated with the soil and the current amount of carbon 

found in the soil. The less the deficit, the higher the ability of the soil to store additional 

carbon (Barré et al., 2017; Sanchez et al., 2003) (See Appendix A on how the soil 

carbon deficit  function is calculated). Soil nutrient balance in the SAGCOT is 

determined using the average of nitrogen, phosphorous and potassium partial nutrient 

budget indicators. Partial nutrient budgets are calculated as the difference between 

nutrient inputs through fertilizers and nutrient outputs through harvests. Indicators were 

calculated using  the “less is better” standardized function on partial nutrient budgets 

because all budgets were at a deficit (i.e.,negative). This standardization approach 

reflects the less the nutrient deficit, the better the nutrient balance ecosystem service. 

https://gitlab.com/openlandmap/africa-soil-and-agronomy-data-cube
https://gitlab.com/openlandmap/africa-soil-and-agronomy-data-cube
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Soil nutrient supply in the Upper Ewaso Ngiro is determined using the average of 

total nitrogen and cation exchange capacity indicators. Both indicators were calculated 

using the “more is better” standardizing function. This standardization approach reflects  

the higher the total nitrogen and cation exchange capacity, the higher the nutrient 

supply ecosystem service. 

For both case studies, all ecosystem services indicators were averaged at the farm 

level. Soil properties selected to quantify ecosystem services functions, and summary 

statistics are provided in Table 2-1. Additional information on the functions used to 

construct soil health indicators using soil properties collected are provided in Appendix 

A. The code for retrieving soil properties and calculating soil health indicators can be 

found in the dissertation repository (Appendix B).  

2.2.4 Agricultural Management Intensity Indicators 

Agricultural Management intensity measures are determined using two metrics, a 

combined farm input intensity index and a soil management intensity index. We 

measure farm input intensity by obtaining an index that uses the discrete input use/no 

input use responses for decision-making factors such as fertilizer use, improved seeds 

use, mechanization, and irrigation from the survey, to rank the grouping structure of 

their combinations. Ranking of inputs grouping structure is based on the inputs relative 

impact on productivity in the following order: fertilizer use > improved seeds use > 

mechanization > irrigation > pesticide use. The soil management intensity index is 

calculated using the discrete practice/no practice responses for decision-making factors 

such as soil tillage and residue retention practices responses, to rank the grouping 

structure of  the combinations. Ranking of practices is based on their relative impact on 

soil disturbance in the following order:  soil tillage > residue retention practice. The code 
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for the management intensity indexes calculation can be found in the dissertation 

repositoty (See Appendix B). The indexes and summary statistics are presented in 

Table 2-3. 

2.2.5 Livelihood Capitals Indicators  

Households’ livelihood capitals were quantified using evaluation scores based on a 

set of indicators embracing the different types of capitals (Carney, 2003; Solesbury, 

2005). These evaluation scores are calculated using indicators selected from the 

household surveys and/or spatial data products. We selected  a total of 25 indicators in 

the SAGCOT and 21 indicators in the upper Ewaso Ngiro . Capitals are calculated using 

the entropy-weight method that uses a mathematical model that applies information 

entropy to assign weights to criteria set in a multi-criteria decision matrix (Lotfi & 

Fallahnejad, 2010). This approach is objective in weighting indicators while accounting 

for positive (the bigger the better) or negative direction (the smaller the better). The 

selected  indicators were first standardized to 0-1 scale using the fuzzy logic 

membership functions (i.e., more is better, less is better), towards eliminating 

measurement bias in comparing indicator levels. Entropy weights were calculated using 

the credit model package in R. Evaluation scores for each indicator were determined by 

multiplying each indicator by its respective weight. Evaluation scores of each capital 

including natural (NC), human (HC), social (SC), physical (PC), and financial (FC) were 

calculated by aggregating indicators belonging to the same capital category. Evaluation 

score for the human-derived capital (HDC) were calculated using the entropy weight 

method on human, social, and physical capital scores. Summary statistics of livelihood 

capital indicators are presented in Table 2-2. The code for retrieving livelihood capital 
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indicators and calculating livelihood capital indexes can be found in the dissertation 

repository (see link in Appendix B). 

2.2.6 Analytical Approach 

First, we assess the synergistic and trade-off relationships between ecosystem 

services, livelihood capitals and management intensity indicators, across farm 

households. We used the Spearman Rank correlation measure to capture the behavior 

of bivariate correlations as it is more robustness to non-normality and outliers (Gómez-

Baggethun et al., 2018; Lee & Lautenbach, 2016; Raudsepp-Hearne et al., 2010). A 

positive correlation coefficient implies a synergistic relationship between indicators, a 

negative correlation coefficient implies a trade-off relationship between indicators. A p-

value< (significance level) implies a significant relationship between a pair of 

indicators. In this study we used =0.05.  

Second, we used the Self-organizing map (SOM) algorithm (Kohonen, 1998) to 

discern clusters of ecosystem services relationships. These ecosystem services 

clusters (ESC) are defined as bundles of ecosystem services bundles that repeatedly 

appear together across space and/or time(Raudsepp-Hearne et al., 2010). SOM is an 

unsupervised artificial neural network learning technique that can reduce the 

dimensional space of high input data while preserving the topology of the data 

(Kohonen, 1998). The output of SOM is a vector with similar number of observations 

and attributes than of the input vector. This feature of SOM is chosen for our analysis as 

it can capture non-linear relationships between the ecosystem services. Several studies 

opted for this method for characterizing ecosystem services bundles (Crouzat et al., 

2015; Dittrich et al., 2017; Li et al., 2022).We use the package AweSom in R to 
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implement the SOM. Each observation is classified being assigned a  “codebook vector”  

based on a set of best matching unit variables picked by the algorithm (Kohonen, 2013; 

Wehrens, 2015). Input datasets for the models included a total of m =  5 ecosystem 

services indicators as attributes in the SAGCOT and the upper Ewaso Ngiro region, and  

n = 210 farm-households in the SAGCOT and  n = 500 farms in the Upper Ewaso Ngiro. 

We initialize the SOM grid, determining the number of codebook vectors to start with, 

based on the heuristic rule of m = 5√𝑛  by setting up a 9 × 8 nodes typology grid for the 

SAGCOT and an 8 x 12 typology grip for the UENB (Vesanto et al., 1999). Both models 

were then optimized so that all best matching units could fit the number of codebook 

vectors provided for the sample. The initial number of nodes were reduced in both 

models. The SAGCOT SOM model was run for 6 X 6 nodes with a quantization error of 

0.0133 and topographic error of 0.067, and the Upper Ewaso SOM model was run for 3 

X 1 nodes with a quantization error of 0.0399 and topology error of 0. The Upper Ewaso 

model resulted in codebook vectors representing the final clusters obtained. The 

SAGCOT model resulted in several codebook vectors that needed to be further 

classified under super classes using an optimized number of clusters. We used the K-

medoid classification method to obtain contiguous clusters of the vectors based on their 

similarity (Kassambara, 2017; Varmuza, 1980). The number of clusters was chosen 

based on  the elbow method: the number of clusters that corresponds to the lowest 

percentage of unexplained variance of the code vectors (Pulkkinen & Nurmi, 2012). 

We also use the Self-organizing map (SOM) algorithm to discern clusters of 

livelihood strategies based on patterns of relationship livelihood capitals and 

management intensity indicators. Input datasets for the models included a total of m =  4 
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livelihood capitals and management intensity indicators as attributes in both case 

studies, and  n = 210 farm-households in the SAGCOT and  n = 500 farms in the Upper 

Ewaso Ngiro. Similar initialization processes implementing the ESC SOM were 

undertaken. The SAGCOT SOM model was run for 4 X 4 nodes with a quantization 

error of 0.038 and topographic error of 0.157, and the Upper Ewaso SOM model was 

run for 4 X 4 nodes with a quantization error of 0.028 and topographic error of 0.044. 

Both models resulted in several codebook vectors that needed to be further classified 

under super classes using an optimized number of clusters. We also used the k-

Medoids classification method based on the elbow method to obtain contiguous clusters 

of the vectors. We proceed to characterizing farms based on ecosystem services, 

livelihood capitals and management intensity indicators contributions to the observed 

clusters. We then selected the non-parametric tests of Kruskal Wallis one-way-analysis 

of variance and post-hoc Dunn’s test to determine if there is a statistically significant 

difference between one or more ecosystem services clusters and between one or more 

livelihood/intensification clusters based on indicators, and to identify exactly which 

clusters are different in each case. A  p-value< (significance level) implies a significant 

relationship between one or more clusters. In this study we used =0.05.  

Third, we overlapped farms belonging to each livelihood strategy clusters (LSC) 

and each ecosystem services clusters (ESC) concurrently (Dittrich et al., 2017), to 

further assess which livelihood/intensification strategy characterizes the given 

ecosystem services relationships observed. All codes on the application of the analytical 

framework for each can be found in the dissertation repository (See corresponding link 

in Appendix B). The analytical framework is illustrated in Figure 2-2. 
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2.3 Results 

2.3.1 Ecosystem Services, Management Intensity, Livelihood Capitals 
Relationships across Case Studies 

In this study, we hypothesized trade-offs relationships for the following pairs of 

indicator types or indicators: (1) provisioning vs. regulating services, (2) management 

intensity vs. regulating services, (3) human-derived capitals vs. regulating services. We 

also hypothesized synergistic relationships for the following pairs of indicators: (1) 

provisioning vs. supporting services, (2) management intensity vs. 

provisioning/supporting services, (3) natural capital vs. ecosystem services, (4) human-

derived capital and supporting/provisioning ecosystem services.  

In the case of provisioning services, while trade-off relationships were not observed 

between crop production and water storage, they were observed between rice/ 

maize,/potato production and carbon storage in both case studies (Table 2-4). 

Significant synergies were observed between crop production and nutrient supply in 

both case studies as well. 

In the case of management intensity indicators (i.e.,combined input intensity and soil 

management intensity), both trade-offs and synergies were observed between 

combined input intensity and crop production across studies (Table 2-4). Expected 

synergies were only confirmed between combined input intensity and rice production, 

combined input intensity and potato production in the SAGCOT and the Upper Ewaso 

Ng'iro respectively. Expected trade-offs were confirmed between combined input 

intensity and carbon storage across both case studies, and between soil management 

intensity and carbon storage in SAGCOT, and between soil management intensity and 
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water storage in the Upper Ewaso Ng'iro. Expected synergies were confirmed between 

both management intensity indicators (i.e., combined input intensity, soil management 

intensity)  and nutrient supply (Table 2-4). 

In the case of livelihood capitals, expected trade-offs relationships between natural 

capital and crop production were observed in both case studies, except between natural 

capital and maize production in the Upper Ewaso Ngiro (Table 2-4). Synergistic 

relationship between human-derived capital and crop production was only observed in 

the SAGCOT for rice production. Expected synergies between natural capital and 

supporting service such as nutrient supply are consistent and significant across both 

case studies. 

Our analysis revealed that although relationships between pairs of ecosystem 

services varied across the two case studies, especially considering varying crop 

production relationships, consistent expected relationships were still detected. These 

relationships are mainly consistent synergies between crop production and nutrient 

supply, combined input intensity and crop production, consistent trade-offs between 

natural capital and crop production, and consistent trade-off between human-derived 

capital and carbon storage.  

2.3.2 Ecosystem Service Clusters  

2.3.2.1 SAGCOT  

Four ecosystem services clusters with varying contribution of services were detected 

in the SAGCOT region (Figure 2-3), all with significant differences between clusters for 

one more ecosystem service indicator (Figure 2-4). The distribution of the clusters 

across the Vital Signs landscapes are summarized in Table 2-4. The resulting clusters 

had the following characteristics: 
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ESC1– High rice/low maize provisioning – low water storage and high nutrient supply 

farms (n=25 {12%}).  

The average rice yield of these farms is around 6069  kg/ha. These farms are dominant 

in the Mbarali landscapes (Figure 2-1a). 

ESC2 – Low maize/mid rice provisioning – high carbon storage farms (n=94 {45%}). 

The average maize yield and rice yield of these farms is around 285 kg/ha and 348 

kg/ha, respectively. These farms are dominant in the Rufiji and Ihemi Kilolo landscapes 

(Figure 2-1a).  

ESC3 – High maize/low rice provisioning – high carbon storage farms (n=50 {24%}). 

The average maize yield in these farms is 2076 kg/ha. The average rice yield of these 

farms is around 266 kg/ha. This type of farm is dominant in the Ludewa landscape 

(Figure 2-1a). 

ESC4 – Mid maize/low rice provisioning  –low carbon storage farms (n=41 {20%}).  

The average maize and rice yields of these farms are around 1135 kg/ha and 314 kg/ha 

respectively. These farms are dominant in the Kilombero and Sunbawanga landscapes 

(Figure 2-1a).  

2.3.2.2 Upper Ewaso Ng’iro 

Three ecosystem services clusters (Figure 2-5) with varying contribution of each 

ecosystem service were detected with significant differences between one or more 

group (Kruskal-Wallis test, p< 0.05) for potato production and soil carbon storage 

(Figure 2-6). The distribution of the ecosystem services bundles across the agro-

ecological zones of the region are summarized in Table 2-6. The resulting clusters had 

the following characteristics: 
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ESC1 – High potato/high maize provisioning, high carbon storage farms (n=238 {48%}). 

The average maize and potato yields in this cluster are 345 kg/ha and 374 kg/ha  

respectively. This cluster is dominant in the sub-humid to semi-humid landscapes of the 

region.  

ESC2 – Mid potato/ mid maize provisioning, mid carbon storage farms (n=115 {23%}). 

Average maize and potato yield in this cluster are 304 kg/ha and 277 kg/ha  

respectively. This cluster is dominant in the Sub-humid to semi-humid landscapes of the 

region.  

ESC3 – Low potato/mid maize provisioning, low carbon storage farms (n=147 {29%}). 

Average maize and potato yield in this cluster are 269 kg/ha and 236 kg/ha  

respectively. This cluster is dominant in the semi-humid landscapes of the region. 

2.3.3 Livelihood/Intensification Strategy Clusters 

2.3.3.1 SAGCOT 

Three (LSC1, LSC2, LSC3) livelihood/intensification strategy clusters with varying 

contribution of natural, human-derived capitals, combined input intensity and soil 

management intensity were detected (Figure 2- 7), all with significant differences 

between clusters for one or more indicators (Figure 2-8). 

LSC1 – Mid natural capital, mid human-derived capital, low intensity n=84 {40%}). 

Farms in this cluster have levels of natural capital that are significantly lower than the 

other clusters, and levels of combined input intensity that are significantly higher than 

one cluster LSC1.  

LSC2 – Low natural capital, low human-derived capital, mid intensity. (n=50 {24%}). 

Natural capital is significantly higher than in LSC1and significantly lower than in LSC3.  
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LSC3 – High natural capital, high human-derived capital, high intensity (n=76{36%}). 

Natural capital is significantly lower in this cluster than LSC2.   

2.3.3.2  Upper Ewaso Ng’iro 

Three livelihood strategy clusters with varying contribution of natural, human derived 

capitals, combined input intensity and soil management intensity were detected (Figure 

2-9), with significant differences between clusters for combined input intensity, soil 

management intensity and natural capital indicators (Figure 2-10).  

LSC1 – Mid natural capital, high human-derived capital, high-intensity (n=236 {51%}). 

Natural capital in this cluster is significantly higher than in LSC2 and LSC3. Combined 

input intensity is significantly lower compared to LSC3. 

LSC2 – Low natural capital, mid human-derived capital, mid-intensity (n=132{26%}). 

Natural capital in this cluster is significantly low compared to LSC3. Combined input 

intensity is significantly lower than in LSC3 and significantly higher than LSC1. Soil 

management intensity is significantly higher in this cluster compared to the other two 

clusters. 

LSC3 - High natural capital, mid human-derived capital, low-intensity (n=112 {22%})- 

Natural capital is significantly high in this cluster compared to the other two clusters. 

Combined input intensity is significantly lower than LSC2. 

