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Vegetative fi lter strips (VFS) are an environmental management 
tool used to reduce sediment and pesticide transport from 
surface runoff . Numerical models of VFS such as the Vegetative 
Filter Strip Modeling System (VFSMOD-W) are capable of 
predicting runoff , sediment, and pesticide reduction and can 
be useful tools to understand the eff ectiveness of VFS and 
environmental conditions under which they may be ineff ective. 
However, as part of the modeling process, it is critical to 
identify input factor importance and quantify uncertainty 
in predicted runoff , sediment, and pesticide reductions. Th is 
research used state-of-the-art global sensitivity and uncertainty 
analysis tools, a screening method (Morris) and a variance-based 
method (extended Fourier Analysis Sensitivity Test), to evaluate 
VFSMOD-W under a range of fi eld scenarios. Th e three VFS 
studies analyzed were conducted on silty clay loam and silt 
loam soils under uniform, sheet fl ow conditions and included 
atrazine, chlorpyrifos, cyanazine, metolachlor, pendimethalin, 
and terbuthylazine data. Saturated hydraulic conductivity was 
the most important input factor for predicting infi ltration 
and runoff , explaining >75% of the total output variance for 
studies with smaller hydraulic loading rates (~100–150 mm 
equivalent depths) and ~50% for the higher loading rate (~280-
mm equivalent depth). Important input factors for predicting 
sedimentation included hydraulic conductivity, average particle 
size, and the fi lter’s Manning’s roughness coeffi  cient. Input factor 
importance for pesticide trapping was controlled by infi ltration 
and, therefore, hydraulic conductivity. Global uncertainty 
analyses suggested a wide range of reductions for runoff  
(95% confi dence intervals of 7–93%), sediment (84–100%), 
and pesticide (43–100%) . Pesticide trapping probability 
distributions fell between runoff  and sediment reduction 
distributions as a function of the pesticides’ sorption. Seemingly 
equivalent VFS exhibited unique and complex trapping 
responses dependent on the hydraulic and sediment loading 
rates, and therefore, process-based modeling of VFS is required.
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A vegetated filter strip is a dense vegetation area designed to 

intercept surface runoff  located at the down slope fi eld border 

and is commonly recommended for reducing sediment and dif-

fuse contaminant loads to receiving water bodies. Sediment and 

pesticide trapping effi  ciency of a VFS is predicted with limited 

success when using empirical equations based solely on fi eld 

characteristics of vegetated fi lter strips such as the length of the 

fi lter in the direction of fl ow, slope, area ratios, and vegetation 

type (Neitsch et al., 2005; Lui et al., 2008). When properly fi eld 

calibrated and tested, numerical water quality models can mini-

mize the need for fi eld-testing of management alternatives and 

provide signifi cant time and cost savings. Th e Vegetative Filter 

Strip Modeling System, VFSMOD-W, is a fi eld-scale, mechanis-

tic, storm-based numerical model developed to route the incom-

ing hydrograph and sediment from an adjacent fi eld through a 

VFS and to calculate the resulting outfl ow, infi ltration, and sedi-

ment trapping effi  ciency (Muñoz-Carpena et al., 1993a,b, 1999; 

Muñoz-Carpena and Parsons, 2004, 2008). Researchers have 

successfully tested the model in a variety of fi eld experiments 

with good agreement between model predictions and measured 

values of infi ltration, outfl ow, and trapping effi  ciency for particles 

(Muñoz-Carpena et al., 1999; Abu-Zreig, 2001; Abu-Zreig et al., 

2001; Dosskey et al., 2002; Fox et al., 2005; Han et al., 2005), 

and phosphorus (particulate and dissolved) (Kuo, 2007; Kuo and 

Muñoz-Carpena, 2009). VFSMOD-W is currently used in con-

junction with other watershed tools and models to develop criteria 

and response curves to assess buff er performance and placement 

at the watershed level (Yang and Weersink. 2004; Dosskey et al., 

2005, 2006, 2008; Tomer et al., 2009; White and Arnold, 2009).
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Recent work has extended the model to successfully calculate 

pesticide trapping effi  ciency (Fox and Sabbagh, 2009; Sabbagh 

et al., 2009; Poletika et al., 2009). Th ese authors identifi ed that 

performance of VFS for pesticide trapping depends on hydro-

logic conditions (precipitation, infi ltration, and runoff ) driven 

by the fi lter design (length, slope, and densities of vegetation 

cover) and characteristics of the incoming pollutants (sediment 

and pesticides). Th ey proposed an empirical pesticide trapping 

equation with a foundation of hydrological, sedimentological, 

and chemical specifi c input factors:

( ) ( ) ( ) ( )phln 1 %P a b Q c E d F e CΔ = + Δ + Δ + + +  [1]

where ΔP is the pesticide removal effi  ciency (%),ΔQ is the 

percent infi ltration (%) defi ned as the ratio between the runoff  

from the VFS and the total water input to the VFS (infl ow 

runon plus precipitation), ΔE is the sediment reduction (%), 

%C is the clay content of the sediment entering the VFS, and 

F
ph

 is a phase distribution factor (ratio between the mass of pes-

ticide in the dissolved phase relative to the mass of the pesticide 

sorbed to sediment):

( )ph di iF Q K E=  [2]

where Q
i
 and E

i
 are the volume of water (L) and mass of sedi-

ment (kg) entering the VFS, and K
d
 is the distribution coef-

fi cient (mL g−1), defi ned as the product of the organic carbon 

sorption coeffi  cient (KOC in mL g−1) and the percentage 

organic carbon in the soil (PCTOC, %) divided by 100. For 

fi ve model development studies, Sabbagh et al. (2009) reported 

regression parameters: a = 24.8, b = 0.5, c = 0.5, d = −2.4, and e 
= −0.9. Th ey also proposed a procedure linking VFSMOD-W 

with the proposed empirical trapping effi  ciency equation. For 

data sets with suffi  cient information, the linked numerical and 

empirical models signifi cantly improved predictions of pesti-

cide trapping over conventional equations, such as the one in 

the Soil and Water Assessment Tool (SWAT), which is based 

solely on fi eld characteristics of the vegetated fi lter strip (Fox 

and Sabbagh, 2009; Poletika et al., 2009; Sabbagh et al., 2009). 

