UNCERTAINTY IN TMDL MODELS
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ABSTRACT. Although the U.S. Congress established the Total Maximum Daily Load (TMDL) program in the original Clean
Water Act of 1972, Section 303(d), it did not receive attention until the 1990s. Currently, two methods are available for
tracking pollution in the environment and assessing the effectiveness of the TMDL process on improving the quality of
impaired water bodies: field monitoring and mathematical/computer modeling. Field monitoring may be the most appropriate
method, but its use is limited due to high costs and extreme spatial and temporal ecosystem variability. Mathematical models
provide an alternative to field monitoring that can potentially save time, reduce cost, and minimize the need for testing
management alternatives. However, the uncertainty of the model results is a major concern. Uncertainty is defined as the
estimated amount by which an observed or calculated value may depart from the true value, and it has important policy,
regulatory, and management implications. The source and magnitude of uncertainty and its impact on TMDL assessment has
not been studied in depth. This article describes the collective experience of scientists and engineers in the assessment of
uncertainty associated with TMDL models. It reviews sources of uncertainty (e.g., input variability, model algorithms, model
calibration data, and scale), methods of uncertainty evaluation (e.g., first-order approximation, mean value first-order
reliability method, Monte Carlo, Latin hypercube sampling with constrained Monte Carlo, and generalized likelihood
uncertainty estimation), and strategies for communicating uncertainty in TMDL models to users. Four case studies are
presented to highlight uncertainty quantification in TMDL models. Results indicate that uncertainty in TMDL models is a real
issue and should be taken into consideration not only during the TMDL assessment phase, but also in the design of BMPs
during the TMDL implementation phase. First-order error (FOE) analysis and Monte Carlo simulation (MCS) or any
modified versions of these two basic methods may be used to assess uncertainty. This collective study concludes that a more
scientific method to account for uncertainty would be to develop uncertainty probability distribution functions and transfer
such uncertainties to TMDL load allocation through the margin of safety component, which is selected arbitrarily at the
present time. It is proposed that explicit quantification of uncertainty be made an integral part of the TMDL process. This
will benefit private industry, the scientific community, regulatory agencies, and action agencies involved with TMDL
development and implementation.
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ncertainty is defined as the estimated amount by
which an observed or calculated value may depart
from the true value (Lapedes, 1978). There is a de-
gree of uncertainty associated with almost all pre-
dictive models and measured data. Of greater significance,
however, is the uncertainty that arises when only the average
values of data that do not characterize the system (e.g., infre-
quently collected grab samples, short-duration intensive

storm sampling, samples collected at limited locations, etc.)
are used to describe highly stochastic and heterogeneous
problems. Several researchers have associated sources of er-
ror in model applications with measurement errors in input
parameter values, model algorithms, scale, spatial heteroge-
neity, and initial and boundary conditions (Haan, 1989; Be-
ven, 1989; Luis and McLaughlin, 1992; Sohrabi et al., 2003).
Beven (1989) reported that defining a consistent effective pa-
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rameter value to reproduce the response of a spatially vari-
able pattern of parameter values was not possible. Sohrabi et
al. (2003) stated, “Although the introduction of stochastic
methods of analysis into the process calculations cannot re-
duce the inherent uncertainty of a given problem, it can lead
to better decision making.” Several researchers have also em-
phasized such analysis as essential for water quality models
(Sohrabi et al., 2003; Reckhow, 2003; Chapra, 2003; NRC,
2001; Haan et al., 1995; Beck, 1987).

Congress established the TMDL program in the original
Clean Water Act of 1972, Section 303(d) (U.S. Congress,
1972). Most of the effort by EPA and states between 1972 to
the 1990s focused on implementing the point-source pollu-
tion provision of the Act through the National Pollutant
Discharge Elimination System (NPDES), (EPA, 2005; No-
votny, 2003). The EPA did not publish any guidelines for state
implementation of Section 303(d) addressing nonpoint-
source pollution (NPS) until 1991 despite the fact that
Section 208 of the 1972 Act had acknowledged the need. The
U.S. District Court for Northern District of California
reaffirmed the TMDL program in its handling of NPS
pollution and stated that states have the responsibility to
implement TMDLs on impaired water bodies (EPA, 2005).
In 2001, the validity of the TMDL process was reaffirmed
after Congress requested a committee to assess the scientific
basis to reduce water pollution (Novotny, 2003).

Currently, two methods are available for tracking pollu-
tion in the environment and assessing the effectiveness of the
TMDL process in improving water quality of impaired water
bodies: field monitoring and mathematical/computer model-
ing. Field monitoring may be the most appropriate and
valuable method to support TMDL development, but its use
is limited due to high costs and extreme spatial and temporal
ecosystem variability. Therefore, mathematical models pro-
vide an alternative to monitoring and can save time, reduce
cost, and minimize the need for testing management
alternatives. Models can be used to assess and develop
TMDL plans on large watersheds where broad-scale moni-
toring is not practical and can provide future forecasts on the
impact of TMDL implementation. However, the uncertainty
of mathematical model simulation results is a concern. The
issue of uncertainty has important policy, regulatory, and
management implications. Sexton et al. (2005) and NRC
(2001) indicate that uncertainty in the TMDL process is
considered under the MOS (margin of safety) component,
which is an arbitrary load added to the allocated point-source
and nonpoint-source loads to represent the TMDL for a water
body:

TMDL = WLA + LA + MOS €))

where TMDL is the total maximum daily load, WLA is the
waste load allocation for point sources, LA is the load alloca-
tion for nonpoint sources, and MOS is the margin of safety.
However, quantifying the magnitude and impact of uncer-
tainty and accounting for that uncertainty in the TMDL pro-
cess has not been well studied or implemented in practice.

The objectives of this article are to review and synthesize
possible sources of uncertainty in simulated outputs of
TMDL models, to quantify such uncertainties, and to propose
approaches for better incorporation of uncertainty into the
TMDL process. In addition, four case studies are presented
to illustrate different uncertainty analysis methods and
applications in the TMDL process.
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SOURCES OF UNCERTAINTY

The watershed models used for TMDL development
(whether lumped or distributed parameter models) can be
mathematically represented as (Haan, 1989):

O=f(L,Pt)+e 2)

where, O is an n X k matrix of watershed response to be mod-
eled, f is a collection of functional relationships, [ is an n X
m matrix of inputs, P, is a vector of p parameters, ¢ is the tem-
poral scale of prediction/calculation, e is an n X k matrix of
errors, n is the number of data points, k is the number of out-
puts, and m is the number of inputs. Even though the distinc-
tion between [ and P is not always clear, / generally represents
a known or a measured model input value, and P represents
a parameter that is estimated based on some functional rela-
tionship with the known inputs (Haan, 1989). Equation 2 in-
dicates that sources of uncertainty may be due to input
variability (i.e., parameterization), algorithm selection in de-
fining the simulated processes, accuracy and level of avail-
able observed functional data for model calibration and
validation, specification of initial and boundary conditions,
and scale of application (Beven, 1989).

Although watershed models are developed to mimic
natural processes, actual watershed processes are more
complex and variable than what can be represented in most
sophisticated models (Haan et al., 1995). To understand an
event in our natural environment, we may need to provide a
scientific explanation of it by inferring a set of general laws
or theoretical principles (L1, Lo, ..., L,) and a set of empirical
circumstances (C1, Cy, ..., C,) (Woolhiser and Brakensiek,
1982). Each of these laws or empirical circumstances relies
on several parameters both to describe the processes and to
accommodate spatial and temporal variability. However,
reproducing natural complexity challenges modelers and
their models in terms of prediction certainty or lack of it.
Several researchers have reported sources of the error (e) in
model applications (e.g., Haan, 1989; Luis and McLaughlin,
1992). In general, these include measurement error, model
error, and spatial heterogeneity. In addition, Beven (1989)
concluded that defining a consistent effective parameter
value to reproduce the response of a spatially variable pattern
of parameter values was not possible.

The number of parameters needed to run the models
supporting TMDLs is usually large. Most of these models
require spatially distributed information on soils, climate,
cropping practices, crop growth parameters, chemical inputs
(fertilizer and pesticides), as well as a variety of estimated
physical properties such as Manning’s roughness coefficient.
Because many of these parameters may be sensitive,
uncertain, and difficult to measure or estimate, mean values
are often used, which are not always representative of the
mean behavior of the system (Sohrabi et al., 2003).
Additionally, these models need to be parameterized in
space, both horizontally and vertically, and in time, so
populating the input databases can require substantial
measurement and processing resources. Uncertainty can
arise from using default values that may or may not be
appropriate for the area being modeled and also from
transforming values between units.

