NUMERICAL APPROACH TO THE OVERLAND FLOW PROCESS
IN VEGETATIVE FILTER STRIPS
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ABSTRACT. Agricultural and other disturbed lands contribute to non-point source pollution of water bodies (streams and
lakes). Vegetative filter strips (VFS) are often recommended to reduce off-site impacts. Design guidelines to optimize the
performance of VFS are not readily available. A process-based model is presented to simulate the hydrology of a
Vegetative Filter Strip for a given event. The model consists of a quadratic finite element overland flow submodel, based
on the kinematic wave approximation, coupled with an infiltration submodel based on a modification of the Green-Ampt
equation for unsteady rainfall. The model is used to study the effect of soil type, slope, surface roughness, buffer length,
storm pattern and field inflow on the VFS performance. Filter performance, i.e., reduction of the runoff volume, velocity
and peak, is higher for denser grass cover, smaller slopes and soils with higher infiltration capacity. Time to peak(s)

depended mainly on the roughness-slope combination. Keywords. Vegetative filter strips, Flow, Modeling.

he sediment leaving disturbed areas, besides being
a pollutant itself, can carry nitrogen and
phosphorus into water ecosystems, thereby
accelerating  cutrophication of lakes
(Flanagan et al., 1989). In many cases, conservation
management practices and structures can reduce off-site
impacts. One such accepted management practice is
vegetative filter strips (VFS) which are bands of planted or
indigenous vegetation that may control transport of
sediment and reduce non-point source pollution off-site.
Vegetation reduces surface runoff by increasing
infiltration, augmenting roughness of the soil surface,
boosting evapotranspiration, and contributing to rainwater
interception. Both the retardation of flow and reduction in
runoff discharge reduce the kinetic energy of runoff, and
thus lower the sediment transport capacity (Foster, 1982).
Sediment-bound nutrients are removed from runoff in these
vegetative zones as sediment is deposited (Flanagan et al.,
1989). For nutrients attached to sediment, the deposition
process largely controls the effectiveness of the buffer area.
For soluble nutrients, infiltration is the controlling factor.
Parsons et al. (1990) showed that large reductions of
runoff from an adjacent field are experienced in buffers.
The length of the filter is an important factor in its
performance, as are other parameters such as slope, surface
roughness, and soil type. An appropriate means of
determining optimal placement, dimensions, and
arrangements of buffer areas must be developed if they are
to be effective and economical (Swift, 1986). In evaluating
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the effectiveness of VFS and riparian areas, it is desirable
to identify those characteristics which affect the efficiency
of nutrient and sediment reduction.

This study deals with modeling the surface flow
component in VFS and evaluating the effect of a number of
parameters on surface runoff hydrographs. The model
developed is width-averaged, which translates into a one-
dimensional (1-D) approach. The solutions obtained from
the formulation are given in terms of unit width of surface
(in the direction of the movement of the flood wave). This
technique is especially useful in the VFS problem where
the surface to model is a band of vegetation of a certain
width and an extension of results would be desirable for
other widths as well. Grass and other uniform soil covers
fit the assumptions of this approach. The objective of this
modeling approach is the design of strips, not the
management of the areas, i.e., specify required strip lengths
to give specific runoff reductions. The “state of the art” in
specifying buffer strip requirements indicates that this
process-based approach will provide a check for
approximate methods and a better understanding of the
processes involved.

BACKGROUND

Overland flow routing describes the water movement
over the land surface and implies the calculation of flow
rates at positions along the hillslope (Lane et al., 1987).
The solution of the overland flow routing equation is
needed for the sediment transport problem solution of
interest in non-point source pollution studies. Proper
representation of the land surface is the basic issue in
modeling overland flow (Lane and Woolhiser, 1977).
Foster and Meyer (1972) treated surfaces as areas of broad,
uniform sheet flow dissected by areas of concentrated flow
in rills. This approach is used in the WEPP hillslope model
to predict runoff peak rate for unsteady, nonuniform flow
(Lane et al., 1987). The kinematic approach of the WEPP
model considers a total hydraulic resistance (f;) as the
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summation of a soil friction factor, a microtopographic
irregularities friction factor (random roughness), and
friction factors due to residue and plant cover on the soil.
This total f, factor represents the total surface resistance to
flow. WEPP can generate hydrographs, runoff rates with
time, but the erosion component uses peak rates from a
steady-state solution (Lane et al., 1987).