2.3.4 Ecosystem Service and Livelihood/Intensification Clusters Overlap 

2.3.4.1 SAGCOT 

Overlaps of ecosystem service and livelihood/intensification strategy clusters are 

presented in  Table 2-7. The majority of the farmers (40%) undergo LCS1 (Mid natural 

capital, mid human-derived capital, low intensity). These farms mainly overlap with 

ESC2 (Low maize/mid rice provisioning – high carbon storage farms) and ESC4 (Mid 



43 

maize/low rice provisioning  –low carbon storage farms). About 37% of farmers undergo 

LSC3 (High natural capital, high human-derived capital, high intensity). The majority of 

these farms also overlap with ESC2 (low maize/mid rice provisioning – high carbon 

storage farms). About 24% of farmers undergo LSC2 (Low natural capital, low human-

derived capital, mid intensity). The majority of these farms overlap with ESC1 (High 

rice/low maize provisioning – low water storage and high nutrient supply farms) and 

ESC2 (low maize/mid rice provisioning – high carbon storage farms). 

These results provide additional insights on the linkages between intensification 

strategies and ecosystem service levels. Here, low-intensity farms are associated with 

lower level of human-derived capital and tend to be the least provisioning. 

2.3.4.2 Upper Ewaso Ng’iro  

Overlaps of ecosystem service and livelihood/intensification strategy clusters are 

presented in  Table 2-8. The majority of the farmers (51%) undergo LCS1 (Mid natural 

capital, high human-derived capital, high-intensity). The majority of these farms overlap 

with ESC1 (High potato/high maize provisioning, high carbon storage farms). About 

26% of farmers undergo LSC2 (Low natural capital, mid human-derived capital, mid-

intensity). The majority of these farms also overlap with ESC1 (High potato/high maize 

provisioning, high carbon storage farms). About 22% of farmers undergo LSC3 (High 

natural capital, low human-derived capital, low-intensity). The majority of these farms 

also overlap with ESC1 and ESC3 (Low potato/mid maize provisioning, low carbon 

storage farms). Here, low-intensity farms are also associated with lower human-derived 

capital and least provisioning farms. 
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2.4 Discussion  

The results of the synergies and trade-offs analysis of ecosystem services, 

livelihood capitals, and management intensity indicators confirmed many of the 

hypothesized relationships between indicators across the two case studies. First, we 

were able to confirm consistent trade-offs relationships between provisioning (i.e., crop 

production) and regulating services, mainly carbon storage, and consistent synergistic 

relationships between provisioning (i.e., crop production) and supporting services, 

mainly nutrient supply, in both studies. This is in line with many studies in the literature 

on ecosystem services relationship (Aryal et al., 2022; Lee & Lautenbach, 2016).  

 Second, the synergistic relationships observed between combined input intensity 

and crop production for rice and potato, combined input intensity and nutrient supply, 

support the hypothesis that farm intensification contribute to increasing provisioning and 

supporting services. Moreover, consistent synergistic relationships between combined 

input intensity and human-derived capital across case studies demonstrate the 

important role of livelihood capitals in agricultural intensification (Pretty, 

2008).Consistent trade-offs between natural capital and crop production for rice, maize 

in the SAGCOT and for potatoes in the Upper Ewaso Ng’iro underlines the negative 

effects of intensification on natural resources (Garcia Alberto, 2020; Gopel et al., 2020; 

Kremen, 2020). 

Results from characterizing farms based on livelihood capitals and management 

intensity showed consistent patterns of relationships between livelihood capital levels 

and management intensity levels across case studies. High intensity clusters were 

characterized by high human-derived capital, while low intensity clusters were 
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characterized by low human-derived capital. This captures the synergistic relationships 

observed between combined input intensity and human-derived capital across the case 

studies. This was the case for LSC3 in the SAGCOT region and LSC1 in the Upper 

Ewaso Ng’iro region. In overlapping  farms with a certain livelihood/intensification 

strategy with their corresponding ecosystem service clusters, we observed that there is 

minimal overlap between low-intensity farms and high provisioning farms in both case 

studies (Table 2-7 and Table 2-8). However, there are considerable overlap between 

high intensity farms and mid to high provisioning farms (Table 2-7 and Table 2-8). In 

both case studies, these high provisioning farms are characterized by high nutrient 

supply in the SAGCOT and high carbon storage in the Upper Ewaso Ng’iro. 

Overall, these results were able to support several relationship hypotheses established 

in this study, mainly confirming that human-derived capital are important drivers of 

farming intensity and crop production. 

2.5 Conclusions 

In this chapter, we tested for synergistic and trade-offs relationships between 

social-ecological factors (i.e., livelihood capitals, management intensity) and ecosystem 

services (i.e., crop production, soil carbon storage, soil water storage, soil nutrient 

balance/supply) and defined clusters of ecosystem services relationship and 

livelihood/intensification strategy, towards gaining better understanding the linkages 

between agricultural intensification strategies, management intensity, and ecosystem 

services at the farm level. The synergy/trade-off analysis between all indicators 

revealed some consistent hypothesized relationships between indicators, mainly 

supporting the overarching hypothesis that there are synergistic relationships between 
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combined input intensity and provisioning/supporting services, and trade-off 

relationships between human-derived capital and regulating services.  

We detected 4 ecosystem service clusters and 3 livelihood/intensification 

strategy clusters in the SAGCOT, and 3 ecosystem service clusters and 3 

livelihood/intensification strategy clusters in the upper Ewaso Ng’iro. The overlapping of 

the clusters provided evidence of trade-off linkages between farming intensity and 

natural capital, and the synergistic linkages between human-derived capital and farming 

intensity.  

This study has several limitations that can lead to future work. First, our 

indicators for livelihood capitals and ecosystem services measures vary across case 

studies. Having consistent indicators across case studies would have allowed for a 

stronger comparative analysis. Additionally, the approach used in selecting ecosystem 

services indicators included multiple primary crops separately as provisioning services. 

Focusing on one main crop could have allowed for a more generalized approach to 

analyzing synergies and trade-offs related to crop production across case studies. 

Additionally, our approach to measuring management intensity through the combined 

input index construction is limited in providing important quantitative information on 

inputs. Although this approach is able to capture faming intensity well in low-input 

smallholder systems, it may not be applicable for high-input systems.  

Future attention on the relationship between farm intensity and ecosystem 

services over time may be promising to further understanding the effects of agricultural 

intensification on ecosystem services and natural resources. 

 



 

 

 
 

 

 
Figure 2-1. Study regions. Yellow dots denote fields sampled. 

 



 

 
 

Figure 2-2. Analytical framework.  

 
 
 
 
 
 
 
 
 
 
 



 

Table 2-1. Ecosystem services indicators and summary statistics in the two case studies. 
 

Ecosystem services  SAGCOT Upper Ewaso Ngiro 

Indicators Mean Std. Dev. Indicators Mean Std. Dev. 

Food Provisioning   
      

Crop production 
(CP) 

a Maize  yield (kg/ha) 1116.7 849.5 a Maize  yield (kg/ha) 416.6 591.1 

Rice yield (kg/ha) 2802.8 2387.7 Potato yield (kg/ha) 311.1 828.1 

Regulating 
      

Soil carbon storage  
(CD) 

b Acidified carbon (g/kg) 1.14 0.5 c Total Inorganic carbon 
(g/kg) 

3.02 0.72 

b Clay content (%) 41.3 14.6 c Clay content (%) 34.8 2.7 

b Silt content (%) 18.8 3.9 c Silt content (%) 2.8 1.1 

b pH 6.2 0.3 c pH 2.1 0.9  

Soil water storage 
(WS) 

b Clay content (%) 41.3 4.6 c Clay content (%) 34.8 2.7 

c Bulk density (kg/m3) 132.2 10.1 c  Bulk density (kg/m3) 121 5.1 

c Depth to bedrock (cm) 19 3.3 c Depth to bedrock (cm) 21.2 3.5 

Supporting 
      

Soil nutrient balance/ 
supply  
(NS) 

b Partial N budget 
(kg/ha) 

-3.9 29 c Total N (g/kg) 94.6 12.7 

b Partial P budget 
(kg/ha) 

-1.81 11.91 c Total P (g/kg) 29.06 1.77 

 
b Partial K budget 
(kg/ha) 

-6.06 6.52 c Total K (g/kg) 58.72 2.96 

a Calculated using survey data 

 b Measured directly through field sampling 

 c  Measured  using 30 m resolution isDA map 

 
 

 
 



 

 
Table 2-2. Livelihood capital indicators and summary statistics in the two case studies. 
 

Capital Asset 
SAGCOT, Tanzania UENB, Kenya 

 Indicator  Measure/Value assignment Mean  
Std. 
Dev. 

 Indicator Measure/Value assignment Mean  
Std. 
Dev 

Natural 

cWater 

River access  
Distance to water bodies 
(km) 

9.82 5.63 
 
Land use border stream 
or river 

No = 1;  Yes = 2 1.2 0.42 

 Precipitation  
Average precipitation from 
1981-2016 (mm) 

962.43 226.23 Precipitation (mm) 
Average precipitation from 1981-2016 
(mm) 

898.7 216.16 

cTrees 

 Tree species 
richness  

 Tree species richness index 7.26 6.78 Tree cover Percent tree cover  12.16 6.4 

Tree species 
diversity  

Shannon diversity index 1.21 0.86 
Tree species diversity Number of tree species on farm  4.2 2.8 

Forest proximity  Distance to forest (km) 18.82 13.49 

bSoil 
Soil essential 
mineral 

% clay content 40.9 18.1 Soil essential mineral % clay content 34.8 2.7 

Human 

cHuman 
labor 

 
Household 
dependency 
ratio  

  
[# of dependents (<15 &>64 
years) /# working age people 
(15-64 years)] 

0.51 0.16 Household size Number of household members 4.07 2.09 

Agricultural 
labor  

Hours of labor per capita for 
weeding, fertilizing, 
harvesting 

29.4 23.86 Household head age  Age of household head 56.26 14.33 

 Gender ratio  Male to Female ratio 1.39 1.08 Household head gender Female = 1 ; Male = 2 1.77 0.42 

c Knowledge 

Household head 
education  

Primary levels = 1 ; 
Secondary levels =2 ; 
University levels = 3 

0.82 0.53 
Household head 
education  

Never attended =1; Primary school = 
2 ; High school = 3; 
Tertiary = 4 ; Undergraduate degree 
= 5 ; Graduate degree = 6 

1.94 0.93 

 Household 
literacy rate  

Number of educated 
members/Total household 
members 

0.79 0.2 Agricultural trainings  No = 1;  Yes = 2 1.62 0.49 

Social 

a Information  
Access to 
agricultural 
information 

None = 1 ; Media only = 2; 
People = 3 ; Media & people 
= 4 ; Media & institutions = 5 
; People & institutions = 6 ; 
Media, people & institutions  
= 7 

3.27 1.03 
Access to  agricultural 
information 

None = 1 ; Community 
groups/Farmers exchange only =2 ; 
Community & farmers groups = 3 

1.5 0.63 

a Market  
Access to 
market  

No =1 ; Yes = 2 0.16 0.36 Market link support No = 1;  Yes = 2 1.05 0.21 

 

 



 

 
Table 2-2. Continued 
 

Capital Asset 
SAGCOT, Tanzania UENB, Kenya 

 Indicator  
Measure/Value 
assignment 

Mean  
Std. 
Dev. 

 Indicator Measure/Value assignment Mean  
Std. 
Dev 

Physical 

c  Equipments 

Agricultural 
implements  

 Number of  imeplements 
including hand hoe,hand 
powered sprayer,ox 
plough,ox seed planter,ox 
cart, cutlass,machete. 

9.07 5.95 

Agricultural implements 
(Tractor-pulled 
tiller,Planter,Sprayer,Harvester) 

None owned or leased = 1 ; 
one or more leased = 2 ; one 
or more owned = 3 ; one or 
more owned =4 and leased 

2.39 0.64 Farm building  

 None = 1 ; Silo / shed 
/storeroom only = 2 ; Silo & 
shed or silo & storeroom or 
shed & storeroom = 3 ; Silo, 
shed and storeroom = 4 

1.43 0.61 

Irrigation 
infrastructe  

None = 1 ;  Non-
mechanized only  = 2 ; 
mechanized  only = 3  ; 
Mechanized and non-
mechanized tools  = 4 

3.09 0.49 

c 

Communication  

Communication 
tools  

None = 1; Radio  = 2 ;  
Mobile  = 3 ;  Radio and 
mobile = 4 

3.26 1.04 

Communication tools  

None = 1 ; Radio/television = 
2 ; Cell phone and 
radio/television = 3 ; Internet 
and cell 
phone/radio/television = 4 

2.1 0.66 

 Wireless access 
 distance to nearest cellular 
or wi-fi tower 

  

c 

Transportation  

Transportation 
means  

None = 1 ; Bicycle only = 2 ; 
Motor cycle only = 3 ; 
Bicycle & motor cycle = 4 ; 
Motor vehicle  =  5 ; Motor 
vehicle & bicycle = 6 ; Motor 
vehicle & motor cycle = 7 ; 
Motor vehicle, motor cycle 
and bicycle = 8 

1.9 0.79 Transportation means 
None =1 ; Walking/foot = 2 ; 
Bicycle = 3 ; Motorbike = 4; 
Public motor vehicle  = 5  

2.53 1.16 

Proximity to main 
road  

 Distance to main roads 
(km) 

5.73 4.49 

State of road to market 

Footpath = 1 ; Seasonal raod 
=2 ; All weather road not 
tarmacked = 3 ; All weather 
road tarmacked = 4 

2.89 0.77 Proximity to road    Distance to any road (km) 1.48 1.96 

Field to road 
proximity   

 Time travel to field 
(minutes) 

13.4  

 
 
 
 

 
 



 

Table 2-2. Continued 
 

Capital Asset 
SAGCOT, Tanzania UENB, Kenya 

 Indicator  Measure/Value assignment Mean  
Std. 
Dev. 

 Indicator Measure/Value assignment Mean  
Std. 
Dev 

Financial  

Housing 

House sanitation 

conditions 

No Toilet = 1 ; Unimproved Pit 
Latrine = 2 ; Improved Pit Latrine 
= 3 ;Pour Flush = 4 

2.04 0.29 
House sanitation 
conditions 

None = 1 ; Open pit = 2 ; 
Enclosed pit = 3 ;Enclosed pour-
flush = 4, Enclosed flush = 5 

2.93 0.39 

 cooking fuel  
Firewood =  1 ; Gas Charcoal = 2 
; Paraffin/Kerosene = 3 

1.02 0.18 Cooking source 

Natural material (wood/sawdust) 
= 1 ; Charcoal = 2 ; Liquified gas 
= 3 ; Biogas = 4 ; Liquified gas = 
5 ; Electricity from solar cells = 8 

1.21 0.72 

Lighting fuel  

Firewood = 1 ; Candle = 2 ; 
Torch/ Lamp Oil = 3 ; Solar = 4 ; 
Electricity = 5 ; Private  
Generator = 6 

3.17 0.58 Lighting source 

None = 1 ; Candle, paraffin wax 
= 2 ; Liquid fuel [ kerosene] = 3 ; 
LED lamp = 4 ; Unstable voltage 
electricity from grid = 5 ; Stable 
voltage electricity from grid = 6 
;Electricity from solar cells/batter-
powered source/wind turbine/ 
small dam = 7  ; Electricity from a 
generator = 8 

6.06 1.38 

Land holding  
Small (< 5) =  1 ; Medium (≥ 5 & 
> 10) = 2 ; Large ( >10) = 3 (ha) 

1.5 0.69 Land holding 
Small (< 5) =  1 ; Medium (≥ 5 & 
> 10) = 2 ; Large ( >10) = 3 

1.22 0.52 

House tenure   
Rented = 1 ; Employer Provided - 
Free = 2; Free = 3 ; Owner 
Occupied = 4 

3.85 0.6 Land tenure  

 Rented for less than 12 months 
= 1; Leasehold more than  years 
= 2 ; Leasehold less than 5 years 
= 2  ; Communal = 4 ; Freehold = 
5 

4.77 0.82 

c Finances 

Microfinance 
acces  

No = 1;  Yes = 2 1.09 0.29 Financial loans access 
No = 1 ; Probably not = 2; 
Probably yes = 3 ; Definitely yes 
= 4 

2.31 1.11 

Wage entry  
Number of wage entry sources in 
a year 

0.61 1.06 Debt status  
Yes a lot = 1 ; Yes,a moderate 
amount = 2 ;  Yes, a little = 3 ; 
No = 4 

3.26 0.9 

Livestock sales  
Number of livestock sold in a 
year   

2.02 3.31 Crop sale point  

No sales points = 1 ; Sales point 
farm gate/others = 2 ; Sales point 
local business = 3 ; Sales point 
at local village market = 4 ; Sales 
point at regional market = 5 ; 
Sales point outgrower company  
= 6 

2.05 0.96 

 
 



 

 
Table 2-3. Determination of the evaluation scores for input intensity and soil management intensity indexes. 
 