AnnAGNPS (Annualized Agricultural Nonpoint-Source
Pollution) (Yu et al., 2001) and SWAT (Soil Water Assess-
ment Tool) (Arnold et al., 1998) are both examples of
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spatially based models frequently used for TMDL develop-
ment that rely on accurate input on the spatial variability of
soils data both laterally and vertically in the environment.
Many of the spatial soils databases such as SSURGO are
incomplete when it comes to identifying all the parameters
within the different layers, so estimates need to be made to
fill in the data gaps. Furthermore, estimating parameters that
are sensitive to the model output can add to the uncertainty,
where small changes in the sensitive input parameter lead to
large changes in output. Chu et al. (2004) identified
biological and uptake parameters as sensitive parameters that
contributed to the sensitivity of nutrient and sediment output
in the SWAT model. In the WEPP (Water Erosion Prediction
Program) model, slope, hydraulic roughness, Manning’s n,
and soil erodibility and infiltration parameters were also
found to contribute significantly to nutrient and sediment
outputs (Baffaut et al,, 1997). A sensitivity analysis of
AGNPS found that many of the most sensitive parameters
were those contained in the Universal Soil Loss Equation and
also slope and curve number (Yu et al., 2001). Many of the
above sensitive parameters are not directly measurable, nor
is it possible to collect a large, random sample to describe the
uncertainties (Haan et al.,, 1995). With the many input
parameters required to run these models, it is even more
important to accurately quantify uncertainty.

UNCERTAINTY DUE TO INPUT VARIABILITY

Much of the uncertainty associated with modeling results
can be traced back to uncertainty in the estimates of the
parameters used as input for the analysis. Variability in these
parameters within and between various land uses and soil
types is an important consideration if realistic description of
the hydrologic behavior is to be made (Peck et al., 1977).
Sohrabi et al. (2003) provided appropriate probability
distributions for each of the most sensitive hydrologic and
chemical input parameters of SWAT2000 and showed the
combined effect of such variability on model output in the
form of cumulative probability distribution curves. Variabili-
ty in model output caused by inaccurate input estimates can
be reduced by decreasing the uncertainty in the inputs
through two methods: (1) increasing the number of measure-
ments of the parameter and thus increasing confidence in the

mean estimate, and (2) improving the methods used to
measure the parameter (Haan and Skaggs, 2003). A brief
discussion of the level of uncertainty in some of the common
model inputs is provided below.

Climatic Data

Climatic data are required inputs for virtually all hydro-
logic and water quality models. At a minimum, these data
include precipitation, air temperatures, and solar radiation,
which can all exhibit considerable variability based on
measurement methods. Precipitation data are frequently
collected with tipping bucket type devices, which typically
have an associated error of 1% to 5%, or weighing lysimeters,
which can have up to 2% error. Rainfall measured from
NEXRAD radar can have very large errors (Hardegree et al.,
2003). Because precipitation is one of the most critical input
characteristics to any hydrologic simulation, these errors can
have significant impact on the accuracy of the results.
Furthermore, the natural distribution of rainfall is only
captured with a dense network of sensors, which is not
typically available. The impact of variability in other
climatic data, such as temperature and solar radiation, on
simulation results is similarly important and should be
considered in uncertainty analysis.

Soils Data

Most water quality models rely heavily on the accurate
input of soil characteristics and often include estimates of soil
hydraulic conductivity, texture, bulk density, and water
holding capacity. While well-accepted methods have been
established for these measurements, considerable uncertain-
ty can be introduced based on personnel expertise and
equipment. In addition to measurement error, soil character-
istics tend to be highly spatially variable, and inaccuracies
related to where soils are located on the earth’s surface lead
to another form of error. Examples of the typical spatial
variability of several parameters are presented in table 1.
Parameters associated with the flow of solutes through the
soils (e.g., apparent diffusion coefficient and pore water
velocity) typically have much higher CVs than do parameters
associated only with the flow of water through the soil
(table 1).

Table 1. Degree of variability of various soil physical and chemical characteristics (after Warrick and Nielsen, 1980).

Degree of Cv
Variability ~ Parameter Mean SD (%)
Low Bulk density (g cm™3) 1.3 0.09 6.9
Bulk density (g cm™3) 1.4 0.10 6.8
Bulk density (g cm—) 1.5 0.11 73
Water content at zero tension (cm> cm=3) 40-45 4.5-4.8 11
Water content at zero tension (cm3 cm™3) 47 4.8 10
Medium Sand/silt/clay fractions (%) 53/28/19 15/9.1/6.8 28/32/36
Sand/silt/clay fractions (%) 26/27/47 11/6/8 42/22/17
Water content at 0.1/15 bar tension (g g™1) 27/9.5 5.4/3.1 20/33
Water content at 0.1/15 bar tension (g g™1) 23/1.5 9.2/3.8 40/51
Water content at 0.2 bar tension (cm3 cm=3) 32 5.4 17
Water content at 2.2 bar tension (cm3 cm™3) 34 4.1 12
Water content at 15 bar tension (g3 g=3) 4.5 1.4 31
High Saturated hydraulic conductivity (cm h™1) 14 26 190
Saturated hydraulic conductivity (cm day~1) 20 22 110
Unsaturated hydraulic conductivity at 90%/60% saturation (cm day~1) 0.63/0.0026 1.75/0.01 280/420
Apparent diffusion coefficient (cm? day~1) 370 2.4x106 6.5x106
Pore water velocity from water/solute (cm day~1) 44/40 7300/4400 1.7x104/1.1x104
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The level of variability of other hydrologic and water
quality input parameters, for example, those associated with
watershed models such as SWAT2000, is described in case
study II.

UNCERTAINTY DUE TO MODEL ALGORITHMS

Shirmohammadi et al. (2001) provide a detailed discus-
sion of modeling concepts, modeling philosophy, model
classification, and types of water quality models. Most of the
models proposed or used for TMDL assessment (e.g., SWAT,
AnnAGNPS, HSPF, etc.) fall under the “Formal (Mathemati-
cal Models)” category and often include both empirical and
theoretical (or physically based) algorithms. Empirical
algorithms are regression equations that are developed based
on a set of observed data for defined climatic, soils, and land
use scenarios. Thus, their application to conditions other than
those for which these algorithms were developed may
produce outputs with significant uncertainty. On the other
hand, theoretical models are developed based on certain
physical laws, and they can be applied to diverse climatic and
physiographic regions given proper input values for the
parameters of interest. In addition, theoretical models require
well-replicated, long-term observed data for calibration and
validation. Uncertainty due to the type of algorithms used in
a given model can significantly impact the accuracy of model
outputs; therefore, it is essential to identify possible uncer-
tainties associated with the model algorithms/structure used
in TMDL assessment.

UNCERTAINTY DUE TO MODEL CALIBRATION AND
VALIDATION DATA

The most common approach to minimize model output
uncertainty is through model calibration (training), in which
model parameters are adjusted so that model predictions
match measured data within a predefined accuracy level.
Once a model is calibrated, we assume that it accurately
represents the watershed processes under investigation.
However, the uncertainty inherent in calibration and valida-
tion data should also be included in the overall assessment of
model uncertainty and can be broken down into four

procedural categories: discharge measurement, sample
collection, sample preservation and storage, and laboratory
analysis (Harmel et al., 2006).

In their study, Harmel et al. (2006) created various “data
quality” scenarios representative of measured data sets used
in model calibration and validation. The scenarios ranged
from a best case with outstanding quality assurance/quality
control (QA/QC) and ideal hydrologic conditions to a worst
case with little QA/QC and difficult hydrologic conditions.
A range of typical scenarios with moderate QA/QC and
typical hydrologic conditions was also examined. For these
scenarios, the authors compared errors introduced by each
procedural category and estimated the uncertainty in mea-
sured streamflow and load data. The root mean square error
propagation method of Topping (1972) was used to estimate
the cumulative probable uncertainty:

) 2
E, :\/zi(El +E5+E3+...+E)) 3)
-

where Ep is the probable error range (* %), n is the total num-
ber of sources of potential error, and E1, E», ..., E, are the po-
tential sources of error (£ %).

