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Abstract

Data of two or more state variables are recommended for porous media flow parameter estimation by inverse modeling. In

this context, it is desirable to minimize efforts and cost when measuring these variables. A method to analyze the suitability of

different sampling alternatives to identify the flow parameters from transient flow experiments by inverse modeling is proposed

and tested in a large undisturbed volcanic soil column. Alternative measurement strategies are defined by combining observed

data from different hydraulic state variables with a variable depth resolution. The state variables considered are soil water

content ðuÞ; matric pressure head ðhÞ; and the water flux at the bottom of the soil column ðqÞ: The performance of the inverse

analysis is measured by means of a factorial evaluation index, encompassing a measure of the goodness-of-fit and parameter

uncertainty. To test this approach, two experiments were conducted where u and h were measured at a maximum measurement

depth frequency of seven observation depths per profile. A first irrigation experiment served to make an initial direct estimate of

the flow parameters for the four soil horizons in the column. From this initial experiment, the hydraulic parameters selected for

inverse estimation are reduced to the saturated water content and the van Genuchten’s suction curve shape parameters. Results

from the second transient irrigation experiment show that although inverse modeling using data from all the state variables

considered (u; h and q) give the best results, monitoring of u in combination with either h or q proofs to be sufficient, even when

only four observation depths are considered.

q 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Computer models of soil water and solute transport

are nowadays widely used for assessing the impact of

agricultural activities on groundwater resources and

for designing best management practices to reduce

these impacts. This is the case in the Canary Islands

(Spain), where appropriate agricultural and water

management is needed for reducing the impacts of the

intensive subtropical horticulture on the groundwater

resources.

The success of modeling soil flow and transport

processes heavily depends on the quality of the model
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parameters that are used to describe the soil’s

hydraulic behavior (i.e. if they are representative of

the soil transport and hydraulic properties). A

complex and increasingly attractive form of par-

ameter estimation is inverse modeling, since it

(i) provides effective parameters in the range of

envisaged model applications; (ii) allows for rela-

tively simple experimental design, as few restrictions

are imposed upon the experimental conditions;

(iii) allows to determine simultaneously water reten-

tion and hydraulic conductivity functions; and (iv) can

handle data from transient flow experiments, which

are inherently faster than steady-state experiments (Si

and Kachanoski, 2000; Zou et al., 2001; Section

3.6.2.1 in Dane and Topp, 2002). Using inverse

modeling, parameters are optimized by minimizing a

suitable objective function (OF) that expresses the

discrepancy between the output of a numerical model

and the observations of a certain hydraulic state

variable (e.g. matric pressure head, soil water content,

flow rates) (Si and Kachanoski, 2000). For this

approach a global optimization algorithm can be

coupled with a numerical forward flow model. Among

such algorithms, the GMCS–NMS (Global Multilevel

Coordinate Search combined with a Nelder Mead

Simplex), described by Huyer and Neumaier (1999)

and Lambot et al. (2002), is a powerful tool available.

However, the practical application of the inverse

modeling approach faces some limitations related to

parameter identifiability (i.e. when more than one

parameter set lead to the same model response) and

robustness of the algorithm. Moreover, the optimized

parameters may be influenced by the boundary

conditions and assumptions used in the procedure:

e.g. dealing with a large number of parameters; fixing

some of the parameters; the type of OF used; and the

quality of the information contained in the measured

variables to identify a unique parameter set. To

overcome these limitations, several recommendations

have been suggested such as modifying the experi-

mental boundary conditions (Eching and Hopmans,

1993); constraining the parameter space by introdu-

cing prior parameter information (Russo et al., 1991;

Abbaspour et al., 1999; Section 3.6.2.9 in Dane and

Topp, 2002); reducing the experimental errors (Kool

et al., 1985); improving the efficiency and robustness

of the inversion algorithm (Kool et al., 1987); or

introducing additional measurements of one or more

state variables (Kool and Parker, 1988; Eching and

Hopmans, 1993; Section 3.6.2.9 in Dane and Topp,

2002). The usefulness of additional data may depend

on its sensitivity to the hydraulic parameters, the

independence of the existing observations, and the

measurement error (Si and Kachanoski, 2000). In such

a context, the effectiveness of different measurement

alternatives for the inverse estimation of soil hydrau-

lic properties needs to be analyzed in detail. This is an

important issue, since some variables are easier to

measure than others and are thus more suitable for

inverse modeling (Abbaspour et al., 1999). Moreover,

when designing an experiment, efforts and costs

should be minimized. Decisions on sampling vari-

ables and methods should be based on quantitative

and objective information rather than on intuition.

In this article, we present a procedure to analyze the

suitability of different sampling alternatives (measure-

ment strategies) to identify the flow parameters from

transient flow experiments. The proposed method of

analysis can be used at the experimental design stage

using synthetic data obtained from a simulation run

with reference parameters or for the estimation of flow

properties from available ‘observed’ data. Alternative

measurement strategies are considered combining

different state variables at different sampling locations

in the soil profile. To facilitate the evaluation of the

alternative strategies, we introduce a factorial evalu-

ation index (FEI) that integrates goodness-of-fit and

parameter uncertainty. The analysis is applied to the

estimation of the soil hydraulic parameters from

irrigation experiments performed on a large undis-

turbed volcanic soil column. Matric pressure head, soil

water content, and/or bottom flux data are introduced

in the inversion problem. The parameters were

inversely estimated using the water flow module of

the WAVE model coupled with the GMCS combined

sequentially with NMS algorithm (GMCS–NMS).