    SAGCOT Upper Ewaso Ngiro 

Intensity  
measures 

Evaluation 
score 

Variable assignment (No = 0 ; Yes = 1) Percentage Variable assignment (No = 0 ; Yes = 1) Percentage 

Combined 
Input 

Intensity 

1 

Fertilizer use = 0  ; Improved seeds = 0 ; 
 Mechanization = 0 ; Irrigation = 0, Pesticide use = 
0 49% 

Fertilizer use = 0  ; Improved seeds = 0 ; 
 Mechanization = 0 ; Irrigation = 0, Pesticide use = 
0 6% 

2 

Fertilizer use = 0  ; Improved seeds = 0 ; 
 Mechanization = 0 ; Irrigation = 0, Pesticide use = 
1 4% 

Fertilizer use = 0  ; Improved seeds = 0 ; 
 Mechanization = 0 ; Irrigation = 0, Pesticide use = 
1 0.80% 

3 

Fertilizer use = 0  ; Improved seeds = 0 ; 
 Mechanization = 0 ; Irrigation = 1, Pesticide use = 
0 2% 

Fertilizer use = 0  ; Improved seeds = 0 ; 
 Mechanization = 0 ; Irrigation = 1, Pesticide use = 
0 0.20% 

4 

Fertilizer use = 0  ; Improved seeds = 0 ; 
 Mechanization = 1 ; Irrigation = 0, Pesticide use = 
0 5% 

Fertilizer use = 0  ; Improved seeds = 0 ; 
 Mechanization = 0 ; Irrigation = 1, Pesticide use = 
1 0.20% 

5 

Fertilizer use = 0  ; Improved seeds = 1 ; 
 Mechanization = 0 ; Irrigation = 0, Pesticide use = 
0 10% 

Fertilizer use = 0  ; Improved seeds = 1 ; 
 Mechanization = 0 ; Irrigation = 0, Pesticide use = 
0 2.20% 

6 

Fertilizer use = 0  ; Improved seeds = 1 ; 
 Mechanization = 0 ; Irrigation = 0, Pesticide use = 
1 4% 

Fertilizer use = 0  ; Improved seeds = 1 ; 
 Mechanization = 0 ; Irrigation = 0, Pesticide use = 
1 1.60% 

7 

Fertilizer use = 1 ; Improved seeds = 0 ; 
 Mechanization = 0 ; Irrigation = 0, Pesticide use = 
0 11% 

Fertilizer use = 0  ; Improved seeds = 1 ; 
 Mechanization = 0 ; Irrigation = 1, Pesticide use = 
1 1% 

8 

Fertilizer use = 1  ; Improved seeds = 0 ; 
 Mechanization = 0 ; Irrigation = 0, Pesticide use = 
1 0.50% 

Fertilizer use = 1 ; Improved seeds = 0 ; 
 Mechanization = 0 ; Irrigation = 0, Pesticide use = 
0 7% 

9 

Fertilizer use = 1  ; Improved seeds = 0 ; 
 Mechanization = 0 ; Irrigation = 1, Pesticide use = 
1 0.50% 

Fertilizer use = 1  ; Improved seeds = 0 ; 
 Mechanization = 0 ; Irrigation = 0, Pesticide use = 
1 7.00% 

 
 
 
 
 



 

Table 2-3. Continued. 
 

    SAGCOT Upper Ewaso Ngiro 

Combined 
Input 

Intensity 

Evaluation 
score 

Variable assignment (No = 0 ; Yes = 1) Percentage Variable assignment (No = 0 ; Yes = 1) Percentage 

10 

Fertilizer use = 1  ; Improved seeds = 0 ; 
 Mechanization = 1 ; Irrigation = 0, 
Pesticide use = 0 1% 

Fertilizer use = 1  ; Improved seeds = 0 ; 
 Mechanization = 0 ; Irrigation = 1, 
Pesticide use = 0 1.00%  

11 

Fertilizer use = 1  ; Improved seeds = 0 ; 
 Mechanization = 1 ; Irrigation = 0, 
Pesticide use = 1 9% 

Fertilizer use = 1  ; Improved seeds = 0 ; 
 Mechanization = 0 ; Irrigation = 1, 
Pesticide use = 1 2% 

12 

Fertilizer use = 1  ; Improved seeds = 1; 
 Mechanization = 0 ; Irrigation = 0, 
Pesticide use = 0 1% 

Fertilizer use = 1  ; Improved seeds = 0 ; 
 Mechanization = 1 ; Irrigation = 0, 
Pesticide use = 0 0% 

13 

Fertilizer use = 1  ; Improved seeds = 1 ; 
 Mechanization = 0 ; Irrigation = 0, 
Pesticide use = 1 1% 

Fertilizer use = 1  ; Improved seeds = 1 ; 
 Mechanization = 0 ; Irrigation = 0, 
Pesticide use = 0 15% 

14 

Fertilizer use = 1  ; Improved seeds = 1 ; 
 Mechanization = 0 ; Irrigation = 1, 
Pesticide use = 0 2% 

Fertilizer use = 1  ; Improved seeds = 1 ; 
 Mechanization = 0 ; Irrigation = 0, 
Pesticide use = 1 29% 

15 

Fertilizer use = 1  ; Improved seeds = 1 ; 
 Mechanization = 0 ; Irrigation = 1, 
Pesticide use = 1 0.50% 

Fertilizer use = 1  ; Improved seeds = 1 ; 
 Mechanization = 0 ; Irrigation = 1, 
Pesticide use = 0 4% 

16 NA  

Fertilizer use = 1  ; Improved seeds = 1 ; 
 Mechanization = 0 ; Irrigation = 1, 
Pesticide use = 1 19% 

17 NA   

Fertilizer use = 1  ; Improved seeds = 1 ; 
 Mechanization = 1 ; Irrigation = 0, 
Pesticide use = 1 0.80% 

18 NA  

Fertilizer use = 1  ; Improved seeds = 1 ; 
 Mechanization = 1 ; Irrigation = 0, 
Pesticide use = 1 0.80% 

 
 



 

 
Table 2-3. Continued. 

 

    SAGCOT Upper Ewaso Ngiro 

Intensity  
measures 

Evaluatio
n score 

Variable assignment (No = 0 ; Yes 
= 1) 

Percentag
e 

Variable assignment (No = 0 ; Yes 
= 1) 

Percentag
e 

Soil 
Manageme
nt  Intensity 

1 
Soil tilling = 0 ; No residue retention 
= 0 

30% Soil tilling = 0 ; No residue retention 
= 0 

15% 

2 
Soil tilling = 0 ; No residue retention 
= 1 

12% Soil tilling = 0 ; No residue retention 
= 1 

48% 

3 
Soil tilling = 1 ; No residue retention 
= 1 

51% Soil tilling = 1 ; No residue retention 
= 0 

9% 

4 
Soil tilling = 1 ; No residue retention 
= 0 

6% Soil tilling = 1 ; No residue retention 
= 1 

27% 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

Table 2-4. Spearman rank correlations for combination of pairs of indicators of interest across the two case studies. Level 
of significance: *** p < 0.001, ** p <0.01,* p<0.05. 

 

Indicator pairs SAGCOT  
(n=210) 

Upper 
Ewaso 
(n=500) 

Provisioning  vs. Regulating services 
  

Maize production vs. Carbon storage —0.143* 0.06 

Maize production vs. Water storage 0.313*** 0.046 

Rice production vs. Carbon storage 0.153** — 

Rice  production vs. Water storage 0.173* — 

Potato production vs. Carbon storage — 0.071 

Potato production vs.Water storage — 0.247*** 

Provisioning vs. Supporting services 
  

Maize production vs. nutrient supply 0.141* 0.04 

Rice production vs. nutrient supply 0.597*** — 

Potato production vs. nutrient supply — 0.155*** 

Management intensity vs. Provisioning  
services 

  

Combined input intensity vs. Maize production -0.133 0.034 

Combined input intensity vs. Rice production — — 

Combined input intensity vs. Potato production — 0.141*** 

Soil management  intensity vs. Maize production —0.085 —0.05 

Soil management  intensity vs. Rice production 0.146* — 

Soil management intensity vs. Potato production — 0.058 

Management intensity vs. Regulating services 
  

Combined input intensity vs. Carbon storage 0.182** 0.071 

Combined input intensity vs. Water storage 0.061 0.257*** 

Soil management intensity vs. Carbon storage 0.145* —0.078 

Soil management intensity vs. Water storage 0.038 0.026 

 
 



 

Table 2-4. Continued. 
 

Indicator pairs SAGCOT  
(n=210) 

Upper 
Ewaso 
(n=500) 

Combined input intensity vs. Nutrient supply 0.177* 0.181*** 

Soil management intensity vs. Nutrient supply 0.037 0.035 

Livelihood capitals vs. Management intensity 
  

Natural capital vs. Combined input intensity 0.118 0.235*** 

Human-derivec capital vs. Combined input 
intensity 

0.164* 0.011 

Livelihood capitals vs. Provisioning services 
  

Natural capital vs. Maize production —0.352*** 0.002 

Natural capital vs. Rice  production —0.234*** — 

Natural capital vs. Potato  production — —0.011 

Human-derived capital  vs. Maize production -0.016 
 

Human-derived capital  vs. Rice production 0.007 — 

Human-derived capital  vs. Potato production — —0.101* 

Livelihood capitals vs. Regulating  services 
  

Natural capital vs. Carbon storage 0.128 —0.078 

Natural capital vs. Water storage —0.561 0.08 

Human-derived capital  vs. Carbon storage 0.069 0.026 

Human-derived capital  vs.Water storage 0.029 —0.036 

Livelihood capitals vs. Supporting  services 
  

Natural capital vs. Nutrient supply —0.387*** 0.199*** 

Human-derived capital  vs. Nutrient supply —0.025 0.063 

 
 
 
 
 

 



 

 
 
Figure 2-3. Bar plots of the codebook vectors of the SOM showing the relative contribution of ecosystem services to each 

cluster in the SAGCOT. 

 



 

 
 

Figure 2-4. Boxplots comparing significant ecosystem services levels in the three clusters derived from the SOM using the 
original dataset of indicators, in the SAGCOT. Brackets indicate significant differences between two clusters. 

 



 

 
Table 2-5. Ecosystem clusters’ distribution across the SAGCOT landscapes. 

 
 

Landscapes 

ESC1 
[Mid maize/mid rice 

provisioning – low carbon 
storage farms] 

ESC2 
[High maize/high rice 

provisioning – high nutrient 
supply and water storage 

farms] 

ESC3 
[High maize/low rice 

provisioning – low soil water 
storage farms] 

ESC4 
[Mid rice/low maize 
provisioning  – low 

nutrient supply, high 
carbon farms]  

L03 -Sunbawanga 0 2 6 22 

L10 - Ihemi (Mufundi) 0 27 3 0 

L11  -Ludewa 0 3 23 4 

L18 - Ihemi (Kilolo) 0 18 9 3 

L19 - Kilombero 0 17 1 12 

L20 -Mbarali 23 2 5 0 

L22 -Rufiji 2 25 3 0 

 
 
 

 
 
 
 
 
 



 

 
 

 
Figure 2-5. Bar plots of the codebook vectors of the SOM showing the relative contribution of ecosystem services to each 

cluster in the Upper Ewaso Ng’iro. 

 
 
 
 



 

 
Figure 2-6. Boxplots comparing significant ecosystem services levels in the three clusters derived from the SOM using the 

original dataset of indicators, in the Upper Ewas Ng’iro. Brackets indicate significant differences between two 
clusters. 

 



 

 
 

Table 2-6. Ecosystem services clusters distribution across the upper Ewaso Ngiro agro-ecological zones. 
 

 

Agro-ecological zone  

ESC1 
[High potato/high maize 

provisioning, high carbon 
storage farms] 

ESC2 
[Mid potato/ mid maize 

provisioning, mid carbon 
storage farms] 

ESC3 
[Low potato/mid maize 

provisioning, low carbon 
storage farms] 

Sub-humid 52 19 19 

Sub-humid to semi-humid 101 57 52 

Semi-humid 80 39 74 

 



 

 
 
 

 
 

Figure 2-7. Bar plots of the codebook vectors of the SOM showing the relative contribution of livelihood capital and 
management intensity indicators to each detected  livelihood/intensification cluster in the SAGCOT. 

 
 



 

 

Figure 2-8. Boxplots comparing significant differences in livelihood/intensification strategy clusters for each indicator (i.e., 
natural capital (NC), human-derived capital (HDC), combined input intensity (CII), soil management intensity 

(SMI) in the three clusters derived from the SOM using the original dataset of indicators, in the SAGCOT. 
Brackets indicate significant differences between two clusters. 



 

 
 
 
 
 

 
 

Figure 2-9. Bar plots of the codebook vectors of the SOM showing the relative contribution of livelihood capital and 
management intensity indicators to each detected  livelihood/intensification cluster in the SAGCOT and the 

Upper Ewaso Ng’iro. 



 

 

 
Figure 2-10. Boxplots comparing significant differences in livelihood/intensification strategy clusters for each indicator (i.e., 

natural capital (NC), human-derived capital (HDC), combined input intensity (CII), soil management 
intensity(SMI)) in the three clusters derived from the SOM using the original dataset of indicators, in the Upper 

Ewaso Ng’iro. Brackets indicate significant differences between two clusters. 



 

Table 2-7. Livelihood/intensification strategies (LSC) and ecosystem services clusters (ESC) overlap in the SAGCOT. 
 

LSC/ESC 

LSC1 
[Mid natural capital, 
mid human-derived 

capital, low intensity] 

LSC2  
[Low natural capital, 
low human-derived 

capital, mid intensity] 

LSC3  
[High natural capital, high 

human-derived capital, 
high intensity] 

Total  

ESC1 
[High rice/low maize 

provisioning – low water 
storage and high 

nutrient supply farms] 

2% 9% 1% 12% 

ESC2 
[low maize/mid rice 
provisioning – high 

carbon storage farms ] 

16% 3% 26% 45% 

ESC3 
[High maize/low rice 
provisioning – high 

carbon storage farms ] 

9% 9% 6% 24% 

ESC4 
[Mid maize/low rice 
provisioning  –low 

carbon storage farms] 

13% 3% 4% 20% 

Total  40% 24% 37% 101% 



 

Table 2-8. Livelihood/intensification strategies (LSC) and ecosystem services clusters (ESC) overlap in the Upper Ewaso 
Ngiro. 

