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Abstract

The extensive eastern boundary of Everglades National Park (ENP) in south Florida (USA) is subject to one the most expensive

and ambitious environmental restoration projects in history. Understanding and predicting the interaction between the shallow

aquifer and surface water is a key component for fine-tuning the process. The Frog Pond is an intensively instrumented

agricultural 2023 ha area adjacent to ENP. The interactions among 21 multivariate daily time series (ground and surface water

elevations, rainfall and evapotranspiration) available from this area were studied by means of dynamic factor analysis, a novel

technique in the field of hydrology. This method is designed to determine latent or background effects governing variability or

fluctuations in non-stationary time series. Water levels in 16 wells and two drainage ditch locations inside the area were selected as

response variables, and canal levels and net recharge as explanatory variables. Elevations in the two canals delimiting the Frog

Pond area were found to be the main factors explaining the response variables. This influence of canal elevations on water levels

inside the area was complementary and inversely related to the distance between the observation point and each canal. Rainfall

events do not affect daily water levels significantly but are responsible for instantaneous or localized groundwater responses that

in some cases can be directly associated with the risk offlooding. This close coupling between surface and groundwater levels, that

corroborates that found by other authors using different methods, could hinder on-going environmental restoration efforts in the

area by bypassing the function of wetlands and other surface features. An empirical model with a reduced set of parameters was

successfully developed and validated in the area by interpolating the results from the dynamic factor analysis across the spatial

domain (coefficient of efficiency across the domain: 0.66–0.99). Although specific to the area, the resulting model is deemed

useful for water management within the wide range of conditions similar to those present during the experimental period.
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1. Introduction

In the first half of the 20th century a complex

drainage canal system was constructed in south
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Florida to protect urban and agricultural areas against

flooding. However, this regional water management

also led to draining of protected natural wetland areas

in the adjacent Everglades National Park, creating a

negative impact on the ecosystem. In an attempt to

restore the wetland environment of the Everglades,

the Combined Structural and Operational Project and

the Comprehensive Everglades Restoration Plan are

being developed along the Park’s extensive eastern

boundary with the developed area (agricultural and

urban). The goal of these projects is to enhance water

deliveries into the Everglades while maintaining flood

protection of developed areas. Implementation of

these projects is a complex problem that requires

detailed understanding of the hydrological processes

involved. Especially, predicting the interactions

between surface water flow in the canals and the

shallow and extremely permeable Biscayne aquifer

(Fish and Stewart, 1991) is a priority for fine-tuning

the objectives at each side of the park boundary, i.e.

environmental restoration and flood protection. In this

context, previous studies in the area (Genereux and

Guardiario, 1998, 2001; Genereux and Slater, 1999)

have shown the complexity of the groundwater system

with extremely permeable materials and evidence of a

very dynamic interaction between canals and the

aquifer. Muñoz-Carpena et al. (2003), based on

preliminary hydrological data (1 year) obtained in

an agricultural area located at the boundary of the

Everglades National Park, reported the almost

instantaneous response of the groundwater to canal

and rainfall inputs in the area. Long-term data sets

containing temporal variation of hydrological vari-

ables have the potential to be used to study the

surface–groundwater interactions in the area. How-

ever, data analysis based on visual inspection and

descriptive statistics can be complex and may not be

sufficient, especially when dealing with multiple

variables. Although standard multivariate analysis

techniques are useful tools and can be adapted to

analyze time series to obtain information about the

interactions between variables, the time component of

the data is ignored. A preferred method for studying

multivariate time series is Dynamic Factor Analysis

(DFA), because it allows estimating common patterns

and interactions in several time series as well as

studying the effect of explanatory time-dependent

variables (Zuur et al., 2003b). Multivariate time series
may be analyzed as response functions assuming that

there are common driving forces behind them, i.e.

factors or latent effects that determine the variation of

the individual observations. These factors can be

described by trends and/or explanatory variables.

Dynamic factor analysis is a specialized time series

technique originally developed for the study of

economic time series models (Geweke, 1977) that

has been recently used with variations in disciplines

like psychology (Molenaar, 1985, 1989, 1993;

Molenaar and de Gooijer, 1988; Molenaar et al.,

1992, 1999) and economics (Harvey, 1989;

Lütkepohl, 1991). Lately, Zuur and Pierce (2004)

used dynamic factor analysis for fisheries appli-

cations, while Mendelssohn and Schwing (2002)

applied it to large oceanographical time series.

Márkus et al. (1999) applied dynamic factor analysis

in hydrology to identify common patterns of

groundwater level in a karstic area of Hungary.