New efforts to account for variability of the land surface
on the overland flow process can be found in the literature.
Rawls and Brakensiek (1988) address the problem of
surface variability in time and space in a model that
accounts for the effect of management practices on
infiltration. The model is a solution to the Green-Ampt
equation for unsteady rainfall. One of the factors
specifically included in the model is percentage of grass
cover, its seasonal variation, and composition of this cover.
Springer and Cundy (1988) consider the effects of excess
rainfall generation on erosion. In particular they looked at
the effects of spatial variation in saturated conductivity
(K) on erosion resulting from overland flow. They used a
mathematical routing model and concluded that
overestimation errors of 9 to 45% are introduced by
neglecting spatial variability of K. This error decreased as
rainfall and antecedent moisture increased. However, this
variability in K did not lead to differential deposition
along the slope.

One important aspect of the field problem is finding the
correct mass balance at the surface. To achieve this,
infiltration must be considered. There are different
alternatives among the existing models. The most exact
approach is solving the governing partial differential
equations for infiltration, i.e., some form of Richards’
equation (1931), subject to the appropriate boundary and
initial conditions. These solutions are computationally
expensive and subject to numerical instabilities.
Alternative models have been devised based on simplified
concepts that lead to an algebraic formulation of the
infiltration rate or cumulative infiltration in terms of time
and soil parameters. Skaggs and Khaheel (1982) reviewed
the empirical models of Kostiakov, Horton, Philip and
Holtan, and the physically based models of Green-Ampt,
Smith, and Smith-Parlange. Some comparative studies
show that the fitness of the method employed varies greatly
depending on the estimation of the parameters of each of
the equations (Skaggs et al., 1969).

Panda et al. (1988) found that the cause of error in
Green-Ampt infiltration models is often the estimates of
antecedent water content. They proposed a model that
overcomes this problem by providing a daily accounting of
soil water content in the root zone, incorporating
predictions of infiltration, evapotranspiration, and deep
percolation for unsteady rainfall.

Cundy and Tento (1985), Stone et al. (1992) and
Woolhiser et al. (1990) developed models that account for
the interaction of overland flow and infiltration handled by
the approximate methods of Philips, Green-Ampt, and
Smith-Parlange, respectively. The first two models,
however, consider the land area as a plane with only one
inflow source, i.e., rainfall over the plane. This approach
does not allow for the singularities of the VFS, namely, the
inflow from some uphill field area is much larger than
rainfall atop the buffer, and irregularities at the surface
(changes in slope or roughness throughout the filter). The
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last model, KINEROS (Woolhiser et al., 1990), solves the
problem as a series of cascade planes, and can be applied
for the case of inflow from the field. This model is based
on the finite difference, four-point implicit scheme solution
to the kinematic wave equations.

The modeling effort developed herein is based on the
numerical solution of the mathematical formulation of the
surface water routing described by a set of partial
differential equations (PDE) linked to the Green-Ampt
infiltration model for unsteady rainfall.

HYDRAULIC ROUTING SUBMODEL
MATHEMATICAL FORMULATION

The mathematical formulation of the one-dimensional
(1-D) hydraulic routing process was first derived by Barre
de Saint-Venant in 1881. It is based on a mass and
momentum balance within a control volume (of unit
width). For the 1-D case the general PDEs can be described
as:

42— =r-f 1
En +ax i,=r (1)
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at+v8x+g8x 2(S,-$) h @
where
X = flow direction axis (m)
t = time scale (s)

h(x, t) = vertical flow depth (m)

q(x, t) = discharge per unit width (m2/s)
Ie = rainfall excess (m/s)

r = rainfall intensity (m/s)

f infiltration rate (m/s)

v depth averaged velocity (m/s)
g = gravitational constant (m/s?2)
S

S

o = ted slope (m/m)
£ = friction slope
q =vh
The kinematic wave equations result from simplification
of the Saint-Venant equations. Lighthill and Whitham
(1955) proposed that the hydrodynamic terms of the
momentum equation were negligible for the case where no
backwater effects occurred. In this case, the momentum
equation results in S, = Sy and the relationship between
q and h in equation 1 can be expressed by means of a
uniform flow equation. One widely used relation for the
overland flow case is Manning’s equation (Bedient and
Huber, 1988; Lane and Woolhiser, 1977; Woolhiser,
1975):

Vs,

(Xhm= o h5/3
n

q= ©)

where o and m are the parameters of the uniform flow
equation and n = Manning’s roughness coefficient
dependent on soil surface condition and vegetative cover.
Values for n for different surface types can be found in the
literature (Engman, 1986; Woolhiser, 1975).
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In a natural flood, two kinds of waves, kinematic and
dynamic, originate. The dynamic waves propagate at a
speed faster than the main flood wave. The celerity of the
wave (c) is the speed associated with the dynamic wave
(Bras, 1990):

“

The kinematic wave assumption (Henderson, 1966) is that
the speed of the kinematic wave is equal to the velocity of
the main flood wave, which is achieved when the Froude
number (Fr) is less than 1.5, where:

Fr= Y <15 ®)
Veh

The kinematic postulation is violated for very flat (S, <
0.002) or very steep slopes (S, > 0.1). For overland flow
processes, the dynamic wave fronts attenuate very rapidly
(Fr < 1.5), and kinematic waves dominate the flood
response (Henderson, 1966).

Woolhiser and Ligget (1967) analyzed characteristics of
the rising overland flow hydrograph and found that the
kinematic wave assumption is accurate to within 10% if:

L LS,
F’h
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where
k =kinematic number
L = length of the domain (m)
h, = depth of the flow at the end of the domain at steady
state condition (m)
The initial and boundary conditions (BC) of the PDE
can be described as:

h(x,0) = 0; 0<x<L

h(x,t) = hy t>0 M
Note that the boundary condition can be modified for
different cases. One case is when no uphill inflow occurs,
where hy,. = O at the beginning of the slope. A second case
is constant inflow from an uphill region out of the domain
(x < 0), then hy,, > 0. A more realistic case would be o
varying BC where h,, = hy(t), depending on the
hydrograph off the uphill adjacent field.

Parameters (friction coefficient, slope) are included in a
that allow modifications of the flow by soil surface,
irregular microtopography and vegetal cover (Lane et al.,
1987).

The load in the PDE is rainfall excess, i.. Schmid
(1989) investigated the implicit assumption in the model
that infiltration is independent of overland flow so that the
weak coupling of both processes (i.e., infiltration
influences runoff but not vice versa) is taken into account.
He found that the errors introduced were in most cases
smaller than 5% and always less than 11%. Compared to
the uncertainty introduced by the soil data in his analysis,
he concluded, this is an acceptable assumption.
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NUMERICAL SOLUTION

Kinematic routing was first discussed by Horton (1945)
and Izzard (1946), defined by Lighthill and Whitham
(1955), and later used to model the overland flow process
(Henderson and Wooding, 1964; Henderson, 1966;
Brakensiek, 1967; Ligget and Woolhiser, 1967; Eagleson,
1970). Eggert (1987) generalized the analytical solution for
overland flow with the kinematic wave method using the
method of characteristics (MOC). Eggert’s model describes
the rate of flow off the end of a uniform slope subject to a
sequence of different spatially-uniform, time-different,
non-negative inflows. Others presented solutions for
kinematic flow over an infiltrating plane (Cundy and
Tento, 1985; Woods and Ibbitt, 1988; Stone et al., 1992;
Woolhiser et al., 1990). They point out the necessity to
account for variation in the parameters, spatially and
temporally, of this model.