 

LC/ESC 

LSC1 
 [Mid natural 
capital, high 

human-derived 
capital, high-

intensity ] 

LSC2 
[Low natural 
capital, mid 

human-derived 
capital, mid-

intensity ] 

LSC3 
 [High natural 
capital, mid 

human-derived 
capital, low-

intensity] 

Total 

ESC1 
[High potato/high 

maize provisioning, 
high carbon 

storage farms] 

26% 12% 9% 47% 

ESC2 
[Mid potato/ mid 

maize provisioning, 
mid carbon storage 

farms] 

12% 6% 5% 23% 

ESC3 
[Low potato/mid 

maize provisioning, 
low carbon storage 

farms] 

13% 8% 8% 29% 

Total 51% 26% 22% 100% 



 

 
CHAPTER 3 

 INTEGRATED MODELING OF SMALLHOLDER LIVELIHOOD CAPITALS, 
MANAGEMENT INTENSITY, AND SOIL ECOSYSTEM SERVICES INDICATORS  TO 
PREDICT FARM PRODUCTIVITY: CASE STUDY OF SAGCOT TANZANIA 

3.1 Introduction 

Increasing global food and crop demand up to 110 % by 2050 (Alexandratos & 

Bruinsma, 2012; Tilman et al., 2011) will place significant pressure on smallholder 

farmers, who contribute to 80 % of food production across Asia and Sub-Saharan Africa 

(SSA) and make up for a significant portion of the world’s poor (Lowder et al., 2014, 

2016). Staple crops  such as maize, wheat, rice, sorghum, and millet,  will have to 

increase by 80%  in many countries aiming for food self-sufficiency in the region (Jayne 

et al., 2018; Van Ittersum et al., 2016). However, cereal yields in SSA have stagnated 

around 1.5 t/ha compared to global yields since 2000 (Jayne & Sanchez, 2021). Yield 

gap analyses for the region pointed some key social-ecological factors of the framework 

developed in this dissertation (Chapter 1) explaining smallholders’ productivity gap. 

These factors include lack of inputs, education, physical infrastructure, labor, financial 

markets, access to land, poor farm management practices, poor soil fertility, and climate 

variability (Dzanku et al., 2015; Giller et al., 2006; Hillocks, 2014; Jayne et al., 2010; 

Raimi et al., 2017; Tittonell & Giller, 2013). Smallholders’ efforts to intensify their land 

will need to encompass overcoming the intertwined social-ecological challenges that 

contribute to hindering agricultural productivity. Understanding the role of social-

ecological factors in smallholder productivity is imperative for identifying sustainable 

agricultural intensification strategies that can best improve food security and livelihoods 

in the region (Rasmussen et al., 2018; Zimmerer et al., 2015). While process-based 



 

crop models can effectively measure yield variability across varying biophysical 

conditions and management practices (Jones et al., 2003; Vanuytrecht et al., 2014), 

and have been widely applied in the region (Folberth et al., 2013; Sileshi et al., 2010; 

Webber et al., 2014), they are often limited in capturing micro-scale human factors (i.e., 

landscape and farm household livelihood and decision-making factors) of farming 

systems that affect yield. Although farming systems of SSA are widely studied towards 

understanding and characterizing smallholder heterogeneity (Alvarez et al., 2018; 

Chikowo et al., 2014; Kihoro et al., 2021; Tittonell et al., 2010), these studies are rarely 

centered around yield variability. Household and agricultural survey data used to 

characterize smallholder heterogeneity could potentially have as much relevant 

explanatory power as biophysical factors over yield variability in smallholder farms, if 

techniques for capturing inherent non-linear dynamics in social -ecological systems are 

applied to these datasets (Biggs et al., 2021; Levin et al., 2013). In spite of the important 

role of social-ecological factors in smallholder productivity, very few studies have 

considered modeling yield productivity with a combination of social-ecological and 

biophysical indicators (Banerjee et al., 2014; Dutta et al., 2020; Liang, 2023). Modeling 

such relationships is possible with new machine learning (ML) algorithms, as they are 

powerful prediction techniques that are efficient at identifying non-linear patterns in large 

unstructured datasets containing explanatory variables of various sources at various 

scales, and of various type (i.e., categorical, continuous, discrete) for prediction 

(Dangeti, 2017; James et al., 2017). Moreover, ML model reliability can be effectively 

tested with tools like Global Sensitivity Analysis (GSA) and uncertainty analysis aim at 

quantifying the importance of model inputs and their interactions with respect to model 



 

output. The computational cost required for applying and testing can be reduced  

remarkably using these approaches (Saltelli et al., 2008). Coupled GSA and ML 

techniques represent efficient dimension-reduction (factor importance) techniques also 

able to increase the explainability of the “black-box”  characteristic of ML approaches 

(Muñoz-Carpena et al., 2023) 

This study aims to contribute to the literature on the drivers of yield variability in 

smallholder systems investigating the ability of livelihood capital, management intensity 

and soil health indicators, to predict the productivity levels of smallholders in the 

Southern Agricultural Growth Corridor of Tanzania (SAGCOT) Tanzania, using ML 

algorithms and GSA variance-based high-dimensional factor importance evaluation. 

The objectives of this study are to (1) develop a predictive ML model able to uncover 

linkages between livelihood capitals, management intensity, soil health, and maize yield 

; and (2) Couple the ML model with GSA to identify key drivers of productivity (Maize 

yield) in smallholder systems in the SAGCOT. 

 
3.2 Materials and Methods 

3.2.1 Study region 

This work is conducted for agricultural landscapes located within six development 

clusters/landscapes of  the SAGCOT, a region (Fig. 3-1) selected by the Tanzanian 

government under a public-private partnership to boost agricultural productivity and 

ensuring the commercialization of smallholder agriculture(Mendelsohn et al., 2014). The 

corridor covers about 300,000 square kilometers and the program reaches about 

450,000 smallholder farming households around the development clusters where 

agricultural activities and investments are concentrated (Fig. 3-1). Each of these 



 

clusters/landscapes are characterized by distinct agro-ecological conditions 

(Mendelsohn et al., 2014; Reuben et al., 2017). Maize and rice are the dominant 

primary crops grown by smallholders in the region. Main characteristics and average 

primary crop yields of each landscape are presented in Table 3-1. 

3.2.2 Methodological framework  

The methods used in this chapter followed the workflow described in Figure 3-1. It 

encompasses 4 main steps described in the sections below: 1) data compilation 2) data 

preparation and curation 3) Data filtering and variable selection through multicollinearity 

analysis 4) machine learning model development 5) Feature importance assessment.  

3.2.3 Data Collection and Feature Selection 

Data on household socio-economic conditions, farm management, and soil 

properties were collected for 210 farming households in the agricultural landscapes of  

the SAGCOT region, by the Vital Signs project (Mendelsohn et al., 2014), a large-scale 

data collection initiative led by Conservation International on agriculture, environment, 

and human well-being in the region. Soils data were analyzed by the Sustainable 

Intensification Innovation Lab (SIIL), which applied  an indicator framework to calculate 

soil health indicators (i.e., soil carbon deficit indicator, soil fertility indicator, soil 

Nitrogen, Phosphorous, and Potassium partial nutrient budgets) of farms. Additional 

soils data (i.e., bulk density, porosity) estimated at 30 m resolution were gathered from 

the Innovative Solutions for Digital Agriculture database, isDA (https://www.isda-

africa.com/isdasoil) to calculate soil water storage and soil nutrient supply indicators at 

the e-plot scale (randomly selected 1m by 1m plots, each linked to 10 surrounding 

households) (Scholes et al., 2013) .  

https://www.isda-africa.com/isdasoil
https://www.isda-africa.com/isdasoil


 

The selection of candidate explanatory variables as livelihood capitals, management 

intensity and soil ecosystem services indicators, were informed by the work conducted 

in Chapter 2 of this dissertation. The list of the 22 candidate explanatory variables and 

their measurements are provided in Table 3-2. The final dataset included data for 152 

farming household farms producing maize in the region.  

3.2.4 Data Processing 

Missing values for selected features were assessed. The number of missing data for 

all selected features was less than 25% of the of the total number of observations. K-

nearest neighbor algorithm was used to impute missing values (Kumar et al., 2023). 

Boxplots were used to visualized outliers. Outliers were not removed to preserve the 

structure of the data. Variance Inflation factor (VIF)  was used to detect multicollinearity 

amongst variables. Only variables with a VIF < 10 were retained for modeling (O’Brien, 

2007). The final dataset excluded the following predictor variables from the initial 

candidate features in Table 3-2: precipitation, gender ratio, literacy rate, access to 

microfinancing indicators, soil management intensity, resulting in 12 features used in the 

ML development. The data processing steps can be found in the dissertation’s github 

repository (See Appendix B). 

The target variable “yield class” was determined by classifying maize yield of farms 

under three discrete classes for modeling: [Low productivity - class 0] include yield 

values below or equal to 1.5 t/ha, which is the average maize yield observed in Sub-

Saharan Africa over the last decade ; [Mid productivity- class 1] include values ranging 

above 1.5 t/ha and below 2.5 t/ha. The latter is considered an “attainable yield” as the 

average yield observed in the region when farms are assisted. [High productivity - class 

3] include values of and above 2.5 t/ha (Jayne & Sanchez, 2021). The ratio of the 



 

number of households in the three productivity classes from highest to lowest were 

104:35:13 (Figure 3-2). The distribution of the productivity of farm households across 

the clusters is presented in Table 3-3. 

Although the skewed distribution of the classes could affect the performance of  ML 

algorithms, particularly for predicting  minority classes (Wang & Yao, 2012), we expect 

tree-ensemble algorithms to work best with imbalanced data as demonstrated in several 

studies (Khoshgoftaar et al., 2007; Zhang et al., 2022). The performance of these 

models is mainly evaluated based on prediction accuracies on the test dataset as 

described below. 

3.2.5 Machine Learning Model Development 

The final dataset of n=152 (farms producing maize) observations was used to build 

ML models aim at predicting the yield class target. The data was split into a training 

subset (75%) for training the models, and a test subset (25%) for testing using stratified 

10-fold cross-validation (Hastie et al., 2006). Three ML models were tested on their 

ability to predict yield classes accurately: a baseline logistic regression (LR), and two 

tree-ensemble methods, Random Forest (RF) and Extreme Gradient Boosting 

(XGBoost). Logistic regression had been commonly used for classification in many 

studies prior to recent expansion of more powerful classification algorithms such as 

tree-based algorithms. It uses an optimized linear boundary in which a nonlinear logistic 

function is integrated to separate feature classes (Hastie et al., 2006). Tree-based ML 

algorithms have gained a lot of popularity in predictive modeling. They are non-

parametric supervised learning methods that use trees as building blocks to construct 

powerful predictive models that usually outperform logistic regression models(Hastie et 



 

al., 2006). They involve separating the predictor space into several simple regions 

based on splitting rules arranged in a tree. These tree-based algorithms include 

decision trees, random forest, gradient boosting and XGBoost. Here we focus on a 

category of tree-based algorithms ‘ensemble methods’ which incorporate many decision 

trees instead of a single tree to improve the predictive performance of models. Random 

Forest and XGBoost algorithms are categorized under ensemble trees(Dangeti, 2017; 

James et al., 2017). Random Forest (Breiman, 2001; James et al., 2017) is constructed 

using bootstrap training samples of the dataset (i.e., bagging technique) where unique 

random subsets of predictors are responsible for splitting the data at each node leading 

to an outcome. The algorithm predicts the final output based on the majority votes of 

predictions (Breiman, 2001; James et al., 2017). XGBoost (Chen & Guestrin, 2016) is 

constructed using a boosting technique where trees are optimized iteratively using 

previous weak learners. All ML models were calibrated with hyperparameters  to reduce 

overfitting (i.e., allowing the model to generalize and not fitting too closely to the training 

set). Hyperparameters for the LR model included penalty and solvers, hyperparameters 

for the RF and XGBoost model included the maximum depth of trees, maximum leaf 

nodes, the number of trees, the number of features to account for in each split, the 

minimum samples split). 

Model performance was evaluated using accuracy, precision, and recall scores 

metrics. The accuracy score measures the overall number of correct predictions of the 

models. It is calculated as the ratio of the number of correctly predicted observations to 

the total number of observations in the sample. The precision score measures how well 

the model predicts each class. It is the percentage of predicted classes of target 



 

variables (low productivity, mid productivity, high productivity) that are correctly 

assigned by the machine learning algorithms. The recall measures the number of 

unique class predictions of the model. It is the percentage of actual classes of target 

variables that are correctly assigned by the machine learning algorithms. These scores 

are informed by a 3 -by 3 confusion matrices comparing the number of observations 

that the model can predict correctly and incorrectly for each productivity class for the 

train, test and full datasets. Diagonal outputs of the confusion matrix denote the classes 

of target variables that are classified correctly by the machine learning model, whereas 

the off-diagonal elements represent the classes that are incorrectly classified by the 

model. An accuracy score above 0.7 on the test dataset denotes a robust model. The 

best performing model with the highest accuracy, precision and recall score was 

retained for further analyses. The model’s code can be find in the dissertation’s github 

repository (See Appendix B). 

3.2.6 Feature Importance  

  The relative importance of features on productivity was assessed with the best 

performing model, comparing the entropy/information gain method to the Global 

Sensitivity Analysis (GSA) based method. GSA is considered a more robust method 

applicable for complex system models, as it accounts for higher order interactions 

amongst features (Saltelli et al., 2008; Sobol’, 1993). The Sobol GSA was implemented 

as follows: (1) Sobol input sequences were generated using the empirical probability 

distribution functions of the full dataset; (2) model simulations were executed for each 

feature samples; and (3) the variance of the model probability outputs is then 

decomposed into fractions attributed to single (direct) or combined (higher order) 



 

influential features’ effects. The first-order sensitivity indices (i.e., percent variance 

explained by the model’s features), Si are calculated by dividing the fraction of the 

model output attributed to the variation of a single feature Xi to the total variance of the 

model output. The second-order indices (i.e., percent variance explained by the model’s 

feature interactions), Sij are calculated dividing the fraction of the model output 

attributed to the variation of  a combined pair of features Xi to the total variance of the 

model output. The total order sensitivity indices, STi are calculated as the sum of all 

effects of the variation of a factor Xi (direct) with its interactions of all orders with the 

other factors. A sample size  of N=736000 was determined for performing a reliable 

Sobol Sensitivity analysis as suggested for models of high number of inputs (Saltelli, 

2002). Input distribution assignment, Sobol sampling, and sensitivity analysis were 

conducted using Python functions from the following repository : 

(https://github.com/AlvaroCarmonaCabrero/dissertation)  

3.3 Results  

3.3.1 Model Performance 

The performance of all three machine learning algorithms used to predict yield class 

is shown in Table 3-3 in terms of accuracy, precision, recall and F1 scores. XGBoost 

had the best training (0.91) and  testing accuracy (0.82) over the Random Forest and 

Logistic regression algorithms. The XGBoost F1  score of 0.80, and recall score of 0.90 

for testing infers that the model correctly predicts 80% of the time and is correct about 

productivity classes 90% of the time. The confusion matrices of the models are shown 

in Figure 3-2 to demonstrate correctly and incorrectly predicted classes. Classes 0,1,2  

in the figure denotes low productivity, mid productivity, and high productivity classes 

https://github.com/AlvaroCarmonaCabrero/dissertation


 

respectively.The misclassification rates for the low productivity, mid productivity and 

high productivity classes in the test set are  14%, 29%, and 0% respectively. 

3.3.2 Feature Importance  

The feature importance of the most predictive XGBOOST model is presented in 

Figure 3-4 reports the entropy/information gain feature importance results. Features are  

arranged according to their relative contribution to the model’s prediction process, 

where only 12 of the original 23 features are found important and are presented in the 

Figure. The leading five influential features were ranked as follow: potassium partial 

nutrient budget (K_PNB)> phosphorous partial nutrient budget (P_PNB)> distance to 

roads> household dependency ratio > nitrogen partial nutrient budget (N_PNB)>. 

Figure 3-5 reports the Sobol GSA – based feature importance results. Features are  

arranged according to their first order indices (i.e., percent variance explained by the 

model’s features). The leading influential features were ranked as follows: K_PNB > 

P_PNB > labor > N_PNB > distance to river. K_PNB is the only feature explaining more 

than 10% of the variance by itself (direct effect). The model revealed to be highly 

interactive as the sum of first order indexes < 0.6 (Table 3-3). Features that explained 

more than 10% of the variance when interacting with one feature include K_PNB and 

P_PNB (Table 3-4). Features that explained more than 5% of the variance when 

interacting with one feature include distance to river, labor, distance to roads, gender 

ratio, N_PNB (Table 3-5). 

