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Abstract:

South Florida’s Miami-Dade agricultural area is located between two protected natural areas, the Biscayne and Everglades
National Parks, subject to the costliest environmental restoration project in history. Agriculture, an important economic activity
in the region, competes for land and water resources with the restoration efforts and Miami’s urban sprawl. The objective of
this study, understanding water quality interactions between agricultural land use and the shallow regional aquifer, is critical
to the reduction of agriculture’s potentially negative impacts. A study was conducted in a 4-ha square field containing 0Ð9 ha
of corn surrounded by fallow land. The crop rows were oriented NW–SE along the dominant groundwater flow in the area. A
network of 18 monitoring wells was distributed across the field. Shallow groundwater nitrate–nitrogen concentration [N-NO3

�]
was analyzed on samples collected from the wells biweekly for 3 years. Detailed hydrological (water table elevation [WTE ] at
each well, groundwater flow direction [GwFD], rainfall) and crop (irrigation, fertilization, calendar) data were also recorded
in situ. Flow direction is locally affected by seasonal regional drainage through canal management exercised by the local water
authority. The data set was analyzed by dynamic factor analysis (DFA), a specialized time series statistical technique only
recently applied in hydrology. In a first step, the observed nitrate variation was successfully described by five common trends
representing the unexplained variability. By including the measured hydrological series as explanatory variables the trends
were reduced to only three. The analysis yields a quantification of the effects of hydrological factors over local groundwater
nitrate concentration. Furthermore, a spatial structure across the field, matching land use, was found in the five remaining
common trends whereby the groundwater [N-NO3

�] in wells within the corn rows could be generally separated from those
in fallow land NW and SE of the crop strip. Fertilization, masked by soil/water/plant-delayed processes, had no discernible
effect on groundwater nitrate levels. Copyright  2006 John Wiley & Sons, Ltd.
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INTRODUCTION

The South Florida (USA) agricultural region is located
in an environmentally sensitive area, adjacent to the
Everglades and Biscayne National Parks. This region
is subject to the Comprehensive Everglades Restora-
tion Project (CERP), the most costly natural ecosystem
restoration project in history with an estimated budget of
US $10 000 million from federal and state funds. While
some perceive agriculture in the region as a threat to
the restoration process, many prefer it as an alterna-
tive to establishment of exotic invasive plants on land
left fallow, or to an extension of Miami’s urban sprawl.
Within Florida’s South Miami-Dade Basin, intensive veg-
etable, tropical fruit, and nursery crops are produced
on an area of approximately 32Ð4 km2. These crops are
grown on extremely permeable and thin soils on top
of the shallow unconfined Biscayne aquifer that under-
lies the entire region providing potable water. High
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rates of fertilizer and pesticide applications make the
aquifer vulnerable to nonpoint source agrochemical con-
tamination (Harman-Fetcho et al., 2005). It has also
been hypothesized that leaching to groundwater may
be a main pathway for contaminant transport to sur-
face water, since this process may be coupled with
subsurface transport, and seepage into the large net-
work of drainage canals (Genereux and Slater, 1999).
This has implications for on-going Everglades restora-
tion efforts, which focus on providing increased freshwa-
ter deliveries to the National Park. To better understand
the environmental costs and benefits of agriculture in
Florida’s South Miami-Dade Basin, the contribution of
agrochemicals to nonpoint source pollution of ground
and surface water must be clearly defined (Potter et al.,
2004).

