Technical Report

CONTINUOUS-SIMULATION COMPONENTS FOR PESTICIDE ENVIRONMENTAL ASSESSMENTS WITH VFSMOD: 2. VFS PESTICIDE RESIDUE BETWEEN RUNOFF EVENTS

Sponsoring Agency: European Crop Protection Association AIM-Tec Team Brussels, Belgium

Rafael Muñoz-Carpena, Ph.D.

Agricultural and Biological Engineering, University of Florida P.O. Box 110570, Gainesville, FL 32611-0570

> **May 2012** (Last updated: March. 7, 2014, v5)

Executive Summary

VFSMOD (Muñoz-Carpena et al., 1999; 2004) is a numerical, storm-based design model. During the rainfall-runoff event it calculates the dynamic hydrological and transport processes occurring in the vegetative filter strip (VFS). For this it uses initial conditions (soil, water, vegetation) and boundary conditions (rainfall, inflow runoff from the field) and calculates outflow hydrographs and pollutographs (sediment, pesticides, reactive solutes) for the storm, as well as the water and mass balances at the end of the storm. The model has been coupled for use into current long-term higher-tier pesticide environmental assessment framework (US EPA and EU FOCUS surface water) where flow, sediment and pesticide runoff at the end of the field is calculated by the model PRZM, and VFSMOD routes it from the field through a VFS of desired characteristics to estimate potential load reductions before entering the aquatic environment. Long-term simulations require realistic initial conditions at the beginning of each runoff event in the time series (initial soil water, pesticide residue and vegetation status).

Herein, we present a simplified VFSMOD pesticide mass balance component to estimate surface pesticide residue in the buffer at the end of a runoff event and its degradation towards the next runoff event in the times series.

Table of Contents

Simplified VFSMOD Pesticide Mass Balance and Long-Term Surface Soil Water Dynamics
for Interface with the Continuous EPA/FOCUS Simulation Framework
Description
Pesticide partitioning and residue6
Residual pesticide degradation between events9
Pesticide partitioning of the filter outflow10
Assumptions and limitations10
New VFSMOD input requirements - Revised IWQ input file11
Sample application11
References14
APPENDIX A - Description of VFSMOD pesticide degradation component
APPENDIX B - Soil and site parameters for EU FOCUS scenarios used in PRZM18

List of Tables

TABLE 1. PESTICIDE DEGRADATION RATE FORMULATIONS INCLUDED IN THE MODEL	.9
TABLE 2. MAIN ASSUMPTIONS AND OPERATIONAL CONSTRAINTS OF THE PROPOSED PESTICIDE DEGRADATION MODULE	10
TABLE 3. NEW VFSMOD INPUT REQUIREMENTS (IWQ FILE)1	11
TABLE 4. VFSMOD INPUTS FOR PESTICIDE MASS BALANCE AND DEGRADATION CALCULATIONS FOR THE SAMPLE APPLICATION	11
TABLE 5. VFSMOD OUTPUTS FOR PESTICIDE MASS BALANCE AND DEGRADATION CALCULATIONS FOR THE SAMPLE APPLICATION	E 12
TABLE 6. R1 SOIL AND SITE PARAMETERS FOR PRZM (TABLE D-14 IN EU FOCUS MANUAL)	18
TABLE 7. R2 SOIL AND SITE PARAMETERS FOR PRZM (TABLE D-15 IN EU FOCUS MANUAL)	19
TABLE 8. R3 SOIL AND SITE PARAMETERS FOR PRZM (TABLE D-16 IN EU FOCUS MANUAL)	20
TABLE 9. R4 SOIL AND SITE PARAMETERS FOR PRZM (TABLE D-17 IN EU FOCUS MANUAL)2	21

List of Figures

FIGURE 1. VFSMOD DYNAMIC FLOW AND SEDIMENT	5
FIGURE 2. PROPOSED CONCEPTUAL PESTICIDE MASS BALANCE	6
FIGURE 3. PARTITIONING OF PESTICIDE RETAINED IN VFS FOR DEGRADATION CALCULATIONS.	7
FIGURE 4. PARTITIONING OF PESTICIDE FOR SAMPLE APPLICATION	13

Simplified VFSMOD Pesticide Mass Balance and Long-Term Surface Soil Water Dynamics for Interface with the Continuous EPA/FOCUS Simulation Framework

Description

VFSMOD (Muñoz-Carpena et al., 1999; 2004) is a numerical, storm-based design model. During the rainfall-runoff event it calculates the dynamic hydrological and transport processes occurring in the vegetative filter strip (VFS). For this it uses initial conditions (soil water, vegetation) and boundary conditions (rainfall, inflow runoff from the field) and calculates outflow hydrographs and pollutographs (sediment, pesticides, other) for the storm, as well as the water and mass balance at the end of the storm (Fig. 1). The model can be coupled within current high-tier environmental assessment frameworks (US EPA and EU FOCUS surface water), where the water, sediment and pesticide runoff at the end of the field is calculated by the model PRZM, and VFSMOD routes it from the field through a VFS of desired characteristics to estimate potential load reductions before entering the aquatic environment described by EXAMS (US-EPA) or TOXWA (EU-FOCUS) models.

Long-term simulations require realistic initial conditions (initial soil water, pesticide residue, vegetation status) in the VFS at the beginning of the calculations for each runoff event in the time series. Herein, a simplified VFSMOD pesticide mass balance and degradation component is proposed to estimate surface pesticide residue for buffer efficiency calculations.

Figure 1. VFSMOD dynamic flow and sediment

The new VFSMOD component is based on simplified calculations of pesticide mass balance and degradation on the surface of the VFS, performed after the simulation of pesticide trapping and transport through the filter. The pesticide residue is determined from the water, sediment and pesticide mass balance components calculated by VFSMOD at the end of the runoff event. The residual pesticide in solid phase is estimated as pesticide bonded to the sediment trapped in the filter during the event. A fraction of the dissolved phase pesticide trapped (moved to the subsurface through infiltration), that on the thin soil mixing layer, is considered for degradation towards the next runoff event in time (Figure 2).

Figure 2. Proposed conceptual pesticide mass balance

Residual pesticide after the event, i.e. attached to runoff sediment trapped on the filter and on the mixing layer, is handled as a worst-case scenario where all mass is available for degradation and transport (and trapping) towards the next event. The total surface pesticide mass retained in the filter at the end of the event is degraded with daily time increments based on soil temperature and water conditions until the next runoff event in the series provided by PRZM.

The assumptions, inputs and the calculation procedure are described below along with an application example, and the new VFSMOD component developed for these calculations (Appendices).