Th e linked numerical and empirical models had a R2 = 0.74 

with a slope not signifi cantly diff erent than 1.0, intercept not 

signifi cantly diff erent than 0.0, and standard deviation of dif-

ferences, STDD, of 14.5%. In comparison, the SWAT equa-

tion based on buff er width had a R2 = 0.05 with negative slope 

and STDD = 38.7%. In fact, a realization of limitations within 

the SWAT buff er width equation has led to the development 

of a simplifi ed fi eld-scale VFS submodel for SWAT based on a 

runoff  retention model developed from VFSMOD-W simula-

tions (White and Arnold, 2009).

Mathematical models are built in the presence of uncertain-

ties of various types (e.g., parameter input variability, model 

algorithms or structure, model calibration data, scale, model 

boundary conditions; Haan, 1989; Beven, 1989; Luis and 

McLaughlin, 1992). In a broad sense, all sources of uncertainty 

that can aff ect the variability of the model output have been 

referred to as input factors. Th e role of the sensitivity analysis 

is to determine the strength of the relation between a given 

uncertain input factor and the model outputs. Th e role of the 

uncertainty analysis is to propagate uncertainties in input fac-

tors onto the model outputs of interest (Saltelli et al., 2004). 

Th e formal application of sensitivity and uncertainty analy-

ses allows the modeler to examine model behavior, simplify 

the model, identify important input factors and interactions 

to guide the calibration of the model, identify input data or 

parameters that should be measured or estimated more accu-

rately to reduce the uncertainty of the model outputs, identify 

optimal locations where additional data should be measured to 

reduce the uncertainty of the model, and quantify the uncer-

tainty of the modeling results (Saltelli et al., 2005).

Often, local, “one-parameter-at-a-time” sensitivity analysis 

is performed by varying each input a small amount around a 

base value and considering all other inputs fi xed. However, this 

approach is only valid for additive and linear output models. 

Instead, an alternative “global” sensitivity approach, where 

the entire parametric space of the model is explored simulta-

neously for all input factors, is needed. Th us, global methods 

are independent of model assumptions and provide not only a 

ranking of input factor importance and the direct (fi rst order) 

eff ect of the individual factors over the output but also infor-

mation about their interactions (higher order).

Th e objective of this research was to identify input factors of 

greatest importance and quantify uncertainty ranges of poten-

tial runoff , sediment and pesticide reduction (ΔQ, ΔE, and 

ΔP) at three unique VFS experimental fi eld sites encompassing 

a wide range of conditions. Although the objective of this work 

was to evaluate model sensitivity and uncertainty with regard 

to input factors, we note that uncertainty does exist within the 

regression parameters for the empirical pesticide trapping equa-

tion. Future research should evaluate model uncertainty and 

sensitivity relative to the regression parameters of this equation 

and other empirical equations within the modeling package. 

Methods included the application of a modern global sensi-

tivity and uncertainty analysis framework for modeling ΔP 

using VFSMOD-W. Although analyses of sensitivity (Muñoz-

Carpena et al., 1999; Abu-Zreig, 2001; Muñoz-Carpena et al., 

2007) and uncertainty (Parsons and Muñoz-Carpena, 2001; 

Shirmohammadi et al., 2006; Muñoz-Carpena et al., 2007) 

of the VFSMOD-W model have been previously reported for 

other applications, no study has focused on processes related to 

pesticide trapping in VFS. Statistical evaluation of the simula-

tion tool will help us understand the overall eff ectiveness of 

VFS, and in particular, environmental conditions under which 

these may not be eff ective.

Materials and Methods

Vegetative Filter Strip Field Studies
Th e analyses were applied to three VFS fi eld studies: Arora et al. 

(1996), Patzold et al. (2007), and Poletika et al. (2009), abbre-

viated hereafter by the primary authors’ names. Overviews of 

the hydraulic loading rates (i.e., total infl ow volume, precipi-

tation, and runoff  infl ow), soil and VFS characteristics, and 

pesticides evaluated are provided in Table 1. Th e fi rst two stud-

ies were discussed by Fox and Sabbagh (2009) and utilized by 

Sabbagh et al. (2009) in development of the empirical pesticide 

trapping effi  ciency equation embedded within VFSMOD-W 

(version 5; Muñoz-Carpena and Parsons, 2008). Th e Poletika 
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study was used to evaluate the proposed VFSMOD-W and 

pesticide trapping effi  ciency equation modeling system.

Arora conducted a 2-yr natural rainfall study in Iowa 

of herbicide (i.e., atrazine [2-chloro-4-(ethylamino)-6-

(isopropylamino)-s-triazine], metolachlor [2-chloro-6′-ethyl-

N-(2-methoxy-1-methylethyl)acet-o-toluidide], and cyanazine 

[2-(4-chloro-6-ethylamino-1,3,5-triazin-2-ylamino)-2-meth-

ylpropionitrile]) retention by a 20.1-m-long by 1.5-m-wide 

VFS, consisting of 81% smooth brome grass (Bromus inermis 
Leyss.), 12% Kentucky bluegrass (Poa pratensis L.), 5% tall 

fescue [Lolium arundinaceum (Schreb.) Darbysh], and 2% 

other vegetation. Arora concluded that herbicide reduction was 

primarily a function of infi ltration by the buff er strips, with 

antecedent moisture content being a key driver of the infi ltra-

tion response. Th is research utilized data specifi cally for the 13 

July 1994 event with 30:1 fi eld-to-buff er area ratio. Th is spe-

cifi c event was selected because hydrologic data were explicitly 

reported by Arora for infl ow and rain, outfl ow, and infi ltration. 

For this event, the average ΔQ of the infl ow water was approxi-

mately 65% and the average ΔE was approximately 84%. Also, 

the buff er reduced the mass loading of atrazine, metolachlor, 

and cyanazine by 55, 73, and 68%, respectively.