Nitrate fluctuations in shallow groundwater typically
result from the cumulative effects of different factors,
such as land use and associated nitrate concentration in
the topsoil, net vertical recharge (affected by leaching
rainfall and excess irrigation), local depth to ground-
water, lateral recharge from ground or surface water
sources, etc. (Muñoz-Carpena et al., 2005). Although
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some of these effects can be measured accurately, it is
impractical to measure others, i.e. those with unstruc-
tured spatial and temporal distribution. In this context,
the application of indirect methods to observed water
quality data at fixed observation sites becomes an inter-
esting alternative (Márkus et al., 1999). Detailed data
sets containing temporal variation of hydrological and
water quality variables have the potential to facilitate the
understanding of surface–groundwater–land use inter-
actions in the area. However, interpretation of results
from data analysis based on visual inspection and com-
parative statistics is difficult and may not be suffi-
cient, especially when dealing with multivariate time
series. An innovative technique for studying hydrolog-
ical and water quality multivariate time series responses
is dynamic factor analysis (DFA). DFA is a special-
ized time series technique originally developed for the
study of economic models (Geweke, 1977) and recently
applied to identify common patterns in groundwater lev-
els (Márkus et al., 1999; Ritter and Muñoz-Carpena,
2006), and interactions between hydrological variables
and groundwater quality trends (Muñoz-Carpena et al.,
2005). It is a dimension reduction technique that takes
into account the time component. In DFA, multivariate
time series responses may be analyzed as response vari-
ables assuming that there are common driving forces
behind them, i.e. underlying latent effects that deter-
mine the variation of the individual observations with
time. These latent effects can be described by com-
mon patterns or trends (representing unexplained vari-
ability) and/or explanatory variables consisting of other
observed time series. The analysis provides information
about whether (i) there are any underlying common pat-
terns in the response time series, (ii) there are interac-
tions between the response time series, and (iii) these are
affected by the explanatory variables considered. Since
the analysis of large water quality data sets is com-
plex because of the many characteristics affecting the
variation of chemical concentration in the system, DFA
can be an effective tool to handle such data sets and
to identify the dominant effects controlling the observed
variation.

The purpose of this study was to assess the influ-
ence of agricultural land use and hydrological vari-
ables on groundwater nitrate concentrations monitored in
18 wells distributed across an agricultural field within
Florida’s South Miami-Dade Basin. Particular focus was
on determining to what extend the groundwater nitrate
fluctuations could be explained by hydrological vari-
ables (including water table elevation [WTE ], ground-
water flow direction [GwFD], rainfall and irrigation),
and location related to land use (agricultural or fallow).
A three-step procedure was used to analyze the data:
(i) exploratory analysis by visual inspection and cross-
correlation analysis of the time series; (ii) identification
of common trends of groundwater quality with DFA; and
(iii) inclusion of explanatory variables in a dynamic factor
model (DFM).

MATERIALS AND METHODS

Area of study and experimental setup

The study was conducted on a 4-ha field at the Univer-
sity of Florida’s Tropical Research and Education Center
(UF-TREC) located on approximately 32Ð4 km2 of prime
farmland in Homestead (Florida) (80Ð50 °W, 25Ð51 °N).
This area is adjacent to the South Florida Water Manage-
ment District (SFWMD) C-103 drainage canal, which is
located N of the field, curving E about 400 m from the
field (Figure 1). The field is essentially flat with Krome
soil type (loamy-skeletal, carbonatic, hyperthermic Lithic
Udorthents) of 30-cm depth overlaying porous limestone
bedrock (Noble et al., 1996). This is an artificial grav-
elly loam soil created by ‘rock-plowing’ the underly-
ing porous limestone bedrock (Genereux and Guardiario,
1998, 2001). Krome soils are used for fruit and vegetable
crops and urban and residential development (USDA-
NRCS, 2004). The soil characteristics in this study were
very low organic carbon content (<1%), high fraction
of particles >2 mm �>50%�, low water holding capac-
ity, and high permeability (Al-Yahyai et al., 2006). The
bedrock was characterized by a very high transmissiv-
ity with a high potential for leaching both nutrients and
pesticides (Harman-Fetcho et al., 2005).

