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Abstract. When designing vegetative filter strips (VFS) for trapping sediments, the modeler faces the 
challenge of identifying the appropriate model parameters for the specific application conditions. 
When possible, local runoff/sediment inflow/outflow through the VFS and precipitation data should be 
collected to support the modeling predictions. Although manual model calibration is often used, this 
procedure generally lacks objectivity and the outcome is linked to the expertise of the user. An 
automated inverse optimization procedure can be used as an objective and robust model calibration 
alternative. The graphical user interface of VFSMOD-W, a vegetative filter strip design system, was 
extended to allow for the inverse optimization of the hydraulic and sediment components of the 
model. A robust and efficient optimization technique, the Global Multilevel Coordinate Search 
algorithm in sequential combination with the local Nelder-Mead Simplex algorithm (GMCS-NMS), 
was selected for this purpose. This is a good alternative to other existing optimization procedures, 
because it is adapted for solving complex nonlinear problems accurately and efficiently, does not 
require powerful computing resources, and initial values of the parameters to be optimized are not 
needed. Several examples are presented to demonstrate the benefits of the GMCS-NMS strategy 
compared to manual calibration when identifying the VFSMOD-W most sensitive parameters. 
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Introduction 
Modeling water, solute, and/or sediment transport is nowadays widely used for assessing the 
impact of human activities on water resources and for designing best management practices to 
reduce these impacts. Particularly, the vegetative filter strip model system (VFSMOD-W) allows 
for predicting water and contaminant transport through vegetated filters. VFSMOD-W, 
developed by Muñoz-Carpena and Parsons (1999; 2005), simulates water and sediment 
transport in vegetated filters based on overland flow hydraulics and infiltration into the soil 
matrix. The success in modeling such processes heavily depends on the quality of the model 
parameters, i.e. they are representative of the hydraulic properties of the soil and the vegetated 
filter. A popular method for parameter estimation is manual calibration by a “trial and error” 
procedure comparing simulated values of runoff/sediment outflow from the vegetative filter with 
those experimentally measured. However, this method is time consuming; subjective, since the 
modeler does not know when to stop the calibration process; it is difficult to judge in which 
direction the parameters should be modified; and quantification of the uncertainty on the 
obtained parameters cannot be performed in a rigorous way. Therefore, the manual calibration 
method cannot ensure that the best parameter set is found. A more elaborated, complex and 
increasingly attractive form of parameter estimation is inverse modeling. This procedure 
provides effective parameters in the range of the particular model applications and overcomes 
the drawbacks of manual calibration (Ritter et al., 2003). Basically the process searches for the 
best set of parameters in an iterative way, by varying the parameters and comparing the 
numerical solution given by the model with the observations of a certain state variable (Lambot 
et al., 2002; Ritter et al., 2003; 2004). By coupling the computer model with an optimization 
algorithm, the parameter search consists of finding the global minimum of an objective function 
defined by the error between measured and simulated values. Different techniques have been 
developed in the past to numerically solve inverse problems. Among others, we may consider 
methods such as the Steepest Descendent, Newton’s, Gauss, Levenberg-Marquardt, Simplex, 
and Global Optimization Techniques (Hopmans and Simunek, 1999). Each of these have their 
own advantages and drawbacks, and the success of finding the global minimum depends 
generally on the presence of multiple local minima in the objective function. In addition to these 
algorithms, the GMCS-NMS (Global Multilevel Coordinate Search combined with a Nelder Mead 
Simplex) is a powerful available alternative (Lambot et al., 2002; Ritter et al., 2003). This 
consists in the sequential combination, as described by Lambot et al., (2002), of the global 
optimization algorithm developed by Huyer and Neumaier (1999) and the classical Nelder-Mead 
Simplex (Nelder and Mead, 1965). 

In this work, we have integrated the GMCS-NMS within the VFSMOD-W and its graphical user 
interface to allow the model users to perform automatic inverse optimization of the hydraulic and 
sediment transport parameters of VFSMOD-W when experimental data are available. 

 

Materials and methods 

Inverse modeling calibration procedure  

The inverse simulation of the flow or sediment transport parameters is carried out by minimizing 
an objective function, OF(  

r 
b ), that represents the error between measured and simulated 

values, such that it can be defined as a nonlinear least squares problem by:  
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where the right-hand side represents the deviations between observed (Yo) and predicted (Ys) 
time series (hydrographs or sedimentographs) using the parameter vector   

r 
b ; t is the time; N is 

the number of measurements available; and wi is the weight of a particular measurement, which 
denotes the measurement error and is set equal to s-2, where s is the standard deviation of the 
measured data (Lambot et al., 2002). 