Pesticide partitioning and residue

In the EU and USA higher-tier assessments rely on the model PRZM for estimation of water, sediment and pesticide mass leaving the agricultural field (or similar source area). This provides total incoming mass (water, sediment and pesticide) into the filter. If linear sorption equilibrium between solid and dissolved pesticide phases is assumed, the pesticide can be partitioned using the distribution coefficient value K_d for the particular pesticide,

$$K_{d} = \frac{S}{C} = \frac{m_{p}/M_{s}}{m_{d}/V_{w}} \quad [L^{3}M^{-1}]$$
(1)

where $S[M.M^{-1}]$ is pesticide adsorbed to the sediment/soil, $C[M.L^{-3}]$ is the dissolved pesticide concentration, m_p , m_d [M] are mass of pesticide in solid (sorbed to particulates) and liquid phases], M_s [M] is the mass of the solid phase and V_w [L³], the volume of the liquid phase

(runoff). Notice also that K_d is related to the organic carbon sorption coefficient K_{oc} , that is more commonly available for pesticides, and the soil percentage organic carbon (OC(%)) as,

$$K_{d} = \frac{K_{oc} * OC(\%)}{100} \qquad [L^{3}M^{-1}]$$
(2)

For each event dissolved pesticide and the component sorbed to eroded soil/sediment trapped in the filter is calculated using the linear equilibrium assumptions (K_d) based on PRZM inputs (incoming pesticide mass, m_i , sediment mass M_i , and runoff inflow, V_i) and VFSMOD outputs (sediment trapped and out, M_i and M_o , runoff outflow, V_o) and soil mixing layer characteristics (depth d_{ml} [L], saturated water content θ_s [-] and bulk density ρ_b [M.L⁻³]) (Fig. 2).

The residual pesticide in the surface of the filter after the event is calculated as the mass of the pesticide deposited with the sediment during the event (solid phase), plus the amount contained in the mixing layer based on linear equilibrium distribution during the event (Fig. 3).

Figure 3. Partitioning of pesticide retained in VFS for degradation calculations.

A central assumption of the calculations proposed is that for the short-duration of a typical runoff event (minutes to hours) the sediment solid phase pesticide concentration will not change during the event so that the incoming (S_i) , filter-trapped (S_f) and outgoing (S_o) solid phase concentrations are the same,

$$S_i \approx S_f \approx S_o \tag{3}$$

The partition of the incoming pesticide mass (m_i) can be estimated assuming perfect mixing of total mass of sediment pesticide and inflow, and linear adsorption equilibrium between the liquid or dissolved (m_{di}) and solid or particulated (m_{pi}) phases,

$$m_i = m_{p_i} + m_{d_i} \Longrightarrow m_{d_i} = m_i - m_{p_i} \tag{4}$$

$$K_{d} = \frac{S_{i}}{C_{i}} = \frac{m_{p_{i}}/M_{i}}{m_{d_{i}}/V_{i}} \Longrightarrow m_{p_{i}} = \frac{m_{i}M_{i}K_{d}}{V_{i} + M_{i}K_{d}} \Longrightarrow S_{i} = \frac{m_{p_{i}}}{M_{i}} = \frac{m_{i}K_{d}}{V_{i} + M_{i}K_{d}}$$
(5)

For the mass balance within the filter at the end of the event, the pesticide mass trapped in the filter (m_f) can be calculated as the difference between in/out masses, and this as the sum between the mass adsorbed to the sediment deposited in the filter $(m_{f,sed})$ and the dissolved mass infiltrated in the soil during the event $(m_{f,F})$ (Fig. 3),

$$m_f = m_i - m_o = m_i \Delta P = m_{f,sed} + m_{f,F} \tag{6}$$

where ΔP is the filter trapping efficiency of pesticide mass (calculated by VFSMOD for each event). The sediment-adsorbed fraction deposited on the VFS surface during the event can be estimated proportional to the sediment mass deposited in the filter,

$$m_{f,sed} \approx S_i \left(M_i - M_o \right) \Longrightarrow m_{f,F} = m_f - m_{f,sed} = m_i \Delta P - S_i \left(M_i - M_o \right) \tag{7}$$

The pesticide mass contained in the mixing layer can be calculated as the total mass in equilibrium within the mixing layer soil volume ($V_{ml} = d_{ml} \times VL \times b$, see Fig.1). The depth of the mixing layer is recommended to be $d_{ml} = 2$ cm for consistency with that used in PRZM. The new module also allows the user to modify this as needed based on other values reported in the literature (typically 0.5-5 cm). The dimension perpendicular to the flow direction through the filter (b=FWIDTH) is set to b=1 m, i.e. per unit of filter width.

It is assumed that the runoff solution has saturated the soil runoff mixing layer, i.e. that the soil water content is at saturation (θ_s) and that the pore water concentration is equal to that of the average pesticide concentration of the water retained in the filter during the event (C_F). Although at the beginning of the event the concentration of the soil pore water (C_{pw}) will likely be lower than that on the surface (C_F), infiltration during the event will continuously flush the porewater, eventually approaching the concentration at the surface. The assumption that the infiltration concentration equals that of the pore water is likely to result in slightly higher calculated values in the pore water than those in the field, so this represents a conservative assumption in terms of residual mass in the filter. The average dissolved phase concentration of the water retained in the filter during the event is estimated as,

$$C_F = \frac{m_{f,F}}{V_F} \approx C_{pw} \quad \text{and} \tag{8}$$

$$V_F = (V_i + V_R) - V_o \tag{9}$$

Where V_F and V_o are the volumes of water retained in the filter and exiting as runoff, respectively, calculated in VFSMOD, V_R is the rainfall volume for the event. Thus, the pesticide trapped in the mixing layer (m_{ml}) is estimated as the sum of the porewater $(m_{ml,d})$ and solid phase $(m_{ml,p})$ masses,

$$m_{ml} = m_{ml_d} + m_{ml_p} \approx \left(\theta_s C_F + \rho_b S\right) V_{ml} = \left(\theta_s + K_d \rho_b\right) C_F d_{ml} \cdot b. VL$$
(10)

Note that the mixing layer bulk density (ρ_b [M.L⁻³]) can be estimated for mineral soils based on the top soil saturated water content (θ_s [-], an existing VFSMOD input) by assuming the specific density of the soil ρ_s =2.65 Kg/L and,

$$\theta_s \approx 1 - \frac{\rho_b}{\rho_s} \Longrightarrow \rho_b \approx (1 - \theta_s) \rho_s \tag{11}$$

Finally, the total mass of pesticide in the surface considered in the degradation calculations between events is the sum of the pesticide adsorbed to the sediment trapped during the event and the pesticide (solid and liquid phases) contained in the mixing layer,

$$m_{res} = m_{f,sed} + m_{ml} \tag{12}$$

Residual pesticide degradation between events

The dissolved pesticide in the mixing layer arising from the infiltration component is considered part of the surface residual mass for pesticide degradation calculations. Thus, the residual pesticide in the filter (m_{res}) is lumped into single mass component (mixing layer + adsorbed sediment trapped on surface) and degraded as a function of time (first order decay), where k (day) is the pesticide degradation rate,

$$\frac{dm_{res}}{dt} = -k.m_{res} \Longrightarrow m_{res}\big|_{t_1} = m_{res}\big|_{t_0} e^{-kt}$$
(13)

To accommodate different regulatory environments, four types of *k* degradation rates are included (controlled by the input flag IDG in the IWQ file, Table 1). Generally, the degradation rate can be expressed as the product of the reference rate (k_{ref}) and modifiers to incorporate the effects of temperature (k_T) and moisture (k_{θ}) ,

$$k = k_{ref} * k_T * k_\theta \tag{14}$$

Table 1. Pesticide degradation rate formulations included in the model.