A rectangular strip (192 by 47 m) of sweet corn (Zea
mays L.) diagonally oriented with rows running NW–SE
(Figure 1) was planted within the 4-ha field so that the
widthwise dimension (47 m) paralleled the predominant
direction of the natural groundwater flow (NW–SE) iden-
tified during a previous hydrogeological investigation
conducted at UF-TREC (ES&E, 1996). The cornfield was
divided into six subplots of 27 by 47 m each oriented
along the diagonal. Corn was planted on all subplots
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Figure 1. Location of experimental site at UF-TREC showing canal
C-103 with the SFWMD’s S-196 canal recording gated culvert (upper
left corner), and the USGS’ S-196A recording well next to the automatic
weather station (lower right corner). Each square of the grid represents
a 4-ha research field (200 by 200 m). The inset depicts the location of
the 18 sampling wells and the corn crop strip along the diagonal (six
rectangles). Plots marked with ‘CC ’ used Sunn Hemp as summer cover

crop
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in October–November of each year and harvested the
following January–March at maturity (about 100 days).
After harvest, all plots were mowed and cultivated with a
disk harrow. In half of the plots, Sunn Hemp (Crotalaria
juncea L.) was then planted as a summer cover crop. In
October of each year, the cover crop plots were mowed
and the residue was then worked into the soil by repeated
disking. Potter et al. (2004) found no significant differ-
ences between nitrate concentrations in shallow wells
placed on plots with cover and on plots without cover,
so they concluded that the cover crop had no measurable
effect on shallow ground water nitrate leaching. Crop
irrigation and agrochemical applications records were
obtained for three crop seasons of the study (1999–2000,
2000–2001, 2001–2002). Types and amounts of pesti-
cides and fertilizers used reflected commercial grower
recommendations (Li et al., 2002).

A network of 18 wells (4Ð6–6Ð1-m depth) was installed
for water quality monitoring (Figure 1). These were dis-
tributed across the field so that water quality as a func-
tion of farming practices and groundwater dynamics
could be systematically characterized. During February
2000–2003, shallow groundwater quality grab samples at
each monitoring well were collected in acid cleaned and
prelabeled 500-ml bottles approximately every 2 weeks
and after major rainfall events. Field and laboratory
QA/QC standards (FL-DEP, 2002) were followed at all
times. The sample bottles (including field and instru-
ment blanks) were placed in a cooler with ice imme-
diately after collection in the field, and transported to the
laboratory within 2 hours. The water samples were pre-
pared immediately upon receipt and transferred on ice for
refrigeration before analysis. The samples were analyzed
for concentrations of nitrate–nitrogen (N-NO3

�) using an
Autoanalyzer (AA3, Bran C Luebbe, Buffalo Grove, IL).
Analytical precision for these elements was better than
3% Relative Standard Deviation (RSD).

Figure 1 depicts the location of the instrumenta-
tion used to collect the hydrological variables. Detailed
(15 min) meteorological rainfall data were obtained at
the University of Florida’s FAWN (Florida Automated
Weather Network, http://fawn.ifas.ufl.edu) station located
in UF-TREC’s property less than 700 m away from the
plots. Continuous records of surface levels on the distal
NW corner of the area were obtained from the SFWMD’s
culvert structure S-196. Groundwater table elevation in
the distal SE corner of the property was obtained from
well S-196A maintained by the US Geological Service.
Water table elevation inside the experimental field was
continuously recorded at three of the wells (W2, W4,
and W18) equipped with auto-logging pressure transduc-
ers compensating for temperature effects and atmospheric
pressure (Solinst Inc., Canada). In addition, water table
depth was recorded manually at all field wells before each
sampling event.