3.4 Discussion 

The results on the performance of the models show that tree-ensemble (i.e., 

XGBOOST and Random Forest) outperformed the logistic regression baseline model. 

Both resulted in higher acceptable accuracy. The XGBoost accuracy score on the test 



 

was higher  (0.82) than the Random Forest accuracy score (0.70). These models 

revealed to be more powerful at capturing non-linear dynamics between social-

ecological factors and productivity outcomes, compared to the logistic regression model, 

as expected. The few studies that have used similar modeling approaches also had 

acceptable accuracy for tree-ensemble models (Banerjee et al., 2014; Dutta et al., 

2020; Liang, 2023) 

Results from the analysis of feature importance shows a difference between the 

ranking outputs of the entropy/information gain method compared to  the ranking 

outputs of the variance-based method. Consistent ranking orders across the two 

methods was only applicable for the leading two influential features which are K_PNB 

and P_PNB. Many studies using the entropy/information gain method to assess feature 

importance usually denote feature with a factor importance > 0.05 as most important for 

feature selection (Dutta et al., 2020). A factor importance > 0.05 is observed for all 

features, suggesting that all features are important to the model’s outputs for feature 

selection. A previous study (Carmona-Cabrero, 2022; Carmona-Cabrero et al., 2023) 

found that the variance-based approach provides a more robust factor importance 

ranking than conventional ML feature importance metrics such as the 

entropy/information gain, particularly for highly interactive models, as it able to quantify 

hidden interactions between features. Our results from the variance-based approach for 

assessing feature importance revealed a highly interactive model with all features 

explaining large fractions of the output variance. These outputs support the message 

from the outputs of the entropy/information gain outputs, showing the important role of 

all factors in the model. Feature evaluation approaches involving both the 



 

entropy/information gain and variance-based methods are complementary in informing 

feature selection for either improving the prediction accuracy of  the machine learning 

model or for further analyses evaluating features’ behavioral input ranges for scenario 

modeling.  

3.5 Conclusions 

Narrowing the maize yield gap in smallholder systems of SSA through 

sustainable intensification requires understanding the various socio-ecological factors 

affecting productivity. In this chapter, we propose powerful machine learning modeling 

approaches able to detect complex non-linear relationships between social-ecological 

factors and productivity in smallholder systems based on a literature guided 

benchmarks for maize production in Sub-Saharan Africa. We focused on testing three 

machine learning models (i.e., Logistic regression, random forest and XGBoost) for their 

ability to predict the productivity level of smallholders in the SAGCOT region case study, 

using livelihood capitals, management intensity, and soil health explanatory factors. As 

expected, amongst the three models, XGBoost outperformed the random forest model 

and the logistic regression model, having the highest accuracy on training, test, and full 

datasets. The XGBoost  GSA—based factor importance identified soil health indicators 

(i.e., Potassium partial nutrient budget (K_PNB), Phosphorous partial nutrient budget 

(P_PNB), a physical capital indicator (i.e., distance to roads), a  human capital indicator 

(i.e., household dependency ratio), and Nitrogen partial nutrient balance(N_PNB)) as 

most influential factors. However, in terms of importance, all features had a factor 

importance above 0.05  (Figure 3-5) showing their important role in the model. When 

comparing the GSA-based factor importance results to the entropy/information gain 

factor importance results, we found that both methods are able to report the two leading 



 

two influential features (i.e., i.e., Potassium partial nutrient budget, Phosphorous partial 

nutrient budget) similarly, however ranks the other features in a different order. The 

ability of the GSA-based method to detect the highly interactive nature of the model 

provided a more robust assessment of feature importance. Most importantly, the 

outputs of the two methods revealed the important role of all factors in the model’s 

output due to feature interactions. 

While several studies used machine learning algorithms to predict crop yield 

have been they mainly focus on biophysical indicators as explanatory variables(Crane-

Droesch, 2018; Ranjani et al., 2021; Rashid et al., 2021). Studies that use a 

combination of social-economic, management, and biophysical factors to predict crop 

production, and achieving robust models with acceptable accuracy rare in the 

literature(Banerjee et al., 2014; Dutta et al., 2020). The work accomplished in this 

chapter led to a classification model of acceptable predictive skills (accuracy score > 

0.70). Finally, the assessment of feature importance through GSA adds a new 

dimension to our model by providing additional information on interaction between 

features, allowing for a more informed approach to feature selection towards the 

improvement and use of the model. 

One limitation of the proposed model is the assumption of homogeneity within the 

established productivity classes. Although a regression approach to modeling yield 

directly would have been more explicit, our classification approach to modeling 

productivity is an informed and effective way to capture the challenge of yield variability 

in smallholder systems and allowing the model to better identify patterns in the data. This 

approach did not limit our understanding of patterns of relationships between social-



 

ecological explanatory features and productivity levels, as we were able to further conduct 

GSA with the probabilistic outputs of the model. Future research on such approaches to 

modeling should further focus on coupling classification machine learning algorithms with  

GSA with a particular focus on the continuous probabilistic outputs of models to allow for 

more comprehensive approach to  assessing feature importance. 

 
 

 

 

 

 

 

 

 

 

 



 

 

 

Figure 3-1. Methodological framework employed in this study.
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Figure 3-2. The Southern Agricultural Growth Corridor of Tanzania (SAGCOT).The areas circled in the map correspond  

to the agricultural development clusters of the region for which data was collected. 
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Table 3-1. Main characteristics of the SAGCOT clusters/landscapes and average crop yield. 
 

Lansdscape Main characteristics Average maize yield (kg/ha) Average rice yield (kg/ha) 

Highland - Maize producing 

L03 -Sunbawanga ▪ 900-1000 mm rainfall 

▪ Only landscape with 
protected areas  

1392.7 _ 

L10 - Ihemi (Mufundi) ▪ 1300-1600 mm rainfall 

▪ Woodlands and 
wooded grasslands 

611.9 _ 

L11  -Ludewa ▪ 1000-1300 mm rainfall 

▪ Large forest reserves 
 

▪ Sparsely populated   

1944 _ 

L18 - Ihemi (Kilolo) ▪ 1300-1600 mm rainfall 678.8 _ 

Lowland - Rice producing 

 
L19 - Kilombero 

 

▪ Valley/Floodplain 

▪ Small streams 
  

 
391.4 

 
905 

L20 -Mbarali ▪ Large river tributaries 

▪ Fertile soils  

952.5 5095 

L22 -Rufiji ▪ 950-1300 mm rainfall 

▪ woodlands,grasslands 
and swamps 

▪ Extensive area of 
mangrove forest 

330.3 1023 
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Table 3-2. Candidate explanatory variables for modeling. In light grey font are features that were eliminated in the VIF reduction dimension step. 

 

Number  of 
features 

Features Measure  Units 

Natural capital  

1 Precipitation  a Average precipitation from 1981-2016 (mm) mm 

2 River access  a Distance to inland water bodies km 

3 Soil surface condition a Slope % 

4 Tree richness c Tree species richness index  

5 Tree diversity  c Shannon diversity index  

6 Distance to forest a Distance to nearest forest  

 Human capital  
 

6 

Household dependency ratio  c Number of dependents (<15 &>64 years) / Number of working 
aged people (15-64 years) _ 

7 Human labor  c labor hours per capita for weeding, fertilizing, harvesting Hours 

8  Household literacy rate  c Number of educated members/Total household members _ 

9  Gender ratio  c Male to Female ratio _ 

Social capital  

10 

Access to advisory services c None = 1 ; Media only = 2; People = 3 ; Media & people = 4 ; 
Media & institutions = 5 ; People & institutions = 6 ; Media, 
people & institutions  = 7 

_ 

11 Access to market  No =1 ; Yes = 2 _ 

Physical capital  

12 Access to wireless communication a  distance to nearest cellular or wi-fi tower km 

13 Distance to road  c Distance to main roads (km) km 
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Number  of 
features 

Features Measure  Units 

Financial capital  

14 Access to microfinancing c No = 1;  Yes = 2 _ 

15 Wage entry c Number of wage entry sources in a year _ 

Management intensity     

16 Input Intensity Index 

c No inputs=1;Irrigation only =2; Mechanization only = 3; 
improved seeds only  = 4 ; Fertilizer only =5; Fertilizer + 
irrigation = 6; Fertilizer + mechanization =7; Fertilizer + 
improved seeds =8; Fertilizer +improved seeds + irrigation = 9; 
Fertilizer + improved seeds + mechanization =10; Fertilizer+ 
improved seeds + mechanization +irrigation =11 

_ 

17 

Soil Management Intensity Index c No till + residue retention = 1; No till  only = 2; Till + residue 
retention = 3 ; Till only = 4 _ 

Soil health 

18 Nitrogen partial nutrient budget N added - N removed  kg/ha/yr. 

19 Phosphorous partial nutrient budget P added - P removed  kg/ha/yr. 

20 Potassium partial nutrient budget K added - P removed  kg/ha/yr. 

21 Soil carbon deficit indicator b Soil Carbon Capacity _ 

22 Soil water storage Soil water storage indicator _ 

a Estimated using 250 m spatial product 

b Measured using 30 m isDA soil properties data 

c Measured using directly field sampled data 

d Measured using household survey data  
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Figure 3-3. Distribution of smallholder maize yield variability across the established productivity classes in the SAGCOT. 
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Table 3-3. Distribution of maize yield productivity farms across the landscapes of SAGCOT. 
 

Landscape Low productivity Mid productivity High productivity 

Highlands     

L03 -Sunbawanga 19 8 3 

L10 - Ihemi (Mufundi) 27 1 1 

L11  -Ludewa 10 15 5 

L18 - Ihemi (Kilolo) 15 4 1 

Lowlands     

L19 - Kilombero 11 3 0 

L20 -Mbarali 14 2 3 

L22 -Rufiji 8 2 0 
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Table 3-4. Productivity level prediction accuracy of machine learning models. 
 

Model  Dataset Precision  Recall  F1  Accuracy  

Logistic 
regression 

Training 
(n=114) 

0.768 0.789 0.769 0.79 

Test (n=38) 0.609 0.632 0.585 0.68 

Full (n=152) 0.728 0.750 0.725 0.75 

      

Random Forest 

Training 
(n=114) 

0.890 0.886 0.875 0.89 

Test (n=38) 0.660 0.737 0.681 0.78 

Full (n=152) 0.854 0.849 0.832 0.85 

      

XGBoost 

Training 
(n=114) 

0.923 0.921 0.916 0.90 

Test (n=38) 0.81 0.82 0.80 0.82 

Full (n=152) 0.90 0.90 0.89 0.88 
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Figure 3-4. Confusion matrix  for training, test and full datasets showing the performance of the machine learning 
algorithms  for productivity level prediction. Numbers 0, 1 and 2 denotes low (<1.5t/ha), mid (1.5-2.5 t/ha), and 

high (>2.5t/ha) Maize productivity classes. Values in diagonal indicate number of correctly predicted productivity 
class. 
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Figure 3-5. Information gain feature importance for the best  performing XGBoost ML model on the full dataset in 
descending order. Potassium partial nutrient budget, Phosphorous partial nutrient budget, Nitrogen partial 

nutrient budget, are denoted as K.PNB,P.PNB,N.PNB respectively. 
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Figure 3-6. Variance-based feature importance of the best XGBoost ML model. Potassium partial nutrient budget, 

Phosphorous partial nutrient budget, Nitrogen partial nutrient budget, are denoted as K.PNB,P.PNB,N.PNB 
respectively. 
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Table 3-5. GSA results for the Sobol sample. First order indexes (Si), total order indexes (STi), interactions (STi – Si),and 
second order indexes (Sij) to quantify the variance of productivity levels probability explained by each factor 

individually and interactively. 
 

Feature 
First order indeces 
(Si) 

Total order indeces 
(STi) Interactions (Sij) 

Distance.to.forest 0 0.215354506 0.215354506 

Soil.slope 0 0.222096417 0.222096417 

Tree.richness 0 0.201249803 0.201249803 

Gender.ratio 0 0.192364175 0.192364175 

Input.intensity 0 0.190299573 0.190299573 

N.PNB 0.005162038 0.193745035 0.188582998 

Household.dependency.ratio 0.008044791 0.148510593 0.140465802 

Distance.to.roads 0.015069266 0.157663264 0.142593997 

Labor 0.032531537 0.229422496 0.196890959 

Distance.to.river 0.044968948 0.164797683 0.119828735 

P.PNB 0.052193003 0.260897887 0.208704884 

K.PNB 0.214322934 0.752110589 0.537787656 

Sum of  indexes 0.372292516 2.928512021 2.556219505 

Feature Interactions  Second order indeces (Sij) 

Distance.to.river X Distance.to.forest 0 

Distance.to.river X Tree.richness 0 

Distance.to.river X Gender.ratio 0 
Distance.to.river X 
Household.dependency.ratio 0 

Distance.to.river X Distance.to.roads 0 

Distance.to.river X Input.intensity 0 

Distance.to.river X Soil.slope 0.00042917 

Distance.to.roads X N.PNB 0.003763976 
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Table 3-5. Continued 
 

Feature Interactions  Second order indeces (Sij) 

Distance.to.river X N.PNB 0.004466366 

Household.dependency.ratio X Distance.to.roads 0.005160806 

Household.dependency.ratio X Labor 0.005448588 

Labor X Distance.to.roads 0.005723094 

Gender.ratio X Distance.to.roads 0.007912257 

Distance.to.river X Labor 0.009070693 

Soil.slope X Distance.to.roads 0.009416653 

Distance.to.roads X Input.intensity 0.009762059 

Gender.ratio X Labor 0.009830873 

N.PNB X Input.intensity 0.010349837 

Distance.to.forest X Labor 0.010887058 

Household.dependency.ratio X Input.intensity 0.010969061 

Household.dependency.ratio X P.PNB 0.012031468 

Gender.ratio X Household.dependency.ratio 0.014083001 

Tree.richness X Distance.to.roads 0.01462553 

Soil.slope X Household.dependency.ratio 0.015415198 

Distance.to.river X P.PNB 0.015695761 

Household.dependency.ratio X N.PNB 0.015780928 

Labor X N.PNB 0.016056552 

Labor X Input.intensity 0.016188508 

Gender.ratio X Input.intensity 0.016689255 

Distance.to.forest X Input.intensity 0.01678913 

Soil.slope X Labor 0.01696293 

Distance.to.forest X Distance.to.roads 0.017086727 

Distance.to.forest X Household.dependency.ratio 0.01738135 

Soil.slope X Gender.ratio 0.017678988 
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Table 3-5. Continued 
 

Feature Interactions  Second order indeces (Sij) 

Soil.slope X Input.intensity 0.01793604 

Tree.richness X Input.intensity 0.01794181 

Distance.to.forest X N.PNB 0.018460845 

Gender.ratio X P.PNB 0.018575111 

Tree.richness X Household.dependency.ratio 0.019410801 

N.PNB X P.PNB 0.019586653 

Distance.to.roads X P.PNB 0.019986557 

Distance.to.forest X Soil.slope 0.020532074 

Tree.richness X Labor 0.020871114 

Gender.ratio X N.PNB 0.020879372 

Labor X P.PNB 0.021071696 

Tree.richness X N.PNB 0.022285212 

Tree.richness X Gender.ratio 0.022782957 

Distance.to.forest X Tree.richness 0.023024761 

Distance.to.forest X Gender.ratio 0.023024885 

Soil.slope X Tree.richness 0.024290001 

Distance.to.forest X P.PNB 0.024314851 

Tree.richness X P.PNB 0.025618871 

Soil.slope X P.PNB 0.025631169 

Soil.slope X N.PNB 0.026125364 

P.PNB X Input.intensity 0.026192745 

Household.dependency.ratio X K.PNB 0.030233189 

Tree.richness X K.PNB 0.034688747 

Distance.to.forest X K.PNB 0.043852826 

K.PNB X Input.intensity 0.047481128 

 

Soil.slope X K.PNB 0.04767883  
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Table 3-5. Continued 
  

Feature Interactions 
 

 
Second order indeces (Sij) 

 

N.PNB X K.PNB 0.050414545 

Gender.ratio X K.PNB 0.054990477 

Distance.to.roads X K.PNB 0.058643409 

Labor X K.PNB 0.087465878 

Distance.to.river X K.PNB 0.090166744 

P.PNB X K.PNB 0.119349702 
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CHAPTER 4 
IDENTIFYING EFFECTIVE INTERVENTIONS FOR INCREASING PRODUCTIVITY IN 

SMALLHOLDER SYSTEMS IN THE SAGCOT REGION OF TANZANIA 
 

4.1 Background 

Agricultural productivity models such as the ML model developed in chapter 2 of this 

dissertation, can inform agricultural scientists and policymakers in dealing with the 

complex challenges of Food Security. Integrated approaches to testing ML model 

reliability through global sensitivity and uncertainty analysis (GSUA) are key for 

providing practical guidance on model use. The scope of GSUA is not only to identify 

the important input factors that drive output uncertainty but also to identify the ranges of 

these input factors that are responsible for the model realization in acceptable ranges 

for system management (Saltelli et al., 2004).This is carried out by Monte Carlo Filtering 

(Gordon et al., 1993; Kitagawa, 1996). In Monte Carlo filtering, a set of constraints that 

targets the desired characteristics of the model realization (e.g., an acceptable range of 

outputs, a threshold value, or a ceiling value as set by ecosystem managers or 

stakeholders) has to be defined. Based on the results of the uncertainty analysis 

obtained in chapter 3, Monte Carlo Filtering is then performed on the model’s input 

factors to define management-favorable outputs, in our case an increase in Maize yield 

among smallholders in the SAGCOT. This chapter builds on Chapter 3 ML modeling 

and input factor importance analysis results to identify intervention strategies that are 

effective for lowering the probability of low Maize productivity outcomes using global 

sensitivity and uncertainty analysis and Monte Carlo Filtering. 
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4.2 Methods 

4.2.1 Methodological workflow 

The methods used in this chapter followed the workflow described in Figure 4-1. It 

consists of 4 main steps described in the sections below: 1) machine learning model 

prediction with the original sample 2)  pre-intervention uncertainty analysis with Sobol 

sample 3) design of intervention strategies through Monte Carlo filtering 4) post-

intervention uncertainty analysis with Sobol sample. 