Although they identified two common trends as

recharge (infiltration) and extraction (pumping), no

explanatory variables were included in the model. In

addition, since the timing of water level measure-

ments available in the study was not systematic, this

study considered only annual average water elevation,

and information related to seasonality was lost.

The objective of this study was to apply dynamic

factor analysis and modeling to study the interactions

between daily time series of hydrological variables

obtained from a heavily instrumented small agricul-

tural area in the boundary of the Everglades National

Park. The analysis was conducted in three steps: (i)

identification of common trends of ground and surface

water levels; (ii) inclusion of explanatory variables in

the multilinear DFA model; (iii) extension of results to

the spatial field domain to simulate observed values.
2. Materials and methods

2.1. Experimental set-up

The study was conducted at the Frog Pond (Fig. 1),

a small area of 2023 ha located at the boundary of

Everglades National Park in Homestead, Florida. This

public land was leased for the last 11 years to a group

of growers that farm under restricted conditions (low

inputs and limited flood protection). The area adjoins



Fig. 1. Frog Pond area monitoring network.
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two canals managed by the South Florida Water

Management District (SFWMD) regional network:

C-111 (west) and L-31W (east). Water level in both

canals is regulated by remotely operated structures

S-177 (spillway) and S-175 (culvert), respectively.

Under the Combined Structural and Operational
Project operations, the water level in canal L-31W is

maintained high in order to increase water delivery

into the Everglades, while pushing agricultural return

flows away to the east. This is achieved by keeping

the gate at structure S-175 permanently closed while

pumping water from canal C-111 into the L-31W in
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the northern part of the Frog Pond. In addition a

system of detention ponds and a 14.2 m3/s pumping

station (Fig. 1) was constructed in June 2002 in

accordance with new environmental regulations in the

area (USACE, 2002). This system influences surface

and groundwater flow patterns and elevation in the

area.

An extensive monitoring network distributed across

the southern portion of the Frog Pond area (780 ha

south of the Torcise ditch, Fig. 1) was developed for

this study. The first experimental phase of the

University of Florida (UF) monitoring network was

initiated in February 2002 with the installation of a

1.6 km transect with 10 fully instrumented wells for

water elevation, two rain gauges, soil moisture sensors

and an automatic weather station (Fig. 2). Wells were

5 m deep cased with 5 cm diameter PVC pipe screened

at the lower 4 m section. The pipe was surrounded by a

clean silica sand envelope to fill the 20 cm wide

borehole and sealed at the top with 20 cm bentonite and

10 cm concrete layers where a 30 cm wide cast iron

manhole was set. Wells and manholes were kept closed

and locked at all but maintenance times. Groundwater

levels were registered every 15 min by auto-logging

pressure transducers compensated for temperature

effects and atmospheric pressure (Solinst, Inc.,

Canada). Fifteen minutes rainfall readings were made

with two auto-logging tipping-bucket rain gauges

(Onset Computer Corp., USA), one each located at

1/3 and 2/3 of the distance along the main transect.

Penman-Monteith potential evapotranspiration was

estimated based on 15-min weather data (wind speed,

solar radiation, relative humidity, air temperature,

atmospheric pressure) measured with an automatic

weather station (Onset Computer Corp., USA) placed

on the well transect at a point 2/3 of the total length).
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Fig. 2. Details of transect monitoring network we
Canal levels at both ends of the transect (C-111 and

L-31W) were obtained in this first phase from the

SFWMD’s online records (SFWMD, 2004) at struc-

tures S-175, S-176 and S-177.

In a second experimental phase started in February

2003, six additional fully instrumented wells and two

canal (C-111 and L-31W) and two stage recorders at

Torcise drainage ditch (DitchA and DitchB) were

added north and south of the original transect and

included in the 15-min monitoring protocol (Fig. 1).

These new wells were added to study the possible

perturbations introduced by the newly constructed

detention pond when operation started in summer

2003. To date the detention pond has only been filled

in June 2003. Surface water elevations in canals and in

the Torcise ditch were recorded by a simple self-

contained automatic recorder developed for this

purpose (Schumann and Muñoz-Carpena, 2003).

The loggers in the two canals were attached to

custom-made steel and wood platforms (6!1 m)

supported by pillars anchored to the banks and the

bottom of the canal.