Dynamic factor analysis

Time series consist of time dependent data contain-
ing deterministic and random variation. The analysis of

this type of data is generally based on decomposing the
information to characterize the deterministic and random
variation. The analysis of multivariate time series with
classical time series methods is difficult because they
are techniques based on stationarity of data, cannot han-
dle missing values and need relatively long time series.
To overcome the nonstationarity problem, the time series
can be detrended or analyzed as integrated series; how-
ever, trends may contain important information about
the underlying effects in the time series. On the other
hand, to address the multivariate nature of the response
variables, conventional multivariate techniques (such as
principal component analysis, factor analysis or redun-
dancy analysis) are sometimes used. However, since these
techniques are not designed for the analysis of time series,
interpretation of the results is likely to be difficult (Zuur
et al., 2003a), or even unreliable or misleading results are
obtained (Márkus et al., 1999). In addition, these meth-
ods cannot handle missing values properly and do not
take the time order of the data into account (Solow,
1994; Zuur et al., 2003a). DFA is a more appropriate
methodology, because it is a statistical dimension reduc-
tion technique especially designed for the analysis of
multivariate time series data. Applying DFA to a set of
time series allows determining common patterns (under-
lying effects) in the series, whether there are interactions
between the time series, and the relationships between
the series and selected explanatory variables. The analy-
sis is based on the so-called structural time series models
(Harvey, 1989) that allow describing the time series of
measured data of N response variables with a DFM in
which the elements are allowed to be stochastic. Follow-
ing Lütkepohl (1991) and Zuur et al. (2003b) the DFM
is given by

N time series

D linear combination of M common trends

C level parameter C explanatory variables

C error component �1�

The aim of DFA is to choose M as small as possible
while still obtaining a reasonable fit. Although increasing
the number of common trends (M) leads to a better
model fit, it results in more information that needs to
be interpreted. Therefore, M should be much smaller
than N. According to Zuur et al. (2003b), the scheme
described in Equation (1) allows for evaluating the effect
of explanatory variables in the N time series. The
mathematical form of this DFM is given by

sn�t�D
M∑

mD1

�m,n˛m�t�C�n�t�C
K∑

kD1

ˇk,nvk�t�Cεn�t� �2�

˛m�t� D ˛m�t � 1� C �m�t� �3�

where sn�t� is the value of the nth response variable
at time t (with 1 � n � N); ˛m�t� is the mth unknown
trend (with 1 � m � M) at time t; �m,n represents the
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unknown factor loadings; �n is the nth constant level
parameter for shifting up or down each linear combina-
tion of common trends (i.e. it is the intercept term in the
regression DFM); ˇk,n represents the unknown regres-
sion parameters (with 1 � k � K) for the K explana-
tory variables vk�t�; εn�t� and �m�t� are error compo-
nents that are assumed to be independent of each other
and normally distributed with zero mean and unknown
covariance matrix. The simplest approach to model the
error covariance matrix is to use a diagonal matrix.
Regarding the estimation of the unknown parameters
in the model, these are obtained with the Expectation
Maximization (EM) algorithm (Dempster et al., 1977;
Shumway and Stoffer, 1982; Wu et al., 1996) instead of
using direct optimization of a maximum likelihood cri-
terion (Harvey, 1989). This allows performing the DFA
with a larger number of response variables. Technically,
within the DFA framework, the trends are modeled as
a random walk (Harvey, 1989) and estimations are per-
formed using the Kalman filter/smoothing algorithm and
the EM method, while the regression parameters associ-
ated with the explanatory variables are modeled as in
linear regression (Zuur and Pierce, 2004). It is worth
noting that the incorporation of explanatory variables
results in a complete, unified description of the DFM
within the EM framework (Zuur et al., 2003b). These
techniques are implemented in the statistical software
package Brodgar v2Ð4Ð5 (Highland Statistics Ltd., New-
burgh, UK, www.brodgar.com), which was used in this
study. A complete and detailed description of DFA can
be found in Zuur et al. (2003b).