2. Materials and methods

2.1. The forward numerical model

To describe the flow in the unsaturated monolith,

the one-dimensional computer code WAVE

(Vanclooster et al., 1996) was used. The quality of

the numerical solution of this model was recently
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successfully tested in a numerical flow modeling

benchmark exercise (Vanderborght et al., 2002).

WAVE simulates transient flow by numerically

solving the one-dimensional, isothermal Darcian

flow equation in a variably saturated, rigid porous

medium, using the mass-conservative scheme of

Richards equation according to Celia et al. (1990):

CðhÞ
›h

›t
¼

›

›z
KðhÞ

›h

›z
þ 1

� �� �
ð1Þ

where CðhÞ is the soil water content capacity [L21];

z is the vertical distance from the soil surface [L],

defined as positive upward; t is the time [T]; KðhÞ is

the hydraulic conductivity [LT21] and h is the matric

pressure head [L]. It is worth noticing that Eq. (1)

(h-based formulation) is appropriate in this study

instead of the mixed formulation suggested by Celia

et al. (1990), because of the high h values observed

during the experiments herein.

The soil moisture retention curve is assumed to be

of the form described by van Genuchten (1980):

SeðhÞ ¼
uðhÞ2 ur

us 2 ur

¼ ½1 þ ðalhlÞn�2m ð2Þ

where Se is the effective saturation [–]; uðhÞ is the soil

water content [L3L23] at matric pressure head h; us

and ur are the saturated and residual soil water content

[L3L23], respectively; a is the inverse of the air entry

value [L21]; m and n are curve shape parameters. The

m characterizes the asymmetry, while the n is related

to the slope of the curve (Vanclooster et al., 1996).

Combining Eq. (2) with the pore-size distribution

model of Mualem (1976) and using the constraint

m ¼ 1 2 1=n; yields an expression for the unsaturated

hydraulic conductivity function (van Genuchten,

1980):

KðSeÞ ¼ KsS
l
e ½1 2 ð1 2 S1=m

e Þm�2 ð3Þ

where KðSeÞ and Ks are the unsaturated and saturated

hydraulic conductivity [LT21], respectively, and l is

the pore connectivity parameter [–], which accounts

for tortuosity and correlation between pore sizes

(Durner et al., 1999).

2.2. Inverse optimization procedure

2.2.1. Formulation of the inverse optimization

problem

The inverse parameter estimation is formulated here

as a nonlinear optimization problem, where the model’s

soil hydraulic parameters are optimized by minimizing

a suitable OF based on the deviations between observed

and predicted system response variables (Hopmans and

Simunek, 1999; Section 3.6.2.2.b in Dane and Topp,

2002). The optimization process performed includes

three basic steps repeated until some predefined

convergence criteria are satisfied. These steps are:

(i) parameter perturbation; (ii) forward modeling; and

(iii) OF evaluation. In addition, an analysis of

uncertainty is also performed. The formulation of the

OF can be derived from the maximum likelihood theory

that leads, under certain assumptions (Hopmans and

Simunek, 1999), to a weighted least squares problem,

taking the form:

OFðbÞ ¼
Xnv

j¼1

Wj

Xnz

z¼1

Xnj

i¼1

wi;j½Y
p
j ðz; tiÞ2 Yjðz; ti; bÞ�

2

( )

ð4Þ

where the right-hand-side represents the deviations

between the observed ðYpÞ and the corresponding

model-predicted ðYÞ space-time variable of type j (here

matric pressure head, soil water content and bottom

flux) using the soil hydraulic parameter set b. nj is the

number of measurements over time within a particular

set corresponding to the variable of type j;while nv and

nz denote the number of different variables and

observation depths, respectively. wi;j is the weight of

a particular measurement, while Wj is a weighting

factor that accounts for the differences between

observation types due to different data set size ðnjÞ;

and is set equal to n21
j :

2.2.2. Global optimization algorithm

To minimize the OF, the WAVE model was

coupled with the, GMCS, algorithm (Huyer and

Neumaier, 1999). This algorithm combines global

and local search capabilities with a multilevel

approach. The GMCS is a good alternative to other

existing optimization algorithms. It can deal with OFs

with complex topography, it does not require power-

ful computing resources, and initial values of
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the parameters to be optimized are not needed. In

addition, for problems with finite bound constraints

(parameter search space), the convergence is guaran-

teed if the OF is continuous in the neighborhood of the

global minimum. Basically, using the GMCS, the

parameter search space is split into smaller ‘boxes’.

Each box is characterized by its midpoint, whose

function value is known. A box can be split into

smaller ones. As a rough measure of the numbers of

times a box has been split, a so-called level is assigned

to each box. The partitioning procedure is not uniform

but parts where low OF values are expected are

preferred. When the level of a box reaches a specified

maximum value, the box is considered too small for

further splitting and then, the local search relieves.