IDG	Туре	k _{ref}	k_T	$k_{ heta}$	T_{ref}, E_a
1	EU-FOCUS (1996 rev. 2006; EFSA Opinion, 2008)	k _{ref}	$e^{\frac{E_a}{R}\left(\frac{1}{T_{ref}}-\frac{1}{T}\right)}$	$\left(rac{ heta}{ heta_{ref}} ight)^{-eta}$	293.15 K 65.4 kJ/mol (Q ₁₀ =2.58)
2	US-EPA	k _{ref}	1	1	298.15 K
3	$k = k(\mathbf{T})$	k _{ref}	$e^{rac{E_a}{R}\left(rac{1}{T_{ref}}-rac{1}{T} ight)}$	1	298.15 K 49.5 kJ/mol (Q ₁₀ =2)
4	$k = k\left(\theta\right)$	k _{ref}	1	$\left(rac{oldsymbol{ heta}}{oldsymbol{ heta}_{ref}} ight)^{-eta}$	298.15 K

where m_{res} : residual pesticide in the filter; t = time (days); T = average daily surface soil temperature (K) between events; $\theta = average$ daily surface soil moisture between events $[m^3m^{-3}]$; $k = k(T, \theta) = pesticide$ degradation rate adjusted for (T, θ) (day⁻¹); $k_{ref} = pesticide$ degradation rate (day⁻¹) at standard conditions of $T(T_{ref})$ and θ ($\theta_{ref} = \theta_{FC} = field$ capacity) (<u>note</u>: k_{ref} is related to the pesticide half-life ($t_{1/2}$, day) by $k_{ref} = Ln(2)/t_{1/2}$); $E_a =$ degradation activation energy (10-90 kJ/mol); R = gas constant, 8.314x10⁻³ kJ/mol/K; $\beta =$ constant (recommended 0.7, FOCUS v2.0, 2006).

The calculations are carried out on a daily time step between each event. Soil temperature is needed on the top soil mixing layer ($d_{ml} = 2$ cm based on PRZM). Based on the heat transport

equation, the air temperature attenuates and delays in time through the soil profile until reaching a constant temperature deeper in the profile. Thus, a reasonable approximation for a thin surface layer on the top of the soil is $T_{top} \approx T_{air}$. Soil moisture (θ) is estimated based on FAO-56 crop water stress-adjusted method (FAO, 1998) with the program THETAFAO described in Report 1.

The residual pesticide mass at the beginning of the next event is considered as a worst-case scenario to be fully mixed with the incoming pesticide mass into the filter. For this, it is added to the incoming pesticide mass into the filter, and the pesticide trapping efficiency calculated for that event (ΔP) is applied to the sum to obtained the outflow total pesticide mass leaving the filter in runoff at the end of the event,

$$m'_{i} = m_{i} + m_{res} \Big|_{t_{end}} \Longrightarrow m_{o} = m'_{i} (1 - \Delta P)$$
⁽¹⁵⁾

Pesticide partitioning of the filter outflow

In order to link the pesticide outflow concentration from the VFS with aquatic models representing the water body adjacent to the field in current regulatory frameworks (EPA-EXAMS, EU-TOXWA) it is necessary to estimate the partitioning of the total sediment outflow mass from the filter into dissolved and particulated fractions. As before (eq. The partition of the outcoming pesticide mass (m_o) can be estimated assuming perfect mixing of total mass of sediment pesticide and outflow, and linear adsorption equilibrium between the liquid or dissolved (m_{do}) and solid or particulated (m_{po}) phases,

$$m_o = m_{p_o} + m_{d_o} \Longrightarrow m_{d_o} = m_o - m_{p_o} \tag{16}$$

$$m_{p_o} = \frac{m_o M_o K_d}{V_o + M_o K_d} \tag{17}$$

Assumptions and limitations

Table 2 summarizes the main assumptions contained in the proposed new module.

Component	Assumptions/Limitations
Pesticide mass balance	Linear adsorption equilibrium
	• Saturation of sediment-adsorbed pesticide concentration $(S_i \approx S_f \approx S_o)$, i.e. it does not change during short time event
	• Mixing zone with fixed depth, porewater concentration at the end of event equivalent to that of infiltrating water.
Pesticide degradation	• Soil mixing layer daily temperature considered equal to air temperature
	• Soil mixing layer daily moisture approximated as the average moisture for the root zone
	• Liquid and solid phase pesticide in mixing layer is lumped together with trapped sediment-bonded mass to calculate degradation
	• Activation energy for degradation and the moisture exponent values are valid for field conditions
Incoming pesticide (next event)	• All residual mass in mixing layer after degradation is added to new field incoming mass for next event in time series

Table 2. Main assumptions and operational constraints of the proposed pesticide degradation module

New VFSMOD input requirements - Revised IWQ input file

Sources for the pesticide degradation module inputs are shown in Table 2. No new input factors other than those already available in the PRZM/VFSMOD SWAN framework are required to complete the calculations.

T 4	C .	C 4
Input	Source	Comment
IDG	User	1-4, to select pesticide degradation
		rate formulation (Table 1)
nday	PRZM	No. days to next runoff event
T_i (j=1,nday)	FOCUS	Degradation equation
θ_i (j=1,nday)	THETAFAO/EU SWAN Shell	From MET file info: ETP,
		PRECIP,WIND,Tmax,Tmin
k _	PRZM	Degradation equation
FC	PRZM	Degradation equation
d _{ml}	Recommended in PRZM (2 cm)	Mass balance at the end of the event
m'	PRZM+ VESMOD residue	Runoff pesticide mass entering filter
i	(degraded from previous event)	realisti posterae mass entering mer
	(degraded from previous event)	

Table 3. New VFSMOD input requirements (IWQ file)

Sample application

For illustration, an example of pesticide partitioning and degradation between events is presented. The case corresponds to a runoff event on day December 15, 1984 with an event following 3 days later. Water, sediment and pesticide runoff from a 1 ha (100x100 m) agricultural field is calculated by the PRZM model and transferred to VFSMOD to obtain the water, sediment and pesticide mass balance at the adjacent VFS of dimensions VL=5 m (distance to the water edge from the field) and FWIDTH=100 m. Inputs and outputs for the event, including residual pesticide in surface (sediment bonded + mixing layer) at the beginning of the next event are presented below.

Table 4. VFSMOD Inputs for pesticide mass balance and degradation calculations for the sample application

Inputs	Value	Units
Water Quality (IWQ)		
Partition coefficient (K_d)	0.396	L/Kg
% Clay in sediment (%CL)	25	%
IDG	1	(EU-FOCUS)
Pesticide degradation rate (k_{ref})	0.02475	day-1
Pesticide half-life $(t_{1/2} = \text{Ln}(2)/k_r$	27.99	day
Soil field capacity (θ_{FC})	0.26	(-)
Incoming pesticide mass (m_i)	60970	mg
Mixing layer thickness (d_{ml})	2	cm
No. of days between events	3	
T(°C) (i=1,3)	9.5, 8.6, 6.3	
θ (-) (i=1,3)	0.265, 0.264, 0.265	

Other inputs		
ISO: Porosity (OS)	0.42	(-)
IKW:Filter length (VL)	5	m
IKW: Filter width (FWIDTH)	100	m
IRO: Field length (SLENGTH)	100	m
IRO: Field width (SWIDTH)	100	m

Table 5. VFSMOD outputs for pesticide mass balance and degradation calculations for the sample application

Inputs	Value	Units
Water Quality (IWQ)		
Phase distribution, Fph	994.266	
Infiltration (dQ)	48.17	%
Sediment reduction (dE)	99.918	%
Runoff inflow reduction	43.034	%
Pesticide reduction (dP)	63.804	%
Water Balance (OSM)		
Volume from rainfall (V _R)	17.35	m ³
Volume from up-field (V _i)	175.1	m ³
Volume from outflow (V _o)	99.75	m ³
Volume infiltrated (V _F)	92.7	m ³
Sediment balance (OSM)		
Sediment inflow (M_i)	444.7	Kg
Sediment outflow (M_o)	0.366	Kg
Sediment in filter	444.334	Kg