Results indicated that substantial error can be introduced
by each of the procedural categories (fig. 1). In a worst-case
scenario, sample collection, sample preservation and stor-
age, and laboratory analysis can contribute more uncertainty
than streamflow measurement. In the range of typical
scenarios, sample collection had the greatest potential to
contribute large amounts of uncertainty, but streamflow
measurement, sample preservation/storage, and laboratory
analysis also contributed considerable error. In the best-case
scenario, the uncertainty was less than 5% for each
procedural category. Based on these results, a change is
needed in QA/QC methodology for storm water data so that
streamflow measurement and sample collection receive the
same attention as typically given to sample preservation/stor-
age and laboratory analysis. In fact, sample collection may
deserve the most attention, as it can introduce the most
uncertainty in typical scenarios (fig. 1).
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Figure 1. Comparison of probable uncertainty contributed by each procedural category for best case, typical, and worst case “data quality” scenarios;

data presented were averaged across constituent type (Harmel et al., 2006).
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Table 2. Cumulative probable uncertainty, represe

nted by the probable error range (Ep), for streamflow

and nutrient and sediment storm loads for worst case, best case, and typical scenarios (Harmel et al., 2006).

Streamflow NOs3-N NH4-N Total N Dissolved P Total P TSS

(%) (%) (%) (%) (%) (%) (%)

Worst-case scenario 42 421 246 168 417 249 117
Typical scenario maximum 19 69 100 70 104 110 53
Typical scenario average 10 17 31 29 23 30 18
Typical scenario minimum 6 8 11 11 11 8 7
Best-case scenario 3 4 3 6 4 3 3

When the uncertainty introduced by each procedural
category was propagated to the resulting streamflow and
water quality data, results indicated that streamflow is much
less uncertain than nutrient and sediment loads (Harmel et al.,
2006). Estimated Ep values for streamflow were relatively
low, ranging from 6% to 19% under typical conditions and
only reaching 42% in the worst-case scenario (table 2). In
contrast, estimated Ep values for dissolved nutrients ranged
from 8% to 104%, Ep for total nutrients ranged from 8% to
110%, and Ep for TSS ranged from 7% to 53% under typical
conditions and from 117% to 421% in the worst-case
scenario.

When storm water quality concentrations were examined
instead of constituent loads, the uncertainty was reduced only
slightly. The reduction was relatively small because stream-
flow measurement, which is unnecessary for concentration
measurement, typically contributes less uncertainty than the
other procedures. In contrast, measured baseflow constituent
concentrations, which do not require streamflow measure-
ment or storm water sample collection, experienced substan-
tial Ep reductions, ranging from 15% to 83% in the
worst-case scenario, from 3% to 35% in typical scenarios,
and from 1% to 3% in the best-case scenario.

Most TMDL models have several parameters that can be
adjusted to fit measured watershed response data. The model
parameters resulting from the calibration process generally
apply only to that watershed and corresponding measured
data. Even when parameter estimates are available for a
watershed of interest, the estimates should be treated as
random variables since their values depend on observed data,
which themselves are random variables (Haan, 1989). Since
any function of a random variable is also a random variable,
model outputs should be viewed as random variables each
having a probabilistic structure. Thus, model outputs should
be described with a probability density function and confi-
dence intervals (Haan, 1989). Such a description helps
quantify the range of uncertainty in model outputs (Haan et
al., 1995). With uncertainty estimates for both measured data
and model outputs, more rigorous, scientifically defensible,
and potentially cost-effective TMDL assessments will result.

UNCERTAINTY DUE TO SCALE

With developments in computing technology and infor-
mation management systems and increased accessibility of
spatial data, GIS-integrated modeling frameworks have been
widely used in TMDL assessment. The role of GIS varies
from developing spatial data for modeling inputs to running
models in part or in full on a GIS platform (Shirmohammadi
et al., 2001). These developments greatly benefit pre-proc-
essing of input data, batch processing a large number of
model runs, and post-processing of model outputs and
visualization. However, with the excitement of the technolo-
gy and its convenience, users may overlook factors contribut-
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ing to the uncertainty of model predictions that are
introduced by these techniques.

Issues related to scale in TMDL assessment can be divided
into two major categories. One involves model-related
issues, where the simulated processes that were developed to
run at a certain scale or a range of scales are not consistent
with the spatial units of the model being applied (i.e., plot
scale, landscape level, watershed level, etc.), (Shirmoham-
madi et al., 2001). The second category involves the spatial
data used in generating model inputs, including digital
elevation models (DEMs), land use and land cover (LULC)
data, soils data, stream networks, and weather data.

Hartkamp et al. (1999) also discussed issues related to
integrating GIS and modeling by defining two classes of
uncertainty related to spatial data: positional and thematic.
Spatial errors can arise from several sources: the spatial unit
of the input data layers, or the aggregation and generalization
processes used for the data development. Scaling can also be
a form of positional error where the lack of appropriate
spatial resolution for the overlaying input data layers that are
integrated within the model framework. Additional sources
of uncertainty arise when soils input data are generated from
digital soil surveys within GIS (i.e., DiLuzio et al., 2004).
This is mainly caused by a one-to-many relationship between
mapping units and soil components in the digital soil surveys.
As a result, the user may generate a manipulated soil attribute
data file that may not be representative of the original data.

DEM data are available at various scales, and the drainage
networks derived from them within GIS can vary widely. To
quantify the effect of GIS data resolution, Cotter et al. (2003)
evaluated uncertainty in flow, sediment, NO3-N, and TP
loads from an agricultural watershed as predicted by the
SWAT model. The authors evaluated seven different spatial
resolutions of DEM, land use, and soils data (30 X 30 m,
100 X 100 m, 150 X 150 m, 200 X 200 m, 300 X 300 m,
500 X 500 m, and 1000 X 1000 m) and found that the SWAT
model output was most affected by input DEM data
resolution (fig. 2), where a decrease in resolution resulted in
smaller watershed area and slope and larger slope length.
Similarly, land use data resolution was found to affect
distribution of pasture, forest, and urban areas within the
watershed. However, soils data resolution was found to affect
only sediment and TP (total phosphorus) predictions for the
range of resolutions evaluated. Queija et al. (2005) pointed
out that DEM data will be available at a wide range of
resolutions and users will be able to access the appropriate
data sets for the region of interest. Data sources such as
LIDAR (light detection and ranging) will provide fine-reso-
lution DEMs and will be helpful in reducing the uncertainty
associated with coarser-resolution DEMs.

The accuracy of the DEM greatly depends on terrain
morphology, sampling density, and the interpolation method
(Aguilar et al.,, 2005) used to derive elevation between
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Figure 2. Effect of DEM data resolution on uncertainty in flow, sediment, NO3-N, and TP load predicted by the SWAT model, represented by percent

relative error (RE %) (Cotter et al., 2003).

sampling locations. During the DEM data development pro-
cess, depressions can be formed within the landscape, where
the number of depressions is inversely related to scale (Lind-
say and Creed, 2005). Some of the depressions may be arti-
facts of the process, but the actual depressions should be
accurately captured within the data. Uncertainties in digital
terrain modeling have been studied widely (i.e., Schneider,
2001; Hugentobler, 2001). According to Wise (2000, 2001),
the DEM quality may influence uncertainty more at small
scales than at large scales. Desmet (1997) cautioned on the
use of different interpolation methods in generating DEMs
and demonstrated that same source data could result in ero-
sion estimates varying by orders of magnitude.

UNCERTAINTY EVALUATION METHODS

The most common strategies for quantifying uncertainty
in mathematical models used in watershed-scale water
quality analysis are Monte Carlo (MC) simulation and
first-order error (FOE) or first-order approximation (FOA)
analysis. The majority of other types of approaches have been
derived from these initial methods. Examples of these
derivations include the Latin hypercube sampling (LHS)
method (McKay et al., 1979), the mean value first-order
reliability analysis method (MFORM) (Madsen et al., 1986),
the mean value first-order second-moment (MFOSM) meth-
od, the advanced mean value first-order second-moment
(AFOSM) method (Hasofer and Lind, 1974), and the mean
value second-order (MSO) method (Mailhot and Villeneuve,
2003). Newly introduced methods, whether they have
resurfaced after many years or are newly developed, include
Bayesian analysis (e.g., Borsuk and Stow, 2000; Franks and
Beven, 1997), a probabilistic approach by Borsuk et al.
(2002), and the deterministic equivalent modeling method
(DEMM) (Cryer and Applequist, 2003a, 2003b). Selected
methods appropriate for uncertainty analysis in TMDL
models are discussed below.