Several numerical procedures can be used to solve the
mathematical formulation of the overland flow problem for
the 1-D case. These methods include Lagrangian or
variable grid methods, such as characteristics (MOC), and
Eulerian or fixed grid methods, such as different forms of
finite differences (FD), and finite elements (FE) methods.
The ideal method for this type of hyperbolic partial
differential equation would be MOC. However, the
difficulties associated with the application of the method to
a space varying domain, such as in a field situation, make
the method difficult. On the other hand, some solutions
from Eulerian methods are not stable and exhibit
convergence problems for abrupt changes of the physical
properties of the system, often referred to as kinematic
shocks. Recent work, using Eulerian methods with refined
spatial and temporal discretization and smoothed values of
spatially variable parameters, avoids numerical errors
associated with kinematic shocks (Ponce, 1991; Vieux et
al., 1991). The use of non-standard FE method, i.e.,
quadratic Petrov-Galerkin FE, has also been presented as
an effective means of reducing such errors (Muiioz-
Carpena et al., 1993). The FE has been applied on several
occasions to the 1-D problem (Judah, 1972; Ross, 1977;
Ross et al. 1979a,b; Blandford and Meadows, 1990; Vieux,
1988; Vieux and Segerlind, 1989; Vieux et al., 1991).

A fundamental parameter for the numerical solution is
the Courant number defined as:

Cr= % ®)

where Ax and At are space and time increments. Implicit
formulations, such as the one proposed, are unconditionally
stable; however, as the value of Cr decreases, the accuracy
of the solution increases, at the expense of computational
time (Blandford and Meadows, 1990; Vieux et al., 1991).
Using the standard Galerkin finite element method, the
weak energy formulation of equation 1 is expressed as:

fori=1,n, (9
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where W; is a weight or test function at node i, h and a are
approximations of h and g, based on a continuous
distribution expressed in terms of the actual value at
selected points (nodes), h i

n,

h(x)— Y N;(¥) b

J—

Ny Ny

= ZN(x)q, a® N, h"?  (10)
j=1 =1

and

aw 9| « N,
W —g[gwx)qj}g% an

np, is the number of nodes in the domain and N; are termed
bas1s functions, standard lLagrange mterpolatlon
polynomials in natural coordinates (-1 < E < 1) for every
element of the system:

N(®) - H(

12)

For the Bubnov-Galerkin formulation (standard finite
element method) the weighting functions are set equal to
the basis functions (Lagrange polynomials), i.e., W; = N;
fori=1,n,.

The formulation also makes use of the finite difference
Crank-Nicolson, time-weighting scheme with parameter 0
equal to 0.5 (semi-implicit scheme) chosen by
experimentation. Let [ and /+1 be the known and unknown
time levels for the numerical scheme, and using a
shorthand notation in which the set of n,, integrals is
represented under the subscript I, equation 9 becomes:

~ I+l a’\l+l
Nl[h—+9( 4 ___ 1@“”dx=
At ox

(13)

Using equation 11, we can relate q to h. A modified
Picard iteration scheme was chosen to solve the resulting
system of non-linear equations in h. Defining m, m+1 as
the last and current iteration, a linear set of equations
results:

[A] {h}l+1,m+l={b}= {bo}l+ {bm} I+1,m (14)

where [A] is a banded coefficient matrix that groups only
linear terms in /+1, m+1 from equation 13, {b} is the
vector that contains all the other terms, this is terms in
[ and I+1,m. The q terms are evaluated at the new time
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level, but lagged an iteration step, q/*1»™, known after the
initial and boundary condition 7 are applied. {b,} is the
linear portion of {b}, and {b,,} is the non-linear part. The
matrix [A] is formed only once at the beginning of the
numerical procedure, and a part of the vector {b} is
calculated only once for each time step, {b,}, and then
modified by another part for each iteration step, {b,,}, until
convergence for each time step was reached. As
convergence criteria, we used (Huyakorn and Pinder,
1986):

n I+1,m+1 I+1,m
max h; ~ by |
I+1,m+1 <t (15)
maxj_ri l hj ’

where ¢ is arbitrarily set equal to 10-8 for the simulations.

The system 13 is solved for each iteration using a direct
solver such as a Lower Upper Decomposition (LUD)
algorithm for banded matrices.