 
4.2.2 Quality of Sobol sampling and ML predictions before intervention 

As presented in Chapter 3, the ML XGBoost model includes a total of 12 important input 

factors (Fig. 4-2) to predict the maize productivity of a smallholder farm. Applying the 

model to all 152 households in the dataset allows to calculate the probability that 

households  will be below the low productivity threshold (<1.5t/ha).   

Input and output uncertainties in this model are likely to arise from various sources:  

accuracy flaws of survey data, the inherent variability of the landscapes and the 

households characterizing the sample, and the assumption that productivity is 

homogeneous across classes. Here we test if the predictions generated by the larger 

Sobol sample of the input factors is consistent with the probabilities of the original input 

data set. This is important so that the results from the Monte Carlo filtering and 

intervention analysis are relevant to the original pre-intervention conditions of the 

region, and not an artifact of the large sample that might contain input factors that are 

not representative of the dataset. For this, boxplots of the observed yield classes are 

compared to those predicted by the ML model based on the Sobol sample.  



 

101 

While the Sobol sample results is expected to have wider ranges, we are looking for 

similarity in the proportions of the low, mid and high yield classes. The Sobol uncertainty 

analysis was conducted for a sample size  of N=736000 (see details of Sobol GSA 

implementation in chapter 3). The code for the uncertainty analysis can be accessed in 

the dissertation’s github repository (See Appendix B). These results are used for the 

intervention analysis based on Monte Carlo Filtering as described below. 

4.2.3 Monte Carlo Filtering 

The Monte Carlo Filtering (MCF) technique uses Monte Carlo sampling methods to 

identify range of input interventions that corresponds to an output behavior of interest  

(Gordon et al., 1993; Kitagawa, 1996; Kroese et al., 2011; Sarkar, 2003) . It was 

employed on the Sobol sample outputs to filter for input variability range corresponding 

to lower probability score threshold for low productivity. Since the initial Maize yields in 

the original dataset were low, with 85% of the initial smallholders below the 1.5t/ha 

threshold, we selected as an intervention threshold, i.e., the behavioral outcome, to 

decrease the number of households with low yields to less than 1/3 of the total or plow-

productivity  < 0.33. Based on the full Sobol simulation set, ML model yield class results 

were then classified as being favorable or “behavioral (B)” (mid- high-yields, plow-productivity 

< 0.33) and unfavorable or “ non behavioural (B̅)” (low yields, plow-productivity  > 0.33) 

realizations. Two subsets of each input factor, Xi, corresponding to the two realizations 

were defined as Xi/B and Xi/B̅, consisting of m and n elements, respectively, where m + 

n equals the total number of simulations N. In order to check the separation of 

distributions, Xi/B and Xi/B̅, a two-sided Kolmogorov-Smirnov (K-S) test was performed 

for each input factor under a null hypothesis that the distribution of the subsets 
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producing B realization is identical to the one producing B̅. The hypotheses used are as 

follows: 

𝐻𝑜: 𝑓𝑚 (
𝑋𝑖

B
) = 𝑓𝑛 (

𝑋𝑖

B̅
)          (4-1) 

𝐻1: 𝑓𝑚 (
𝑋𝑖

B
) ≠ 𝑓𝑛 (

𝑋𝑖

B̅
)           (4-2) 

where fm(Xi|B) and  fn(Xi/B̅) are the probability distribution functions (pdfs) of input factor, 

Xi, belonging to B and  B̅ realizations, respectively. The K-S test statistic is given as: 

𝑑𝑚,𝑛(𝑋𝑖) = 𝑠𝑢𝑝𝑦 ‖𝐹𝑚 (
𝑋𝑖

B
) − 𝐹𝑛 (

𝑋𝑖

B̅
)‖       (4-3) 

where Fm(Xi|B) and  Fn(Xi/B̅) are the empirical cumulative probability cdfs of the two 

input factor subsets corresponding to B and  B̅, respectively. The test statistic, dm,n, 

measures the largest vertical distance between the empirical cdfs of Xi/B and Xi/B̅. A low 

level (i.e., smaller p-value) implies a significant difference between fm(Xi|B) and  fn(Xi/B̅) 

(i.e., larger dm,n) suggesting that Xi is a key factor in producing the defined behavior for 

the model while a high level (i.e., higher p-value, smaller dm,n) suggests that any value 

in the predefined range of the input, Xi, is likely to fall either in B or B̅ (Saltelli et al., 

2004). One caveat of this method however is that no higher-order analysis is performed, 

i.e., if interactions are present, no attempt is made to search for interaction structure to 

identify particular combinations of filtered inputs resulting in the desired output(Saltelli et 

al., 2004). The 12 Input factors that were found significant in the previous GSA (Chapter 

3) were selected for interventions. The MCF was performed in R software. See 

Appendix B to access the code for the Monte Carlo Filtering method in the dissertation’s 

github repository. 
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4.3 Results 

4.3.1 Quality of Sobol Sampling and ML Predictions 

Figure 4-2 shows the distribution of the probability scores for the three productivity 

classes obtained from the uncertainty analysis for the original dataset compared to the 

Sobol sample. Based on the Sobol sample probability outcome, about 85% of the 

observations exceeded the probability score threshold in the low-productivity sample 

against 76% in the original sample, 11% of the observations exceeded the threshold in 

the mid-productivity sobol sample against 19% in the original dataset, and 3% exceeded 

the threshold in the high-productivity sobol sample against 5% in the original dataset. 

The median probability score of the low-productivity sample is 0.89 in the Sobol sample 

compared to 0.95 in the original sample. The median probability score of the mid-

productivity sample is 0.59 in the Sobol sample compared to 0.74 in the original sample. 

The median probability score of the high-productivity sample is 0.23 in the Sobol sample 

compared to 0.58 in the original sample. The low-productivity sample had the least 

variance. Since the model has a lower misclassification rate for the low-productivity 

class than the mid productivity class, and the lowest variance for the low-productivity 

class (Chapter 3), the results around the change in low productivity households are 

expected to be robust and further support centering our intervention goal on lowering 

probability scores of the low-productivity below 0.33, allowing for an increase of 

probability scores of the mid and high productivity classes.  
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4.3.2 Design and Evaluation of Intervention Scenarios to Increase Maize 
productivity. 

Monte Carlo Filtering (MCF) is used to quantitatively guide the identification of effective 

interventions able to reduce the probability of low-productivity classification by the 

model. The MCF was performed with all input factors of the model to capture the 

interactions detected from the GSA-based feature importance assessment. The MCF 

separated the distribution and ranges of input factors resulting in probability scores 

above and below the threshold probability value for low-productivity (p low-productivity 

<0.33). The Kolmogorov-Smirnov test was used to determine if there are significant 

differences (p < 0.05) between behavioral and non-behavioral distributions. Significant 

differences were confirmed for 9 out of the 12 input factors included in the model, 

making them suitable for intervention.The factors that were not significant were gender 

ratio,  distance to forest, and tree richness. The results of the MCF are summarized in 

Appendix B. Based on the MCF, smallholders’ low productivity classification is minimal 

under nutrient management conditions where potassium partial nutrient budget 

(K_PNB) ≤ -6 kg/ha/yr., phosphorous partial nutrient budget (P_PNB)≤  -7 kg/ha/yr., and 

nitrogen partial nutrient budget (N_PNB) ≤  -23 kg/ha/yr., landscape conditions where 

distance to river ≥ 11.7 km, distance to roads ≥ 4 km, soil percent slope ≥ 2.1%, 

household conditions where labor ≥ 28 hours/day, and household dependency ratio ≤ 

0.49. In the case where any of these levels exceed or are below these thresholds, the 

households are at risk of low productivity, exceeding the p > 0.33 threshold.  

These threshold values were used to inform new range of values for each input factor 

(Table 4-1) to evaluate the performance of potential intervention strategies able to 

reduce risk of low productivity and move more smallholders’ farms into the mid and high 
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productivity classes. The input ranges for all soil health factors including landscape and 

household factors, were refined with their respective behavioral range values. The input 

ranges for these factors were refined using with ranges between acceptable levels of 

nutrient budgets for nitrogen [50;50)], phosphorous [-20,20], and potassium [-50,50] 

kg/ha/yr in the region, determined by the Vital Signs project, and the behavioral ranges 

of input factors obtained from the MCF.  

An uncertainty analysis was performed using refined input ranges of the behavioral 

distributions for each input factor (Table 4-1). We first evaluated the performance on 

each landscape intervention separately on the model’s low-productivity probability 

output, using the refined input factor ranges for landscape physical capital factors. The 

median probability score for the entire Sobol sample decreased from 0.86 to 0.84 when 

‘distance to river’ is refined, to 0.83 when ‘distance to road’ is refined. All landscape 

intervention median values were above the threshold of 0.33 (Figure 4-4), showing that 

landscape physical capital factors alone had no significant impact on reducing the 

probability score for low productivity as single or combined interventions. 

In the case of household human and physical factors, the median probability score for 

the entire Sobol sample decreased from 0.86 to 0.71 when labor is refined, to 0.80 

when household dependency ratio is refined and  did not decrease when input intensity 

is refined. All household interventions median values were above the threshold value of 

0.33, demonstrating that household factors alone had no significant impact on reducing 

the probability of low productivity of smallholders as single or combined interventions 

(Figure 4-5). 
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In the case of soil health factors, the median probability score for the entire Sobol 

sample decreased from 0.86 to  0.84 when soil slope is refined, to 0.56 when Potassium 

partial nutrient budget (K_PNB) is refined, to 0.69 when Phosphorous partial nutrient 

budget (P_PNB)  is refined, to 0.74 when Nitrogen partial nutrient budget(N_PNB) is 

refined. These soil health factors are demonstrated as most effective in reducing the 

probability of low productivity for smallholders(Figure 4-6). 

The poor performance evaluation of each intervention strategy individually on 

reducing the probability of low productivity confirms the need to combine interventions 

using the results from the feature importance evaluation (Table 4-2), which show the 

interactive effects amongst input factors as a guide. The outcomes of the soil health 

interventions (Figure 4-6)  and the interactions amongst K_PNB and P_PNB accounting 

for more than 10% of the model’s output variance, demonstrate that centering 

intervention strategies around K_PNB, P_PNB, are more likely to have the greatest 

impact on reducing the probability of low productivity amongst smallholders in the 

SAGCOT. 

We designed the first intervention strategy (IS1) which consisted of refining  

K_PNB, P_PNB, N_PNB combined, by adjusting partial nutrient budgets to an 

acceptable range considering critical and the MCF thresholds established (Table 4-1). 

We decided to include N_PNB in this intervention, although it isn’t a leading influential 

factor, to reflect the reality of NPK mineral fertilizer availability in Sub-Saharan Africa. 

Moreover, this capture the relevant interactions between N_PNB and K_PNB wich 

account for 5% of the model’s output variance (Table 4-2). Adjusting partial nutrient 

balances of nitrogen, phosphorus and potassium hypothetically reflect an increase in 
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nutrient gains through the use of larger quantities of NPK fertilizers by smallholders in 

the non-behavioral partial nutrient budget ranges, able to reduce the deficit observed. In 

a practical sense, such intervention consist of providing smallholders with increased 

access to mineral fertilizers. Alternative interventions that are likely to be less cost-

effective could also include proving smallholder with enhanced efficiency fertilizers, and 

promoting the use of more organic sources of fertilizers with higher concentration of 

Potassium, considering the leading importance of Potassium partial nutrient budget in 

the model.  

The second intervention strategy (IS2) considered consisted of refining soil slope 

for smallholders in the non-behavioral range, to reflect a positive change in soil health 

conditions that the ‘soil slope’ indicator may capture, as the behavioral range for soil 

slope suggests that an increase in soil slope corresponds to higher productivity 

classification. We choose soil slope this potential next best strategy as it has the highest 

total second order index after K_PNB (Table 4-2). We hypothesized that this positive 

change would reflect higher productivity and soil fertility in the landscapes positioned in 

the highlands compared to the landscapes positioned iin the lowlands of the region, 

which tend to be less productive. When combined with nutrient gains, this intervention 

could considerably increase productivity. 

 The third intervention strategy (IS3) considered accounted for all household 

capitals interventions together in addition to addressing soil health. We chose this 

strategy next because the total interactions amongst household factors were more 

important  (Si -STi = 0.043) than total interactions amongst landscape factors (Si -STi 

=0.01).  This strategy should captures the use of additional inputs including seeds, 
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mechanization towards intensifying farming via input intensity, increase in hired labor 

and labor capacity by the household. 

The fourth intervention strategy (IS4) finally accounts for all landscape level 

infrastructure  interventions in addition to the previous ones. The behavioral range for 

the distance to river intervention suggests that an increase in distance to a nearby 

waterbody corresponds to higher productivity classification. This factor reflects a 

positive advantage of farms situated further from waterbodies. Farms located nearest to 

water bodies in the region tend to be in the lowland less productive areas, while farms 

further from the water bodies tend to be in the more productive areas. This intervention 

could represent an improvement in access to water and irrigation infrastructures more 

likely to be concentrated in the more productive areas. We also adjusted the distance to 

roads range for smallholders in the non-behavioral range by reducing the distance 

between their farms and the main road to reflect an improvement in road infrastructure.  

 
4.4 Discussion 

Nutrient depletion is a serious challenge in soils managed by smallholders in SSA. Over 

decades, smallholders’ cropping management have led to large quantities of nutrients 

being removed from their soils without sufficient replenishment, causing soils in the 

regions to have negative nutrient balances, with more nitrogen and potassium getting 

depleted over phosphorous (Chianu et al., 2012; Henao & Baanante, 1999; Sanchez, 

2002; Smaling et al., 2015). Potassium depletion rates are even more alarming 

(Goulding et al., 2020). In the case of the smallholder sample of the SAGCOT region, 

median partial nutrient depletion rates per hectare of cultivated land are higher  for 

Nitrogen (-8 kg) over Potassium (-5 kg) and  Phosphorous (-3 kg ). We designed four 
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interventions strategies around remediating nutrient imbalance of soils, each combined 

with specific combinations of household and landscape factors, in order to identify the 

most effective strategy able to move low productivity smallholders to high productivity 

levels. 