Specific calculations with the proposed equations are as follows:

 $m_o = m_i(1 - \Delta P) = 22068.70 \text{ mg}$ Eq. 4: $S_i = 0.1378 \text{ mg/Kg}$

- Eq. 5: m_f = 38901.30 mg
- Eq: 6: $m_{f,sed}$ = 61.21 mg
- Eq. 0. *mj,sea* 01.21 mg
- Eq: 6: *m_{f,F}*= 38840.09 mg
- Eq 7: $C_F = 0.429 \text{ mg/L}$
- Eq 10: ρ_b = 1.5370 Kg/L
- Eq 9: *m_{ml}*= 4.31 mg
- Eq 11: $m_{res}|_{tend} = 65.52 \text{ mg}$
- Eq 12-13: *m_{res}*|*tend*= 63.98 mg, with:

day	$T(^{\circ}C)$	$\theta(-)$	Eq. 13: <i>k</i> (<i>T</i> , <i>θ</i>)	Eq. 12: <i>m_{res}</i> (mg)
0				65.52
1	9.5	0.265	0.009007	64.93
2	8.6	0.264	0.008262	64.40
3	6.3	0.265	0.006547	63.98

The final pesticide mass balance for the event and the residual amount at the beginning of the following event is depicted in Fig. 4.

Figure 4. Partitioning of pesticide for sample application.

References

- EFSA. 2008. Opinion on the Q10 value. The EFSA Journal 622, 3-32
- EU FOCUS. 2001. FOCUS Surface Water Scenarios in the EU Evaluation Process under 91/414/EEC. Report of the FOCUS Working Group on Surface Water Scenarios, EC Document Reference SANCO/4802/2001 –rev .2. 245pp, Version 1.0, January 2011
- EU FOCUS. 2010. Overview of FOCUS Surface Water. http://focus.jrc.ec.europa.eu/sw/index.html
- EU FOCUS. 1996 (rev. 2006). Guidance Document on Estimating Persistence and Degradation Kinetics from Environmental Fate Studies on Pesticides in EU Registration Final Report of the FOCUS Work Group on Degradation Kinetics. EC Document Reference Sanco/10058/2005, version 2.0, June 2006. http://focus.jrc.ec.europa.eu/dk/docs/finalreportFOCDegKin04June06linked.pdf
- Food and Agriculture Organization (FAO). 1998. FAO-56 Crop Evapotranspiration: Guidelines for Computing Crop Requirements. http:// www.fao.org/docrep/X0490E/X0490E00.htm, accessed November 10, 2004.
- US-EPA. 2012. Guidance for Selecting Input Parameters for Modeling Pesticide Concentrations in Groundwater Using the Pesticide Root Zone Model, Version 1.0. October 15, 2012. U.S. Environmental Protection Agency, Office of Pesticide Programs Environmental Fate and Effects Division. Washington, DC.
- Muñoz-Carpena, R., J.E. Parsons, and J.W. Gilliam. 1999. Modeling hydrology and sediment transport in vegetative filter strips. *Journal of Hydrology* 214(1-4):111-129.
- Muñoz-Carpena, R. and J.E. Parsons. 2004. A Design Procedure for Vegetative Filter Strips Using VFSMOD-W. *Trans. of ASAE* 47(5):1933-1941.

LIST OF APPENDICES

APPENDIX A - Description of VFSMOD degradation componentAPPENDIX B- Soil and site parameters for EU FOCUS scenarios used in PRZM

APPENDIX A - Description of VFSMOD pesticide degradation component

A.1 Structure of the IWQ file

```
IQPRO
IKD VKOC/VKD OCP
CCP
IDG
NDGDAY DGHALF FC DGPIN DGML
DGT(I)
DGTHETA(I)
```

A.2 Input factor definition

IWQPRO	Flag for type of water quality problem [=1 runs pestices based on Sabbagh et al. (2009).; =2 runs simple solute transport (under construction); =3 runs the multireactive transport (under construction)]
IKD	Flag for reading VKOC, VKD and OCP. If IKD=0, then reads Kd; if IKD=1 then Koc and OCP are read.
VKOC	Adsorption coefficient (L/Kg)
VKD	Linear sorption coefficient (L/Kg)
OCP	% of organic carbon
ССР	% clay content in incoming sediment
[Factors used onl	y if pesticide mass balance/residue calculation is requested (IDG=1-4)]
IDG	flag to calculate degradation (1-4, 1: EU: FOCUS, $k(k_{ref},T,\theta)$; 2: US-EPA, $k=k_{ref}$; 3: $k=(k_{ref},T)$; 4: $k=(k_{ref},\theta)$), for other values ignore and no more lines needed.
NDGDAY	number of days between runoff events (from PRZM)
DGHALF	pesticide half-life (days) (at reference values of temperature and water content (i.e. 20°C and field capacity) (from PRZM). <u>Note:</u> DGHALF=Ln(2)/DGKREF
FC	θ_{FC} topsoil field capacity (m ³ /m ³). Values depend on the scenario definition. Appendix B provides values used in EU FOCUS R1-R4 scenario parameters used by PRZM field model.
DGPIN	total pesticide mass (liquid and solid phase) entering the filter per unit area of the source field (mg/m2) (from PRZM + plus residual in filter calculated by VFSMOD from last event in series, OWQ file). <u>Note</u> : this is converted to total mass entering at the filter as m_i =DPIN*SLENGTH*SWIDTH (from IRO file)
DGML	d_{ml} , surface mixing layer thickness (cm). DGML=2 cm recommended (from PRZM)
DGT(I)	daily air temperatures (°C) for period between events, I=1, NDGDAY (from MET file)
DGTHETA(I)	top soil water content θ (m ³ /m ³) for period between events, I=1,NDGDAY (from THETAFAO calculations based on MET file)

A.3 File Example

```
1
                             1 = read/create iwq & owq files
0 0.396
                             Kd proc.: 0= Kd(L/Kg); 1=Koc (Koc L/Kg) , %OC)
25
                             % Clay content in sediment
1
                             TDG
3 27.995 0.26 6.097E+00 2
                            ndqday dqHalf(d) FC(m3/m3) dqPin(mq/m2) dqML(cm)
        8.6 6.3
                            (dgT(i),i=1,ndgday) (Celsius)
9.5
0.265
        0.264
                0.265
                            (dgTheta(i), i=1, ndgday (-)
```