Each of the terms of 12 was transformed to natural
coordinates (£) and evaluated through a Gauss quadrature
integration rule. The members of equation 14 result from
the summation over the total number of elements (N.) of
elemental matrices and vectors:

N

X [av]

[A]l=

(16)

where

1
N,Nldgf N, degf N,N,dE

-1

Z
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-1

1

|
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N3N,d§ N,N dgf N,N,dE

-1

(18)
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Table 1. Rainfall distribution used in simulations

Time (s) Rainfall (m/ s)
] 8.4667¢-07
300 6.7733e~06
600 1.1007e-05
900 1.9473e~05
1200 1.9473e-05
1500 1.5240e-05
1800 5.0800e—06
2100 1.6933e-06
2400 2.5400e-06
2700 8.4667¢-07
3000 0

Table 2. Range of parameters used in the simulations

. Parameter Symbol Values Comments
Figure 1-Field discretization for the finite element overland flow -
model. Surface roughness n 0.04 Sparse vegetation
0.4 Dense vegetation
Strip lengths L 2,4,6,8,12,19 (m from field edge)
rl ol N Strip Slope So 1,2,4,6,8,10% Slope
1
N, h_ +(1-9) iel 2 @_ + eiel+ dg Soil Types A,B Sandy-loam, clay See table 3
_‘ At Ax, of
-1 €
(1A ! The values of i, are calculated for each node and time step
N | D 1—ol i ! 2 og 0i B according to an infiltration equation (i.e., Green-Ampt) and
20 At +(1-0)] 1, - Ax 3% + 01 £ a given hyetograph (described in the next section). The
J 4 k e incoming hydrograph from the adjacent field is input as a
Lo time dependent boundary condition at the first node of the
[ h ; a'\’ 41 finite element grid. Any combination of unsteady storm
Ny | —+(Q1-0)| i, - 2.9 4 i, dg and incoming hydrograph types can be used. The program
J | At Ax,, dg allows for spatial variation of the parameters n and S, over
- the nodes of the system (fig. 1). This feature of the
1 program ensures a good representation of the field
% kl.m conditions for different rainfall events.
N, %9___g&
1
of .
o INFILTRATION SUBMODEL:
" v m MODIFIED GREEN-AMPT
+1,m .o .
{b""} =-0 N, dq dE 19 The Green-Ampt infiltration model (Green and Ampt,
e » o 1911) was proposed as an application of Darcy’s Law with
the following simplifications: 1) homogeneous soil profile
1 a,J+1,m and uniform distribution of antecedent soil moisture; 2) the
N, 9 dg water moves in the soil in the form of an advancing wetting
. oE front and thus diffusion of soil moisture is neglected; 3)
surface ponding. The equation is:
Table 3. Soil parameters used in the simulations
Depth db ds K, K 8, 6, Sy M Sy M
Layer*  (cm)  Texture p e (g/em® (gem® (cm/h) (cm/h) (em>/ cm) (em)  (cm’/cm®)  (cm)
Soil A Data
Ap¥ 0-23 SL 0.319 0.470 1.657 2.434 6.02 7.85 0.311 0.090 35.7 0.16 571
Btl 23-41 C 0.298 0.380 1.610 2.221 4.78 4.74 0.436 0.147 1.8 -— —
B2 4169  SC 0.442 0795 1348 2420 493 2.02 0376  0.129 31.4 — —
B3 69-94 SCL 0.470 0.887 1.497 2.824 4.19 0.60 0.445 0.119 9.2 — —
Soil B Data (Chu, 1978)
Profile — C — — — — 021 — - — — — 6.10
* Nomenclature: p = Total porosity K, = Vertical saturated conductivity
e = Void ratio K¢, = Horizontal saturated conductivity
db = Bulk density 6,, 6, = Saturated and residual water contents
ds = Particle density S,y = Average suction at the wetting front
S,C,L = Sand, clay, loam M =initial water content

1 The Ap layer was the only one considered active for infiltration calculations.
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Figure 2a-Runoff event over a VFS with sparse grass for two types of
soils.