All monitoring stations (wells, ditch and canal

loggers) were surveyed and georeferenced by a

registered surveyor (horizontal coordinates, UTM-

Zone 17 WGS-84/NAD83; elevation, m NGVD29).
2.2. Dynamic factor analysis, DFA

DFA is a statistical technique for the analysis of

multivariate time series that first received this name

from the pioneering work of Geweke (1977). It has

been designed to identify underlying common trends

or latent effects in several time series and interactions

among them. Moreover, it allows for evaluation of the

effect of explanatory variables. DFA is similar to
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other dimension reduction techniques like factor

analysis or redundancy analysis, but since it preserves

temporal structure it can be used with non-stationary

time series. Notice that these conventional multi-

variate methods usually require independent obser-

vations, which is not the case for hydrological time

series (Márkus et al., 1999). Another difference

between DFA and the latter techniques is that in

DFA the axes or factors are restricted to be latent

smoothing functions over time. The analysis is based

on the so-called structural time series models (Harvey,

1989) that allow describing the time series of

measured data of N response variables with a

Dynamic Factor Model (DFM) given by:

N time series

Z linear combination of M common trends

C level parameter Cexplanatory variables

Cerror component (1)

The aim of DFA is to choose M as small as possible

while still obtaining a reasonable fit. M should be

much smaller than N, because although increasing the

numbers of common trends leads to a better model fit,

it results in more information that needs to be

interpreted. The mathematical formulation of this

DFM is given by (Lütkepohl, 1991; Zuur et al.,

2003b) as

snðtÞ Z
XM

mZ1

gm;namðtÞCmnðtÞC
XK

kZ1

bk;nvkðtÞC3nðtÞ

(2)

amðtÞ Z amðt K1ÞChmðtÞ (3)

where sn(t) is the value of the nth response variable at

time t (with 1%n%N); am(t) is the mth unknown

trend (with 1%m%M) at time t; gm,n represents the

unknown factor loadings; mn is the nth constant level

parameter for displacing up and down each linear

combination of common trends; bk,n stands for the

unknown regression parameters (with 1%k%K) for

the K explanatory variables vk(t); 3n(t) and hm(t) are

error components, which are assumed to be inde-

pendent of each other and normally distributed with

zero mean and unknown covariance matrix H and Q,

for 3n(t) and hm(t), respectively. Notice that with this
DFM Eqs. (2) and (3), if seasonal or cyclic

components are present in the time series, they will

be masked and included in the trend component Eq.

(3). The unknown parameters can be estimated using

the Expectation Maximization (EM) algorithm

(Dempster et al., 1977; Shumway and Stoffer,

1982; Wu et al., 1996). Technically, within the

DFA framework, the trends are modeled as a random

walk (Harvey, 1989) and estimations are performed

using the Kalman filter/smoothing algorithm and the

EM method, while the regression parameters associ-

ated with the explanatory variables are modeled as in

linear regression (Zuur and Pierce, 2004). It is worth

noticing that the incorporation of explanatory

variables results in a complete unified description

of the DFM within the EM framework (Zuur et al.,

2003b). These techniques are implemented in the

statistical software package Brodgar v2.3.3 (www.

brodgar.com) used in the study. A complete and

detailed description of this technique is given in Zuur

et al. (2003b).

Results from the DFA were interpreted in terms of

the estimated parameters gm,n and bk,n, the canonical

correlations, and match between model estimations

and observed values. To assess the significance of the

regression parameters, standard errors for them are

included. Low values for the standard error indicate

the statistical significance of the corresponding

parameter. The goodness-of-fit of the model can be

assessed by visual inspection, the coefficient of

efficiency (Nash and Sutcliffe, 1970) and the Akaike’s

Information Criterion, AIC (Akaike, 1974). The

coefficient of efficiency Ce compares the variance

about the 1:1 line (perfect agreement) to the variance

of the observed data (see Appendix A). Notice that

for non-regression models the Ce does not represent

the proportion of sum squares (i.e. deviation of the

observed values to their mean) explained by the model

and it ranges from KN to 1 (Wilson, 2001). Thereby

CeZ1 implies that the plot of predicted vs. observed

matches the 1:1 line. Statistical significance (p-value)

for Ce was estimated with the bootstrap percentile-t

method (Zoubir and Boashash, 1998). The AIC is a

statistical criterion for model selection. It combines

the measure of fit with a penalty term based on the

number of parameters used in the model. When

comparing two or more models, the smallest AIC

indicates the most appropriate model.

http://www.elsevier.com/locate/jhydrol
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The common trends, am(t), are functions that

represent the patterns in the data that cannot be

described with the explanatory variables included in

the model. Factor loadings gm,n, indicate the weight of

a particular common trend in the response time series,

sn. In addition, the comparison of factor loadings of

different time series allows for detection of interactions

between the different sn. Canonical correlations

coefficients (rm,n) are used to quantify the cross-

correlation between the response variables (sn) and the

common trends (am). The terms ‘high’, ‘moderate’,

and ‘weak’ correlation are usually applied to rm,nO
0.75, 0.50–0.75, and 0.30–0.50, respectively. The

influence or weight of each explanatory variable vk

on each sn is given by the regression parameters, bk,n.