Figure 4-7 shows the results of the four intervention strategies. The median 

probability score for low productivity for the entire sobol sample decreased from 0.86 to 

0.21 with the first intervention strategy (IS1), to 0.186 with the second intervention 

strategy (IS2),  to 0.09 with the third intervention strategy (IS3), and to 0.06 with the 

fourth intervention strategy. All intervention median values were below the threshold of 

0.33 (Figure 4- 7), showing that these strategies are all effective for increasing 

productivity of smallholders in the SAGCOT. IS3 and IS4 are the most effective out of 

the four intervention strategies, with IS4 being the only strategy able to completely shift 

all low-productivity smallholders into higher productivity levels, more spefically 89% into 

the mid-productivity range and 11% of smallholders in the high productivity range. 

However, we observed a trade-off between higher producity classes for IS3 and IS4. 

For both interventions, the number of high productivity farms decrease as the number of 

mid-productivity farms increase (Table 4-3). These results suggest that interventions 

around household level human and physical capital, and large-scale infrastructural 

projects have diminishing returns. Undergoing IS3 and IS4 may be more aspirational in 

a pro-poor development context, where agricultural development projects may aim to 

focus on providing access to labor and infrastruturre to the lower productivity farmers. 

However considering the large financial and time investments of such projects, they 

may not be at the forefront of advisable strategies aim at addressing urgent and more 
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inclusive food security challenges that benefit an entire region or country. Such dilemma 

might raise questions on the cost and social acceptability of landscape interventions. If 

large-scale interventions such as IS3 and IS4 are not promoted, than low-productivity 

marginalized farmers continue to be at risk. This could further deepens socio-economic 

divide between low and higher productivity farmers, reinforcing a productivity trap in the 

long term, where cost-effective interventions keep failing to address poverty and food 

security issues rooted in agricultural development. 

These results present important decision support tools that can guide the 

planning of sustainable intensification strategies for smallholder communities, towards 

improving productivity and livelihood conditions simultaneously. Agricultural 

development programs centered around increasing mineral fertilizer uptake and 

promoting sustainable cropping management practices to prevent further nutrient loss 

from farm fields, must be accompanied with household and landscape level 

interventions that contribute to increasing physical and human capital of households, for 

low-productivity farms to reach their full potential. Household human and physical 

interventions include allowing smallholders to meet labor requirements for their farms 

based on the labor structure and the dependency ratio of the household. Physical 

capital interventions at the landscape scale include improving rural roads infrastructure 

to help with increasing accessibility to mineral fertilizers and markets and providing 

irrigation infrastructure through reliable water sources. These interventions prove to be 

all together effective for lifting farmers out of low-productivity, and balancing the social, 

and economic objectives of sustainable intensification in smallholder agriculture.  
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4.5 Conclusions 

Identifying effective interventions for sustainable intensification of smallholder systems 

in SSA requires a comprehensive understanding the drivers of productivity. In this study   

we build on a productivity model able to predict productivity levels using social-

ecological and soil health factors, to design effective interventions for increasing 

productivity of smallholders. The uncertainty analysis of the ML based on a large Sobol 

sample set confirmed that the ML is able to reproduce the observed distribution of 

Maize yields in Tanzania’s SAGCOT region, where the majority smallholders produce 

less than 1.5 t/ha Maize, classifying their farms as low productivity farms. Through 

Monte Carlo filtering, we found that smallholders can move up to higher productivity 

levels, within acceptable behavioral ranges for Nitrogen, Phosphorous and Potassium 

partial nutrient budgets, and behavioral ranges for landscape physical and natural 

capital, along with household human and physical capital factors. We designed practical 

intervention strategies that focus on tackling nutrient imbalance, faced by many 

smallholders in Africa, by combining several factor interventions. These interventions 

were proved to be effective through post-intervention uncertainty analyses, with the 

more integrated strategy which included nutrient imbalance remediation, improvement 

in soil health, increase in household physical and human capitals such as labor and 

input use, and improvements of landscape water and road infrastructure, able to shift 

100% of smallholders in the SAGCOT from low productivity to mid and high productivity 

levels. These results can assist decision-support systems on sustainable intensification 

interventions in smallholder systems.  
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We were able to demonstrate that strategies for increasing productivity in smallholder 

systems cannot be addressed using a “one size fits all” approach. This is supported by 

the results of the variance-based feature importance assesment which is quantified by 

the Sobol GSA of our highly interactive ML maize productivity model. As a result, a 

multi-solution approach consisting of intervening across the entire range of livelihood 

capitals (i.e., natural, human, social, physical, financial) proved to be more effective.  

Our integrated socio-ecological approach to modeling crop yield proves to be effective 

for understanding yield variability across ranges of biophysical and socio-economic 

gradients of smallholder farms. Even if those biophysical gradients are well - understood 

at the landscape or regional scales, a social ecological approach to modeling 

productivity add value to biophysical crop and water simulation models in capturing 

farm/field scale hidden social-ecological patterns of farming that affect productivity. 

Potential limitations of this modeling approach are that more biophysical factors used to 

parameterize crop models could be integrated as input factors for more equal 

contributions of biophysical and socio-economic factors. Additionally, in our model, data 

gathered at the landscape scale were associated to multiple farms in an e-plot. A more 

homogeneous approach to scale can help the model capture important granular level 

patterns that may impact the model differently. Future work on this study should 

evaluate the cost-benefit analysis of intervention strategies. 
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Figure 4-1. Methodological workflow used in this study. 
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Table 4-1. Range of the model’s input factors from the original dataset pre-intervention, and the intervention ranges for 

significant input factors (Kolmogorov-Smirnov test, =0.05) for reducing low Maize yield probability. 
 

Model parameters Pre-intervention range Acceptable range  Range of intervention 

Input factors     

Landscape physical  capital     

Distance to roads (km) [0 - 11.45] _ [0 - 3.7] 

Distance to river (km) [0.25 - 22.2] _ [11.27 - 22] 

Distance to forest (km)  [0.5 - 45.1] _ _ 

Soil percent slope  [0.1 - 13.1] _ [2.5 - 13] 

Tree richness   [0.1 - 29] _ _ 

Household human and physical capitals 
   

Gender ratio  [0.1 - 7] _ _ 

Household dependency ratio [0.2 - 1] _ [0.17 - 0.49] 

Labor (hours)  [0.3 - 95.6] _  [28 - 95] 

Input intensity index [1-14] _ [2.4-15] 

Soil health  
 

 
 

Nitrogen partial nutrient budget (kg/ha/yr)  [-142.7 - 178.5] [-20,20] [-23,-20] 

Phosphorous partial nutrient budget (kg/ha/yr) [-42.3 - 180.0] [-5,5] [-42,-6] 

Potassium partial nutrient budget  (kg/ha/yr) [-40.3  - 44.5] [-20,20] [-20,-7] 

Outputs 
   

Probability of low productivity class  [0.02 - 0.9] _ _ 

Probability of mid productivity class [0.01 - 0.9 ] _ _ 

Probability of high productivity class [0.008 -  0.5] _ _ 

 
 
 
 
 
 



 

115 

 
 
 

 
Figure 4-2. Variance-based feature importance of model’s input factors. 
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Table 4-2. GSA results for the Sobol sample. First order indexes (Si), total order indexes (STi), interactions (STi – Si),and 
second order indexes (Sij) to quantify the variance of productivity levels probability explained by each factor 

individually and interactively. 
 

Feature 
First order indeces 
(Si) 

Total order indeces 
(STi) Interactions (Sij) 

Distance.to.forest 0 0.215354506 0.215354506 

Soil.slope 0 0.222096417 0.222096417 

Tree.richness 0 0.201249803 0.201249803 

Gender.ratio 0 0.192364175 0.192364175 

Input.intensity 0 0.190299573 0.190299573 

N.PNB 0.005162038 0.193745035 0.188582998 

Household.dependency.ratio 0.008044791 0.148510593 0.140465802 

Distance.to.roads 0.015069266 0.157663264 0.142593997 

Labor 0.032531537 0.229422496 0.196890959 

Distance.to.river 0.044968948 0.164797683 0.119828735 

P.PNB 0.052193003 0.260897887 0.208704884 

K.PNB 0.214322934 0.752110589 0.537787656 

Sum of  indexes 0.372292516 2.928512021 2.556219505 

Feature Interactions  Second order indeces (Sij) 

Distance.to.river X Distance.to.forest 0 

Distance.to.river X Tree.richness 0 

Distance.to.river X Gender.ratio 0 
Distance.to.river X 
Household.dependency.ratio 0 

Distance.to.river X Distance.to.roads 0 

Distance.to.river X Input.intensity 0 

Distance.to.river X Soil.slope 0.00042917 

Distance.to.roads X N.PNB 0.003763976 
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Table 4-2. Continued 

Feature Interactions  Second order indeces (Sij) 

Distance.to.river X N.PNB 0.004466366 

Household.dependency.ratio X Distance.to.roads 0.005160806 

Household.dependency.ratio X Labor 0.005448588 

Labor X Distance.to.roads 0.005723094 

Gender.ratio X Distance.to.roads 0.007912257 

Distance.to.river X Labor 0.009070693 

Soil.slope X Distance.to.roads 0.009416653 

Distance.to.roads X Input.intensity 0.009762059 

Gender.ratio X Labor 0.009830873 

N.PNB X Input.intensity 0.010349837 

Distance.to.forest X Labor 0.010887058 

Household.dependency.ratio X Input.intensity 0.010969061 

Household.dependency.ratio X P.PNB 0.012031468 

Gender.ratio X Household.dependency.ratio 0.014083001 

Tree.richness X Distance.to.roads 0.01462553 

Soil.slope X Household.dependency.ratio 0.015415198 

Distance.to.river X P.PNB 0.015695761 

Household.dependency.ratio X N.PNB 0.015780928 

Labor X N.PNB 0.016056552 

Labor X Input.intensity 0.016188508 

Gender.ratio X Input.intensity 0.016689255 

Distance.to.forest X Input.intensity 0.01678913 

Soil.slope X Labor 0.01696293 

Distance.to.forest X Distance.to.roads 0.017086727 

Distance.to.forest X Household.dependency.ratio 0.01738135 

Soil.slope X Gender.ratio 0.017678988 
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Table 4-2. Continued 
 

Feature Interactions  Second order indeces (Sij) 

Soil.slope X Input.intensity 0.01793604 

Tree.richness X Input.intensity 0.01794181 

Distance.to.forest X N.PNB 0.018460845 

Gender.ratio X P.PNB 0.018575111 
Tree.richness X 
Household.dependency.ratio 0.019410801 

N.PNB X P.PNB 0.019586653 

Distance.to.roads X P.PNB 0.019986557 

Distance.to.forest X Soil.slope 0.020532074 

Tree.richness X Labor 0.020871114 

Gender.ratio X N.PNB 0.020879372 

Labor X P.PNB 0.021071696 

Tree.richness X N.PNB 0.022285212 

Tree.richness X Gender.ratio 0.022782957 

Distance.to.forest X Tree.richness 0.023024761 

Distance.to.forest X Gender.ratio 0.023024885 

Soil.slope X Tree.richness 0.024290001 

Distance.to.forest X P.PNB 0.024314851 

Tree.richness X P.PNB 0.025618871 

Soil.slope X P.PNB 0.025631169 

Soil.slope X N.PNB 0.026125364 

P.PNB X Input.intensity 0.026192745 

Household.dependency.ratio X K.PNB 0.030233189 

Tree.richness X K.PNB 0.034688747 

Distance.to.forest X K.PNB 0.043852826 

K.PNB X Input.intensity 0.047481128 
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Table 4-2. Continued 
  

Feature Interactions  Second order indeces (Sij) 

Soil.slope X K.PNB 0.04767883 

N.PNB X K.PNB 0.050414545 

Gender.ratio X K.PNB 0.054990477 

Distance.to.roads X K.PNB 0.058643409 

Labor X K.PNB 0.087465878 

Distance.to.river X K.PNB 0.090166744 

P.PNB X K.PNB 0.119349702 
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Figure 4-3 Boxplots showing the median probabilities of each productivity class from the  original sample against the 

Sobol sample Uncertainty Analysis. LP denotes the low-productivity class, MP denotes the mi-productivity 
class, and HP denotes the high-productivity class. 
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Figure 4-4. Boxplots showing the distribution of the overall Sobol sample before and after each landscape interventions. 
The dashed horizontal line represents the behavioral threshold (plow-yields <0.33). 
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Figure 4-5. Boxplots showing the distribution of the overall Sobol sample before and after each household intervention. 
The dashed horizontal line represents the behavioral threshold (plow-yields <0.33). 
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Figure 4-6. Boxplots showing the distribution of the overall Sobol sample before and after each soil health interventions. 
The dashed horizontal line represents the behavioral threshold (plow-yields <0.33). 
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Figure 4-7. Boxplots showing the distribution of the overall Sobol sample pre - intervention and after intervention 
strategies. The dashed horizontal line represents the behavioral threshold (plow-yields <0.33). 

 
 
 
 
 
 
 
 
 



 

125 

Table 4-3. Final probability outcomes of the model before and after each intervention strategy. 
 

Interventions strategies 
Model probability outcomes 

Low productivity Mid productivity  High productivity 

 
Pre-intervention 86% 11% 3% 
 
IS1: Soil nutrient imbalance 
remediation 
  

24% 50% 26% 

IS2: Soil nutrient imbalance 
remediation + improved soil 
health  
  

19% 56% 25% 

IS3: Soil nutrient imbalance 
remediation + improved  soil 
health + increase in household 
human and physical capital  
  

2% 85% 13% 

IS4: Soil nutrient imbalance 
remediation + improved soil 
health + increase in household 
human and physical capital + 
improved physical infrastructure 
capital 

0% 89% 11% 
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CHAPTER 5 
 GENERAL CONCLUSIONS 

This research investigates the linkages and dynamics of social-ecological factors and 

farm multifunctionality metrics of agricultural systems at the farm scale, specifically the 

case of smallholder systems of Sub-Saharan Africa, using alternative modeling 

approaches that aim to capture hidden/non-linear relationships in these systems. 

In Chapter 1, a modeling framework for linking social-ecological factors of farming to 

productivity metrics was proposed. Suitable social-ecological indicators of livelihood 

capitals, management intensity decision-making were established, along with suitable 

indicators of farm multifunctionality integrating crop yield and soil health indicators (i.e., 

soil carbon, water storage and nutrient supply) were also established. 

Chapter 2  focused on (1) Assessing synergies and trade-offs between 

ecosystem services clusters, capital levels, farm input intensity and soil management 

intensity (2) Identifying patterns of dissimilar ecosystem service levels of farms (i.e., 

ecosystem service clusters) and dissimilar livelihood/intensification strategies (i.e., 

livelihood strategy clusters) towards Linking ecosystem service levels with 

livelihood/intensification strategies. These analyses offer new insights on drivers of 

productivity in smallholder systems of SSA, while capturing the variability in farm 

productivity. This analysis approach was able to confirm consistent synergistic 

relationships between higher levels of human derived capitals and combined input 

intensity and linking high human-derived capital and combined input intensity to higher 

productivity across case studies. 

In Chapter 3, three ML models (i.e., logistic regression as baseline, random forest, and 

XGBoost) were tested on their ability to accurately predict productivity classes based on 
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maize yield using livelihood capitals, management intensity, soil health indicators, and 

guided by the following benchmark for productivity levels in smallholder systems in 

SSA: low productivity when maize yield is below 1.5 t/ha, mid-productivity when maize 

yield between 1.5 and 2.5 t/ha, and high productivity  when maize yield is above 2.5 

t/ha. Overall, the two tree-ensemble ML models were able to accurately identify patterns 

of social -ecological and soil health indicators explaining the three-productivity levels 

detected based on maize yield variability.  