LKMS,
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(20)

where f, is the instantaneous infiltration rate, or capacity,
for a ponded soil (m/s), Ky is the saturated hydraulic
conductivity (m/s), M = 85— 8; 1is the initial soil-water
deficit (m3/m3), S,, is the average suction across the
wetting front (m), and F is the cumulative infiltration (m).
This model does a good job describing infiltration during a
rainfall event, with adequate estimation of the field
parameters (Skaggs et al., 1969; Chu, 1978).

Mein and Larson (1971, 1973) applied the Green-Ampt
model to natural rainfall conditions by integrating
equation 20 with an initial condition that allows for some
cumulative infiltration to occur before ponding. This
yielded an implicit function of time:

Ks(t—tp—ts)=F—MSavln(1+ F ) @1

av

where t is the actual time (s), t, the time to ponding, and t,
is the shift of the time scaf)e to the effect of having
cumulative infiltration at the ponding time, or pseudotime.
The determination of the t, and t; parameters for an
unsteady rainfall was described by Chu (1978). In this

—— outflow (Sandy-Loam)
-------- outflow (Clay)
; \ field inflow
6+10°4 |- peakidelay | {L=19m; S, =0.1 ; n= 0.4)
b
w
‘\E 4010 |-
o
2510% |-
oL [ Q — . 1 |\ 1
0 500 1000 1500 2000 2500 3000 3500
Time (s)

Figure 2b-Runoff event over a VFS with dense grass for two types of
soils.
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- rainfall (r)
--------- infittration (f)
effc. rainfall (i,)

T (L19; 8, = 0.1 ;1= 0.4)

s | 1
24107 I ponding by inflow!

End of runoft

Rate (m/s)

____________

-2010%

Sandy-Loam

L - L

0 1000 2000
Time (s)

3000

Figure 3-Water balance for the sandy-loam soil using the modified
Green-Ampt model (storm on table 1).

method, the unsteady storm is divided into constant rainfall
periods. For each period a ponding indicator (C,) is
calculated to check if ponding at the surface at the end of
the period is reached (C,, > 0) or not (C, < 0) and its effect
on infiltration:

C, =P(t,)-RO(

o)t @)

8

where P(t,) is the total cumulative infiltration including
the actual rainfall period and RO(t,,_;) is the total
cumulative runoff (m), or cumulative rainfall excess, until
the last rainfall period. At the beginning of the storm
(no ponding) the value of C,, is checked. If no ponding at
the end of the period occurs, the infiltration is set equal to
rainfall (i, = 0). If surface ponding occurs, it begins at tp
calculated as:

KMS,
r-K

s

t =t

p n-1 n-1

P(t )+R0(tnv1)1? (23)

where P(t,_;) and RO(t,_) are the total cumulative
infiltration and runoff (m) until the last rainfall period and
t,_1 18 the time at the end of the last rainfall period. The
pseudotime (tg) can now be calculated from equation 21,

2¢10%
. < rainfall (r}
--------- infitration (f)
effc. rainfall (ig)
s | ; 19mM: S. =0.1 -
1.5+10 urtace oy o (L=19m; Sy =0.1 ; ne 0.4)
2 10sh i
Yy |
4 End of runoff
[+
5¢10 |-
0 -
. 1
[ 1000 2000 3000
Time (s)

Figure 4-Water balance for the clay soil using the modified Green-
Ampt (storm on table 1).
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Figure 5-Effect of surface cover (roughness, n), field slope (S,), and
soil type on the total runoff volume.

setting F = F_ (from eq. 20). The calculation of the
cumulative inﬁ]tration (F) requires an iterative method
using equation 21. A Newton-Raphson non-linear solution
procedure was used such as:

(29

where g(F) is an implicit function in F derived from
equation 21, i.e.

g(F)=F-K(t-t,- ts)—MSavln(l +_F

MS,, ) @)

g’(F) its derivative, and the subscript m denotes the
iteration level. The infiltration rate is calculated with
equation 20 and then i, > 0. If a new rainfall period starts
with surface ponding, new parameters t, and t are
calculated and a check for the ponding status at the end of
the period is done. If there is still ponding, infiltration and
rainfall excess are calculated as above, otherwise, the
infiltration is set to rainfall for the time after ponding ends.
This procedure is repeated until the end of the storm.