These local enhancements are done via sequential

quadratic programming and allow quickest conver-

gence to the global minimum. To refine the minimiz-

ation of the OF, the GMCS is combined sequentially

with the NMS algorithm (Nelder and Mead, 1965).

Further details about application of GMCS–NMS to

inverse modeling of soil hydraulic properties are

given in Lambot et al. (2002) and Ritter et al. (2003).

Lambot et al. (2002) introduced the GMCS–NMS in

the area of unsaturated hydrology and performed a

positive evaluation of this algorithm in the identifi-

cation of subsurface hydraulic properties from a

continuously observed soil water content time series

obtained from a numerical one-dimensional infiltra-

tion-redistribution experiment.

The available code that couples the GMCS–NMS

algorithm with the WAVE model (Lambot et al.,

2002) requires specific input files for each inverse

optimization procedure, making multiple inverse

simulations a tedious task. This code was modified

for this study to allow for quicker and more flexible

inverse procedures when combining different hydrau-

lic variables and observation depths. Additional

features added to the code were the uncertainty

analysis and the evaluation of model performance

described below, as well as facilities for running batch

simulations and to export the results to spreadsheets.

2.2.3. Quantification of parameter uncertainty

Uncertainty associated with parameters estimated

by inverse modeling is an essential aspect. Its

quantification is built upon the following assump-

tions: (i) convergence to the global minimum; (ii) zero

model error; and (iii) independent and normally

distributed residuals (measurement errors) (Hopmans

and Simunek, 1999). However, as pointed out by

Hollenbeck and Jensen (1998), parameter confidence

regions are meaningless if adequacy is rejected. An

‘adequate’ model can explain the data to such a

degree, that it can be reasonably assumed that the

remaining discrepancy between predictions and

observations are due to measurement errors. Thus,

first we evaluated the model adequacy following

the methodology proposed by these authors. If the

OF (Eq. (4)) is normalized by setting the weights to

Wj ¼ 1 and wi;j ¼ s22
j (where sj denotes the mea-

surement error), then the optimal sum-of-squares,

OFminðboptÞ; follows a chi-square ðx 2Þ distribution

with N –P degrees of freedom (N is the number of

data used to estimate the P parameters). Thereby, the

probability of model adequacy ðpadeqÞ is computed

from the x 2 cumulative density function (cdf), Q; as:

padeq ¼ 1 2 Q½OFminðboptÞ;N 2 P� ð5Þ

According to Hollenbeck and Jensen (1998),

padeq . 0:5 indicates that the model is ‘adequate’.

Second, we obtained parameter confidence regions

with the widely used approach based on the Cramer–

Rao theorem and taking into account the suggestions

of Hollenbeck and Jensen (1998) and Hollenbeck et al.

(2000) as well. Details of this formulation can be found

also elsewhere (Hopmans and Simunek, 1999; Kool

and Parker, 1988; Lambot et al., 2002). Although this

approach is restrictive and only approximately valid

for nonlinear problems, it allows comparing confi-

dence regions between parameters. Based on the

Cramer–Rao theorem pseudo-univariate confidence

limits are obtained as square roots of the diagonal

elements ðCk;kÞ of the parameter variance–covariance

matrix (because the confidence region is assumed to be

an ellipsoid with its size proportional to the norm of the

variance–covariance matrix). In addition, Hollenbeck

and Jensen (1998) proposed a conservative way to

express confidence regions based on projections of the

confidence ellipsoid on the parameter axes. The

confidence ellipsoid is defined via the maximum

allowable change in the OF from its minimum,

DOFðbÞ: This follows a x 2 distribution with P degrees

of freedom. Consequently, for a desired level of

confidence ðpconfÞ; parameter confidence limits are
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calculated as:

j conf
k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q21ðpconf ;PÞ

q ffiffiffiffiffi
Ck;k

q
ð6Þ

where j conf
k is the confidence limit of parameter k; Q21

is the inverse of the x 2 cdf and Ck;k is the diagonal

elements of the parameter variance–covariance matrix

corresponding to parameter k:

Hollenbeck and Jensen (1998) compared this

approximate approach (exact only for linear models)

with the exact method based on contouring the

DOFðbÞconf for the whole parameter space. They

remarked that the confidence regions (ellipsoids)

obtained with both methods may differ (the higher

pconf ; the larger is the discrepancy). In practice,

however, it is difficult to compute DOFðbÞ for the

whole discretized parameter space and determine for

each one whether DOFðbÞ is larger or smaller than

DOFðbÞconf : Thus, it is recommended to use pconf ¼

90% rather than 95% (Hollenbeck et al., 2000).