In Chapter 4, the best performing model (i.e., XGBoost)  was selected for identify key 

factors driving the model by comparing a low dimensional factor importance method 

(i.e., entropy/information gain) to a  high dimensional factor importance method 

(variance-based method) of feature importance evaluation. A robust Global Sensitivity 

and Uncertainty Analysis (GSAU) was performed on the model’s features and outputs  

to test for uncertainties, and Monte Carlo filtering was used to inform on intervention 

strategies on explanatory variable able to boost the productivity of smallholders.  

Results showed that soil health indicators, interactively with household labor, and 

landscape level physical capitals such access to roads and access to water, are key 

factors to interven for boost all low-productivity farms of the region to higher levels of 

productivity.  

The work accomplished in this dissertation were able to successfully answer the 

research questions posed: 1) What are the synergistic/ trade-offs relationships between 

social-ecological factors (i.e., livelihood capitals, management intensity) and ecosystem 

services (i.e., crop yield, soil carbon and water storage, soil nutrient supply) in 

smallholder systems of SSA? 2) Can social-ecological factors (i.e., livelihood capitals, 
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management intensity), and soil health indicators (i.e., soil carbon and water storage, 

soil nutrient supply)  be good predictors of productivity (i.e., crop yield) ? If so, how can 

these relationships be modeled to inform the design of intervention strategies able to 

boost farm productivity  in smallholder systems of SSA? 

The modeling framework proposed provided methodological approaches able to capture 

hidden nonlinear relationships often not tested for between metrics of 

livelihood/intensification strategies and biophysical metrics of farm multifunctionality. 

Challenges  and limitations in accomplishing this work involve data curation and 

processing. Reported survey data come with bias, outliers, and missing values. While 

missing value imputation help achieve complete datasets for analyses, there are no way 

to identify and solve response bias, also removing outliers may remove natural 

variability of the data.  Moreover, field and landscape level/ high resolution spatial data 

products for biophysical data are rare. The first case study (SAGCOT) is data rich as 

various landscape level data were already made available from previous data collection 

efforts. However, in the case of the Upper Ewaso Ngiro basin, more data could be 

collected to further integrate landscape level natural capital indicators in our models.  

In the case of chapter 2, we decided to use a classification model able to account for 

yield variability instead of using yield values as outputs. Although this approach helps 

understand yield variability, a regression model would have supported the 

benchmarking of productivity levels better. 

Future directions of this work involve exploring both modeling approaches of the 

framework (i.e.,unsupervised clustering, and supervised machine learning) with 

increased dimensionality, to account for additional productivity and social-ecological 
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metrics that could be relevant for our research questions. In both cases in chapter 1 and 

2 , it will increase the chance of finding new relevant patterns of relationships  driving 

smallholder agricultural systems. Moreover, in this work we did not incorporate time as 

a factor in any part our analysis, as none of the modeling approaches facilitates the use 

time series data, nor our data provided any notion of time that could inform on how long 

intensification strategies have been adopted on a farm for example, or previous levels of 

ecosystem services over the years. Exploring the coupling of data-driven models such 

as the one developed in this dissertation with agent-based modeling to generate time 

series outputs towards helping us better understanding changes in social-ecological 

dynamics of agricultural systems is a good way forward relevant to this research topic. 
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APPENDIX  
A QUANTIFICATION OF ECOSYTEM SERVICES INDICATORS USING SOIL 

FUNCTIONS 

 
1. Soil carbon storage ecosystem service indicator 

We use a standardized soil carbon deficit indicator. It is defined as the ability of the 

soil to store additional carbon and is estimated as the difference between the maximum 

potential  carbon storage that can be associated with the soil and the current amount of 

carbon found in the soil. The less the deficit, the higher the ability of the soil to store 

additional carbon.  

The following functions are used to calculate the soil carbon deficit indicator 

Carbon capacity is calculated in function of soil type. The values are then standardized 

for comparison. The soil carbon capacity was calculated as follows {Palm:2005un}: 

 

 𝑠𝑜𝑖𝑙 𝐶 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 (%) =
𝑎𝑐𝑖𝑑𝑖𝑓𝑖𝑒𝑑 𝑐𝑎𝑟𝑏𝑜𝑛

𝑒1.333+0.00994∙𝑐𝑙𝑎𝑦 + 0.00699∙𝑠𝑖𝑙𝑡 − 0.156(0.923∙𝑝𝐻−0.6)
∙ (

10

7
)

−0.58

∙ 100 

Acidified carbon represents the carbon in the topsoil. It is calculated as the % by weight 

from acid treated samples in the SAGCOT case study. In the case of  the Upper Ewaso 

Ngiro case study, the total inorganic carbon is calculated subtracting organic carbon 

from total carbon. clay and silt are the fractions of clay and silt (% by volume) and pH is 

the pH value of the soil. The subtraction of 0.6 is a correction for using soil pH as 

opposed to pHKCl (Sanchez, 2019). The denominator in the first factor in the formula 

represents reference soil carbon (at 7 cm), and the second factor in the formula 

represents correction factor for the average depth of our samples (10 cm).   
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The soil carbon deficit indicator is then assigned as a value between 0 and 1. Carbon 

capacity < 50% gets assigned 0, carbon capacity > 80% gets assigned 1, and 

everything in between gets a value between 0 and 1 based on linear interpolation from 

50% to 80%. 

We then standardized the carbon deficit indicator to reflect carbon storage as an 

ecosystem services, with the “less is better standardization function. This 

standardization approach reflects the less the carbon deficit indicator, the higher the 

carbon storage ecosystem service. The “less is better” standardization function  

 

𝑆𝑜𝑖𝑙 𝑐𝑎𝑟𝑏𝑜𝑛  𝑠𝑡𝑜𝑟𝑎𝑔𝑒 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟

=  
Soil carbon deficit indicator −  max(Soil carbon deficit indicator)

max(Soil carbon deficit indicator) − min (Soil carbon deficit indicator)
 

 

2. Soil water storage indicator  

The Soil water storage indicator was determined using clay content, bulk density, and 

depth to bedrock properties. These properties were standardized using fuzzy logic 

membership functions. Clay content and depth to rock properties were standardized 

using the “more is better” function, Bulk density is standardized using the optimal 

function with an optimal value of 130 kg/m3. The  water storage indicator score was 

calculated as the arithmetic mean of the standardized properties.The calculations of  the 

soil water storage indicator are as follows:  

 

𝐶𝑙𝑎𝑦 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟 =  
clay content −  max(𝑐𝑙𝑎𝑦 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 )

max(𝑐𝑙𝑎𝑦 𝑐𝑜𝑛𝑡𝑒𝑛𝑡) − min (𝑐𝑙𝑎𝑦 𝑐𝑜𝑛𝑡𝑒𝑛𝑡)
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𝐷𝑒𝑝𝑡ℎ 𝑡𝑜 𝑟𝑜𝑐𝑘 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟 =
depth to rock −  max( depth to rock)

max(depth to rock) − min (depth to rock)
 

 

𝐵𝑢𝑙𝑘 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟 =
(𝐵𝑢𝑙𝑘 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 − 130) − (130 − min (𝐵𝑢𝑙𝑘 𝑑𝑒𝑛𝑠𝑖𝑡𝑦)

(max(𝐵𝑢𝑙𝑘 𝑑𝑒𝑛𝑠𝑖𝑡𝑦) − 130) − (min(𝐵𝑢𝑙𝑘 𝑑𝑒𝑛𝑠𝑖𝑡𝑦) − 130)
 

 

Soil water storage indicator = 

𝐶𝑙𝑎𝑦 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟 + 𝐷𝑒𝑝𝑡ℎ 𝑡𝑜 𝑟𝑜𝑐𝑘 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟 + 𝐵𝑢𝑙𝑘 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑖𝑛𝑑𝑖𝑐𝑡𝑎𝑡𝑜𝑟 

3
 

  

3. Soil nutrient balance in the SAGCOT 

In the case of SAGCOT, a soil nutrient budget indicator was determined using a total 

partial nutrient budget indicator based on the nutrient (nitrogen, phosphorous, and 

potassium) removal and addition calculations at the farm level. Nutrient addition and 

removal were calculated as follows:  

 

Nutrient addition  

Nutrients added to the field by organic and inorganic fertilizer were calculated based on 

the reported addition of fertilizer in the survey. Values for the nutrients added by 

fertilizers are shown in Table 1. For carbon from organic fertilizer (animal manure), the 

value of 47% of weight was used.  
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Table A-1. Value for nutrients added by each type of fertilizer. 

Inputs N P K P205  K20 

Animal Manure 0.012 0.002 0.007 0.005 0.009 

Di-Ammonium Phosphate (DAP) 0.18 0.201 0 0.46 0 

Urea 0.46 0 0 0 0 

Triple Super Phosphate (TSP) 0 0.201 0 0.46 0 

Calcium Ammonium Nitrate (CAN) 0.27 0 0 0 0 

Sulphate of Ammonium (SA) 0.27 0 0 0 0 

Nitrogen Phosphate Potassium 

(NPK) 0.15 0.065 0.124 0.15 0.15 

Rock Phosphate (MRP) [Minjingu] 0 0.144 0 0.33 0 

 

If crop residue was added or left on the fields, the added carbon was calculated as 

above (47% of the weight). For the addition of nitrogen, phosphorous and potassium 

from this source, this was only calculated if the crop residue was added from an 

external source. For crop residue left on the fields, these nutrients are not an addition, 

they are simply being recycled back into the system. Carbon on the other hand is an 

addition by the creation of biomass. Since the “application” of crop residue was only 

reported as a yes/no question in the survey, we used the yield and harvest indices to 

estimate the amount of crop residue from different crops (Smil, 1999)(Table 2). 
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Table A- 2. Harvest indices; crop residue as the ratio of the harvested product to total 

dry shoot matter (Smil, 1999). 

Crop residue group Harvest index 

Cereals 0.4 

Sugar crops 0.56 

Roots 0.4 

Vegetables 0.38 

Fruits 0.38 

Legumes 0.49 

Oil crops 0.52 

Onions 0.83 

Other crops 0.28 

 

 

Nutrient removal 

A number of reference tables were used in the calculation of nutrient removal. 

The table below shows the nutrient removal factors we used (Lesschen et al., 2004) to 

calculate nitrogen, phosphorous and potassium removal from fields for all harvested 

products such as cereals, legumes, fruits, and vegetables. Harvest and yield of all crops 

were calculated at the field, farm, and landscape scales, and were summarized in 

Figure 1. Carbon removal was calculated taking carbon as 47% of the weight of the 

harvested product. 
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Figure A-1.Mean yield (kg/ha) of various crops in different landscapes. 
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Table A-3. Nutrient removal of nitrogen (N), phosphorous (P) and potassium (K) in 
kg/metric ton for harvested product, as well as crop residue (Lesschen et al., 2004). 

Crops 
N 
(harvested) 

P 
(harvested) 

K 
(harvested) 

N (crop 
residue) 

P (crop 
residue) 

K (crop 
residue) 

Banana 1.2 0.3 4.5 1.6 0.3 11.9 

Barley 15.5 2.8 6 7 1 21 

Cassava 4.2 0.5 4.3 4.6 0.9 1.4 

Cereals other 16.7 4.4 4.8 10.9 2.3 38.6 

Citrus 1.8 0.2 2.3 0.6 0.2 4.4 

Cocoa 40 8.5 19.3 19.9 4.7 33.3 

Coconut 61 7.2 9.8 27 5.7 25.3 

Coffee 35 2.6 16.8 4.3 3.8 9.3 

Cotton 18.7 9.7 9 13.9 6 29.8 

Fibers 5 0.4 6 2.1 0.7 9 

Fruits other 2 0.2 2 1.8 0.2 4.9 

Groundnut 37.2 6 8.2 15.9 2.4 14.9 

Maize 16.8 4.1 4.8 9.7 1.9 21.4 

Millet 19.2 6 5.4 20.4 4 59.8 

Oil crops other 2.6 0.5 4.4 0.3 0.6 5.4 

Oil palm 2.9 0.7 4.1 3.7 0.6 3.3 

Plantain 0.7 0.1 3.4 1.2 0.3 6.4 

Potato 4.4 1.3 6.9 2.3 0.7 4.5 

Pulses 20 3.4 11.1 10.4 1 13.1 

Rice 11.6 3.4 3.4 11.3 2.3 35.8 

Roots other 4.6 0.3 2.9 1.9 0.5 3.1 

Rubber 6.9 1.2 4.6 1 0.2 4 

Sesame 30 6.1 6.8 15 5.4 21.1 

Sorghum 14.5 5.5 3.8 10.8 4.6 29.2 

Soybean 62.1 10.9 20 17.6 3 14.4 

Sugar cane 0.6 0.2 1.2 0.3 0.3 0.3 

Sunflower 24 3.5 5.5 23 3.2 41.3 

Sweet potato 4.8 0.8 7.3 2.1 1.2 3.3 

Tea 35 3.8 13.4 0.1 0 0 

Tobacco 56 8.2 72.7 0.1 0 0.2 

Vegetables 9 0.9 2.6 3.2 1.4 7.8 

Wheat 22.3 4.3 5.8 4.3 1.8 26.7 

 
 
Nutrient budget  

Nutrient budgets for each nutrient (nitrogen, phosphorous and potassium) were 

calculated for each field in both kg and kg/ha, and were aggregated at the farm level. 

Positive values indicate a net addition of nutrients to the field, negative values a net 

removal. 
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We then standardized the final partial nutrient budget indicator to reflect nutrient deficits 

observed for all observations in the data, using the “less is better” fuzzy logic 

membership function, meaning less nutrient deficit is better.The standardization of the 

final partial nutrient budget indicator is calculated as follows:  

Since the values obtained for nutrient budgets were negative, they were standardized 

using the “less is better” standardization function to calculate a nutrient, phosphorous 

and potassium budget indicator. 

The final nutrient balance indicator was calculated where the three values for the 

standardized nitrogen, phosphorous and potassium indicators, are divided by 3 to give a 

value from 0 to 1. This reflects overall less nutrient deficit is better.  

 
𝑁𝑢𝑡𝑟𝑖𝑒𝑛𝑡 𝑏𝑎𝑙𝑎𝑛𝑐𝑒 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟 

=

Nitrogen partial nutrient budget indicator +
 Potasisum partial nutrient budget indicator + Phosphorous partial nutrient budget indicator 

3
 

 
 

4. Soil nutrient supply indicator in the Upper Ewaso Ng’iro 
 
In the case of the Upper Ewaso Ng’iro,  a soil nutrient supply indicator was 

determined using total Nitrogen (Total N) along with soil Cation Exchange Capacity 

(CEC). Each property was standardized using its respective fuzzy logic membership 

function. Nitrogen partial budget or total Nitrogen was standardized using the “more is 

better” function, CEC was also standardized using the more is better function. The  

nutrient supply indicator score was calculated using the arithmetic mean of the 

standardized properties. The calculations of  the soil water storage indicator are as 

follows:  
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𝑁𝑖𝑡𝑟𝑜𝑔𝑒𝑛 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟  =
Total N −  max( Total N)

max(Total N) − min (Total N)
 

 
 

𝐶𝐸𝐶 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟 =
CEC −  max( CEC)

max(CEC) − min (CEC)
 

 

𝑁𝑢𝑡𝑟𝑖𝑒𝑛𝑡 𝑠𝑢𝑝𝑝𝑙𝑦 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟 =
𝑁𝑖𝑡𝑟𝑜𝑔𝑒𝑛 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟 + 𝐶𝐸𝐶 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟

2
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B DATA AND CODE REPOSITORIES 

 
CHAPTER 2 CODES 
 
https://gitlab.com/tvenort/siil-environmental-indicators 
 
https://github.com/tvenort/Dissertation_Chapter2 
  
CHAPTER 3 CODES 

https://github.com/tvenort/Dissertation_Chapter3-4 
 
CHAPTER 4 CODES 

https://github.com/tvenort/Dissertation_Chapter3-4 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

https://gitlab.com/tvenort/siil-environmental-indicators
https://github.com/tvenort/Dissertation_Chapter2
https://github.com/tvenort/Dissertation_Chapter3-4
https://github.com/tvenort/Dissertation_Chapter3-4
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