The filter strip situation suggests several modifications
to the above model. The most important one is that the
major input for the overland flow is not rainfall as in a
regular situation but the uphill field inflow. This is due to
the relative difference in areas between field and filter
strip, i.e., the field is typically from 3.5 to 7 times bigger
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Figure 6-Effect of surface cover (roughness, n), field slope (S,), and
soil type on the peak velocity.

than the buffer area (Parsons et al., 1990). Agricultural
fields also display low infiltration rates (K ) due to surface
compaction. The basic assumption made here is that after
the beginning of the runoff event, a moving film of water,
coming mostly from the field, will be covering the surface
(flood wave). This represents a sufficient volume to
provide for the maximum potential infiltration. A further
assumption of the model is that depressional storage (DS)
effects are not considered important for the overall
behavior of the filter. Filters should be settled and
maintained over a fairly leveled area. The DS is less
important than in the case of an agricultural field, since a
uniform vegetation cover is maintained throughout the year
and no cultural practices are applied. This assumption wiil
be violated if channelization develops or the filter is
otherwise eroded. The amount of water flooding the filter
from the adjacent field will fill up any existing DS at the
beginning of the runoff event, and will have little effect on
the overland flow process afterwards

The infiltration submodel was formulated as follows:

« Rainfall starts. No uphill field inflow (delay). The
boundary condition for the hydraulic routing
submodel (BC) is set to 0. The VFS acts as an
isolated soil. The Green-Ampt model is applied as
described above and only the rainfall excess (ie),
equally applied to every element of the system for
each time step, is routed on the overland flow
model.

»  Field inflow starts. The BC at the first node of the
system is changed for every time step following the
inflow hydrograph. A check is made on the first and
last node of the system (h values) to find flooding
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Figure 7-Effect of surface cover (roughness, n), field slope (S,), and
soil type on the time to peak.

of the surface by field inflow. At this time a signal is sent
to the infiltration submodel to proceed as a ponded surface
case, where the infiltration is allowed to reach its
maximum, and the rainfall excess to be less than O in
certain cases (rainfall is less than this assumed maximum
infiltration). An example case is discussed in the next
section to illustrate this point. This concept is important in
order to explain the field experimental data where large
reductions of the incoming flow rate are obtained at the end
of the filters (Parsons et al., 1990).

+ Field inflow stops, the BC is set back to 0 and a
signal is sent to the infiltration subroutine to
proceed as the normal case until the end of the
storm.

The above procedures show how different soil types are

handled by the model through the Green-Ampt parameters
KM, S,

MODEL APPLICATION

A set of 144 simulations was conducted for a range of
parameters to compare filter strip performance. A summary
of the inputs used is given in tables 1 through 3. Two soil
types, A and B were selected. Soil A is of sandy-loam
texture at the surface. This surface layer controls
infiltration. Field and lab tests were conducted on this soil.
Soil B, in contrast, is a deep homogeneous clay soil (Chu,
1978). The soil parameters for the simulations are included
in table 3.

The effect of the different hydraulic properties of each
of these soils is illustrated in figures 2a and 2b. These
graphs were obtained using the assumptions discussed for
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Figure 8-Effect of surface cover (roughness, n), field slope (S,), and
soil type on the time to start runoff,

the infiltration submodel and for the storm event in table 1.
The sandy-loam soil shows a marked reduction in total
runoff (area under the q curve), as compared to field
inflow, due to infiltration. Conversely, the clay soil shows
an increase in runoff due to the addition of the rainfall atop
to the runoff flow and the small infiltration capacity. These
figures also illustrate the effect of vegetation type
(Manning’s n) on the outflow. For the dense grass (n =
0.4), there is a distinctive delay in the time to reach the
g-peak. Figures 3 and 4 show the water balance, as given
by the infiltration submodel, for both soils and the case
depicted on figure 2b. When the surface starts to be
inundated by the flood wave, the maximum potential
infiltration is achieved. The difference between the two
soils can be seen in terms of the effective infiltration values
(ic). Soil A has high rates of infiltration (i, mostly
negative). Soil B is less permeable (i, mostly positive)
resulting in different filter behavior.