2.3. Time series of hydrological variables

and analysis procedure

The 21 daily time series used in the analysis were:

(a) groundwater table elevations (WTE) given in m

NGVD29 at sixteen wells; (b) surface water level

(SWL) given in m NGDV29 in the two canals (C-111

and L-31W) and in the two Torcise ditch locations;

and (c) average net recharge (nRech) in mm/day. WTE

in the wells located along the transect (T_w1–T_w10),

south (S_w11, S_w12, S_w13) and north of it (N_w14,

N_w15; N_w16), and SWL data from the two stage

recorders at the ditch (DitchA and DitchB) were

considered as response variables, while canals’ SWL,

and nRech were selected as explanatory variables.

Although the analysis of time series can be conducted

using daily increments of the hydrological variables,

this would partially remove information about the

underlying patterns that might be important (Márkus

et al., 1999). Therefore, daily-averaged data (non-

stationary) were used from a period of over 2 years

(796 days, 28/03/2002-31/05/2004). nRech contains

the rainfall and evapotranspiration (ETo) information

and was calculated as the difference between

cumulative daily rainfall and evapotranspiration

data. Due to the high cross-correlation between the

two rain gauges (0.95, p!0.001), the average of the

two time series was used.

The DFA was conducted in three incremental

steps. First, no explanatory variables and up to four

trends were simultaneously considered in order to

detect which wells were influenced by the same
underlying effects (common trends). To reduce the

number of model parameters needed, the smaller

number of trends to adequately represent the response

variables was investigated. DFA was applied on

standardized time series, because this facilitates the

interpretation of factor loadings and the comparison of

regression parameters. It is worth noting that although

normality of data is beneficial for DFA, it is not

strictly necessary (Zuur et al., 2003a). Second, the

analysis was repeated, taking into account the three

explanatory variables described above to look at a

possible reduction in the influence of the common

trends obtained in the previous step. Finally, in order

to predict WTE, DFA was also conducted with non-

standardized data and using the explanatory variables

with the most impact. To assess the robustness of this

model, the DFM in this last step was developed from a

reduced data set used for calibration, and then

validated using independent data (unused portion of

the data set).

The error component 3t in Eq. (2) is determined by

the covariance matrix H, whose elements represent

information that cannot be explained by the common

trends or the explanatory variables. Using a sym-

metric, non-diagonal H, translates into a smaller

number of common trends needed for an adequate

model fit (Zuur et al., 2003a), because it also contains

off-diagonal elements, that account for the joint

information in two response variables that is not

explained by the other terms included in the DFM.

Large off-diagonal elements are an indication that the

corresponding time series are not fitted well. Thereby,

for all DFA the option to use a symmetric, non-

diagonal covariance matrix of the error term 3t was

selected.

2.4. Spatial modeling of water levels

The DFM obtained from the last step in the

analysis procedure described above is space-depen-

dent, so that the resulting factor loadings and

regression parameters are limited to each observation

site and thus cannot be used at intermediate locations

of the domain. Assuming that the observed response

variables represent a finite sample from an infinite

collection of time series continuously distributed all

over the study area, empirical spatial functions of

these DFM parameters can be obtained by
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interpolation. In this context we performed least-

square surface fitting on the relevant DFM parameters

across the domain. The resulting model is site specific

and should be applied only within the wide range of

conditions similar to those found during the exper-

imental period.
3. Results and discussion

3.1. Experimental time series

Daily time series of the hydrological variables

(rainfall potential evapotranspiration, surface- and

groundwater levels) measured at the experimental site

are presented in Fig. 3.

Fig. 3a shows the seasonal variation of rainfall and

ETo, both being higher in spring and summer and

lower in fall and winter. Typically, a 4-month rainy

season occurs in the area from June to September,

where over 60% of the total annual precipitation is

collected. WTE in the wells along the transect

(Fig. 3b) seem to follow the same pattern around the

value of 1 m NGVD29. The higher levels were

observed during the rainy season, while in May

2002 and May 2004 the levels dropped gradually to

around 0.5 m NGVD29. Fig. 3b includes also WTE in

the wells located north and south of the transect (in the

second experimental phase). Observations in these

wells differed from those in the transect. Wells located

south of the transect (S_w11, S_w12, S_w13) showed

lower WTE than the transect wells, while those to the

north of the transect (N_w14, N_w15, N_w16)