Field experiments were conducted in western Germany by 

Patzold for metolachlor, pendimethalin [N-(1-ethylpropyl)-

2,6-dinitro-3,4-xylidine], and terbuthylazine [6-chloro-N-

(1,1-dimethylethyl)-N′-ethyl-1,3,5-triazine-2,4-diamine] 

reduction by 3-, 6-, and 12-m grass fi lter strips, consisting of 

maize (Zea mays L.) and pasture. Th e Patzold study included 

experiments with natural rainfall events and experiments with 

simulated rainfall. Th e data considered for the modeling were 

for the simulated rainfall events because rain, runoff  water, and 

sediment infl ow and outfl ow for each simulated rainfall event 

were reported. Th ese experiments were conducted on 7-m-long 

by 3-m-wide plots with 3-m grass fi lter strips (referred to as 

3G). Th ere were six diff erent simulated rainfall events ranging 

from 57 to 71 mm. In this study, the 71-mm event was simu-

lated as the worst-case scenario. For this event, the ΔQ was 

65%, ΔE was 87%, and ΔP for metolachor, terbuthylazine, 

and pendimethalin was 73, 77, and 90%, respectively.

Poletika conducted a fi eld study in western Sioux County, 

Iowa, with 4.6-m-long by 4.6-m-wide smooth brome and 

bluegrass strips. Runoff  volumes were used to simulate drain-

age area (VFS-to-fi eld) ratios of 15:1 and 30:1. Artifi cial 

runoff  was metered into the VFS plots for 90 min following 

a simulated rainfall of 63 mm applied over 2 h. Th e artifi cial 

runoff  contained sediment and was dosed with chlorpyrifos 

[O,O-diethyl O-(3,5,6-tricholoro-2-pyridyl) phosphorothio-

ate] and atrazine. For drainage area ratios of 15:1 and 30:1, 

VFS performed well when fl ow across the strips was uniform 

(ΔQ = 59%, ΔE = 88%, ΔP =  85% for chlorpyrifos and 

62% for atrazine). Increased fl ow volume had a minor impact 

on removal effi  ciency. Data from Poletika considered for the 

uncertainty and sensitivity analyses included the average data 

from the three blocks of uniform, sheet fl ow conditions (100% 

of the plot width or 4.60-m-wide buff er with a 15:1 drain-

age area ratio). Th e ΔQ averaged 66% (range 46–77%), ΔE 

averaged 91% (range 84–94%), and ΔP for chlorpyrifos and 

atrazine averaged 78% and 70%, respectively.

Global Sensitivity and Uncertainty Analysis Methods
Two state-of-the-art global sensitivity and uncertainty methods 

were used: the screening method of Morris (1991) and a vari-

ance-based method, extended Fourier Amplitude Sensitivity 

Test (FAST) (Saltelli, 1999) based on the methods proposed 

by Cukier et al. (1973, 1978) and Koda et al. (1979). A brief 

summary of each method is given below, with more details 

summarized by Muñoz-Carpena et al. (2007).

Th e Morris (1991) method is qualitative in nature and 

therefore can only be used to assess the relative importance of 

input factors. A simplifi ed explanation of the method is that 

a number of local measures, called elementary eff ects, are com-

puted for each input factor. Th e elementary eff ect is calculated 

by varying one parameter at a time across a discrete number 

of levels selected in the probability distribution space of input 

factors. Th e absolute values of the elementary eff ects for each 

input factor produces a statistic named μ*, whose magnitude, 

when compared for all the model input factors, provides the 

order of importance for each factor with respect to the model 

Table 1. Field studies utilized for sensitivity–uncertainty analyses with VFSMOD-W.

Study

Authors Poletika et al., 2009 Arora et al., 1996 Patzold et al., 2007

Location Iowa, USA Iowa, USA
North Rhine, Westphalia, 

Germany

Years 1994–1995 1993–1994 1997–1999

Event description Infl ow vol. (mm) 282 100 148

Rainfall (mm) Simulated (7) Natural (24) Natural (71)

Runoff  (mm) Simulated (275) Natural (76) Natural (77)

Soil description Soil name Galva Canisteo Eutric, Stagnic, Cambisol

Type Silty clay loam Silty clay loam Silt loam

Hydrologic soil group B C B

VFS description† Type 90% smooth brome 
and 10% bluegrass

Smooth brome Grass for pasture

Length in direction of fl ow × 
width (m) and slope

4.6 × 4.6
5%

20.1 × 1.5
2.5%

3.0 × 3.0
10% 

Field-to-fi lter area ratio 15.0 30.0 2.3

Pesticides evaluated 
(% reduction)

Atrazine (70%)
Chlorpyrifos (78%)

Atrazine (55%)
Cyanazine (73%)

Metolachlor (68%)

Metolachlor (73%)
Pendimethalin (90%)
Terbuthylazine (77%)

† VFS, vegetative fi lter strip.
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output of interest (Campolongo et al., 2007). Th e standard 

deviation of the elementary eff ects, σ, can be used as a statistic 

indicating interactions of the input factor with other factors 

and of its nonlinear eff ects (higher-order eff ects).

Th e extended FAST variance-based method provides a 

quantitative measure of sensitivity of the model output with 

respect to each input factor, using what is termed a fi rst-order 
sensitivity index, S

i
, and defi ned as the fraction of the total 

output variance attributed to a single input factor. In the rare 

case of an additive model in which the total output variance is 

explained as a summation of individual variances introduced 

by varying each parameter alone, ΣS
i
 = 1. In addition to the 

calculation of fi rst-order indices, the extended FAST method 

(Saltelli, 1999) calculates the sum of the fi rst- and all higher-

order indices (interactions) for a given input factor in what is 

called a total sensitivity index, S
Ti

:

1 1 1 1......Ti i jk nS S S S S= + + +  [3]

Based on Eq. [3], interaction eff ects can then be determined 

by calculating S
Ti

 − S
1.
 It is interesting to note that μ* of the 

Morris (1991) method is generally a close estimate to the total 

sensitivity index (S
Ti

) obtained through the variance-based 

global sensitivity analysis (Campolongo et al., 2007). Since the 

extended FAST method uses a randomized sampling proce-

dure, it provides an extensive set of outputs that can be used in 

the global uncertainty analysis of the model. Th us, probability 

distribution functions (PDFs), cumulative distribution func-

tions (CDFs), and percentile statistics can be derived for each 

output of interest.