A.2. OWQ Output file

The water quality output file in VFSMOD (OWQ) is modified when selecting the option IDG=1.

```
File: output/841215.owg
                                                          VFSMOD v4.2.4 03/2014
Parameters for Water Quality
                    Type of problem= Pesticide trapping (Sabbagh et al., 2009)
        Partition coefficient (Kd)=
                                         0.396000
                                                          L/Kg
          % Clay in sediment (%CL)=
                                         25.000000
 ... Pesticide degradation requested
    Pesticide half-life (Ln2/Kref)=
                                        27,995000
                                                          days
         Soil field capacity (FC)=
                                         0.260000
                                                          (-)
      Incoming pesticide mass (mi)=
                                         6.097000
                                                         mg/m2
      Mixing layer thickness (dml)=
                                         2.000000
                                                            CM
        No. of days between events=
                                          3
                                          day 1(0,
1 9.50000
                                                T(C)
                                                        theta(-)
                                                          0.26500
                                               8.60000
                                                          0.26400
                                           2
                                              6.30000
                                                         0.26500
                                           3
Outputs for Water Quality
   175.098 \text{ m}3 = \text{Runoff inflow}
   444.718 Kg = Sediment inflow
   994.266 = Phase distribution, Fph
48.170 % = Infiltration (dQ)
    99.919 % = Sediment reduction (dE)
    43.034 % = Runoff inflow reduction
    63.804 % = Pesticide reduction (dP)
Pesticide mass balance/degradation (IDG=1)
Total mass in filter:
   0.609700E+05 mg = Pesticide input (mi)
   0.220686E+05 mg = Pesticide output (mo)
   0.612102E+02 mg = Pesticide retained in filter, sediment-bonded, (mf, sed)
   0.430983E+01 mg = Pesticide retained in filter, mixing layer (mml)
0.655201E+02 mg = Pesticide surface residue at the end of this event (mres)
   0.639781E+02 mg = Pesticide surface residue at next event (after degradation, 3 days)
Normalized values by source area:
       10000.00 m<sup>2</sup> = Source Area (input)
   0.609700E+01 mg/m2= Pesticide input (mi)
   0.220686E+01 mg/m2= Pesticide output (mo)
   0.612102E-02 mg/m2= Pesticide retained in filter, sediment-bonded (mf,sed)
   0.430983E-03 mg/m2= Pesticide retained in filter, mixing layer (mml)
   0.655201E-02 mg/m2= Pesticide surface residue at the end of the event (mres)
   0.639781E-02 mg/m2= Pesticide surface residue at next event (after degradation, 3 days)
Pesticide mass partition for outflow
   0.316647E-01 mg = Pesticide output in solid phase (mop)
```

APPENDIX B - Soil and site parameters for EU FOCUS scenarios used in PRZM

The field capacity (FC) for the top soil (Ap) is the value required as an input in the IWQ file. Note: the units required in IWQ are not percentage, but fractional units (i.e. 33.8% would be 0.338 in IWQ).