To perform the inverse calibration of the parameter vector  
r 
b , VFSMOD is coupled with the 

Global Multilevel Coordinate Search, GMCS, algorithm (Huyer and Neumaier, 1999). This 
algorithm combines global and local search capabilities with a multilevel approach. The GMCS 
is a good alternative to other existing optimization algorithms, because it can deal with objective 
functions with complex topography, it does not require powerful computing resources, and initial 
values of the parameters to be optimized are not needed. To refine the minimization of the 
objective function, the GMCS is combined sequentially with the Nelder-Mead Simplex (NMS) 
algorithm (Nelder and Mead, 1965) (Fig. 1). Further details about application of GMCS-NMS to 
inverse modeling of soil hydraulic properties are given in Lambot et al. (2002) and Ritter et al. 
(2003). Furthermore, model adequacy, uncertainty and correlation associated with the 
estimated parameters is determined according to Hollenbeck et al. (2000) and Ritter et al. 
(2004). 
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Figure 1. Scheme for the inverse modeling procedure to calibrate the VFSMOD parameters 

 

When calibrating parameters, some criteria must be defined to evaluate the goodness-of-fit of 
the model simulation using the optimized parameters. Several authors point out that to assess 
the performance of the model calibration, the use of a single statistic might be misleading and 
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more should be used along with graphical representations (Berthouex and Brown, 2002; James 
and Burgues, 1982; Tufte, 1983; Legates and McCabe, 1999). The goodness of fit of the 
simulations with the optimized parameters was evaluated in terms of the coefficient of efficiency 
(Nash and Sutcliffe, 1970) and the root mean square error. The coefficient of efficiency (Ceff) 
has been widely used to evaluate the performance of hydrologic models. It compares the 
variance about the 1:1 line (perfect agreement) to the variance of the observed data and it 
ranges from -∞ to 1. Thereby Ceff = 1 implies that the plot of predicted vs. observed values 
matches the 1:1 line (Legates and McCabe, 1999). The root mean square error (also called 
residual variation or standard error of estimate), RMSE, is a useful single measure of the 
prediction capability of a model since it indicates the precision with which the model estimates 
the value of the dependent variable (Berthouex and Brown, 2002). 

Table 1. Statistics used in assessing the model performance with the optimized parameters.  
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VFSMOD-W and User Interface Program 

The vegetative filter strip model, VFSMOD, is a field scale, mechanistic, storm-based model 
developed to route incoming hydrographs and sedimentographs from an adjacent field through 
a vegetated filter strip (Muñoz-Carpena and Parsons, 1999). The model handles time 
dependent hyetographs and runoff hydrographs, space distributed filter parameters (vegetation 
roughness or density, slope, infiltration characteristics) and varying particle sizes of incoming 
sediment. Model outputs include infiltration and surface runoff hydrographs and 
sedimentographs from the vegetated filter, and its sediment trapping efficiency. The modeling 
system provides an integrated environment for users that consists of a front-end graphical user 
interface program, VFSMOD-W, the source area program, UH, and the vegetative filter strip 
model, VFSMOD (Muñoz-Carpena and Parsons, 2004). The UH program was developed to 
generate the input datasets for VFSMOD by estimating runoff hydrographs and sediment losses 
from upslope source areas for a storm event. Thus, the user may generate a synthetic rainfall 
hyetograph based on NRCS methods (Haan et al., 1994); a runoff hydrograph based on land 
use and topography of the source area using the NRCS curve number and the unit hydrograph 
method (USDA NRCS, 1986); and sediment losses from the upslope source area using the 
Modified Soil Loss Equation (Wischmeier and Smith, 1978; Williams, 1975).  

In addition to a design component, the graphical user interface includes also both sensitivity and 
uncertainty analysis in the vegetative filter strip design system (Parsons and Muñoz-Carpena, 
2001). Inverse optimization of the vegetated filter properties has now been added through an 
additional menu option in the graphical user interface of VFSMOD-W v4.x. The calibration 
option in the program menu allows for estimating separately selected flow and/or sediment 
transport parameters. Since sediments are transported by flow, the parameters of the model 
flow component must be optimized first, followed by the inverse simulation of the sediment 
transport parameters. In VFSMOD-W v4.x, the user may indicate the project name (Muñoz-
Carpena and Parsons, 2005), the files containing the measured hydrograph or sedimentograph, 
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and the parameter space, which is defined by those parameters to be optimized within a 
specified interval limited by a lower and an upper bound (Fig. 2a and 2b).  

 

 
 

 
Figure 2. Examples of screens for editing parameters for optimization of the model a) flow 
component and b) sediment component. 

b) 

a) 
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Additionally, advanced settings include the numbers of iteration of the optimization process, the 
filename were output is stored, and the option to activate the graphical output for visual 
inspection during the calibration process (Fig. 3). 

 
Figure 3. Example of screen for advanced settings. 

The results from the inverse modeling procedure can be viewed consisting of a numerical and a 
graphical output (Fig. 4). The latter shows the match between the observed hydrograph or 
sedimentograph with that generated by VFSMOD with the optimized parameters.  

 
Figure 4. Example of screen with optimization results. 