2.2.4. Sampling strategies for the inverse problem

We refer here to the term ‘strategy’ to denote a

certain combination of measured data to be used for

the inverse optimization of parameters. Each strategy

implies a particular formulation of the OF according

to the number and type of observations chosen. Thus,

when considering only distinct types of measure-

ments, seven different OFs (Eq. (4)) can be formulated

by combining three hydraulic variables: ðhÞ; ðuÞ; ðqÞ;

ðhuÞ; ðhqÞ; ðuqÞ and ðhuqÞ; where h; u and q; represent

matric pressure head, soil water content and bottom

flux, respectively. On the other hand, using these

combinations, more strategies can be obtained by

taking into consideration different numbers of obser-

vation depths. Further in this article, we will use the

notation ðvarÞL to identify the strategies; where var

represents the combinations of hydraulic variables

and L the number of observation depths.

The performance of several sampling strategies for

the inverse optimization of hydraulic parameters was

analyzed in two steps. First, we performed inverse

modeling independently for each of the seven OFs

mentioned above, considering that the readings from all

observation depths were available. Secondly, once we

evaluated which of those strategies were more appro-

priate, these were further tested by reducing the number

of observation depths. Thereby, we verified if the same

inversion procedure performance was achieved with

less observations points, i.e. lower experimental cost.

Several potential statistics are available to evaluate

the performance of the inversion procedure. However,

it is recommended to use the least number of statistics

as possible (Wilson, 2001). In this context, Finsterle

and Faybishenko (1999) suggested to use an aggregate

measure of parameter uncertainty with a goodness-of-

fit criterion. We quantified the model’s goodness-of-

fit with the normalized mean square error (nMSE).

This statistic is a measure of the variance about the 1:1

line compared to the variance of the observed data

(s2
o). The smaller the nMSE, the better the model

predictions fit the observed data (nMSE ¼ 0 corres-

ponds to a perfect fit) (Wilson, 2001). The nMSE for a

j-type hydraulic variable was calculated as follows:

nMSEj ¼
MSEj

s2
oj

¼

Xnj

i¼1

½Yp
j ðz; tiÞ2 Yjðz; ti;bÞ�

2

Xnj

i¼1

½Yp
j ðz; tiÞ2 �Yp

j �
2

ð7Þ

Thereby, a nMSE corresponding to the three

observation types, j ¼ 1…3 (matric pressure head,

soil water content and bottom flux) was calculated for

each strategy and considering the whole profile. On the

other hand, uncertainty was taken into consideration by

the 90% confidence limits calculated with Eq. (6). Non-

dimensional j90
k ; relative to the estimated parameter

value, were considered for each k-parameter and are

denoted herein as 190
k : To make comparisons between

strategies easier, we propose a FEI that combines both

criteria (goodness-of-fit and uncertainty). The FEI

takes into account that model performance is better

when both, nMSE and parameter uncertainty are small.

We considered that the contribution of both criteria to

the index is multiplicative, so that geometric means of

components may be used (Limpert et al., 2001). In

addition, we also include padeq in the FEI definition to

account for model adequacy. Thereby, the FEI for each

strategy was calculated as follows:

FEI ¼C
YP

k¼1

1
90
k

" #21=P Ynv

j¼1

nMSEj

2
4

3
521=nv

� padeqHðpadeq 2 0:5Þ ¼ C
padeqHðpadeq 2 0:5Þ

ð190
k ÞGMnMSEGM

ð8Þ
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where the subscript GM denotes the geometric mean

among the j-type hydraulic variables considered

(nv ¼ 3; for u; h and q) or among the k-parameters

(P ¼ 8; as described below). C is a scaling constant to

set the range of FEI values from 0 to 1 (C ¼ 2 £ 1023 in

our case). Hðpadeq 2 0:5Þ is the Heaviside step function

(Abramowitz and Stegun, 1972, p. 1020) that cancels

FEI if the model is not ‘adequate’. Following FEI’s

definition, the better measurement strategies will be

characterized by a higher FEI.

Finally, to determine whether alternative measure-

ment strategies perform statistically different, signifi-

cance tests were made on the nMSE’s (Steel et al.,

1997).

2.3. Experimental set-up

A large monolith of undisturbed volcanic soil

(sandy-clay-loam texture) was taken from a banana

(Musa accuminata cv. ‘Grande Naine’) field in

Tenerife (Canary Islands, Spain). The plantation was

under a shadehouse and drip irrigated on a terraced

banana field, typical in the Canary Islands, where it has

sustained continuous cultivation for the last 20 years.

Terraces are built by distributing a 70–90 cm thick

layer of soil upon a drainage layer of fractured basaltic

rock. Although the resulting soil profiles are initially

homogeneous, intensive agricultural practices can

result in the development of horizons in the soil

profile. Changes in the water holding capacity can be

attributed to organic matter incorporation to the soil

(Vereecken et al., 1989), soil degradation due to saline

water irrigation (Armas-Espinel et al., 2002), and

surface compaction processes, which affect porosity

(Dorel et al., 2000).