Horizon (FAO, 1990) Depth (cm)Ap 0.30 Bw 30.60 BC $60-100+$ BASIC PROPERTIES 0.30 30.60 $60-100+$ Sand (%)565 Stl (%) 5 6Sand (%)565 Stl (%) 11 11 Texture (FAO, 1990; USDA, 1999)silt loamsilt loamsilt loamOrganic carbon (%)1.20.30.1Buk density (g/cm ³)1.351.451.48 *PH7.37.68.0Structure (FAO, 1990)WeakWeakWeakDevelopmentWeakSubangularSubangularShapeSubangularSubangularSubangularWilting point (% volume) 33.8 * 28.6 * 27.7 *Wilting point (% volume) 33.8 * 28.6 * 27.7 *Wilting point (% volume) 33.8 * 28.6 * 27.7 *Wilting point (% volume) 33.8 * 28.6 * 27.7 *USLE K factor (USLEK) 0.42 appropriate for soil type $FOCUS definitionUSLE I factor (USLEK)0.3345 m length, 3\% slopePRZM manualUSLE P factor (USLEP)0.50contouring, 3\% slopePRZM manualIREG33\%asumption for scenarioFOCUS definitionIREG33\%appropriate for scenarioFOCUS definitionIREG33\%appropriate for scenarioFOCUS definitionIREG33\%appropriate for scenario$		-				
Depth (cm) 0-30 30-60 60-100+ BASIC PROPERTIES Sand (%) 5 6 5 Sand (%) 82 83 84 Clay (%) 13 11 11 Texture (FAO, 1990; USDA, 1999) silt loam silt loam silt loam silt loam Organic carbon (%) 1.2 0.3 0.1 Bulk density (g/cm ³) 1.35 1.45 1.48* PH 7.3 7.6 8.0 Structure (FAO, 1990) Weak Weak Very weak Size Fine Medium Very coarse Subangular Subangular blocky Subangular blocky blocky blocky Subangular Witting point (% volume) 33.8 b 28.6 b 27.7 b Witting point (% volume) 14.1 b 11.1 b 10.8 b RUNOFF & SOIL LOSS PROPERTIES appropriate for soil type FOCUS definition USLE K factor (USLEK) 0.42 assumption for scenario FOCUS definition	Horizon (FAO, 1990)		Ap	Bw		BC
BASIC PROPERTIESSand (%)565Silt (%)828384Clay (%)131111Texture (FAO, 1990; USDA, 1999)silt loamsilt loamsilt loamOrganic carbon (%)1.20.30.1Bulk density (g(cm ³)1.351.451.48 *PH7.37.68.0Structure (FAO, 1990)VeakWeakVery weakDevelopmentSubangularSubangularSubangularShapeSubangularSubangularSubangularMediumSubangularSubangularSubangularSubangularSubangularSubangularBilt (apacity (% volume)33.8 *28.6 *HYDRAULIC PROPERTIES14.1 *11.1 *Field capacity (% volume)33.8 *28.6 *Wilting point (% volume)33.8 *28.6 *USLE K factor (USLEK)0.42silt/silt loam, 2% OMUSLE P factor (USLEK)0.42silt/silt loam, 2% OMUSLE P factor (USLED)0.45 haassumption for scenarioREG3s%appropriate for scenarioSlope (SLP)3%appropriate for scenarioHL20 massumption for scenarioHL20 massumption for scenarioHL20 massumption for scenarioHL20 mS%Slope (SLP)3%HL0.0 mHL0.0 mSlope (SLP)3%H0.0 m<	Depth (cm)		0-30	30-60)	60-100+
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	BASIC PROPERTIES					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Sand (%)		5	6		5
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Silt (%)		82	83		84
Texture (FAO, 1990; USDA, 1999)silt loamsilt loamsilt loamOrganic carbon (%)1.20.30.1Bulk density (g/cm³)1.351.451.48 *PH7.37.68.0Structure (FAO, 1990)WeakWeakVery weakDevelopmentWeakWeakVery coarseShapeSubangularSubangularSubangularBulk capacity (% volume)33.8 *28.6 *27.7 *Wilting point (% volume)14.1 *11.1 *10.8 *RUNOFF & SOIL LOSS PROPERTIESappropriate for soil typeFOCUS definitionParameterValueSelection criteriaReferenceHydrologic group (HGRP)Cappropriate for soil typeFOCUS definitionUSLE K factor (USLEK)0.42silt/silt loam, 2% OMPRZM manualUSLE P factor (USLEP)0.50contouring, 3% slopePRZM manualIREG3sympton for scenarioFOCUS definitionIREG3assumption for scenarioFOCUS definitionIREG30.45 haassumption for scenarioFOCUS definitionIREG320 massumption for scenarioFOCUS definitionINCE20 massumption for scenarioFOCUS definitionHL20 massumption for scenarioFOCUS definitionHL20 massumption for scenarioFOCUS definition	Clay (%)		13	11		11
Organic carbon (%) 1.2 0.3 0.1 Bulk density (g/cm ³) 1.35 1.45 1.48 * PH 7.3 7.6 8.0 Structure (FAO, 1990) Weak Weak Very weak Development Subangular Subangular Subangular Shape Subangular Subangular Subangular Medium Very coarse Subangular Subangular Wilting point (% volume) 33.8 * 28.6 * 27.7 * Wilting point (% volume) 14.1 * 11.1 * 10.8 * RUNOFF & SOIL LOSS PROPERTIES Parameter Hydrologic group (HGRP) C appropriate for soil type USLE K factor (USLEK) 0.42 silt/silt loam, 2% OM PRZM manual USLE P factor (USLES) 0.33 45 m length, 3% slope PRZM manual IREG 3 3 supmopriate for scenario FOCUS definition Slope (SLP) 3% 3% appropriate for scenario FOCUS definition HL 20 m assumption for scenario FOCUS definition	Texture (FAO, 1990; USDA,	1999)	silt loam	silt loa	m	silt loam
Bulk density (g/cm ³) 1.35 1.45 1.48 * PH 7.3 7.6 8.0 Structure (FAO, 1990) Development Weak Weak Very weak Size Fine Medium Very coarse Shape Subangular Subangular Subangular Subangular Wilting point (% volume) 33.8 b 28.6 b 27.7 b Wilting point (% volume) 14.1 b 11.1 b 10.8 b RUNOFF & SOIL LOSS PROPERTIES Parameter Value Selection criteria Reference Pydrologic group (HGRP) C appropriate for soil type FOCUS definition USLE K factor (USLEK) 0.42 0.50 contouring, 3% slope PRZM manual USLE P factor (USLEP) 0.50 contouring, 3% slope PRZM manual IREG 3 symptopriate for scenario FOCUS definition Slope (SLP) 3% 3% propriate for scenario FOCUS definition HL 20 m assumption for scenario FOCUS definition	Organic carbon (%)		1.2	0.3		0.1
PH 7.3 7.6 8.0 Structure (FAO, 1990) Development Weak Weak Weak Very weak Size Fine Medium Very coarse Shape Subangular Subangular Subangular Biolocky blocky blocky Subangular HYDRAULIC PROPERTIES Size Size Subangular Field capacity (% volume) 33.8 b 28.6 b 27.7 b Wilting point (% volume) 14.1 b 11.1 b 10.8 b RUNOFF & SOIL LOSS PROPERTIES Parameter Value Selection criteria Reference Hydrologic group (HGRP) C appropriate for soil type FOCUS definition FOCUS definition USLE K factor (USLEK) 0.42 silt'silt loam, 2% OM PRZM manual USLE P factor (USLES) 0.33 45 m length, 3% slope PRZM manual IREG 3 sympton for scenario FOCUS definition Slope (SLP) 3% appropriate for scenario FOCUS definition HL 20 m assumption for scenario FOCUS definition	Bulk density (g/cm³)		1.35	1.45		1.48 ª
Structure (FAO, 1990) Development Weak Weak Weak Weak Very weak Size Subangular blocky Subangular blocky Subangular blocky Subangular blocky Subangular blocky Subangular blocky Subangular blocky Subangular blocky Subangular blocky HYDRAULIC PROPERTIES 33.8 b 14.1 b 28.6 b 11.1 b 27.7 b 10.8 b Wilting point (% volume) 33.8 b 14.1 b 28.6 b 11.1 b 27.7 b 10.8 b RUNOFF & SOIL LOSS PROPERTIES appropriate for soil type silt/silt loam, 2% OM USLE K factor (USLEK) 0.42 0.33 Selection criteria appropriate for soil type silt/silt loam, 2% OM Reference FOCUS definition PRZM manual USLE P factor (USLEP) 0.50 0.50 contouring, 3% slope assumption for scenario gyen monthly rain distrib. appropriate for scenario HL FOCUS definition FOCUS definition Nomined Approximation of scenario HL 20 m assumption for scenario assumption for scenario FOCUS definition FOCUS definition	PH		7.3	7.6		8.0
Development Size Weak Fine Weak Medium Very weak Very coarse Shape Subangular blocky Subangular blocky Subangular blocky Subangular blocky Subangular blocky Subangular blocky HYDRAULIC PROPERTIES 33.8 b 14.1 b 28.6 b 11.1 b 27.7 b 10.8 b Field capacity (% volume) 33.8 b 14.1 b 28.6 b 11.1 b 27.7 b 10.8 b RUNOFF & SOIL LOSS PROPERTIES Selection criteria appropriate for soil type USLE K factor (USLEK) Reference USLE K factor (USLEK) 0.42 silt/silt loam, 2% OM USLE P factor (USLELS) PRZM manual assumption for scenario IREG PRZM manual assumption for scenario Slope (SLP) PRZM manual 3% appropriate for scenario assumption for scenario HL 20 m assumption for scenario assumption for scenario FOCUS definition FOCUS definition	Structure (FAO, 1990)					
Size Fine Medium Very coarse Shape Subangular blocky Subangular blocky Subangular blocky Subangular blocky Subangular blocky Subangular blocky Subangular blocky Subangular blocky Subangular blocky HYDRAULIC PROPERTIES 33.8 b 14.1 b 28.6 b 11.1 b 27.7 b 10.8 b Wilting point (% volume) 33.8 b 14.1 b 28.6 b 11.1 b 27.7 b 10.8 b RUNOFF & SOIL LOSS PROPERTIES appropriate for soil type USLE K factor (USLEK) 0.42 0.42 silt/silt loam, 2% OM exit/silt loam, 2% OM USLE LS factor (USLELS) 0.33 0.33 45 m length, 3% slope exit/silt loam, 2% of the assumption for scenario gyen monthly rain distrib appropriate for scenario HL PRZM manual FOCUS definition FOCUS definition FOCUS definition FOCUS definition	Development		Weak	Weak	c l	Very weak