1038

FIRST-ORDER APPROXIMATION (FOA)

The FOA method can be used to estimate the amount of
uncertainty in the output (O) as a function of uncertainty in
parameter P using the method described by Haan (2002). In
general, the expected or mean value of O can be estimated as:

£}~ 1@) O
and the variance in the model output can be estimated by:

2

Var(0)=0,% = i [a—f}cpi )
f’l.

i-1|\ OF;

where O is the output of interest modeled as a function of a
vector of n parameters (P), 0,2 is the variance in output, and
0p is the standard deviation of P. Summers et al. (1993) dis-
cussed the strengths and limitations of FOA analyses in water
quality modeling. Generally, FOA analysis under small pa-
rameter uncertainty is considered to give reasonable esti-
mates of model output uncertainty (Zhang et al., 1993).

MEAN VALUE FIRST-ORDER RELIABILITY METHOD
(MFORM)

MFORM is an uncertainty analysis approach that allows
the user to express uncertainty in terms of variance and is a
developed form of FOA (Melching and Yoon, 1996).
Variance is an indication of the closeness of the values of a
sample or population to the mean. MFORM allows the user
to determine the variance of the dependent variable as well
as the variance contributed by each input parameter (basic
variable). Each basic variable should be standardized to
receive equal consideration. By determining the parameters
contributing to the most uncertainty, one can go back and
re-evaluate those parameters to determine their values with
greater certainty. This provides the user with updated model
calibration and less output uncertainty. The model can then
be run to determine the uncertainty of results based on
validation data. Results are usually expressed in terms of
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variance, probability (of failure), confidence intervals, or
other descriptive statistics (e.g., coefficient of variation).

MFORM is derived by performing a Taylor series
expansion of the model output function as:

n g
Y=glX, i T Xie ) 5
st £ 38 ]Xe ®

where Y is the dependent variable or model output of interest,
g() is the function representing the simulation process (algo-
rithms, set of equations) to obtain ¥, X, is the vector of basic
variables at the expansion point,  is the number of basic vari-
ables x;, x; is the vector value of basic variable, and dg/dx;
represents the rate of change of the model output with respect
to a unit change in each basic variable, usually referred to as
the sensitivity coefficient.

In MFORM, the expansion point is at the mean value of
the basic variables. Therefore, the mean and variance of the
dependent variable can be approximated as:

EW)=g(x,) @

n( 90 }
Var(Y):G%zZ(—gJ o7

i=1| ox; Ix

m

n n a a
of 30 (5
i=1 j=1 Xi Xm xj Xm

xC\ (X, %) ®)

where E(Y) is the expected value (mean) of random variable
Y, X,, is the vector of basic variables at the mean values, 0,2
is the variance of basic variable I, C,(x;, x;) is the covariance
of basic variables i and j, and all other variables are previous-
ly defined. The first term represents the variance of statisti-
cally independent parameters, while the second term is used
to tabulate the variance of correlated parameters. C,(x;, x;)
can be tabulated by using the identity:

Cv(xi,xj):E[(xi—xml-)(xj—xmj)] 9)

where Xx,,; is the mean value of all x; values, and x,,; is the mean
value of all x; values.

If basic variables are not correlated, then C,(x;, x;) is equal
to zero. In this case, the variance of output can be written as:

n a 2
Var (¥ )= 7 ~ 2(—5’] o7 (10)

i:1 BXi Xm

This term represents the fraction of model output variance
(FOV) contributed by each basic variable. When using
complex models, the best way to solve for 3g/dx; (egs. 8 and
10) is by using numerical methods. Melching and Bauwens

(2001) tabulated dg/2x; using forward difference with change
in x; equal to 0.01. The unit change of x; depends on the
sensitivity of the model to change in parameters.

Melching and Bauwens (2001) evaluated uncertainty in
coupled nonpoint source and stream water quality models
applied to a suburban watershed. They used LHS and mean
value first-order reliability methods (MFORM) to determine
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prediction uncertainty of dissolved oxygen (DO) concentra-
tions. LHS was used to identify the basic variables that
significantly contribute to output uncertainty, while
MFORM was used to provide estimates of the percentage
contribution of the variables to output uncertainty. In LHS,
input parameters were ranked in terms of their correlation
with output values to determine their importance. The
coupled models included a nonpoint-source loading model,
a constant treatment efficiency model, and a river water
quality model. General conclusions could not be made about
the overall uncertainty of the system because of the
limitations inherent in each individual model. However, the
study was able to help identify key sources of uncertainty,
i.e., the main parameters that significantly affect the
uncertainty in simulated DO concentrations at the location
most prone to low concentrations.

MONTE CARLO SIMULATION (MCS)

In MCS analysis, the effect of uncertainty in model
parameter P on output O is estimated by repeated simulations
using randomly selected parameter values. Effects of uncer-
tain knowledge of one or more parameter values can be
reliably estimated using MCS analysis. MCS analysis has
been reported to be the most robust method for estimating
uncertainty in water quality models (Hession et al., 1996) and
is commonly selected as a standard for comparing against
other methods (Yu et al., 2001). Haan et al. (1995) proposed
methods to validate water quality models using MCS
analysis. The accuracy of output uncertainty estimates
depends on the number of model simulations performed and
on the adequacy of the assumed parameter distribution
(Haan, 2002). The number of model simulations should be
sufficiently large to reliably estimate the probability distribu-
tion of the output variables (Gardner and O’Neill, 1983).
However, this requires considerable computing resources. In
addition, the distribution of many of the parameters used in
water quality models is not known. If the model parameters
under study are correlated, a multivariate simulation of the
parameters must be used.

LATIN HYPERCUBE SIMULATION (LHS) WiTH CONSTRAINED
MCS

When the model complexity under study is such that
computational requirements for MCS analysis become
prohibitive, the LHS method can be used to efficiently
estimate uncertainty in the model output (Iman and Shorten-
carier, 1985; Iman et al., 1980). LHS is a stratified sampling
approach in which the probability distribution of each
parameter is subdivided into 7 non-overlapping ranges. Each
range of parameter value is considered to have equal
probability of occurrence. One random value of the parame-
ter under evaluation is selected from each range for each
parameter. Then, the model output is obtained for each set of
randomly selected parameter values without repeated simu-
lations as is performed with MCS analysis. In LHS analysis,
the order of selection of parameter ranges is also randomized
and the model is executed 7 times, corresponding to 7 number
of parameter ranges. The output distribution and statistics
can be obtained from the sample of n output values. The LHS
technique used to obtain n different values from each of k
variables operates as follows:
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1. The range of each variable is divided into » non-over-
lapping intervals on the basis of equal probability.
2. Values are then randomly selected from each interval.
3. The n subintervals of each input variables (X;) are then
randomly permutated relative to other input variables
(X)), so that every combination of subinterval is equally
likely.
The choice of sample size () in LHS depends on a number
of considerations but is dominated by the cost of making a
single computer run and by the number of input variables (k).
Iman and Helton (1985) found that good results could be
obtained with n > (4/3)k. This is a significant improvement
relative to standard MCS, which requires at least an order of
magnitude more runs per input variable.

GENERALIZED LIKELIHOOD UNCERTAINTY ESTIMATION
(GLUE)

GLUE (Beven and Binley, 1992) is a sampling method
that uses the behavior/non-behavior classification concept
(Spear and Hornberger, 1980) to distinguish between the
fraction of Monte Carlo simulations that matches the system
behavior and the complement fraction that does not. The
main argument that led to development of GLUE is that for
a selected model structure, several combinations of model
parameters (in contrast to a unique optimum) may exist that
are equally good for reproducing the system behavior (Freer
and Beven, 1996). Beven and Binley (1992) suggested that
uncertainties due to errors in model structure and effects of
correlation structure in the parameter space are implicitly
handled within the GLUE procedure.