To reduce the effect of preferential flow along the

walls during the irrigation experiments, large

cylinders with big diameters are recommended

(Schneider and Howell, 1991). A device was

developed to extract large undisturbed soil columns

in stainless steel cylinders (B45 £ 85 £ 0.4 cm

thickness), based on an oil hydraulic press, which

applied up to 66 kN pressure on a steel plate. The

insertion plate was supported by a metallic structure

that was anchored to the soil. The monolith was then

brought to the laboratory, where it was instrumented

with 21 TDR probes (three rods B0.3 £ 20 cm and

2.5 cm separation) and seven digital tensiometers

(tensiometric tube with porous ceramic and a

pressure transducer) (Fig. 1), inserted at seven

observation depths (denoted as A–G). At each

depth (separated 10 cm apart on the vertical direc-

tion starting from the top), three TDR probes were

inserted at 1208 from each other. A collector,

equipped with a pressure transducer, was used to

measure the volume of water coming out from the

base of the monolith during each experiment

(bottom flux). All devices were multiplexed and

connected to a PC. Monitoring the hydraulic

variables was possible using a custom-made soft-

ware (developed at I.T.A.C.L.-Valladolid, Spain).

A small rainfall-simulator was constructed to apply

water uniformly at the top of the column using a

550 £ 550 £ 32 mm3 plexi-glass box equipped with

310 hypodermic needles (B0.3 £ 6 mm spaced

20 mm apart). Water was pumped to the rainfall-

simulator from a main container. On the bottom of the

monolith, a constant-head boundary condition was

imposed by using a 5 cm saturated sand bed (73 mm

particle size), connected to a constant-level reservoir

through a water-hose. A constant suction head was

applied by setting the reservoir at a distance in the

vertical direction from the bottom of the column,

while continuity was maintained (Fig. 1).

2.4. Irrigation experiments

The laboratory experimental set-up allowed to

perform irrigation experiments in an undisturbed soil

column with controlled boundary conditions while

monitoring different hydraulic variables. The top

boundary condition consisted of irrigation applied

homogeneously with the rainfall-simulator at the

surface of the soil. To avoid soil dispersion, a

0.005 M CaSO4 solution with thymol as a microbial

inhibitor (Section 3.3.2.1.d in Dane and Topp, 2002)

was used. To simplify we will refer to the latter as

water. The bottom boundary was set at 10 cm suction,

close to the average field values measured at that

depth (Muñoz-Carpena, 1999).

Throughout each irrigation experiment, matric

pressure head, soil water content and bottom flux

were recorded at 15 min increments and then averaged

at 1 h intervals. Although for some soils subjected to

particular boundary conditions this may not be the

case, averaging in time was possible here, because it
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did not imply strong curve smoothing. The sensor

measurement error for the three variables (6.0 cm,

0.01 cm3 cm23 and 0.5 mm for pressure head, soil

water content and volume of water collected at the

bottom of the monolith, respectively) was estimated

from calibration and transducer specifications.

The soil water content was estimated using a

specific TDR-calibration for the same soil used in this

study (Regalado et al., 2003). Soil water content at

each time and depth was obtained by averaging the

values measured with the three TDR probes at each of

the seven depths.

A first irrigation experiment was performed to

obtain information about the water retention in the

soil profile. Starting from near saturated conditions,

the monolith was continuously irrigated at different

flow rates. The flux was reduced in four steps (5 mm/h

during 94 h; 2.7 mm/h during 32 h; 1 mm/h during

41 h, and 0.2 mm/h during 72 h). Afterwards, irriga-

tion was stopped and measurements continued until

the soil profile reached hydraulic equilibrium (271 h).

By using distinct flow rates it was possible to monitor

the hydraulic variables at different moisture con-

ditions. Plotting soil water content versus matric

Fig. 1. Experimental set-up for irrigation experiments in the volcanic soil monolith.
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pressure head data provided information about the

water retention curve at the observation depths.

Furthermore, these data, fitted to van Genuchten’s

curve with the RETC code (van Genuchten et al.,

1991), provided an initial estimate of the hydraulic

parameters in the optimization process.

A second transient irrigation experiment was

carried out to obtain data for the inverse optimization

of the hydraulic parameters. Four equal 5-l irrigations

were applied at a rate of approximately 5.25 mm/h.

Each one took around 6 h, while the time between

irrigations was 18, 65 and 18 h.

Data corresponding to the first two irrigations of

the second experiment were used for calibration,

while the rest of the data set served for validation.

3. Results and discussion

Water retention data at each soil depth obtained

from the first irrigation experiment was helpful to

select the parameters to be optimized by inverse

modeling with the second experiment. The first

experiment suggested heterogeneities in the soil

profile, where four horizons (H1–H4) with different

water retention could be identified (Fig. 2). Table 1

shows the hydraulic parameters for those horizons. ur

was fixed to an average value of 0.268, which results

from measurements ranging between 0.219 and 0.330

(showing no significant differences at level 0.05).

These were obtained for the same experimental plot

by Armas-Espinel et al. (2002) at 15 cm and by

Table 1

Initial values of the hydraulic parameters based on first outflow experiment (Fig. 2)

Horizon Observation

depths

Depth (cm) Ks (cm/h) us (cm3 cm23) a (cm21) n R2

H1 A,B 0–25.5 2.5 0.452 0.0120 1.473 0.9856

H2 C,D 25.5–45.0 15.0 0.489 0.0223 1.290 0.9631

H3 E 45.0–54.0 20.0 0.531 0.0489 1.193 0.9714

H4 F,G 54.0–72.0 30.0 0.569 0.0454 1.166 0.7667

ur was fixed to 0.268 for the four horizons.