presented the highest WTE values. Fig. 3c shows the

temporal variations of surface water level in the

canals (C-111 and L-31W) and in the ditch. The visual

inspection of SWL in C-111 and L-31W indicates

the effect of the Combined Structural and

Operational Project interim management strategy, so

that SWL L-31W is generally 0.1–0.7 m higher than

SWLC-111 except during February 2003 when the gate

at structure S-175 in canal L-31W was opened to

accommodate a canal-drawdown study carried out by

the SFWMD. In addition, SWL observed in the ditch at

the stage recorder DitchB closely matches the SWLL-

31W. Generally, Fig. 3 suggests that rainfall and canal

management can potentially affect WTE; rainfall is

especially important for explaining sharp rises
observed in WTE. As an example, complete surface

flooding was experienced in at least four wells after

the extreme rainfall event (84 mm) in December 2002

(T_w5 and T_w6), and during the third and fourth

quarters of 2003 (N_w14 and N_w16). At least one

time during the experimental period, 50% of the wells

presented water table depth within the top 15 cm,

which usually corresponds to the agricultural soil

layer.

3.2. Dynamic factor analysis

DFA using water elevations at all the wells and at

the ditch stations (DitchA and DitchB) as response

variables, Model I (Table 1) showed that just one

common trend, a1(t), was sufficient for an adequate

model fit (AICZK24755; visual inspection; and

CenZ0.94G0.02 across the domain). The estimated

factor loadings (gm,n), constant level parameters (mn),

canonical correlation coefficients (rm,n) and coeffi-

cients of efficiency (Cen) for this model are

summarized in Table 1. The statistical significance

of Cen was p!0.001 for all response variables.

Factor loadings in Table 2 indicate that WTE in all

the wells have similar positive relation to the common

trend (average g1,n value: 0.287G0.013), and this

correlation is very high in all cases (average

r1,nZ0.97G0.01). In addition, the high Cen showed

that WTE in the area can be described satisfactorily by

the common trend presented in Fig. 4a plus the

constant level parameter. In this context, notice the

similarity between Figs. 3b and 4a. Diagonal and off-

diagonal elements of H were small, so that all the

information contained in the response variables is

fitted well and can be explained with a single common

trend.

Table 3 summarizes the results obtained from the

DFA using nRech, SWLC-111, and SWLL-31W as

explanatory variables (Model II). These results

include the regression parameters (bk,n) and their

standard error for each explanatory variable. Again,

the DFM with just one trend, a1(t) (Fig. 4b) provided

an adequate fit (AICZK29250; visual inspection;

and average CdnZ0.96G0.02, p!0.001).

WTE in all the wells have a similar positive relation

to the common trend (average g1,n value: 0.037G
0.018), but the inclusion of explanatory variables

reduced these factor loadings by an order of



0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

5/03/2002 13/06/2002 21/09/2002 30/12/2002 9/04/2003 18/07/2003 26/10/2003 3/02/2004 13/05/2004

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

5/03/2002 13/06/2002 21/09/2002 30/12/2002 9/04/2003 18/07/2003 26/10/2003 3/02/2004 13/05/2004

0

20

40

60

80

100

120

140

160

180

ETo

Rain

5/03/2002 13/06/2002 21/09/2002 30/12/2002 9/04/2003 18/07/2003 26/10/2003 3/02/2004 13/05/2004

C-111

L-31W

DitchA

DitchB

S
W

L 
(m

 N
G

V
D

29
)

W
T

E
 (

m
 N

G
V

D
29

)
E

T
o 

(m
m

)

R
ai

n(
m

m
)

Q2(2002) Q3(2002) Q4(2002) Q1(2003) Q2(2003) Q3(2003) Q4(2003) Q1(2004) Q2(2004)

N_w14
N_w16

S_w13

Verification period

C-111

L-31W DitchA

DitchB

N_w15

S_w12S_w11

Verification period Calib.

(a)

(b)

(c)

Fig. 3. Summary of hydrological time series obtained at the experimental site for the whole monitoring period.
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magnitude compared to those of the previous DFM

(Model I). This effect of the trend is weak

(0.41!r1,n!0.64), suggesting that patterns observed

in the wells may be sufficiently described by the
explanatory variables. A visual comparison of the

common trend (Fig. 4b) and the WTE time series

(Fig. 3b) showed less similarity between them

compared with that of Model I (Fig. 4a).