Th e screening method of Morris (1991) and extended FAST 

variance-based method were applied to the three VFS studies to 

investigate input factor importance in regard to ΔQ, ΔE, and 

ΔP. In total, eight pesticide scenarios were considered (Table 

1). In general, the proposed analysis procedure followed six 

main steps: (1) probability distribution functions, PDFs, were 

constructed for uncertain input factors; (2) input sets were gen-

erated by sampling the multivariate input distribution, accord-

ing to the selected global method (i.e., Morris method for the 

initial screening and extended FAST for the quantitative refi n-

ing phase); (3) model simulations were executed for each input 

set; (4) global sensitivity analysis was performed according to 

the selected method; (5) when the Morris (1991) screening 

method was selected, it resulted in a subset of important input 

factors, and steps 2 through 4 were repeated using the extended 

FAST method to quantify the results; and (6) uncertainty was 

assessed based on the outputs from the extended FAST simula-

tions by constructing PDFs and statistics of calculated errors. 

Th e Monte-Carlo sampling software Simlab (Saltelli et al., 

2004) was used for multivariate sampling of the input factors 

and postprocessing of the model outputs. Overall, 121,472 

simulations (190 Morris and 14,977 FAST simulations for each 

pesticide scenario) were performed using the High Performance 

Computing Center at the University of Florida.

Derivation of Input PDFs and Selection of Model Outputs
To avoid the subjectivity of judging a priori what parameters 

may be most important, all model input parameters, 18 in 

total, were selected in the analysis (Table 2). Input PDF selec-

tion for the model’s 18 input variables (Table 2) followed 

Muñoz-Carpena et al. (2007) and was based on a combination 

of reported values for the individual study, literature reviews, 

and parameter databases. A summary of the statistical distribu-

tions and their statistics for each input factor is given in Table 

3 for the Poletika, Arora, and Patzold studies. Th e reported 

rainfall–runoff  was included in the model as specifi ed in each 

study. Th e model outputs selected 

in the analysis were those represent-

ing the hydrological (ΔQ, %), sedi-

mentological (ΔE, %) and pesticide 

(ΔP, %) response.

In the absence of explicit knowl-

edge on input factor variability, a 

uniform distribution was used to give 

equal probability to the occurrence 

of some input factor values within an 

expected range. Th e soil slope (SOA) 

was reported in each study with vary-

ing specifi city. Surface slopes of 5.0 to 

5.5% were reported for the Poletika 

study and 2 to 3% for the Arora study; 

therefore, a uniform distribution was 

assumed within the measured range 

of values. One specifi c slope of 10% 

was reported by Patzold; therefore, a 

uniform distribution with a range of 

±20% of the base value (i.e., 8–12%) 

was assumed. Uniform distributions 

with a ±20% range of the reported 

values were also selected for Green-

Ampt’s average suction at the wetting 

Table 2. Input factors for VFSMOD-W explored in the sensitivity and uncertainty analysis.

No. Input factor Units
Description

Hydrological inputs

1 FWIDTH m Eff ective fl ow width of the strip

2 VL m Length in the direction of the fl ow

3 RNA(I) s m−1/3 Filter Manning’s roughness n for each segment

4 SOA(I) m m−1 Filter slope for each segment

5 VKS m s−1 Soil vertical saturated hydraulic conductivity in the VFS

6 SAV m Green-Ampt’s average suction at wetting front

7 OS m3 m−3 Saturated soil water content, θ
s

8 OI m3 m−3 Initial soil water content, θ
i

9 SCHK –
Relative distance from the upper fi lter edge where check for ponding 

conditions is made (i.e., 1 = end, 0.5 = midpoint, 0 = beginning)

Sedimentation inputs

10 SS cm Average spacing of grass stems

11 VN s cm−1/3 Filter media (grass) modifi ed Manning’s n
m

 (0.012 for cylindrical media)

12 H cm Filter grass height

13 VN2 s m−1/3 Bare surface Manning’s n for sediment inundated area in grass fi lter

14 DP cm Sediment particle size diameter (d
50

)

15 COARSE –
Fraction of incoming sediment with particle diameter > 0.0037 cm (coarse 
fraction routed through wedge as bed load [unit fraction, i.e. 100% = 1.0])

Pesticide component inputs

16 KOC – Organic carbon sorption coeffi  cient

17 PCTOC % Percentage of organic carbon in the soil

18 PCTC % Percentage clay in the soil
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front (SAV). A uniform distribution with range of 0 to 1 was 

selected for the ponding check point, SCHK. In a previous study 

(Muñoz-Carpena et al., 1993b), VFSMOD-W was found not 

sensitive to SCHK values except for sandy soils.

Th e eff ective fl ow width of the strip (FWIDTH) is theoreti-

cally the width of the fi lter perpendicular to the primary fl ow 

direction under uniform, sheet fl ow conditions. Abu-Zreig et 

al. (2001) found deviations from uniform sheet fl ow under fi eld 

conditions that introduce uncertainty into this input factor. A 

uniform distribution was used for FWIDTH, with the distri-

bution ranging between the width of the fi lter reported in each 

study (maximum value) and 10% below this maximum value 

to represent departure from uniform runoff  across the fi lter. 

A similar strategy was used in assigning a distribution to the 

length of the fi lter parallel to the primary fl ow direction (VL). 

For simplicity, VL is usually taken as the distance from the 

top to the bottom of the fi lter along the maximum slope line, 

which is correct under theoretical, uniform, sheet fl ow condi-

tions. However, it is likely that fl ow is not uniformly organized 

and could be sinuous, thereby creating uncertainty in this 

input factor. For VL, the uniform distribution ranged between 

the specifi c value reported in the study (minimum value) and 

10% above this minimum value to represent possible sinuosity 

in the fl ow path.