Fig. 2. Soil moisture retention curves observed in the monolith. Measured data (symbols) and fitted van Genuchten curves (lines).
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Muñoz-Carpena (1999) at 15, 30 and 60 cm depth.

It is worth noticing that the large values of ur are

typical of volcanic soils with strong natural micro-

aggregation (Maeda et al., 1977).

A small experimental range of soil water content

and matric pressure head was obtained and used for the

inverse method. Although small, these ranges match

those observed in the drip-irrigated banana plantation

in this soil during normal conditions (Muñoz-Carpena,

1999). Therefore, under this high frequency irrigation

technique, hydraulic properties near saturation are

most important (Durner et al., 1999).

Inverse optimization of all the hydraulic parameters

with the suggested algorithms is impractical when

working with four distinct horizons, since the number

of parameters that describe the hydraulic functions

increased four-fold up to 24 parameters (i.e. us; ur;a; n;

Ks and l for each of the four horizons). To reduce the

number of parameters to be optimized, first l ¼ 0:5

was assumed (Mualem, 1976). Secondly, the selection

of the other parameters to optimize by the inverse

procedure was based on a sensitivity analysis. Thereby,

the sensitivity of the three model outputs (water

content, matric pressure head and bottom flux) to the

parameters of Table 1 was evaluated by calculating

relative sensitivity coefficients according to Yeh

(1986) and Haan et al. (1982). In addition, time-

averaged coefficients were obtained following Inoue

et al. (1998). Results showed that soil water content

was mainly sensitive to the four saturated water

contents, while matric pressure head was more

sensitive to us2; n2; n3; and n4: The bottom flux was

also sensitive to these parameters and to a1 as well.

Finally, we averaged the sensitivity coefficients among

the three state variables (Fig. 3). According to Fig. 3 we

chose us1; us2; us3; us4; a1; n2; n3; and n4 for

optimization. Thus, a total of eight parameters were

selected. Intervals delimiting the parameter search

space for GMCS were set at [0.40–0.65] for us

(cm3cm23) (according to Fig. 2); [1.05–1.60] for n

and [0.005–0.050] for a1 (cm21) (according to the

range that corresponds to USDA soil fine textures

reported by Carsel and Parrish, 1988). The other fixed

Fig. 3. Averaged sensitivity for the van Genuchten parameters of Table 2.

Fig. 4. Comparison of strategies ðvarÞ7 based on the proposed FEI.
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Fig. 5. WAVE model fit to soil water content data corresponding to ðhuÞ7:
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Fig. 6. WAVE model fit to matric pressure head data corresponding to ðhuÞ7:
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hydraulic parameters needed in the model were set to

the values of Table 1. Although it is frequently

recommended not to fix Ks at an independently

measured value (Section 3.6.2.3.c in Dane and Topp,

2002), the sensitivity for this parameter was low

(Fig. 3). Thus, we took for each horizon a Ks value

estimated from the first irrigation experiment

(Table 1).

Calculated FEI values (Fig. 4) show strategies

ðhuqÞ7; ðuqÞ7; and ðhuÞ7 to be the best (highest index,

respectively). As expected, including all information

available in the OF, i.e. ðhuqÞ7; leads to best

results. The optimized parameters using ðhuqÞ7
were: us1 ¼ 47:64 ^ 0:30%; us2 ¼ 49:95 ^ 0:38%;

us3 ¼ 54:05 ^ 0:64%; us4 ¼ 59:00 ^ 0:47%; as1 ¼

0:0172^ 0:0004 cm21, n2 ¼ 1:385 ^ 0:066; n3 ¼

1:228 ^ 0:029; and n4 ¼ 1:244 ^ 0:031: We con-

clude thereby, the adequacy of using soil water

content data combined with other hydraulic variables

(e.g. matric pressure head or bottom flux).

The evaluation of the strategies was also comple-

mented by visual inspection of simulated versus

observed data. From the seven strategies only the

three above-mentioned showed a satisfactory fit.

Fig. 7. WAVE model fit to bottom flux data corresponding to ðhuÞ7:

Fig. 8. Goodness of fit between observed and simulated values with ðhuÞ7:
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As an example, Figs. 5–7 show model performance

using ðhuÞ7 for soil water content and matric pressure

head at the seven monitoring depths, and for bottom

flux as well. Furthermore, agreement between observed

and predicted data for the three hydraulic variables is

presented in Fig. 8. From these figures, we conclude

that model predictions were generally satisfactory.