In the GLUE method, the relative importance of model
parameters is not evaluated individually and independently
but as set of parameters. Each set of model parameters within
a given model structure is evaluated as a single unit. In other
words, it is the parameter set that is important to produce
system behavior, not the individual parameters. First,
retained behavior-giving Monte Carlo simulations are given
weights based on a likelihood function. A likelihood measure
based on the Nash-Sutcliffe efficiency criterion with shaping
factor N is defined as (Freer and Beven, 1996):

5 W
L((x|y):[1—6—§J . 02 <62 (11)
c

o

where L(ay) is the likelihood of parameter set (o) given the

observed data (y), and Gg and cg refer to the error variance

between model simulations and observed data, and the vari-
ance of the observed data, respectively. For N = 1, equa-
tion 11 is the well-known Nash-Sutcliffe efficiency
coefficient (Ey-s) that is often used for calibration of hydro-
logic and water quality models. A negative Ex_g value indi-
cates that the corresponding model output is dissimilar to the
behavior of the system under study, and the likelihood of such
simulation in mimicking the system behavior is zero. Then,
the likelihood estimates associated with model simulations
are rescaled such that they sum up to 1.0 and are used as like-
lihood weights to form a cumulative weighted distribution
for the output of interest. It should be noted that GLUE has
been extensively used in a wide variety of watershed and wa-
ter quality studies (Zak et al., 1997; Hankin and Beven, 1998;
Romanowicz and Beven, 1998; Schulz et al., 1999; Zak and
Beven, 1999).
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CASE STUDIES

Four case studies are presented to illustrate the use of
uncertainty evaluation methods. Three of the case studies
focus on uncertainty related to TMDL analysis with the
SWAT model. The first two cases show the impact of input
parameter uncertainty on uncertainty in model output, with
case I using the MCS method and case II using LHS with
constrained MCS. Case III uses GLUE to test the SWAT
model’s output uncertainty due to both input variability and
model structure. Case IV was selected to illustrate the
evaluation of uncertainty in the design of BMPs during the
TMDL implementation phase. This case uses a combination
of ranking sensitive input parameters, developing PDFs
(probability distribution functions) for those parameters, and
finally uses the MCS method to develop a PDF for sediment
trapping efficiency under different BMPs.

CASE STUDY I - UNCERTAINTY EVALUATION: SWAT AND
MCS ASSESSMENT

Use of MCS analysis in quantifying uncertainty in
watershed response prediction is illustrated using the Soil and
Water Assessment Tool (SWAT). This model was selected
only for illustration, and the framework can be applied to any
type of conceptual (black box) models and for any outputs by
replacing the parameters of the model.

Description of the SWAT Model

The SWAT model (Arnold et al., 1998) is a physically
based, distributed parameter, watershed-scale model. It
divides the study watershed into sub-basins and identifies
smaller homogeneous areas within each sub-basin called
hydrologic response units (HRU) (Arnold et al., 1998;
Neitsch et al., 2001). All model calculations are performed
at the HRU level. The EPA currently supports this model for
developing TMDLs in agricultural watersheds. SWAT con-
sists of three major components: (1) sub-basin, (2) reservoir
routing, and (3) channel routing. GIS interfaces have been
developed to facilitate the aggregation of input data. This
interface requires a land cover map, soils map, and DEM. A
detailed description of the model can be found at the SWAT
website (www.brc.tamus.edu/swat/index.html).

Description of the MCS Methodology

MCS analysis involves sensitivity analysis to identify the
model parameters that have the most influence on predicted
outputs, generating a probability distribution of those
parameters, running the model using each realization of the
model parameter, and generating a probability distribution of
model outputs to quantify output uncertainty. A sensitivity
analyses may not be needed when the model contains only a
few parameters. However, when the number of parameters
becomes large, and as more than one output is affected by the
same parameter, a sensitivity analysis is needed to identify
the model parameters that have the greatest impact on model
outputs. A relative sensitivity (S,) coefficient can be

calculated as follows and used to rank model parameters:
00 P

S, =——— 12
T3P0 (12)

where O is output of interest, and P is the parameter under in-
vestigation. The S, calculated using this method is dimen-
sionless and can be used to compare all parameters. One of
the limitations of using S, to identify the most sensitive model
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parameters is that it does not account for covariance among
parameters. Haan (1989) has argued that the model parame-
ters should be treated as random variables and their uncer-
tainty can be described as PDFs. The PDF of a parameter
provides a range and distribution of uncertainty, whereas S,
quantifies the impact of this uncertainty on model outputs.

The outputs of interest in this study were mean annual
flow from 2000 to 2002. Runoff from the watershed was
found to be most affected by curve number (CN), soil
evaporation compensation factor (ESCO), and evaporation
coefficient for the stream reach (EVRCH), based on detailed
sensitivity analyses (White and Chaubey, 2005). Values of
CN are based on physical variables, such as land cover and
soil types, and do not follow a specific distribution.
Therefore, the required input PDF could not be directly
generated from CN. Research has shown that the retention
parameter (S) is log-normally distributed (Haan and Schulze,
1987). § is related to CN by:

_ 1000
CN

The mean and standard deviation (SD) for S were required
to describe the lognormal distribution. The mean values of S
were assumed to be the default S (calculated from the original
CN for each HRU). The SD of S was assumed to be 0.5 of the
mean, as suggested by Haan and Schulze (1987).

To simulate these parameters as a distribution, Monte
Carlo analysis was employed. Output was generated for
500 model simulations and evaluated as a distribution for
each sub-basin/HRU combination (Haan, 2002). The param-
eter PDF was created by randomly generating 500 values of
S for each HRU in the watershed using a lognormal
distribution with mean and SD as described above, and then
calculating the corresponding CN using equation 13. The

S 10

(13)

ESCO and EVRCH were assumed to be uniformly distrib-
uted, and 500 random values of these parameters were
obtained based on range of each parameter distribution. The
model was run 500 times under two conditions: (1) assuming
that only one parameter was uncertain, and (2) assuming that
all three parameters were uncertain. Output PDFs were
calculated for flow values and were used to establish a 95%
confidence interval (CI) for the output.

Effects of CN uncertainty on predicted mean annual flow
for the Illinois River watershed for 2000-2002 is shown as
PDFs in figure 3. These PDFs represent a conditional
uncertainty, i.e., it is assumed that all other model parameters
are known values and are held constant at the beginning of the
simulation, and CN is the only uncertain parameter. In
figures 3a through 3c, the solid vertical line represents the
measured flow data. The PDF of CN in figure 3d shows an
area-weighted CN for the entire watershed. Figure 3d also
shows the uncertainty in the CN itself as a PDF and with a
95% confidence interval on CN and modeled outputs. The
95% confidence interval on CN ranged from 62.2 to 65.8. It
should be noted that each HRU in the model has a unique
curve number. Even though the area-weighted CN does not
show much variability, a greater uncertainty in CN at the
HRU level can be expected.

Figure 3 also shows that the uncertainty in mean annual
flow due to uncertain knowledge of CN was not very high, as
indicated by a narrow 95% CI for all three years. Depending
on the structure of the model, a small uncertainty in the
parameter can result in relatively small or large uncertainty
in model output. For applications where a small uncertainty
in a parameter results in a relatively large uncertainty in the
output, the model structure should be critically examined. If
the selected model has a particular parameter that is very
uncertain and results in even greater uncertainty in modeled
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Figure 3. Effects of uncertainty in CN on predicted mean annual flow for the Illinois River watershed. Dashed vertical lines represent 95% confidence

interval and solid vertical line represents the measured flow data.
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Figure 4. Effect of interactions among parameters on predicted flow for
the Illinois River watershed for 2001.

output, such a model should not be used in making critical en-
vironmental decisions. In this case, even though CN was
found to be one of the most sensitive parameters, the uncer-
tainty in output was not magnified due to uncertainty in CN,
as indicated by a narrow CI (fig. 3).

If CN was the only uncertain model parameter, one could
examine the measured watershed response at this point to
stochastically validate the model. Figure 3 shows that mean
annual flow was overestimated for all three years. Since
measured flow data fall outside the 95% CI for all years, it can
be concluded that the model was not stochastically validated.
This indicates that either the model itself or the method of
estimating the CN is inadequate, and the model cannot
capture the true watershed response at 95% CI. Here it is
assumed that the measured data are known with certainty. In
reality, there is always some uncertainty present in the
measured data (Harmel et al., 2006). Under such conditions,
a PDF of the measured data can also be developed and used
to calculate the probability that the modeled output will be
within a certain tolerance of the measured data.