Soil type has the biggest effect on runoff volume
(fig. 5), qyo(m3/m filter width), and depth-averaged
velocity at the peak (fig. 6), V.. (m/s). The trend in these
results (regardless of n and S, combinations) is inverted,
i.e., for s0il A the runoff volume decreases with length
whereas it increases with soil B. The sandy-loam acts as a
predominantly infiltrating media for this event. Thus, as the
area (length) increases, the mass of water entering the soil
profile increases, reducing the runoff volume. In the clay
(soil B) as the area increases, the catchment of direct
rainfall also increases and, since infiltration is minimal, the
runoff volume increases. In both cases, as the length of the
filter approaches zero, the volume equals that of the inflow
from the adjacent field (0.32 m3/m). The effect of grass
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Figure 9-Effect of surface cover (roughness, n), field slope (S,), and
soil type on the time to end runoff.

density (n) and slope (S,) was very similar for both soil
types. The retardation of the flow produced by a dense
grass stand and small slope slightly increased infiltration.
This combination yielded the lower runoff volumes in each
soil. For the same grass density, decreasing the slope
results in smaller volumes. Velocity at the peak flow is also
reduced by the above combination (fig. 6).

The time to peak(s) is not significantly affected by soil
type but rather by the roughness-slope combination (fig. 7).
The greater the resistance to flow and the smaller the slope,
the longer it will take for the hydrograph to reach its peak
with similar times for both soils. Therefore, a delay in
reaching the peak could be extended by manipulating the
properties of the filter (long filter, small slope, dense
vegetation) to a point where the direct rainfall has stopped,
thus reducing the flow wave.

The time to the beginning of the runoff event(s) is
affected by soil type (fig. 8). For soil A, denser grass and
smaller slope delays the beginning of the event. Again,
more water is infiltrated before ponding at the surface is
reached. For the clay (soil B), there is no significant change
in this value for any of the parameter combinations.

The tail of the hydrograph (time to end) is different for
each combination of parameters (fig. 9). For soil A and
sparse vegetation, there is a decrease in the time as L and
S, increase. For the dense vegetation the effect of length is
insignificant. For soil B, and sparse grass, L does not
influence the time to end after 4 m, but it takes longer to
reach the end of the hydrograph (around 2600 s compared
to 2200 s for soil A).
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CONCLUSIONS

A numerical model to study and simulate flow in
Vegetative Filter Strips is presented. The model is
composed of two submodels. A kinematic wave
approximation for overland flow is solved numerically
with quadratic finite elements. A second submodel
describes infiltration for unsteady rainfall, based on the
Green-Ampt equation, provides mass balance for the
system. The infiltration equation is solved iteratively for
each time step and the resulting effective rainfall value is
fed to the numerical overland flow model at each time step.

Several field parameters can be specified in the model.
These include slope, surface cover, length of filter and soil
type. The model also handles natural rainfall events and
inflow from an adjacent field, thus providing great
flexibility for analysis of events.

Different combinations of the input parameters were
selected for analysis. The results show the importance of
soil type in runoff formation on the filters. Filter
performance, i.e., reduction of the runoff volume and
velocity, is higher for denser grass cover, smaller slopes,
and soils with higher infiltration capacity. The runoff
volume and velocity at the peak of the hydrograph could
increase or decrease with length of the filter depending on
soil type (high and low infiltration capacities, respectively).
The velocity of the flow is mainly controlled by slope and
density of the vegetation, where denser and smaller slopes
give the smallest values. The time to beginning of runoff is
soil dependent, i.e., length of the filter does not affect this
parameter for soils with low infiltration capacity.

Management practices for the buffer areas could be
suggested in the light of these results. If the clay content of
the soils is high, any practice to improve infiltration is
advisable. Special care should be given at the time of
implantation of the buffers (leveling of the surface to a
small slope in the buffers, dense grass, subsoiling, etc.) and
later avoiding any activities that could compact the areas,
such as traffic.
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