In this context, Simunek and van Genuchten

(1996) obtained best parameter identifiability when

both pressure head and soil water content were

used simultaneously. In a study on two homo-

geneous soils, Abbaspour et al. (1999) compared

the unsaturated hydraulic properties obtained by

inverse methods using different combinations of

measured variables (among pressure head, soil

water content and cumulative discharge) in the

OF. Based on the MSE, they did not find statistical

differences in the results obtained with the distinct

formulations of the OF. Keeping in mind that we

are interested in finding a suitable strategy (i.e. best

results with lower costs), we tested if those

strategies were statistically different. No significant

differences (at level 0.05) were found between the

nMSE’s corresponding to ðhuÞ7; ðuqÞ7 and ðhuqÞ7:

Based on our previous results, we used the best

alternatives [ðhuÞL; ðuqÞL and ðhuqÞL] to test if

reducing the number of measurement points (depths)

would lead to acceptable results. First, we chose four

observation depths (one per horizon) trying two

different combinations of them: ðvarÞ4
0{ACEG} and

ðvarÞ4
00{BDEF}: Second, combinations of three depths

were considered to check if three observation depths

would still have enough information for the parameter

estimation of the four horizons: ðvarÞ3
0{ADG};

ðvarÞ3
00{AEG} and ðvarÞ3

000{BCF}:

The FEI values for the six combinations and the

three alternatives are presented in Fig. 9. First, ðvarÞ3
implied an important reduction of the FEI. Therefore,

strategies with less than 4 observation depths are not

recommended. Second, when using four observation

depths, ðvarÞ4
0 and ðvarÞ4

00; a decrease in the calculated

FEI was observed, too. Finally, no significant differ-

ences (at level 0.05) were found between ðvarÞ7 and

ðvarÞ4: The estimated parameters obtained with each

strategy are presented in Table 2.

Based on all this, measuring at only four depths

(one per horizon) would be sufficient if soil water

content data and either matric pressure head or bottom

flux are used. From a practical point of view (lower

cost, simplicity), using soil water content and suction

readings at only four depths, i.e. ðhuÞ4; is desirable. In

this context, despite the higher cost of using suction

readings (digital tensiometers) when compared to

monitoring bottom flux, they have the added benefit of

providing information about the soil water retention

curve. In addition, bottom flux measurements are in

most cases impractical in a field situation, so h and u

(tensiometers and TDR) would be preferred.

4. Summary and conclusions

The suitability of alternative soil water flow

monitoring strategies for the inverse estimation of

the soil hydraulic parameters of a volcanic soil is

analyzed. Inverse modeling is performed by coupling

the GMCS–NMS algorithm to the flow module of the

WAVE model. Use is made of experimental data

collected during two irrigation experiments conducted

in a large undisturbed soil column. The results from

the first experiment reveal the existence of four well-

defined soil horizons with different water retention

curves. Using these results and a sensitivity analysis,

the hydraulic parameters selected for inverse model-

ing are reduced to eight (saturated water content, us; in

the four horizons, and the curve shape parameters: a in

the first horizon, and n in the three other horizons).

Inverse optimization of these properties is successful

Fig. 9. Comparison of strategies ðhuÞL; ðuqÞL and ðhuqÞL based on

the proposed FEI.
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Table 2

Estimated soil hydraulic parameters and j 90
k for all strategies

Strategy us1(%) us2(%) us3(%) us4(%) a1(cm21) n2(2) n3(2) n4(2)

ABCDEFG

ðhÞ7 48.73 ^ 1.87 45.59 ^ 7.08 72.60 ^ 24.09 65.00 ^ 12.76 0.0147 ^ 0.0023 1.239 ^ 0.064 1.848 ^ 0.484 1.190 ^ 0.056

ðuÞ7 46.20 ^ 0.51 48.55 ^ 0.77 53.30 ^ 1.37 56.89 ^ 0.71 0.0111 ^ 0.0020 1.208 ^ 0.087 1.191 ^ 0.077 1.084 ^ 0.045

ðqÞ7 40.12 ^ 1.58 58.92 ^ 1.20 48.29 ^ 1.64 59.88 ^ 0.55 0.0187 ^ 0.0008 1.610 ^ 0.061 1.398 ^ 0.059 1.225 ^ 0.041

ðhuÞ7 47.57 ^ 0.35 49.96 ^ 0.38 56.39 ^ 0.93 58.18 ^ 0.45 0.0157 ^ 0.0005 1.344 ^ 0.062 1.358 ^ 0.037 1.173 ^ 0.035

ðhqÞ7 43.08 ^ 0.85 53.57 ^ 1.35 63.20 ^ 1.91 61.17 ^ 0.39 0.0129 ^ 0.0004 1.835 ^ 0.051 1.172 ^ 0.020 1.496 ^ 0.034

ðuqÞ7 46.94 ^ 0.31 51.10 ^ 0.35 54.99 ^ 0.63 59.21 ^ 0.44 0.0144 ^ 0.0003 1.536 ^ 0.060 1.282 ^ 0.029 1.257 ^ 0.029

ðhuqÞ7 47.64 ^ 0.30 49.95 ^ 0.38 54.05 ^ 0.64 59.00 ^ 0.47 0.0172 ^ 0.0004 1.385 ^ 0.066 1.228 ^ 0.029 1.244 ^ 0.031

ACEG

ðhuÞ4
0 48.01 ^ 0.41 49.71 ^ 0.53 54.91 ^ 0.57 57.83 ^ 0.48 0.0150 ^ 0.0006 1.300 ^ 0.042 1.271 ^ 0.046 1.161 ^ 0.043