The numerical output includes the parameter set with confidence limits estimated by the GMCS 
and the NMS. Further information related to the optimization is also available: covariance and 
correlation matrices, model adequacy, RMSE, Ceff, number of iterations of model execution, and 
total duration of the whole process. 
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Additional Considerations 

Concurrent Inverse optimization of all possible parameters (Fig. 1-2) is not recommended to 
avoid problems of identifiability and non-uniqueness, i.e. when more than one parameter set 
lead to the same model response, the parameters are unidentifiable and the solution is non-
unique and leads to equifinality (Beven and Freer, 2001). Instead, the optimization should focus 
on those parameters that the model is most sensitive to. Thus, it is recommended to choose the 
parameter to optimize based on an initial sensitivity analysis (Muñoz-Carpena et al., 2007). 
Parameter correlation should also be considered. Availability of prior information about the 
parameter ranges is also important (Abbaspour et al., 1997; Russo et al, 1991). 

Application example 

The inverse simulation procedure was tested with a natural runoff event in a 8.7 m long 
vegetative filter strip measured in Central Florida on July 2006. Details on the experimental 
setup are described in Kuo et al. (2005). Parameters of the flow component of VFSMOD 
selected for optimization were: the saturated hydraulic conductivity, VKS (m/s); the Manning’s 
roughness coefficient, RNA; and the filter width, FWIDTH (m). Only the median particle size of 
the incoming sediment, d50 (cm) was chosen for the VFSMOD sediment trapping component. 
The search parameter space was determined with the following intervals based on Muñoz-
Carpena et al. (1999; 2007): VKS (m s-1) [0.000001 – 0.003]; RNA [0.02 – 0.6]; and FWIDTH 
(cm) [1.0 – 3.0]. Once the flow component was optimized, calibration of the sediment output 
was carried out by optimizing d50 (cm) within the interval [0.0003 – 0.0029]. 

Firstly, a manual model calibration of these parameters was carried out in order to compare the 
traditional calibration method with the new inverse optimization procedure. This consisted of 
iteratively changing the selected parameters and running the corresponding simulation with 
VFSMOD until an adequate, but subjective, fit was achieved (Ceff, RMSE and the visual 
inspection of the match between observed and predicted values). The same parameter search 
space was used for both the automatic inverse optimization and the manual procedure.  

The inverse optimization of the three flow parameters was carried out in 23 minutes (1085 
iterations), and the sediment component was calibrated in 3.5 minutes (136 iterations). The time 
spent in the manual calibration was subjectively estimated as 210 and 94 minutes for both 
components, respectively. Results demonstrate the better performance of inverse modeling for 
the parameter estimation. Table 2 and 3 show the calibrated parameters obtained with both 
procedures. Notice the improvement in the goodness-of-fit criteria (higher Ceff, and lower RMSE) 
when performing inverse simulation instead of manual calibration. In addition the identification of 
the 90% confidence interval in the automatic procedure indicates the uncertainty of the 
calibration procedure where no such measure is available for the manual calibration. 

Figures 5 and 6 allow for visual comparison of the performance of VFSMOD-W using the 
calibrated parameters in Tables 2 and 3, for simulating outflow rate (Fig. 5) and sediment 
outflow (Fig. 6).  

Tabla 2. Calibrated selected parameters of the VFSMOD flow component, with 90% 
confidence intervals (for inverse optimization only). 
Material VKS (m s-1)·10-5 RNA FWIDTH Ceff RMSE (m3s-1)

Manual calibration  5.20 0.60 1.4414 0.940 0.319·10-4 

Inverse optimization 4.44 ±0.16 0.440 ±0.005 1.879 ±0.037 0.980 0.185·10-4 
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Tabla 3. Calibrated selected parameters of the VFSMOD sediment component, 
with 90% confidence intervals (for inverse optimization only) 
Material d50 (cm)·10-4 Ceff RMSE (g cm-1) 

Manual calibration  8.19 0.936 0.248·10-4 

Inverse optimization 9.01 ±0.21 0.970 0.170·10-4 
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Figure 5. Example of VFSMOD-W performance using the flow component parameters obtained 

by inverse modeling and by manual calibration. 
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Figure 6. Example of VFSMOD-W performance using the sediment component parameters 

obtained by inverse modeling and by manual calibration. 
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Conclusion 
Inverse modeling capability was implemented in the vegetated filter strip modeling system, 
VFSMOD-W using the Global Multilevel Coordinate Search algorithm in sequential combination 
with the local Nelder-Mead Simplex algorithm (GMCS-NMS). Consequently, the graphical user 
interface of VFSMOD-W was extended to allow for the automatic inverse optimization of the 
hydrologic and sediment components of the model. The GMCS-NMS is a good alternative to 
other existing optimization algorithms, because initial values of the parameters to be optimized 
are not needed and it does not require powerful computing resources. 

The application example presented shows the robustness and efficiency of this parameter 
estimation procedure with respect to the traditional manual calibration. The implementation of 
an easy-of-use and automatic calibrator for VFSMOD-W and its integration into the programs 
GUI will likely benefit modelers designing vegetative filter strips when experimental data are 
available. The new procedure aims to reduce the uncertainty and subjectivity typically 
associated to water quality model calibration tasks. 
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