Table 1

DFM models tested in the study (see explanation in the text)

Model No. of trends Explanatory variables Regression parameters Total number of parameters Ce

I 1 None – 36 0.94

II 1 nRech, SWLC-111, SWLL-31W From DFA 90 0.96

III 0 SWLC-111, SWLL-31W From DFA 54 0.91

IV 0 SWLC-111, SWLL-31W Interpolation 22 0.87

Table 2

Output results from DFA without explanatory variables (Model I)

sn g1,n mn
a r1,n Cen

T_w1 0.290 0.00G0.43 0.960 0.922

T_w2 0.290 0.00G0.43 0.957 0.917

T_w3 0.291 0.00G0.43 0.962 0.925

T_w4 0.294 0.00G0.43 0.972 0.945

T_w5 0.294 0.00G0.43 0.971 0.943

T_w6 0.293 0.00G0.43 0.968 0.937

T_w7 0.295 0.00G0.43 0.978 0.956

T_w8 0.298 0.00G0.43 0.984 0.968

T_w9 0.299 0.00G0.43 0.988 0.976

T_w10 0.300 0.00G0.43 0.991 0.982

S_w11 0.287 K0.07G0.42 0.965 0.921

S_w12 0.292 K0.06G0.43 0.977 0.942

S_w13 0.289 K0.08G0.42 0.968 0.929

N_w14 0.272 K0.21G0.40 0.978 0.950

N_w15 0.257 K0.21G0.38 0.975 0.934

N_w16 0.269 K0.23G0.39 0.965 0.922

DitchA 0.260 K0.17G0.38 0.965 0.922

DitchB 0.299 K0.09G0.44 0.982 0.956

a MeanGstandard error.
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Regression parameters represent the intensity of

the corresponding explanatory variable. Comparison

of bk,n provides evidence that SWL in the canals

influence the temporal changes of WTE more than the

rainfall. In addition, the bL-31W for DitchB is 0.97G
0.01, which agrees with the good match between

SWLL-31W and DitchB observed in Fig. 3c. Keeping in

mind that T_w1 is near the eastern canal C-111 and

T_w10 is near the western canal L-31W, notice how

the bC-111,n decreased from T_w1 to T_w10, while for

bL-31W,n an increase in the same direction was

observed. This effect is also consistent north and

south of the main well transect when moving from

S_w11 to S_w13 or N_w15 to N_w14. This showed

that the influence of canal elevations on WTE at each

well was inversely related to the distance between the

well and each canal. In an attempt to visualize the

effect of both canals on surface- and groundwater in

the area, isolines were generated by kriging based on

the bC-111 and bL-31W in Table 3. Notice the similarity

of the b isolines between Fig. 5a and b, except for

their complementary values. Again, this suggests that

both canals are interacting one against the other

through groundwater flow, thus affecting WTE in the

area. North of the transect, b isolines are almost

parallel, which can be related to the general west to

east groundwater flow that results from the Combined

Structural and Operational Project modifications.

However, in the southern part of the Frog Pond, b
isolines are perturbed. A possible explanation for this

effect was reported by Muñoz-Carpena et al. (2003).

Based on computer simulations with the numerical

model MODFLOW (McDonald and Harbaugh, 1988),

they concluded that the permanently closed gate at

structure S-175 (associated with the Combined

Structural and Operational Project operations) has a

general impact on groundwater flow south of the

transect, so that the sharp gradient of around 1 m

between head and tail waters of the canal structure

shifts the general west to east flow to turn around the
structure with increasing speed and eventually west

towards the Everglades. Genereux and Slater (1999),

studying discharge data collected with acoustic

velocity meters installed in the canals C-111 and

L-31W, also reported a very quick transfer of

groundwater from north to south of this area through

the canals. These authors concluded that this transfer

would bypass the overlaying wetlands water quality

function and thus hinder on-going ecosystem restor-

ation efforts.

Regression parameters for nRech (bnRech) in

Table 3 were low compared to the canals’, so that

this variable, which combines the effect of rainfall

and ETo, has less impact on daily water levels.

Based on this, an additional DFA was conducted

with non-standardized time series (in m NGVD29)

and using only SWLC-111 and SWLL-31W as explana-

tory variables. This analysis was performed with a

reduced data set (14% of total time series) used for
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calibration that consisted of information from the

rainy and dry seasons (periods [20/07/2003-10/11/

2003] and [1/04/2004-31/05/2004]) (see Fig. 3b).

The low factor loadings and weak canonical

correlations obtained (columns 2–4 in Table 4)

support a further simplification of the model by

excluding the common trend (Model III). This DFM

(using columns 3, 5 and 6 in Table 4) predicted

WTE in all the wells and SWL in the ditch

satisfactorily for both the calibration (0.95!Cen!
0.99, column 7) and the verification period (0.69!
Cen!0.99, column 8) with p!0.001 in all cases.