Many of the soil texture and organic fraction input fac-

tors required by VFSMOD-W were not explicitly reported for 

each study site. Following Sabbagh et al. (2009), the fraction 

of incoming sediment with particle diameters >0.0037 cm 

(COARSE) was approximated as the sand fraction for each 

study. Similarly, the average sediment particle size diameter 

(DP) was estimated based on the reported fraction of clay 

(PCTC), silt, and sand. Th e studies reported single values of 

percent organic carbon (PCTOC) but no measurements of 

within fi eld variability for deriving a statistical distribution. 

Th erefore, uniform distributions were assumed for COARSE, 

DP, PCTC, and PCTOC with a range of ±20% around the 

reported base values (Table 3).

Following Haan et al. (1994), vegetation input factors were 

quantifi ed on the basis of the vegetation type explicitly docu-

mented for each study (Table 1). Triangular distributions with 

peak at the recommended values and range of ±20% around 

the peak were selected for these biology-related inputs (the fi lter 

Manning’s roughness n, RNA; microscale modifi ed Manning’s 

n for cylindrical media, VN; bare surface Manning’s n for the 

sediment inundated area in the grass fi lter, VN2; and average 

spacing of grass stems, SS). A triangular distribution was also 

used for the KOC for the specifi c pesticides investigated in the 

studies. Th e triangular distribution was centered at the recom-

mended KOC from the USDA’s pesticide database (USDA, 

2006) and range matching that reported in the database. For 

terbuthylazine, the range in KOC was derived from various 

published and unpublished sources (Chefetz et al., 2004).

Table 3. Base values and assumed statistical distributions for the input factors of the Poletika et al. (2009), Arora et al. (1996), and Patzold et al. 
(2007) studies.

Input factor†
Poletika et al. (2009) Arora et al. (1996) Patzold et al. (2007)

Base value Distribution‡ Base value Distribution‡ Base value Distribution‡ 

FWIDTH (m) 4.60 U (4.14,4.60) 1.50 U(1.35,1.50) 3.00 U(2.70,3.00)

VL (m) 4.60 U(4.60,5.06) 20.1 U(20.1,22.1) 3.00 U(3.00,3.30)

RNA (s m−1/3) 0.40 T(0.3,0.4,0.5) 0.24 T(0.192,0.24,0.288) 0.24 T(0.192,0.24,0.288)

SOA (–) 0.0525 U(0.050,0.055) 0.025 U(0.02,0.03) 0.10 U(0.08,0.012)

VKS (m s−1) 3.022e-05 LN(−12.3,1.59) 2.2778e-05 LN(−10.9,0.64) 1.878e-05 LN(−11.2,0.74)

SAV (m) 0.4 U(0.32,0.48) 0.13 U(0.104,0.156) 0.46 U(0.368,0.552)

OS (–) 0.43 N(0.43,0.0699) 0.43 N(0.43,0.0699) 0.45 N(0.45,0.08)

OI (–) 0.347 N(0.347,0.071) 0.347 N(0.347,0.071) 0.252 N(0.252,0.0776)

SS (cm) 1.5 T(1.35,1.5,2.2) 1.35 T(1.34,1.35,2.2) 2.15 T(1.35,2.15,2.2)

VN (s cm−1/3) 0.012 T(0.0084,0.012,0.016) 0.016 T(0.0084,0.016,0.016) 0.012 T(0.0084,0.012,0.016)

VN2 (s m−1/3) 0.05 T(0.04,0.05,0.06) 0.05 T(0.04,0.05,0.06) 0.05 T(0.04,0.05,0.06)

SCHK (–) 0.5 U(0,1) 0.5 U(0,1) 0.5 U(0,1)

COARSE (–) 0.171 U(0.121,0.221) 0.2 U(0.16,0.24) 0.10 U(0.08,0.12)

DP (cm) 0.0010 U(0.0008,0.0012) 0.00025 U(0.0002,0.0003) 0.0002 U(0.0016,0.0024)

H (cm) 10.0 N(10.0,1.55) 13.0 N(13.0,2.02) 18.0 N(18.0,2.78)

KOC (–)

 Atrazine 147 T(38,147,288) 147 T(38,147,288) – –

 Chlorpyrifos 6070 T(5300,6070,14800) – – – –

 Cyanazine – – 218 T(40,218,235) – –

 Metolachlor – – 70 T(22,70,307) 70 T(22,70,307)

 Pendimethalin – – – 13,400 T(5000,13400,29000)

 Terbuthylazine – – – 220 T(162,220,514)

PCTOC (%) 2.58 U(2.37,2.78) 3.5 U(2.8,4.2) 1.7 U(1.36,2.04)

PCTC (%) 28.9 U(27,30.7) 31 U(24.8,37.2) 25 U(20.0,30.0)

† Refer to Table 2 for the defi nition of each input factor.

‡ Statistics of the assumed distributions; uniform: U(min,max); triangular: T(min,mean,max); log normal: LN(μ
y
,σ

y
); normal: N(μ

x
,σ

x
). LN and N distributions 

are truncated between (0.001,0.999) except for H with (0.025, 0.975).
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In several cases, more theoretical distributions were used to 

defi ne input factor variability. Th e distribution types for satu-

rated hydraulic conductivity (VKS), saturated water content 

(OS), and initial water content (OI), which was assumed to be 

the fi eld capacity in each study following Sabbagh et al. (2009), 

were adopted directly from recommended distributions by 

Meyer et al. (1997) and Carsel and Parrish (1988) based on 

soil texture (Table 3). Parameters of the distributions for OS 

and OI were taken directly from Meyer et al. (1997) and Carsel 

and Parrish (1988). For these studies, VKS distributions for 

each soil texture provided wide-ranging statistical distributions 

with values that varied by more than three to four orders of 

magnitude. More plausible site-specifi c statistics for the log-

normal distributions were selected for the soil texture of each 

study. Th e mean of log-values was obtained from the simula-

tion values used originally by Sabbagh et al. (2009) and the 

standard deviation was assumed equal to the mean (i.e., CV of 

100%). Th ese values were deemed valid for each study when 

considering the variability of VKS at the scale of the specifi c 

fi eld studies (Table 1), which is expected to be smaller than for 

the whole USDA textural class reported by Meyer et al. (1997) 

and Carsel and Parrish (1988).