The results from the DFA are interpreted in terms of
the regression parameters ˇk,n, the canonical correlation
coefficients, and the match between model estimations
and observed values. The goodness-of-fit of the model
was assessed by visual inspection of the observed ver-
sus predicted N time series, the coefficient of efficiency
(Ceff ) (Nash and Sutcliffe, 1970) and Akaike’s Informa-
tion Criterion (AIC) (Akaike, 1974). The Ceff has been
widely used to evaluate the performance of hydrologic
models. It compares the variance about the 1 : 1 line (per-
fect agreement) to the variance of the observed data. The
Ceff was calculated here by using the formulation given
in Muñoz-Carpena et al. (2005). The AIC is a statistical
criterion for model selection that combines the measure of
fit with a penalty term based on the number of parameters
used in the DFM. The more parameters (i.e. number of
trends or explanatory variables) used, the better the fit, but
the penalty increases for each parameter added into the
model. Thereby, the DFM with the smallest AIC repre-
sents an appropriate model. The degree to which each of
the response time series (sn) is related to each of the com-
mon trends (˛m) that result from the DFA was assessed
by canonical correlation coefficients (�m,n). These allow
for quantifying the cross-correlation between a response
variable and a common trend, so that if �m,n is close to 1,
it indicates that the corresponding response variable fol-
lows the pattern of the common trend. The terms ‘high’,
‘moderate’, and ‘weak’ correlation were used to denote

j�m,nj > 0Ð75, 0Ð50–0Ð75, and 0Ð30–0Ð50, respectively.
The influence or weight of each explanatory variable vk

on each sn is given by the regression parameters, ˇk,n.
Thus, standard errors for each ˇk,n obtained from the
Kalman filter were used to assess whether the response
variables were related to the explanatory variables.

DFA variables and analysis procedure

Response variables, sn . The analysis was conducted
using, as response variables, the 18 time series of
groundwater [N-NO3

�] �mg l�1� that were obtained
individually from each of the wells distributed across
the field (Figure 1). At every well, the [N-NO3

�] values
corresponded to the 56 sampling dates during a 3-year
period (15/02/2000–18/02/2003).

Explanatory variables, vk . From a practical standpoint,
groundwater chemical variation is a function of chemi-
cal inputs, outputs, and transformation. In the case of
extremely permeable gravelly soils above porous lime-
stone rocks and drained agricultural lands like those
in the study, groundwater [N-NO3

�] changes are likely
to be driven by different processes: lateral inflow and
outflow to and from the canals; chemical transforma-
tions; leaching from the topsoil, which in turn depends
on crop fertilizer applications; topsoil enrichment (satu-
ration); rainfall and irrigation intensity; and the length
of the transport flow path (water table depth), among
other effects. On the basis of this, five observed time
series were used as potential explanatory variables in the
DFA: (i) WTE (m NGVD 1929 datum); (ii) GwFD ; (iii)
rainfall totals (cm) between sampling periods, Prec; (iv)
irrigation totals (cm), Irr ; and (v) nitrogen fertilizer appli-
cations, Fert (mg N l�1). The WTE was computed as
the average WTE recorded at wells W2, W4, and W18.
GwFD is locally affected by seasonal regional drainage
through canal management exercised by the regional
water authority (SFWMD). This time series was obtained
as the difference between the distal surface water levels
in canal C-103 (measured northwest from the field at
the S-196 structure) and the well S-196A water elevation
located southeast from the field (Figure 1). Thus, positive
GwFD values (Figure 2(a)) indicate that groundwater is
flowing to the southeast (recharge from the canal). On
the other hand, negative values indicate that groundwater
is flowing to the northwest because the low stage at canal
C-103 is draining the area. The Prec, Irr, and Fert were
obtained directly from field records.

Analysis procedure. The DFA was applied to data in
their original units (i.e. nonstandardized data). Although
this makes the factor loadings interpretation difficult, we
found that by using nonstandardized data, the DFM per-
formance was improved. In addition, this has the ben-
efit that DFM’s predictions are in the original units of
the data. Normality of data is not strictly necessary,
but it is beneficial for DFA (Zuur et al., 2003a). On
the basis of probability plots, data were found to be
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Figure 2. Summary of groundwater [N-NO3
�] time series at the moni-

toring wells. (a) GwFD time series; (b) Values for all samples collected;
(c) average trends for the selected groups of wells