ðuqÞ4
0 47.68 ^ 0.45 52.04 ^ 0.43 56.81 ^ 0.54 59.47 ^ 0.53 0.0155 ^ 0.0005 1.581 ^ 0.049 1.372 ^ 0.055 1.317 ^ 0.029

ðhuqÞ4
0 47.28 ^ 0.45 51.70 ^ 0.51 54.94 ^ 0.45 58.75 ^ 0.44 0.0145 ^ 0.0005 1.559 ^ 0.044 1.267 ^ 0.043 1.254 ^ 0.043

BDEF

ðhuÞ4
00 47.88 ^ 0.46 51.12 ^ 0.85 56.98 ^ 0.66 60.69 ^ 0.56 0.0192 ^ 0.0008 1.582 ^ 0.044 1.368 ^ 0.031 1.320 ^ 0.040

ðuqÞ4
00 47.29 ^ 0.35 51.05 ^ 0.42 55.90 ^ 0.50 62.92 ^ 0.54 0.0176 ^ 0.0005 1.600 ^ 0.034 1.309 ^ 0.027 1.489 ^ 0.037

ðhuqÞ4
00 47.37 ^ 0.34 51.30 ^ 0.46 57.71 ^ 0.74 63.74 ^ 0.33 0.0181 ^ 0.0004 1.611 ^ 0.054 1.396 ^ 0.035 1.549 ^ 0.032

ADG

ðhuÞ3
0 48.00 ^ 0.50 50.39 ^ 0.93 72.96 ^ 7.39 57.72 ^ 0.41 0.0144 ^ 0.0015 1.474 ^ 0.173 1.715 ^ 0.242 1.152 ^ 0.030

ðuqÞ3
0 46.61 ^ 0.36 51.70 ^ 0.40 58.70 ^ 2.69 58.08 ^ 0.40 0.0094 ^ 0.0003 1.762 ^ 0.042 1.820 ^ 0.147 1.178 ^ 0.019

ðhuqÞ3
0 47.19 ^ 0.34 50.47 ^ 0.42 55.62 ^ 3.59 58.03 ^ 0.39 0.0115 ^ 0.0003 1.498 ^ 0.030 1.969 ^ 0.131 1.151 ^ 0.016

AEG

ðhuÞ3
00 48.16 ^ 0.55 56.08 ^ 3.34 57.33 ^ 2.21 58.59 ^ 0.45 0.0147 ^ 0.0016 2.021 ^ 0.389 1.395 ^ 0.126 1.242 ^ 0.069

ðuqÞ3
00 47.99 ^ 0.37 48.54 ^ 1.78 54.32 ^ 3.61 58.35 ^ 0.40 0.0144 ^ 0.0003 1.692 ^ 0.046 1.235 ^ 0.083 1.194 ^ 0.026

ðhuqÞ3
00 48.07 ^ 0.38 49.40 ^ 0.96 56.40 ^ 1.72 58.63 ^ 0.46 0.0144 ^ 0.0004 1.777 ^ 0.048 1.340 ^ 0.084 1.232 ^ 0.031

BCF

ðhuÞ3
000 46.60 ^ 0.84 50.62 ^ 1.18 55.14 ^ 5.51 58.54 ^ 1.43 0.0156 ^ 0.0032 1.426 ^ 0.151 1.146 ^ 0.052 1.181 ^ 0.083

ðuqÞ3
000 47.15 ^ 0.44 51.76 ^ 0.65 54.54 ^ 3.85 64.02 ^ 0.79 0.0176 ^ 0.0005 1.518 ^ 0.069 1.293 ^ 0.046 1.581 ^ 0.060

ðhuqÞ3
000 47.01 ^ 0.66 50.38 ^ 0.58 51.06 ^ 2.71 63.33 ^ 0.69 0.0191 ^ 0.0006 1.395 ^ 0.038 1.138 ^ 0.026 1.515 ^ 0.042
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using different monitoring strategies. The alternative

strategies are based on the consideration of different

hydraulic state variables and observation depths for

the formulation of the OF. Furthermore, by defining

an integrated index to account for different evaluation

criteria, the best strategies are easily identified.

Although inverse modeling using simultaneously

soil water content ðuÞ; matric pressure head ðhÞ; and

bottom flux ðqÞ data give the best results, monitoring

of u in combination with either h or q proofs to be

sufficient, even if only four observation depths are

considered. It must be noticed that, despite the higher

cost of using suction readings (digital tensiometers)

when compared to the monitoring of the bottom flux,

they have the added benefit of providing direct

information about the soil water retention curve.

Thereby, if low cost bottom flux measurements are

chosen, additional methods or surveys (e.g. profile

description) might be needed to obtain prior infor-

mation for the inverse procedure.

Using synthetic data, based on estimated reference

parameters, the procedure presented here may serve as

a general method for assessing, at the experimental

design stage, appropriate strategies to estimate the soil

hydraulic parameters by inverse modeling. Since

decisions about the type and number of observations

required for inverse optimization are usually based on

intuition, the procedure applied in this study rep-

resents an objective way to base such decisions on

quantitative information.
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