Th e fi lter grass height (H) variation is probably driven by 

genetics. Th erefore, a normal distribution was used to describe 

H with the mean as the grass height maintained and reported 

at one study (10 cm for the Poletika) or as the maximum rigid-

ity for that vegetation type based on data from Haan et al. 

(1994) provided in the model documentation (20 cm for the 

Arora study and 18 cm for the Patzold study). Th e standard 

deviations of the assumed normal distributions were derived 

using a 15.5% CV, based on data reported by Muñoz-Carpena 

et al. (2007), and the means reported previously.

Results and Discussion

Global Sensitivity Analysis: Screening Method of Morris
As suggested by Morris, only input factors separated from the 

origin of the μ*–σ plane were considered important. Relative 

input factor importance for ΔQ based on Morris results was 

similar among the three studies (Fig. 1). Th e number of input 

factors identifi ed as important was considerably smaller than 

the full set of 18 model inputs. Th e VKS ranked as the most 

important input factor for ΔQ, appropriately independent of 

study site or scenarios for diff erent pesticides (Fig. 1). Th ese 

results matched those of previous researchers with data from 

other VFSMOD-W applications (e.g., Abu-Zreig, 2001; 

Muñoz-Carpena et al., 1993b, 1999, 2007). Th e next most 

important input factors for predicting hydrologic response 

included OS and OI in the Poletika and Patzold studies. 

Unique to the Arora study, performed on SOAs of approxi-

mately 2.5% compared with SOA of near 10% for Patzold and 

5% for Poletika, was the importance of RNA, SOA, and VL 

(Fig. 1). Th e importance of these three variables in only the 

Arora study can be explained by the SOA. Muñoz-Carpena 

et al. (1993b) demonstrated that SOA, and correspondingly 

RNA, was only appreciable for less-steep VFS conditions. For 

the less-steep (2.5%) VFS in these studies, SOA was an infl u-

ential factor, and for the more steep (5–10%) VFS, the impor-

tance of SOA in predicting ΔQ diminished.

Th e ΔE for all study sites and scenarios was governed by 

both hydrologic (VKS) and sediment (DP, VN and SS) char-

acteristics, as shown in Fig. 1. Th e number of important input 

factors was slightly greater for ΔE than for ΔQ. Th e impor-

tance of several of these input factors is in agreement with the 

global sensitivity analysis discussed by Muñoz-Carpena et al. 

(2007). A slight diff erence between the three fi eld sites of this 

research was the apparent importance of two vegetation-related 

input factors, VN and SS, in the Arora study. In fact, for Arora, 

VN was the most important input in regard to ΔE across all 

three pesticide scenarios (Fig. 1). Th e diff erences are explained 

not only by the diff erent VN ranges but possibly as a result of 

the smallest SOA in Arora, which in turn resulted in slower 

velocities through the VFS. Since transport capacity was linked 

to fl ow velocity, greater sedimentation occurred and thus input 

factors that controlled sedimentation, like VN, became more 

important.

Th e VKS was consistently the most important input factor 

for ΔP across all three study sites and pesticide scenarios (Fig. 

2). Th erefore, ΔQ largely controlled ΔP under the hydrologic 

conditions of these studies. Such fi ndings further support the 

proposed techniques of Fox and Sabbagh (2009) and Sabbagh 

et al. (2009) in predicting ΔP based on ΔQ and ΔE. Input 

factors of secondary importance below VKS included OS, OI, 

and PCTC in the Poletika and Patzold studies and PCTC, 

RNA, SOA, and VL in the Arora study (Fig. 2). Similar to 

ΔQ, a greater number of secondary input factors were impor-

tant for ΔP in the Arora study, again due to the less-steep slope 

and increased sediment-bonded pesticide reduction dynamics.

An input factor initially hypothesized to be important in 

the analysis was KOC; however, the Morris results suggested 

that the KOC value within a specifi c pesticide’s KOC range 

was only of secondary importance to those representing ΔQ 

and ΔE (Fig. 2). In other words, it was less important which 

value within the KOC range was used to simulate trapping 

of a specifi c pesticide; however, the pesticide being simulated 

and its KOC range was still important, as more quantitatively 

demonstrated below in the extended FAST results. A shift in 

the importance of KOC could be observed when comparing 

pesticide scenarios. For example, in the Poletika study, the 

importance of KOC was greater when comparing the more 

soluble pesticide atrazine with chlorpyrifos, most probably 

due to the fact that sediment input factors already accounted 

for transport of the mostly sediment-bound chlorpyrifos (Fig. 

2). Another input from the pesticide component, the PCTC, 

was the second most important input factor in the Arora and 

Patzold studies but was not as important in the Poletika study 

due to the much larger fl ow volumes (i.e., runoff ) experienced 

by the VFS in this study.

Th e Morris (1991) method indicated the presence of inter-

actions between input factors in terms of predicted ΔQ, ΔE, 

and ΔP, especially in the Arora study, as demonstrated by the 

σ values (Fig. 1 and 2). Th e closer the point is to zero on the 

σ axis means that fi rst-order eff ects are more important with a 

small interaction component. Th e σ values obtained suggested 

that simple regressions based on VFS physical characteristics 

(e.g., slope, width, and roughness) are insuffi  cient without 

interaction eff ects between variables considered. Th ese com-

plex results again support the need for process-based pesticide 
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runoff  modeling, as suggested by Fox and Sabbagh (2009) and 

Sabbagh et al. (2009).