normally distributed, so no data transformation was nec-
essary. The analysis was conducted in three incremental
steps. Firstly, with the aim of identifying relevant and
appropriate explanatory variables, an exploratory analy-
sis was conducted by visual inspection of the observed
data and calculation of cross-correlation among all vari-
ables (response and explanatory). Secondly, different
DFMs were compared on the basis of AIC and Ceff.
These models were derived by incrementally adding
the number of common trends and by testing different
combinations of explanatory variables. To choose the
‘best’ model, a compromise was sought between AIC,
goodness-of-fit (Ceff ), and minimum number of com-
mon trends and explanatory variables needed. Thereby
the model with the smallest AIC was taken to be the
appropriate model if the Ceff was close enough to
unity. We followed this approach because AIC pro-
poses a balance between the fit of the model and
the number of parameters that the model is using to
achieve this fit, while Ceff is a dimensionless mea-
sure that provides a relative assessment of the model
performance. Thirdly, the resulting DFM was exam-
ined with respect to local land use and regional water
management.

RESULTS AND DISCUSSION

Experimental time series

Figure 2(b) shows the time series of [N-NO3
�] result-

ing from a total of 1008 water quality samples (excluding
field and instrument blanks) along with the total rainfall

and irrigation between sampling periods. Generally,
[N-NO3

�] in all these samples were below 10 mg l�1

(US drinking water standard) except for some samples
collected during the summer and fall 2001 and 2002.

Four groups of wells were established with respect
to the diagonal cropping strip: Group A, wells located
NW from the plots (W15, W16, W17, W18); Group B,
wells located SE from the plots (W1, W2, W3, W4);
Group C, wells within the cultivated plots (W5, W7,
W8, W10, W12, W14); and Group D, wells between
the plots (W6, W9, W11, W13). Figure 2(c) depicts the
average fluctuations of [N-NO3

�] for the four groups
of wells. Average, minimal, and maximal concentrations
during the 3-year period and for each of the four
groups are given in Table I. In general, groundwater
[N-NO3

�] was low during the sweet corn growing
period (November–March), which coincides with the
lower rainfall periods. The [N-NO3

�] peaks can be
related to summer rainfall events and, to a lesser degree,
to irrigation events. Samples collected from the wells
located within the cultivated plots (Group C) had higher
[N-NO3

�] than those obtained from the wells located
between plots (Group D). In addition, during the rainy
periods, the [N-NO3

�] corresponding to well Groups C
and D were greater than those observed in groups A and
B. This suggests that not all the nitrate present in the
soil was absorbed by the corn plants, so it accumulated
in the soil and was later leached as a consequence of
heavy rains. Figure 2(c) also depicts a similar pattern
in the average [N-NO3

�] of well groups A and B,
where average [N-NO3

�] values for Group A were about
2 mg l�1 higher than those for Group B. All these data
give an indication of the complexity of the aquifer
system, where three groundwater flow classes have been
reported (Cunningham et al., 2004) on the basis of unique
categories of lithology and kinds of pore systems that
characterize the heterogeneous and anisotropic porosity
of the underlying coral limestone that make up the top of
the Biscayne Aquifer.

Dynamic factor analysis

Analysis of cross-correlation. Relevant cross-correla-
tions (results not shown) were obtained between the
response time series. On the one hand, computed coef-
ficients indicated cross-correlation for [N-NO3

�] among
the Group A wells (0Ð48–0Ð93); among the Group B wells

Table I. Well grouping according to location within the field

Group Description Number of
wells

[N-NO3
�]a

(mg l�1)
Range

(mg l�1)

A NW from plots 4 4Ð07 š 0Ð14 1Ð95–6Ð55
B SE from plots 4 2Ð55 š 0Ð10 1Ð20–4Ð40
C Within cultivated

plots
6 5Ð23 š 0Ð25 2Ð5–10Ð62

D Between cultivated
plots

4 3Ð99 š 0Ð20 1Ð48–9Ð34

a Average concentration š standard error calculated for the whole period.
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(0Ð44–0Ð51); and among the Group C wells (0Ð53–0Ð85).
In Group D, this was also the case for all the wells
(0Ð48–0Ð69) except for W13 that showed correlation only
with W4 with a cross-correlation coefficient of 0Ð47.
On the other hand, cross-correlations in [N-NO3