The uncertainty in the model output can be expected to
change when more than one model parameter is uncertain.
Figure 4 shows the uncertainty in predicted mean annual flow
for 2001 as PDF and cumulative density function (CDF)
when CN, ESCO, and EVRCH are all uncertain. In addition,
mean, % coefficient of variation (%CV), and 95% CI for flow
are shown in table 3 when all three parameters are uncertain,
along with the measured watershed response data. It should
be noted that both mean and range of uncertainty, as indicated
by 95% CI, are different for flow predictions under multiple
uncertain parameters.

The range of the 95% CI gives an idea of the practical
applicability of the model for TMDL development. Ideally,
this range should be as small as possible. A large range in
95% CI suggests that the model outputs are very uncertain
and that watershed response predictions are also uncertain,

Table 3. Effects of uncertainty in CN, ESCO, and EVRCH
parameters on predicted flow for the Illinois River watershed.

Flow (m3 s71)

Year Mean 9%CV 95% CI Measured

2000 15.87 2.00 15.24-16.51 16.95

2001 21.66 1.50 21.01-22.31 16.88

2002 23.89 0.99 23.43-24.36 16.89
1042

Table 4. Fraction of total variance in predicted
flow attributable to each uncertain parameter.

Year CN ESCO EVRCH
2000 0.10 0.89 0.01
2001 0.28 0.71 0.01
2002 0.07 0.92 0.01

even though the model could be stochastically validated. Re-
sults from this study indicate that the SWAT model does not
suffer from this limitation. It should be noted that the range
of uncertainty, as indicated by %CV and 95% CI, was rela-
tively small for the SWAT model in this study, which is desir-
able for watershed models. For Monte Carlo uncertainty
analysis, the fraction of total variance in the model output (F;)
attributable to the ith parameter can be estimated as (Haan,
2002):

(14)

where r; is the correlation between ith parameter and the out-
put. Table 4 shows the fraction of the total variance in the pre-
dicted flow and sediment due to uncertainty in CN, ESCO,
and EVRCH. Most of the variance in predicted flow resulted
from uncertainty in ESCO.

CASE STUDY II - UNCERTAINTY EVALUATION: SWAT AND
LHS wiTH CONSTRAINED MCS ASSESSMENT

The MCS analysis combined with LHS was used to
evaluate the SWAT2000 model’s output variability due to
input variability for a small (350 ha) watershed in Frederick
County, Maryland. The ARRAMIS (Advanced Risk and
Reliability Assessment Modeling Information System) soft-
ware package equipped with LHS and MCS was used to
perform the uncertainty analysis (Iman et al., 1980).

A total of 34 input parameters (Sohrabi et al., 2003)
representing hydrologic and water quality characteristics of
the watershed for which SWAT2000 was found to be most
sensitive were selected for assessing the impact of their
variability on model uncertainty.The first step in probabilis-
tic risk assessment is therefore the determination of appropri-
ate PDFs for the input variables considered in the assessment.
Determining the uncertainty PDF to assign to model input
parameters is one of the major hurdles in overall evaluation
of uncertainty associated with hydrologic and water quality
modeling (Haan et al., 1995). This difficulty is compounded
by parameter variations with depth due, for example, to the
presence of horizons in the soil.

To characterize uncertainty, each input variable was
assigned a probability density and a range in values based on
professional judgment, SWAT model’s default values, and/or
literature information (table 5). If the range of values for a
parameter was within a factor of 10 or greater, it was assigned
a log-uniform distribution, while all other parameters were
assigned a uniform distribution.

The field-scale variability in many inputs has been
reported to be adequately modeled by normal or log-normal
distribution (Jury et al., 1991). In addition, Jensen and
Refsgaard (1991) showed soil hydraulic conductivity to be
approximately log-normally distributed. Therefore, satu-
rated hydraulic conductivity of soil in different soil layers and
soil series and hydraulic conductivity both in the main
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Table 5. Description of the distribution and range of values
for SWAT2000 input parameters selected for evaluation
in the uncertainty analysis (Sohrabi et al., 2003).

Parameter Distribution ~ Assigned Range Units

CMN Uniform  0.00015-0.00045 -
NPERCO Log—uniform 0.001-1.00 -
PHOSKD Uniform 87.5-262.5 m3 mg1
PPERCO Uniform 10.0-17.0 -—

UBN Uniform 10.0-30.0 -—

UBP Uniform 10.0-30.0 -—
USLE_C Log-uniform 0.03-0.50 -
GW_DELAY Uniform 5.0-15.0 day
RCHRG_DP Uniform 0.0-1.0 -—
GW_REVAP Uniform 0.02-0.2 -—
GWQMN Log-uniform 5.00-200.00 mm HyO
OV_N Log-uniform 0.008-0.480 -

CN2 B 50.0-90.0 -
USLE_P Uniform 0.25-0.75 -
CH_COV Uniform 0.0-1.0 -
CH_EROD Uniform 0.0-1.0 -—
CHK_2-C B 0.05-0.5 mm h~!
CHK_2-M B 16.1-50.1 mm h~!
CHK_2-P B 5.1-16.0 mm h~!
CH_N(2) Uniform 0.025-0.15 -
SOL_AWC(1M) Uniform 0.10-0.15 mm H,0 mm soil !
SOL_AWC(1P) Uniform 0.14-0.20 mm H,0 mm soil !
SOL_AWC(2M) Uniform 0.05-0.10 mm H,0 mm soil !
SOL_AWC(2P) Uniform 0.07-0.12 mm H,0 mm soil !
SOL_K(1M) B 50.8-160.0 mm h~1
SOL_K(1P) B 16.0-160.0 mm h~1
SOL_K(2M) B 16.0-50.8 mm h~1
SOL_K(2P) B 5.1-16.0 mm h~1
USLE_K Uniform 0.15-0.45 (see note)lal
CH_K(1C) B 0.05-0.5 mm h~!
CH_K(1M) B 16.1-50.1 mm h~!
CH_K(1P) B 5.1-16.0 mm h~!
CH_N(1) Uniform 0.025-0.15 -

[2IJUSLE_K = (0.013 metric ton m? h)/(m3 metric ton cm).

channel and in tributaries are assumed to have log-normal
distributions in this work. Due to the lack of data to estimate

mean and standard deviation for PDFs thought to be Gaus-
sian, the § distribution was used to assign proper values for
shape factors to fall into approximate log-normal distribu-
tion. In fact, the {3 distribution is generally used as a rough
model in the absence of sufficient data (Wyss and Jorgensen,
1998).

The range for each parameter was selected to cover all
physically realistic values. Minimums, maximums, ranges,
means, medians, variances, and coefficients of variation for
the 50 generated samples for each of the selected model
inputs were computed (Sohrabi et al., 2003). Table 6 shows
description of the SWAT2000 state variables used in
uncertainty analysis in this study.

Table 7 presents statistics of the SWAT2000 model’s
simulation results using LHS/MCS with variable input parame-
ter values and a comparison of the means with those obtained
using average input parameter values, and measured flow and
water quality constituents. Data indicate that predicted stream-
flow values range from 215.0 to 530.0 mm, with a standard
deviation of 102.4 mm. The average streamflow predicted using
mean input parameter values is above the upper end of this
range and certainly higher than the measured value, indicating
that inclusion of parameter uncertainty would significantly
improve the mean predictions. The fact that the mean of LHS
predictions is less than the prediction from mean inputs
essentially indicates that negative deviations of input parame-
ters from their mean causes a larger decrease in predicted
streamflow than the increase caused by positive deviations of
inputs of equal magnitude. Relatively large coefficients of
variations in input parameters (10% to 76%) are transformed to
a coefficient of variation of only 28.6% in predicted outputs.
This underscores the importance of the present MCS approach.
Assuming a linear transfer of uncertainty through the model, for
example, would have led to a grossly underestimated uncertain-
ty in flow and other results that cover a range of possible
outcomes that in reality are highly unlikely.

Knowledge of risk level, along with the corresponding
range of expected streamflows, is a clear advantage over
knowing only means (which are possibly incorrect, as dis-
cussed above). The risk level can, for example, be chosen ei-

Table 6. Description of SWAT2000 state variables used in uncertainty analysis (Sohrabi et al., 2003).