Global Sensitivity Analysis: Extended FAST
Th e extended FAST global sensitivity results confi rmed and 

added insights to the Morris results. Table 4 outlines the 

global sensitivity analysis results in terms of the percentage 

of total output variance explained by each input factor, i.e., 

the fi rst-order eff ects (S
i
), and interactions, S

Ti
 − S

1
. In gen-

eral, fi lter removal effi  ciencies for the selected studies were 

not simple and were dominated by interactions and non-

linear responses, especially under cases of higher hydraulic 

loading rates (see S
Ti

 − S
1
 results for Poletika in Table 4). For 

the Arora and Patzold studies, it appeared that infi ltration 

dominated the fi lter hydrology in these two studies and the 

model behaved as strongly additive (ΣS
i
 was >84% for these 

Fig. 1. Global sensitivity analysis results obtained from the Morris (1991) screening method for the vegetative fi lter strip hydrology (ΔQ, infi ltra-
tion) and sedimentation (ΔE, sediment trapping) for the Poletika et al. (2009), Arora et al. (1996), and Patzold et al. (2007) studies. Input factors 
separated from the origin of the μ*–σ plane were considered important. Labels of unimportant input factors (close to the μ*–σ plane origin) have 
been removed for clarity. Input factors are not comparable between the study sites. See Table 2 for the defi nition of each input factor.
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studies, Table 4). Total fi rst-order eff ects explained >95% 

of the output variability in the Patzold study, although as 

explained above, the smaller slope of the Arora study intro-

duced some interactions for ΔE (ΣS
i
 = 84%).

Morris results indicated that VKS was the single most 

important input factor when considering all three study sites 

and the various outputs, especially for ΔQ and ΔP. Extended 

FAST results further supported that conclusion in terms of 

total output variance explained by VKS (Table 4): 49% for 

ΔQ and approximately 50% for atrazine and chlorpyrifos 

ΔP in the Poletika study; 75% for ΔQ and approximately 

60% for atrazine, cyanazine, and metolachlor ΔP in the 

Arora study; and 85% for ΔQ and approximately 80% for 

metolachlor, pendimethalin, and terbuthylazine ΔP in the 

Patzold study. As before, PCTC also exhibited importance 

for the Arora study, second only to VKS in explaining the 

variance in ΔP.

Global Uncertainty Analysis: Extended FAST
Th e global uncertainty analysis results provided ranges in 

expected ΔQ, ΔE, and ΔP (Table 5, Fig. 3) along with some 

interesting comparisons between the three study sites. First, it 

was interesting to compare the diff erences in ΔQ PDFs/CDFs 

between the three study sites, with higher ΔQ for the Arora 

and Patzold studies (Fig. 3). Th e diff erence in ΔQ between 

the studies can be explained on the basis of the diff erent fl ow 

amounts into the VFS in each study. For example, water input 

into the VFS for the Poletika study was higher (approximately 

0.28 m3 of infl ow per m2 of VFS area or an equivalent depth 

of 280 mm) than the Arora or Patzold studies (approximately 

0.10–0.15 m3 of infl ow per m2 of VFS area or equivalent 

depths of 100–150 mm), as shown in Table 1. As expected, 

for larger fl ow through the VFS, effi  ciencies of infi ltration were 

smaller even though two of the studies were conducted on soils 

with the same textural class (i.e., silty clay loam). In terms of 

Fig. 2. Global sensitivity analysis results obtained from the Morris (1991) screening method for the vegetative fi lter strip pesticide reduction (ΔP, 
pesticide trapping) for (a) atrazine and (b) chlorpyrifos in the Poletika et al. (2009) study; (c) atrazine, (d) cyanazine, and (e) metolachlor in the 
Arora et al. (1996) study; and (f) metolachlor, (g) pendimethalin, and (h) terbuthylazine in the Patzold et al. (2007) study. Labels of unimportant 
input factors (close to the μ*–σ plane origin) have been removed for clarity. See Table 2 for the defi nition of each input factor.
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ΔE, the PDFs/CDFs between the Arora and Poletika studies 

were approximately equivalent (Table 5, Fig. 3). Slower fl ow 

rates should lead to higher removal effi  ciencies if the sediment 

particles of the two studies were the same. However, the par-

ticle sizes were diff erent between the two studies with larger 

sediment for the Poletika study. It should be noted that sedi-

mentation dynamics in VFSMOD-W shift between coarse 

particles that are transported primarily as bedload transport 

and retained more easily and fi ne sediment that is transported 

mainly as suspended load and retained less easily (Barfi eld et 

al., 1979; Hayes et al., 1984). Th e range in ΔE for the Patzold 

study was confi ned between 99 and 100% (Table 5, Fig. 3).

Also shown in Fig. 3, ΔP consistently fell between ΔQ and 

ΔE PDFs/CDFs. Depending on the range in KOC of the pes-

ticide being simulated, ΔP would shift either to the left toward 

the ΔQ PDF/CDF or to the right toward the ΔE PDF/CDF. 

For example, in the Poletika study shown in Fig. 3, a shift to 

the left toward the ΔQ PDF/CDF occurred for the lower 

KOC (more soluble) pesticide (atrazine) and a shift to the right 

toward the ΔE PDF/CDF for the higher (more sediment-

bound) KOC pesticide (chlorpyrifos). Fairly equivalent PDFs/

CDFs were observed in terms of ΔP between the three pesti-

cides in the Arora et al. (1996) study, most likely due to the 

approximately equivalent literature ranges for the pesticides’ 

KOC values (Table 3, Fig. 3). For the Patzold study, ΔP PDFs/

CDFs were approximately equivalent for metolachlor and ter-

buthylazine due to similar KOC input distributions but shifted 

to higher trapping effi  ciencies for pendimethalin (Fig. 3f ).

Th e uncertainty of the results can also be communicated as 

a probability of exceedance of a desired ΔP regulatory or design 

value, derived from the CDFs in Fig. 3. Notice how these 

probabilities would change widely across the sites and pesticide 

scenarios. For example, if a 50% ΔP was sought, the prob-

ability of exceedance would vary between 0% for the Patzold 

study and 40 to 80% for the Poletika study. It should be noted 

that for regulatory or design purposes, a specifi c design storm 

is typically required, and that these CDFs are for the events 

simulated and included only for illustration purposes.