�] were
found between wells in groups A and B (0Ð51–0Ð76),
and between wells in groups C and D (0Ð48–0Ð66) as
well. The explanatory variables (Fert, WTE, GwFD, Prec,
and Irr) showed very low cross-correlations (0Ð02–0Ð31),
indicating that they were independent and thus appropri-
ate for the DFA.

DFM selection. Bearing in mind that the DFA aims
to model the variation observed in a set of time series
in terms of several components, according to the num-
ber of common trends and combinations of explanatory
variables considered, the analysis could proceed with dif-
ferent alternative models (Table II). The DFM with a
minimal number of common trends and no explanatory
variables that best described [N-NO3

�] in the 18 wells
(minimum AIC D 2731 and Ceff D 0Ð819) included five
common trends (M D 5). In contrast to visual inspection
of the [N-NO3

�] time series that showed no discernible
effects (Figure 2(c)), this result indicates that five latent
effects influence the chemical concentration over time.
This means that the variation observed in the response
variables can be represented by five underlying pattern or
effects, which are common to all or part of the response
time series. These common trends represent latent effects
influencing the time series, but their physical explanation
remains unknown. The inclusion of explanatory variables
in the DFM may be useful to reduce this nonidentified
variability, because the resulting DFM thereby accounts
for the variation that is a consequence of known phys-
ical processes (i.e. the explanatory time series). Thus,

Table II. Selection of dynamic factor models based on perfor-
mance coefficients

Explanatory
variables, vk

Trends AIC Ceff a

— 5 2731 0.819
WTE, GwFD, Prec 3 2720 0.780
WTE, GwFD, Prec, Irr 3 2730 0Ð790
Fert, WTE, GwFD, Prec, Irr 4 2736 0Ð813
WTE, GwFD 3 2740 0Ð789
WTE, Prec 3 2745 0Ð793
WTE, Irr, Prec 3 2749 0Ð798
Prec 3 2761 0Ð736
WTE 3 2770 0Ð764
GwFD, Prec 2 2773 0Ð736
WTE, GwFD, Irr 3 2776 0Ð769
Irr 3 2779 0Ð742
GwFD 3 2781 0Ð746
GwFD, Irr, Prec 2 2783 0Ð743
WTE, Irr 3 2785 0Ð767
GwFD, Irr 3 2796 0Ð763
Fert 3 2798 0Ð740

a Ceff was calculated with the combined set of predictive versus observed
values for all the wells. Bold characters indicate the best DFMs for both
approaches, with and without explanatory variables (vk ).

in an attempt to reduce M, explanatory variables were
added. The results obtained for the models with differ-
ent combinations of explanatory variables and common
trends are given in Table II. Notice that by including the
WTE, GwFD, and Prec, M was reduced to three com-
mon trends, resulting in the lowest AIC. Although the
inclusion of these explanatory variables decreased Ceff,
the obtained Ceff D 0Ð780 was still considered satisfac-
tory. Interestingly, these results indicate that, compared to
the other explanatory variables included in the study, the
information available about irrigation and fertilizer appli-
cations is not found relevant for modeling the ground-
water concentration variation during the experimental
period. This likely indicates that soil/water/plant-delayed
processes masked these factors. Although irrigation appli-
cation did not result in sufficient leaching during the
growing season, the soil enrichment likely prepared the
soil for high leaching during the intense summer rainy
season.

DFA of the best DFM. According to the previous
section, the best DFM contained three common trends
and the explanatory (hydrological) variables. The esti-
mated regression parameters of the best DFM for these
variables (WTE, GwFD, and Prec) were calculated, as
well as the factor loadings and level parameters (results
not shown). Table III presents a matrix summarizing the
interactions of the model components for the time series
in the 18 wells.