Variable Description
Flow-related variable FLOW_OUT Average daily streamflow at the outlet of watershed, includes channel losses (m3 s™1)
Sediment-related variable SED_OUT Sediment transported with water at the outlet of watershed, includes channel losses (metric ton)
Nutrient-related variables ORGN_OUT Organic nitrogen transported with water at the outlet of watershed (kg N)

ORGP_OUT Organic phosphorus transported with water at the outlet of watershed (kg P)

NO3_OUT Nitrate transported with water at the outlet of watershed (kg N)

NH4_OUT Ammonium transported with water at the outlet of watershed (kg N)

MINP_OUT Mineral phosphorus transported with water at the outlet of watershed (kg P)

Table 7. Values of ranges, means, standard deviations (SD), and coefficient of variations
for each model output for one-year (1995) simulations (Sohrabi et al., 2003).

Model Output Units Range Mean SD CV (%) Measured Value
Streamflow mm 215.0 - 530.0 357.1 102.4 28.6 5409021, 381.3[0]
Sediment kg ha™! 4827.0 - 9285.0 9673.0 3469.6 35.8 4595.7
NO3 kg ha™! 10.9 - 226.6 72.5 73.6 101.2 24.9
NHy4 kg ha™! 6.6 - 8.4 7.6 0.48 6.3 8.1
ORG-N kg ha~! 12.7-15.9 14.7 1.01 6.8 Not available
ORG-P kg ha~! 28-12.7 3.7 213 57.5 Not available
MIN-P kg ha~! 43.1 - 66.5 54.2 6.6 12.2 Not available

(2] Unadjusted value, includes baseflow contribution from outside the watershed.
[Pl Adjusted value, excludes baseflow contribution from outside the watershed (Chu and Shirmohammadi, 2004).
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Figure 5. Model output distribution of streamflow at the watershed outlet
based on variable input parameter values using LHS/MCS analysis. The
arrow shows 9-year average streamflow predicted by SWAT based on av-
erage input parameter values (Sohrabi et al., 2003).

ther lower or higher based on the criticality of the intended
application of the results and on the significance of any re-
source it is aimed at protecting or enhancing.

Figure 5 represents the SWAT output cumulative probabil-
ity distribution of streamflow (Sohrabi et al., 2003). The
9-year average streamflow simulated by the SWAT model
based on average input parameter values under BMP4 (strip
cropping under no-till) was 411 mm and is depicted by the
arrow in figure 5. This 9-year average streamflow corre-
sponds to cumulative probability of 0.7, which means there
is 70% confidence that streamflow is equal to or less than
411 mm. In other words, the probability of streamflow being
greater than 411 mm is 30%. PDFs similar to figure 5 can
provide the reliability of certain quantitative values and their
associated uncertainty for each model output, thus helping
managers and decision makers assess the results of modeling
scenarios.

CAsE STupY III - UNCERTAINTY ANALYSIS OF SWAT’s
SEDIMENT YIELD USING GLUE

Figure 6 provides an example of GLUE (Generalized
Likelihood Uncertainty Estimation) analysis for sediment
yield estimation in the Dreisbach watershed (approx.
6.32 km?) in Indiana. SWAT was utilized to simulate fate and
transport of sediment in the watershed. Five thousand SWAT
simulations were performed for the 1974-1978 time period
when hydrologic and water quality data were collected at the
outlet of the watershed. Monte Carlo analysis was used to
determine the number of SWAT model simulations in this
study, as was performed in case study I. Multiple numbers of
model simulations are necessary to cover the range of
variability in input parameter values. In addition, the
accuracy of uncertainty highly depends on the number of
model simulations (Haan, 2002; Gardner and O’Neil, 1983).
In figure 6, the 50th percentile of the cumulative GLUE
likelihood function was used as the expected value for
estimated sediment yield, while 20th and 80th percentiles
were used as lower and upper bounds, respectively. It is
evident that the observed data (represented by the dashed
line) fell well within the uncertainty bounds. To establish a
margin of safety for future predictions, the parameter sets that
represent the 20th, 50th, and 80th percentiles could be used
for SWAT simulations. For the Dreisbach watershed, average
monthly sediment yields (t ha-! month-!) fell in the range of
[0.009, 0.0205] with an expected value of 0.014.
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Figure 6. Cumulative GLUE likelihoods for 5000 Latin hypercube sam-
pling simulations for average monthly sediment yield at the outlet of
Dreisbach watershed, Indiana. Simulations were performed for
1974-1978 period. The vertical dashed line represents measured data.

CASE STUDY IV - UNCERTAINTY ANALYSIS IN
MODEL-BASED BMP DESIGN DURING THE
IMPLEMENTATION PHASE OF TMDLS

The work presented so far relates to the assessment of
TMDLs using watershed-scale models. This case study
demonstrates how uncertainty analysis is also a critical factor
to consider in the design of BMPs in the TMDL context.
Parsons and Mufoz-Carpena (2001) proposed integrating
sensitivity and uncertainty analyses in the modeling and
design process of a common BMP, vegetative filter strips
(VES), used in the implementation phase of TMDLs to
control runoff and sediment outflow from upslope disturbed
areas. The vegetative filter strip modeling design system,
VFSMOD-W, which was developed and tested originally at
North Carolina State University (Mufoz-Carpena et al.,
1999) and later extended as a design tool (Mufioz-Carpena
and Parsons, 2004; Parsons and Munoz-Carpena, 2002) was
modified to enable built-in sensitivity and uncertainty
analyses. VFSMOD-W is a field-scale, mechanistic, storm-
based model developed to route the incoming hydrograph
and sedigraph from an adjacent field through a VFS and to
calculate the resulting outflow, infiltration, and sediment
trapping efficiency. A front-end model, UH, generates the
necessary source area design inputs for each design storm,
including a rainfall hyetograph, a runoff hydrograph, and
sediment loss from the source area using a combination of the
NRCS curve number method, the unit hydrograph, and the
modified Universal Soil Loss Equation. With these inputs, a
set of response curves, i.e., sediment and runoff reduction vs.
filter construction characteristics, can be developed from
VFSMOD-W outputs for a given design scenario (Mufioz-
Carpena and Parsons, 2004).

The response curves can be evaluated with respect to the
TMDL plan design goal, i.e., a required sediment reduction
expressed in terms of sediment delivery ratio (SDR =
sediment out from filter/sediment into the filter), or runoff
reduction expressed in terms of runoff delivery ratio (RDR =
runoff out from filter/runoff into the filter). The procedure to
evaluate the uncertainty for a given design case is based on
the following steps (Parsons and Mufioz-Carpena, 2001):
(1) identify and rank the input parameters of UH and
VFSMOD relative to their sensitivity on sediment trapping;
(2) develop probability density functions for the most
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Table 8. Input distributions for MCS used in the uncertainty analysis of a BMP designed to meet a TMDL runoff sediment reduction.

Parameter Base Value  Distribution Statistics

Curve number, CN 85 Triangular Peak = 85 Min. =79 Max. =90
Soil erodibility, K 0.33 Normal Mean = 0.33 SD =0.05

Sat. hydraulic conductivity Green-Ampt, Ky (cm h~1) 11.99 Lognormal Mean = 12.0 SD=3.0

Initial soil moisture Green-Ampt (cm> cm=3) 0.239 Uniform Min. = 0.05 Max. = 0.25

Sediment particle class diameter, d;, (Um) 66 Normal Mean = 66 SD =10

sensitive input parameters; and (3) use Monte Carlo simula-
tion to sample the input parameters and develop a probability
density function for sediment trapping. This procedure al-
lows the estimation of confidence intervals for the BMP ef-
fectiveness to meet a TMDL requirement. In this way, the
user can use a priori knowledge of local variability and ob-
tain better (or more certain) predictions.