Summary and Conclusions
Vertical saturated hydraulic conductivity was the most impor-

tant hydrological input factor for predicting infi ltration or 

runoff  reduction across all three VFS studies. Th e slope, fi lter 

strip length, and Manning’s roughness were important input 

factors for less steep slopes (<5%). More input factors became 

important for predicting sedimentation, including the average 

particle size of the sediment and the initial and saturated water 

content of the VFS soil. Filter strip length was not consistently 

ranked as one of the most important input factors for the 

conditions simulated in these scenarios. Input factor impor-

tance for predicting pesticide reduction through surface runoff  

mechanisms appeared to mimic runoff  reduction results, with 

saturated hydraulic conductivity consistently the most impor-

tant input factor for predicting pesticide reduction across all 

study sites and pesticide scenarios. Hydrologic response in 

terms of infi ltration processes largely controlled pesticide 

response under the hydrologic conditions of these studies. Th is 

research focused on pesticide reduction in surface runoff . In 

some hydrological settings, infi ltrated water and contaminants 

can enter the shallow groundwater system and reach adjacent 

rivers and streams through perched groundwater fl ow (e.g., 

Fuchs et al., 2009). Future research should be devoted to better 

understanding both surface and subsurface processes of fl ow, 

sediment, and contaminant movement through VFS.

Pesticide reduction in surface runoff  was nonlinearly related 

to slope, even though many regression-based empirical equa-

tions use linear regression relationships with slope as an input 

factor. Pesticide-specifi c input factors were of secondary impor-

tance to those representing infi ltration and sediment reduc-

tion. Interactions were observed between input factors for 

predicted infi ltration, sedimentation, and pesticide reduction. 

Simple linear or nonlinear regressions based on VFS physical 

Table 5. Uncertainty analysis statistics for selected output probability distributions obtained from the outputs of the extended Fourier Amplitude 
Sensitivity Test (FAST) simulations.

Study Output Mean Median 95CI‡ SD SE Min. Max. Skew‡ Kurt‡

————————— % ————————— ——— % ———
Poletika et al. 
(2009)

ΔQ† 29.2 22.0 6.9–61.0§ 24.2 0.20 0.0 100.0 1.8 2.6

ΔE† 92.0 91.7 89.0–93.7§ 2.5 0.02 87.3 100.0 1.8 4.0

ΔP† (atrazine) 56.1 51.9 42.7–73.5§ 14.5 0.12 36.2 100.0 1.9 3.0

ΔP† (chlorpyrifos) 61.9 58.0 49.0–78.3§ 13.3 0.11 44.1 100.0 1.7 2.3

Arora et al. 
(1996)

ΔQ 57.3 56.1 39.9–78.3 11.6 0.10 26.4 100.0 0.8 1.3

ΔE 92.8 94.0 84.3–97.3 4.8 0.04 32.3 100.0 −3.1 18.3

ΔP (atrazine) 65.9 66.0 53.2–79.0 8.0 0.07 16.9 100.0 0.3 1.7

ΔP (cyanazine) 66.0 66.1 53.3–79.1 7.9 0.06 17.2 100.0 0.3 1.7

ΔP (metolachlor) 65.4 65.4 52.6–78.5 8.0 0.07 15.9 100.0 0.3 1.7

Patzold et al. 
(2007)

ΔQ 62.9 62.6 32.4–92.7 18.7 0.15 6.5 100.0 −0.1 −0.7

ΔE 99.7 99.7 99.4–99.9 0.2 0.00 99.0 100.0 −0.1 −0.4

ΔP (metolachlor) 78.4 78.4 60.7–96.1 10.7 0.09 47.7 100.0 0.0 −0.6

ΔP (pendimethalin) 86.8 87.4 69.7–100.0 9.8 0.08 57.0 100.0 −0.4 −0.8

ΔP (terbuthylazine) 80.4 80.5 62.8–97.9 10.6 0.09 50.0 100.0 −0.1 −0.7

† ΔQ = infi ltration; ΔE = sedimentation; ΔP = pesticide reduction (i.e., trapping effi  ciency).

‡ 95CI = 95% confi dence interval; Skew = skewness; Kurt = kurtosis.

§ 95CI for Poletika et al. (2009) study calculated by neglecting accumulation of values at the upper limit of 100% (second peak in the bimodal distribution).
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characteristics (e.g., slope, length, and roughness) are insuffi  -

cient without considering the VFS hydrological and sedimen-

tological conditions and the interaction between input factors. 

Distributions of predicted pesticide reduction consistently fell 

between infi ltration and sedimentation probability and cumu-

lative distribution functions, PDFs/CDFs. Depending on the 

pesticide scenario simulated, the pesticide reduction would 

shift either to the left toward the runoff  reduction PDF/CDF 

or to the right toward the sedimentation PDF/CDF. Whether 

looking at an individual scenario or comparatively across all 

scenarios, it was clear that the potential range in runoff  reduc-

tion, sedimentation, and pesticide trapping effi  ciency for a 

specifi c VFS was large. Th erefore, fi lter removal effi  ciencies are 

not simple and are dominated by nonlinear responses, espe-

cially under cases of higher hydraulic loading rates. Th e present 

work clearly illustrates how an equivalent fi lter in terms of soil 

and vegetation characteristics may have unique runoff , sedi-

mentation, and pesticide reduction characteristics depending 

on the hydraulic loading rate of the system (a function of the 

storm event and the hydrologic conditions of the VFS). Such 

Fig. 3. Global uncertainty analysis results obtained from the extended FAST variance-based method: infi ltration (ΔQ), sedimentation (ΔE), and 
pesticide reduction (ΔP) probability distribution function (PDF) and cumulative distribution function (CDF) distributions. (a) PDF and (b) CDF for 
the Poletika et al. (2009) study; (c) PDF and (d) CDF for the Arora et al. (1996) study; and (e) PDF and (f) CDF for the Patzold et al. (2007) study.
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results further support the use of process-based modeling for 

VFS hydrologic and sedimentological conditions to estimate 

pesticide-trapping effi  ciency.
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