Shape Subangular blocky Subangular blocky Subangular blocky HYDRAULIC PROPERTIES Field capacity (% volume) 33.8 b 28.6 b 27.7 b Wilting point (% volume) 14.1 b 11.1 b 10.8 b RUNOFF & SOIL LOSS PROPERTIES Parameter Value Selection criteria appropriate for soil type USLE K factor (USLEK) 0.42 silt/silt loam, 2% OM PRZM manual USLE LS factor (USLEK) 0.33 45 m length, 3% slope contouring, 3% slope PRZM manual PRZM manual IREG 3 symmetria for scenario slope (SLP) 3% appropriate for scenario assumption for scenario FOCUS definition HL 20 m assumption for scenario assumption for scenario FOCUS definition	Size		Fine	Mediu	m	Very coarse
blocky blocky blocky blocky blocky blocky blocky blocky blocky blocky blocky blocky Blocky Wilting point (% volume) 33.8 b 28.6 b 27.7 b 14.1 b 11.1 b 10.8 b RUNOFF & SOIL LOSS PROPERTIES Parameter Value Selection criteria Reference Hydrologic group (HGRP) C appropriate for soil type FOCUS definition USLE K factor (USLEK) 0.42 silt/silt loam, 2% OM PRZM manual USLE P factor (USLEP) 0.50 contouring, 3% slope PRZM manual Area of field (AFIELD) 0.45 ha assumption for scenario FOCUS definition Slope (SLP) 3% appropriate for scenario FOCUS definition HL 20 m assumption for scenario FOCUS definit	Shape		Subangular	Subangular		Subangular blocky
HYDRAULIC PROPERTIES Field capacity (% volume) 33.8 b 28.6 b 27.7 b Wilting point (% volume) 14.1 b 11.1 b 10.8 b RUNOFF & SOIL LOSS PROPERTIES Parameter Value Selection criteria Reference Hydrologic group (HGRP) C appropriate for soil type FOCUS definition USLE K factor (USLEK) 0.42 silt/silt loam, 2% OM PRZM manual USLE LS factor (USLELS) 0.33 45 m length, 3% slope PRZM manual USLE P factor (USLEP) 0.50 contouring, 3% slope PRZM manual Area of field (AFIELD) 0.45 ha assumption for scenario FOCUS definition IREG 3 gyen monthly rain distrib. FOCUS definition Slope (SLP) 3% appropriate for scenario FOCUS definition HL 20 m assumption for scenario FOCUS definition	-		blocky	blocky		
Field capacity (% volume) 33.8 b 28.6 b 27.7 b Wilting point (% volume) 14.1 b 11.1 b 10.8 b RUNOFF & SOIL LOSS PROPERTIES Selection criteria Reference Parameter Value Selection criteria Reference Hydrologic group (HGRP) C appropriate for soil type FOCUS definition USLE K factor (USLEK) 0.42 silt/silt loam, 2% OM PRZM manual USLE P factor (USLELS) 0.33 45 m length, 3% slope PRZM manual USLE P factor (USLEP) 0.50 contouring, 3% slope PRZM manual IREG 3 gyren monthly rain distrib. FOCUS definition Slope (SLP) 3% appropriate for scenario FOCUS definition HL 20 m assumption for scenario FOCUS definition Municipal assumption for scenario FOCUS definition FOCUS definition	HYDRAULIC PROPERTI	ES				
Wilting point (% volume) 14.1 b 11.1 b 10.8 b RUNOFF & SOIL LOSS PROPERTIES Selection criteria Reference Parameter Value Selection criteria Reference Hydrologic group (HGRP) C appropriate for soil type FOCUS definition USLE K factor (USLEK) 0.42 silt/silt loam, 2% OM PRZM manual USLE IS factor (USLELS) 0.33 45 m length, 3% slope PRZM manual USLE P factor (USLEP) 0.50 contouring, 3% slope PRZM manual Area of field (AFIELD) 0.45 ha assumption for scenario FOCUS definition IREG 3 gyren monthly rain distrib. FOCUS definition Slope (SLP) 3% appropriate for scenario FOCUS definition HL 20 m assumption for scenario FOCUS definition Municipal coefficient 20 m assumption for scenario FOCUS definition	Field capacity (% volume)		33.8 5	28.6	6	27.7 ^b
RUNOFF & SOIL LOSS PROPERTIES Parameter Value Selection criteria Reference Hydrologic group (HGRP) C appropriate for soil type FOCUS definition USLE K factor (USLEK) 0.42 silt/silt loam, 2% OM PRZM manual USLE LS factor (USLELS) 0.33 45 m length, 3% slope PRZM manual USLE P factor (USLEP) 0.50 contouring, 3% slope PRZM manual Area of field (AFIELD) 0.45 ha assumption for scenario FOCUS definition IREG 3 even monthly rain distrib. FOCUS definition Slope (SLP) 3% appropriate for scenario FOCUS definition HL 20 m assumption for scenario FOCUS definition	Wilting point (% volume)		14.1 ^b	11.1	ь	10.8 b
ParameterValueSelection criteriaReferenceHydrologic group (HGRP)Cappropriate for soil typeFOCUS definitionUSLE K factor (USLEK)0.42silt/silt loam, 2% OMPRZM manualUSLE LS factor (USLELS)0.3345 m length, 3% slopePRZM manualUSLE P factor (USLEP)0.50contouring, 3% slopePRZM manualArea of field (AFIELD)0.45 haassumption for scenarioFOCUS definitionIREG3eyen monthly rain distrib.FOCUS definitionSlope (SLP)3%appropriate for scenarioFOCUS definitionHL20 massumption for scenarioFOCUS definitionMarcinel a sofficient0for scenarioFOCUS definition	RUNOFF & SOIL LOSS P	ROPERTI	ES			
Hydrologic group (HGRP) USLE K factor (USLEK)C 0.42appropriate for soil type silt/silt loam, 2% OM 45 m length, 3% slope contouring, 3% slopeFOCUS definition PRZM manual PRZM manualUSLE V factor (USLED)0.3345 m length, 3% slope contouring, 3% slopePRZM manual PRZM manualUSLE P factor (USLEP)0.50contouring, 3% slope assumption for scenario spropriate for scenarioPRZM manual FOCUS definitionIREG3symptopriate for scenario appropriate for scenario assumption for scenarioFOCUS definition FOCUS definitionHL20 massumption for scenario assumption for scenarioFOCUS definition FOCUS definition	Parameter	Value	Selection cr	iteria		Reference
USLE K factor (USLEK)0.42silt/silt loam, 2% OMPRZM manualUSLE LS factor (USLELS)0.3345 m length, 3% slopePRZM manualUSLE P factor (USLEP)0.50contouring, 3% slopePRZM manualArea of field (AFIELD)0.45 haassumption for scenarioPRZM manualIREG3swem monthly rain distrib.FOCUS definitionSlope (SLP)3%appropriate for scenarioFOCUS definitionHL20 massumption for scenarioFOCUS definitionMarcineline asoff sinet0.14 for scenarioFOCUS definition	Hydrologic group (HGRP)	С	appropriate for s	oil type	FOO	CUS definition
USLE LS factor (USLELS) 0.33 45 m length, 3% slope PRZM manual USLE P factor (USLEP) 0.50 contouring, 3% slope PRZM manual Area of field (AFIELD) 0.45 ha assumption for scenario PRZM manual IREG 3 symmothly rain distrib. POCUS definition Slope (SLP) 3% appropriate for scenario FOCUS definition HL 20 m assumption for scenario FOCUS definition DUSLE P (actor (USLEP) 0.50 assumption for scenario FOCUS definition	USLE K factor (USLEK)	0.42	silt/silt loam, 2%	6 OM	PRZM manual	
USLE P factor (USLEP) 0.50 contouring, 3% slope PRZM manual Area of field (AFIELD) 0.45 ha assumption for scenario FOCUS definition IREG 3 symmonthly rain distrib. FOCUS definition Slope (SLP) 3% appropriate for scenario FOCUS definition HL 20 m assumption for scenario FOCUS definition Number of the sector	USLE LS factor (USLELS)	0.33	45 m length, 3%	slope	PRZM manual	
Area of field (AFIELD) 0.45 ha assumption for scenario FOCUS definition IREG 3 exen monthly rain distrib. FOCUS definition Slope (SLP) 3% appropriate for scenario FOCUS definition HL 20 m assumption for scenario FOCUS definition Number of the sector	USLE P factor (USLEP)	0.50	contouring, 3%	slope	PRZM manual	
IREG 3 even monthly rain distrib. FOCUS definition Slope (SLP) 3% appropriate for scenario FOCUS definition HL 20 m assumption for scenario FOCUS definition	Area of field (AFIELD)	0.45 ha	assumption for scenario		FOCUS definition	
Slope (SLP) 3% appropriate for scenario FOCUS definition HL 20 m assumption for scenario FOCUS definition	IREG	3	even monthly ra	in distrib.	FOO	CUS definition
HL 20 m assumption for scenario FOCUS definition	Slope (SLP)	3%	appropriate for scenario		FOO	CUS definition
Mensional DDC (10 Cillion of the DDC (1)	HL	20 m	assumption for s	cenario	FOCUS definition	
Manning s coefficient 0.10 fallow, no-till or coulter PKZM manual	Manning's coefficient	0.10	fallow, no-till or	coulter	PRZ	CM manual