The model was validated using the remainder of the

time series not used for calibration (Fig. 3b). In
Table 3

Output results from DFA with explanatory variables (Model II)

sn g1,n mn r1,n b

T_w1 0.032 0G0.08 0.450

T_w2 0.017 0G0.04 0.406

T_w3 0.024 0G0.06 0.427

T_w4 0.037 0G0.09 0.467

T_w5 0.033 0G0.08 0.456

T_w6 0.055 0G0.13 0.516

T_w7 0.033 0G0.08 0.453

T_w8 0.039 0G0.09 0.469

T_w9 0.042 0G0.10 0.475

T_w10 0.052 0G0.13 0.506

S_w11 0.029 K0.06G0.07 0.555

S_w12 0.025 K0.05G0.06 0.603

S_w13 0.032 K0.07G0.08 0.583

N_w14 0.071 K0.24G0.17 0.645 K

N_w15 0.042 K0.20G0.10 0.534

N_w16 0.07 K0.24G0.17 0.636 K

DitchA 0.029 K0.16G0.07 0.502

DitchB K0.003 K0.12G0.01 0.513
addition, removing nRech and the common trend

from the model drastically reduced the total number

of parameters required (Table 1).

Fig. 6 shows the WTE observed and predicted by

Model III at the side and center main transect wells and

north and south of it. The DFM successfully predicts the

variation across time and space. Although the model

does match the sharp rises in water elevation created by

large and isolated rainfall events, it is responsive to them.
3.3. Spatial modeling

In order to extend the practical application of this

DFM, regression- and constant level parameters for
nRech,n bC-111,n bL-31W,n Cen

0.10G0.01 0.59G0.02 0.34G0.02 0.961

0.11G0.01 0.57G0.02 0.38G0.02 0.945

0.10G0.01 0.53G0.02 0.41G0.02 0.954

0.08G0.01 0.47G0.02 0.46G0.02 0.970

0.08G0.01 0.45G0.02 0.49G0.02 0.969

0.07G0.01 0.38G0.02 0.52G0.02 0.967

0.09G0.01 0.31G0.02 0.62G0.02 0.968

0.08G0.01 0.25G0.02 0.68G0.02 0.976

0.07G0.01 0.20G0.02 0.72G0.02 0.975

0.05G0.01 0.20G0.01 0.72G0.02 0.976

0.12G0.01 0.64G0.02 0.27G0.03 0.963

0.15G0.01 0.34G0.03 0.58G0.03 0.945

0.15G0.01 0.48G0.03 0.42G0.03 0.945

0.05G0.01 K0.01G0.02 0.80G0.03 0.920

0.01G0.01 0.42G0.02 0.41G0.03 0.954

0.03G0.01 0.24G0.03 0.57G0.04 0.903

0.06G0.01 0.47G0.02 0.38G0.02 0.952

0.01G0.00 0.01G0.01 0.97G0.01 0.995
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Fig. 5. Canal effects on the Frog Pond’s surface- and groundwater based on b: (a) bC-111; (b) bL-31W.

Table 4

Output results from DFA with non-standardized time series (Models III and IV, see explanation on text)

(1) (2) (3) (4) (5) (6) (7) (8) (9)