The analysis is illustrated with a typical application in the
Piedmont region of North Carolina. An agricultural field is
upslope from the planned VFS. The agricultural production
system consists of a row crop (with a curve number of 85)
growing in sandy clay. The slope of the source area is 2%.
Six-hour storms with 1-year (54 mm) and 5-year (85 mm)
return periods were selected for evaluation. The VEFS
parameters were selected to represent a good stand of grass
such as fescue. The VFS length was fixed at 5 m for the 1-year
storm and 10 m for the 5-year storm and is designed to meet
a required TMDL sediment reduction of 80% (SDR = 20%).
A sensitivity analysis facilitates the selection of the parame-
ters of the model that should be evaluated with the
uncertainty analysis. Table 8 shows the base values for the
sensitive parameters along with the PDFs and statistics
selected to be representative of the area (Parsons and
Muioz-Carpena, 2001). The objective for selecting the
distributions and statistics was to represent possible selec-
tions based on the design problem. For example, the initial
soil water content was assigned a uniform distribution and
allowed to vary randomly between typical field values of
0.05 to 0.25 cm? cm=3 (Mufioz-Carpena et al., 1999).

A total of 3300 simulations (1800 and 1500 for the 1-year
and 5-year storms, respectively) were run in the MCS
procedure. As an example, figure 7 shows the sampled
distributions for curve number and soil erodibility for the
1-year storm. It is apparent that a relatively large number of
simulations are needed to capture the desired input PDFs,
especially for the normally distributed erodibility input.

The resulting cumulative probability density functions for
SDR and RDR are presented in figure 8. The PDFs for RDR
do not show drastic probability differences for the tested
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scenarios, but the SDR probability density function is shifted
left for the 5-year/10 m combination, as compared to the
1-year/5 m combination. Results show that the probabilities
of achieving the required SDR of 0.2 or less are 70% and 20%
for the 5-year and 1-year scenarios, respectively. Conversely,
figure 8 shows that if the same probability of 70% were
desired for the 1-year design, the TMDL objective would not
be met, since only a sediment reduction of 60% (SDR = 0.4),
a 25% loss of efficiency for this BMP, would be achieved.

INCORPORATION AND COMMUNICATION OF
UNCERTAINTY TO USERS

The previous sections of this article describe sources of
uncertainty and several approaches for quantifying and
expressing uncertainty related to the use of models in TMDL
development. Incorporation of uncertainty into the TMDL
development process is not well-defined or well-practiced. A
variety of stakeholders in the TMDL process, including
model users developing TMDLs and TMDL implementation
plans, decision makers (agency personnel), and watershed
residents, could benefit from consideration of uncertainty in
the TMDL process.

Awareness of uncertainty and how to determine its effects
on modeling results empowers stakeholders to quantify the
uncertainty in the parameter that affects them the most. For
example, if a large portion of the uncertainty in the model
output of interest were due to the estimate of a particular
model parameter, e.g., the soil evaporation compensation
factor (ESCO) in case study I, then efforts could be focused
on reducing the uncertainty of that parameter estimate and
thus reducing the uncertainty of the model output. If more of
the uncertainty were due to the measured data used for
calibration, then decision makers could judge the benefit of
collecting more measured data for calibration to reduce the
uncertainty attributed to that source. In practice, additional
data are collected in some TMDL studies; however, this is
typically done without quantitative information on how
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Figure. 7. Sampled distributions for curve number and soil erodibility for the 1-year storm (1800 simulations).
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Figure 8. Comparison of simulated probability density functions for sediment and runoff delivery ratios obtained in the uncertainty analysis.

much the uncertainty can be reduced. Including quantifica-
tion of uncertainty in the process would provide the basis for
a quantitative cost-benefit analysis related to collecting addi-
tional field data.

The margin of safety (MOS) term in the TMDL equation
is intended to account for uncertainty in the development
process. However, the MOS is often taken to be an assumed
value or percentage of the TMDL (Sexton et al., 2005) rather
than explicitly including estimates of uncertainty. If consid-
erations of uncertainty are included directly in the estimates
of the waste load allocation (WLA) and the load allocation
(LA), then the MOS is not necessary. Typically, the WLA is
assumed to be the sum of the permitted loadings in the
watershed, with no uncertainty assumed. However, if some
level of uncertainty is assumed in the WLA estimate, such as
+10%, then the MOS can be expressed as 0.10 X WLA. As
described earlier, the uncertainty analysis of models used to
estimate the load allocation (LA) generally yields a distribu-
tion of output values (e.g., fig. 4). One approach for
translating a distribution into an estimate of the LA plus an
MOS would be to take the LA as the value corresponding to
50% probability of occurrence and then estimate the MOS as
a percentage of that value.

A better approach would be to more fully utilize the output
distribution and, therefore, the estimate of uncertainty in
developing a TMDL. A TMDL is defined as the load that a
water body can assimilate without violating water quality
standards. Thus, in developing a TMDL, the model results for

the constituent of interest are compared with the applicable
water quality standard. By considering the uncertainty in the
model output, one could determine the probability of meeting
(or violating) the water quality standard. For example, if the
maximum average monthly sediment yield allowed by the
standard was 0.02 t ha-!, there would be an 80% probability
that the sediment yield will be less than that value, or an 80%
probability of meeting the water quality standard, for the
scenario represented by figure 6. If a higher level of
confidence is desired by the decision makers or other
stakeholders, additional management (or reduction) scenar-
ios would need to be simulated with the model to find
scenarios with a higher probability of meeting the standard.
The TMDL could then be presented as shown in table 9, thus
allowing decision makers and other stakeholders to make the
decision as to the trade-off between required reductions and
the probability of meeting the standard. As indicated in the
example in table 9, increasing the probability of meeting the
standard by a small percentage could require substantial
reductions in loading, and thus substantial financial and
personnel resources.

Information of the type shown in table 9 would also
benefit the development of TMDL implementation plans
(IPs), particularly in the public participation phase and in the
allocation of resources for implementation. Public participa-
tion is a very important part of IP development. Presenting
management scenarios to the public along with the costs and
probability of meeting specific water quality standards for

Table 9. Reductions in bacteria loadings from a sample watershed required to achieve particular probabilities of meeting the water quality standard.

Required Reduction in Loading

Probability of
Meeting Standard Cattle Loafing Wildlife Impervious Residential
(%) Direct Deposit  Cropland Pasture Lot Direct Deposit ~ Land Surfaces Forest Pervious Areas
49 0 0 0 0 0 0 0 0
79 0 0 0 0 0 100 0 0
89 0 0 0 0 50 100 0 0
98 95 60 60 60 20 70 0 70
99 88 30 30 30 0 98 30 30
100 95 60 60 60 25 97 0 97
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each scenario would give the stakeholders a basis for decid-
ing which scenarios they prefer. Such information would also
be important in establishing implementation phases. Re-
source agencies could also use such information to determine
how to distribute resources most cost-effectively to achieve
water quality goals.

SUMMARY AND CONCLUSIONS

Spatial and temporal variability in parameter values used
in simulation models results in uncertain model outputs when
describing or predicting a natural event. The types of model
structure and algorithms used introduce additional uncertain-
ty to predictions. Finally, measured data used for model
calibration and validation introduce other potential sources
of uncertainty in predictions. Models used for TMDLs are not
immune from such uncertainties. This multi-state study
identified possible sources of uncertainty in models used for
TMDL assessment and discussed several methods of uncer-
tainty analysis. Three methods, Monte Carlo simulation
(MCS), Latin hypercube sampling with constrained MCS
(LHS-MCS), and generalized likelihood uncertainty estima-
tion (GLUE), were used to estimate uncertainty in the SWAT
model’s output due to input variability in the TMDL
assessment phase of different watersheds located in three
different states. In addition, a case study using VFSMOD-W,
a vegetative filter strip modeling design system, demon-
strated the applicability of uncertainty analysis in the design
of BMPs, a key component of TMDL implementation plans.
Results emphasize the importance of uncertainty and the
need to evaluate and report uncertainty in model simulations
in PDF or equivalent forms. This may be performed using any
method derived from first-order error (FOE) analysis or
Monte Carlo simulation (MCS).

Determination and presentation of model outputs with
associated probabilities for each simulation output can
improve management decisions related to TMDL allocation
and implementation. Including explicit quantification of
uncertainty due to different sources in the TMDL process
would provide more complete information for decision
makers and other stakeholders. Quantitative cost-benefit
analyses could be conducted with respect to establishing
TMDLs and in developing TMDL implementation plans. A
higher level of buy-in by stakeholders, particularly wa-
tershed residents and landowners, could be achieved by
providing quantitative information on uncertainty as well as
on the steps taken by TMDL developers and decision makers
to reduce that uncertainty.
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