Table 6. R1 soil and site parameters for PRZM (Table D-14 in EU FOCUS manual)

* Estimated value using SSLRC algorithms and measured local data for the soil type. Calculated using PRZM pedo-transfer functions with other data given in the table (FC = -33 kPa; WP = -1500 kPa).

Table 7. R2 soil and site parameters for PRZM (Table D-15 in EU FOCUS manual)

Horizon (FAO, 1990)	Ap	Ah AB1			AB2			
Depth (cm)	0-20	20-45	45-65		65-100			
BASIC PROPERTIES								
Sand (%)	67	72	75		74			
Silt (%)	19	16	13		16			
Clay (%)	14	12	12		10			
Texture (FAO, 1990;	sandy loam	sandy loam	sandy loam		sandy loam			
USDA, 1999)			-					
Organic carbon (%)	4.0	2.4	0.8		0.5 ª			
Bulk density (g/cm ³)	1.15 %	1.29 %	1.36 b		1.41 b			
pH	4.5	4.9	5.4		5.3			
Structure (FAO, 1990)								
Development	Moderate	Weak	Weak		Weak			
Size	Medium	Medium	Medium		Medium			
Shape	Subangular	Subangular	Subangular		Subangular			
	blocky	blocky	blocky		blocky			
HYDRAULIC								
PROPERTIES								
Field capacity (% volume)	36 °	27 °	19 °		17 °			
Wilting point (% volume)	18 °	14 °	10 °		8 °			
RUNOFF & SOIL LOSS PROPERTIES								
Parameter	Value	Selection criteria		Reference				
Hydrologic group (HGRP)	B/C	appropriate for soil type		FOCUS definition				
USLE K factor (USLEK)	0.19	sandy loam, 4% OM		PRZM manual				
USLE LS factor (USLELS)	0.66	45 m length, 5% slope		PRZM manual				
USLE P factor (USLEP)	0.50	contouring, 5% slope		PRZM manual				
Area of field (AFIELD)	0.45 ha	assumption for scenario		FOCUS definition				
IREG	2	heavier winter rain		FOCUS definition				
Slope (SLP)	5%	20% slope, terraced to 5%			FOCUS definition			
HL	20 m	assumption for scenario			FOCUS definition			
Manning's coefficient	0.10	fallow, no-till or coulter PRZM manual			M manual			

Estimated value based on horizon type and value for horizon above.
 Estimated value using SSLRC algorithms and measured local data for the soil type.
 Calculated using PRZM pedo-transfer functions with other data given in the table (FC = -33 kPa; WP = -1500 kPa).

Table 8. R3 soil and site parameters for PRZM (Table D-16 in EU FOCUS manual)

Horizon (FAO, 1990)		Ap1	Ap2	Bk	С	
Depth (cm)		0-45	45 - 75	75 - 145	145 - 160	
BASIC PROPERTIES						
Sand (%)		23	25	17	14	
Silt (%)		43	42	48	50	
Clay (%)		34	33	35	36	
Texture (FAO, 1990; USDA, 1999)		clay loam	clay loam	silty clay	silty clay	
	· ·	-	-	loam	loam	
Organic carbon (%)		1.0	1.0	0.35	0.29	
Bulk density (g/cm3)		1.46ª	1.49ª	1.52 ª	1.54ª	
pH		7.9	7.9	8.3	8.6	
Structure (FAO, 1990)						
Development		Moderate	Moderate	Weak	Weak	
Size		fine	Fine	coarse	Very coarse	
Shape		Granular	granular	Subangular	Angular	
			-	blocky	blocky	
HYDRAULIC PROPERTIE	s					
Field capacity (% volume)	ield capacity (% volume)		35 %	36 5	36 5	
Wilting point (% volume)		22 b	21 ^b	21 b	22 ^b	
RUNOFF & SOIL LOSS PR	OPERTI	ES		•		
Parameter	Value	Selection criteria Referen		eference		
Hydrological group (HGRP)	C	appropriate for soil type		FOCUS	FOCUS definition	
USLE K factor (USLEK)	0.25	clay loam, 1% OM		PRZM m	PRZM manual	
USLE LS factor (USLELS)	0.66	45 m length, 5% slope		PRZM ma	PRZM manual	
USLE P factor (USLEP)	0.50	contouring, 5% slope		PRZM ma	PRZM manual	
Area of field (AFIELD)	0.45 ha	assumption for scenario		FOCUS d	FOCUS definition	
IREG	3	even seasonal rain		FOCUS d	FOCUS definition	
Slope (SLP)	5%	10% slope, terraced to 5%		FOCUS	FOCUS definition	
HL	20 m	assumption for	r scenario	FOCUS	FOCUS definition	
Manning's coefficient	0.10	fallow, no-till or coulter PRZM manual			anual	
* Fetimated using SSI PC neda	transfor f	impetions with of	ther data ditten in	the table and ch	aalcad	

^a Estimated using SSLRC pedo-transfer functions with other data given in the table and checked against data in the PRZM manual.
 ^b Calculated using PRZM pedo-transfer functions with other data given in the table (FC = -33 kPa; WP = -1500 kPa).

Table 9. R4 soil and site parameters for PRZM (Table D-17 in EU FOCUS manual)

<u>El</u>							
Horizon (FAO, 1990)	Ap1		Ap2	2C1		2C2	
Depth (cm)	0-30)	30-60	60 - 17	0	170-300	
BASIC PROPERTIES							
Sand (%)	53		53 69		65		
Silt (%)	22		22	24		27	
Clay (%)	25		25	7		8	
Texture (FAO, 1990; USDA, 1999	andy of sandy of s	lay	sandy clay	sandy lo	am	sandy loam	
	loam	ιŤ.	loam	-		-	
Organic carbon (%)	0.6		0.6 ª	0.08		0.08	
Bulk density (g/cm ³)	1.52		1.50 ª	1.49		1.50	
pH	8.4		8.4 ª	8.8		8.8	
Structure (FAO, 1990)							
Development	Moder	ate	Moderate	Apedal		Apedal	
Size	Fine		Fine	N/A		N/A	
Shape	Subang	ular	Subangular	Single gr	ain	Single grain	
	block	y	blocky				
HYDRAULIC PROPERTIES							
Field capacity (% volume)	26 5		27 6	14.5 b		16 5	
Wilting point (%volume)	16 b		16 ^b	6 ^b		7 5	
RUNOFF & SOIL LOSS PROPERTIES							
Parameter	Value	Selection criteria Reference			Reference		
Hydrologic group (HGRP)	C	appropriate for soil type		FOCUS definition			
USLE K factor(USLEK)	0.26	sandy clay loam, 0.6% OM			PRZM manual		
USLE LS factor (USLELS)	0.66	45 m length, 5% slope			PRZM manual		
USLE P factor (USLEP)	0.50	contouring, 5% slope		PRZM manual			
Area of field (AFIELD)	0.45 ha	assumption for scenario		io	FOCUS definition		
IREG	2	heavier winter rain			FOCUS definition		
Slope (SLP)	5%	appropriate for scenario		io	FOCUS definition		
HL	20 m	assumption for scenario		io	FOCUS definition		
Manning's coefficient	0.10	fallow, no-till or coulter PRZM manual			ZM manual		
* Estimated value based on horizon	n tune and valu	e for l	horizon shoue				

^a Estimated value based on horizon type and value for horizon above.
 ^b Calculated using PRZM pedo-transfer functions with other data given in the table (FC = -33 kPa; WP = -1500 kPa).