sn g1,n mn r1,n bC-111,n bL-31W,n Cen
a Cen

b Cen
c

T_w1 0.006 K0.14G0.03 0.245 0.85G0.04 0.19G0.02 0.978 0.908 0.787

T_w2 0.005 K0.16G0.02 0.220 0.83G0.04 0.20G0.02 0.980 0.910 0.883

T_w3 0.005 K0.16G0.03 0.226 0.80G0.04 0.23G0.02 0.974 0.914 0.904

T_w4 0.006 K0.14G0.03 0.225 0.75G0.04 0.27G0.02 0.976 0.912 0.898

T_w5 0.006 K0.15G0.03 0.226 0.07G0.04 0.31G0.02 0.975 0.911 0.921

T_w6 0.006 K0.15G0.04 0.217 0.56G0.05 0.42G0.03 0.968 0.858 0.918

T_w7 0.006 K0.16G0.03 0.217 0.51G0.04 0.46G0.02 0.976 0.905 0.900

T_w8 0.006 K0.14G0.03 0.218 0.43G0.04 0.51G0.02 0.975 0.907 0.912

T_w9 0.007 K0.13G0.04 0.233 0.40G0.04 0.50G0.02 0.973 0.917 0.932

T_w10 0.006 K0.17G0.04 0.217 0.36G0.04 0.52G0.02 0.972 0.911 0.932

S_w11 0.006 K0.29G0.03 0.259 0.87G0.04 0.12G0.02 0.969 0.797 0.826

S_w12 0.007 K0.23G0.04 0.264 0.52G0.05 0.32G0.03 0.958 0.689 0.891

S_w13 0.006 K0.17G0.04 0.248 0.70G0.06 0.26G0.03 0.952 0.724 0.845

N_w14 0.006 K0.04G0.05 0.186 K0.08G0.05 0.93G0.03 0.972 0.909 0.715

N_w15 0.004 K0.08G0.02 0.195 0.65G0.04 0.35G0.02 0.981 0.897 0.885

N_w16 0.005 0.01G0.05 0.192 0.24G0.05 0.64G0.03 0.959 0.795 0.832

DitchA 0.003 K0.06G0.02 0.180 0.77G0.04 0.29G0.02 0.979 0.825 0.660

DitchB 0.001 K0.01G0.01 0.118 K0.06G0.02 1.05G0.01 0.998 0.991 0.988

a Coefficient of efficiency for Model III applied to the calibration period (see Fig. 3).
b Coefficient of efficiency for Model III applied to the verification period (see Fig. 3).
c Coefficient of efficiency for Model IV applied to the whole period.
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both canals can be obtained at every location by using

the following equations and the fitted parameters

given in Table 5 (Model IV)

WLðX;Y ; tÞZSWLC-111ðtÞbC-111ðX;YÞ

CSWLL-31WðtÞbL-31WðX;YÞCmðX;YÞ

(4)

bkðX;YÞZ
aCb ln X CcY CdY2 ChY3

1Ce ln X CfY CgY2 CiY3
(5)

mðX;YÞZaCbX ln X Cc
ffiffiffiffi
X

p
ln X C

d ln X

X2
C

effiffiffiffi
Y

p C
f

Y

(6)

where WL (m NGVD29) stands for surface and

groundwater levels across the domain. Coordinates

(X,Y) are expressed in UTM (meters) and correspond
to northing and easting from WGS-84 (NAD-83),

respectively. Eq. (4) derives from the general DFM

Eq. (2) after applying the simplifying assumptions

from Model III, while Eqs. (5) and (6) were obtained

from the least-squares surface interpolation of the

parameters in columns 3, 5 and 6 of Table 4. These

were selected as the equations, which yielded the best

fit from a set of different equations tried. The

performance of this model was verified by estimating

water elevations in the eighteen monitoring locations

(wells and ditch). The corresponding Cen (column 9,

Table 4) indicated that, in general, the model was

acceptable (p!0.001) and at the same time it required

less numbers of parameters than any of the previous

models tested (Table 1). The expected error (root

mean square error) in predictions across the domain

was found to be 0.07G0.03 m.
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4. Conclusions

Detailed hydrological multivariate time series,

obtained at an agricultural area located at the

boundary of Everglades National Park in south

Florida, were studied and modeled using dynamic

factor analysis (DFA). The analysis was successfully

applied to understand the hydrological trends in this

area, which is affected by an ongoing large scale

environmental restoration project. The technique

proved to be a powerful tool for the study of

interactions among 21 long-term, non-stationary

hydrological time series. Elevations in canals

surrounding the area were found to be the main

factors responsible for groundwater profiles, while

rainfall events were only responsible for instan-

taneous or localized groundwater responses that in

some cases can be directly associated with the

flooding risk. This substantiates the impact of the

regional water management system on the local

hydrological conditions of the area and corroborates

previous results by other authors using different

methods (Genereux and Slater, 1999). This close

coupling between surface and groundwaters could

hinder on-going environmental restoration efforts in

the area by bypassing the function of wetlands and

other surface features. The Dynamic Factor Model

(DFM) resulting from the DFA was validated with

acceptable results (coefficient of efficiency 0.69–

0.99). The regression parameters of the DFM

obtained for each observation point were interpolated

by fitting to empirical functions in UTM (X,Y)

coordinates in an effort to extend the model across

the spatial domain. This second empirical model has

an added benefit that the total number of parameters

required is greatly reduced. The comparison of

model predictions with observed data yielded also

satisfactory results (coefficient of efficiency 0.66–

0.99) with an expected prediction error of 0.07G
0.03 m across the domain. This empirical model is

deemed useful for area management in conditions

similar to those present in the area during the

experimental period. Using this tool on different

canal management alternatives could be explored and

optimized in terms of flooding risk and the on-going

environmental restoration goals for the Everglades

National Park.
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Appendix A. Coefficient of efficiency

The coefficient of efficiency, Ce (Nash and

Sutcliffe, 1970), also known as the Nash-Sutcliffe

coefficient, was calculated from the normalized mean

squared error (nMSE) (Gershenfeld and Weigend,

1993; Berthouex and Brown, 2002) as follows

1KnMSE Z1K
MSE

s�ð Þ2
Z1K

Pls
iZ1½sðtiÞ

�KsðtiÞ�
2

Pls
iZ1½sðtiÞ

�Ks��2

(A.1)

where s(ti)
* and s(ti) are the observed and the

predicted values, respectively, of the surface or

groundwater levels at time ti; ls is the length of the

observed data set; and (s*)2 is the variance of the

observed data.
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