Outside the cultivated area (except for W16), the
[N-NO3

�] in all of the wells was affected by one or more
of the selected hydrological variables. GwFD influenced
all the SE wells (Group B) and the well W17. Because
of the high porosity and shallow water table, Prec and
WTE were expected to have a large influence on the
observed [N-NO3

�]. However, outside the corn plots,
Prec was found to strongly influence the concentration
at just three wells, W3, W15, and W18. The variable
WTE had some effect on the concentrations at W17 and
W18. Only the [N-NO3

�] in W3 was under the influence
of all three explanatory variables. For the well groups
in the crop strip (Groups C and D), the effect of the
explanatory variables was observed in half of the wells
(Table III). The effect of these hydrological variables on
the [N-NO3

�] in the individual wells appeared to be a
function of the well location within the whole field. WTE
affected wells located at the northern boundary plus some
wells at the center of the field. The important variable in
the western and southern section of the field (i.e. the areas
that would be considered southeast from the plots) was
GwFD. Prec predominated in the eastern part of the field.
Within and between the cultivated plots the influence of
these explanatory variables was not consistent. This is
likely due to nitrate leaching and lateral groundwater
transport from the cultivated plots that may mask the
influence of the hydrological variables on the [N-NO3

�]
in the corresponding wells.

So far, we have discussed the groundwater [N-NO3
�]

time dependent variation that can be explained by the
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Table III. Summary of relative effect of explanatory variables and trends on groundwater [N-NO3
�]

Location/land use sn WTE a GwFD a Preca Trend
1b

Trend
2b

Trend
3b

Ceff

SE/fallow (Group B) W1 — C — ŁŁŁ ŁŁ (�) Ł (�) 0Ð749
W2 — C — ŁŁ — — 0Ð749
W3 C C C Ł — — 0Ð761
W4 — C — ŁŁ — — 0Ð478

Crop strip (Groups C and D) W5 — C — — ŁŁ — 0Ð522
W6 — — — — ŁŁ ŁŁ 0Ð823
W7 — — — — ŁŁŁ Ł 0Ð856
W8 C C — — ŁŁŁ ŁŁ 0Ð728
W9 — — C — Ł Ł 0Ð462

W10 C — — — ŁŁŁ ŁŁ 0Ð621
W11 — — — — Ł ŁŁ 0Ð597
W12 — — — — ŁŁ Ł 0Ð820
W13 — C C ŁŁ — Ł (�) 0Ð704
W14 — — — — ŁŁ — 0Ð532

NW/fallow (Group A) W15 — — C Ł — — 0Ð632
W16 — — — ŁŁŁ — — 0Ð778
W17 C C — ŁŁŁ ŁŁ (�) Ł (�) 0Ð985
W18 C — C ŁŁ ŁŁ (�) Ł (�) 0Ð574

a C indicates a significant strong influence (t-value >2) of the explanatory time series (vk ) on the corresponding response variable (sn).
bŁ denote the relative importance of the common trends based on �n, where Ł,ŁŁ,ŁŁ correspond to a �n D 0Ð3–0Ð5, 0Ð5–0Ð75, >0Ð75, respectively.
(�) Indicates a negative correlation.

hydrological time series. However, the information con-
tained in the selected explanatory time series alone is
not sufficient to model the groundwater [N-NO3

�] in
the wells. The DFA detected an unexplained variation
in the response series too, which is reduced to and rep-
resented by the resulting common trends. This means
that, in addition to the influence of the hydrological
time series, groundwater [N-NO3

�] in this area was also
affected by the three underlying common patterns shown
in Figure 3. Although interpretation of these trends is
difficult, the corresponding canonical correlation coeffi-
cients, �m,n, included in Figure 3 give information about
how the [N-NO3

�] in each of the wells is related to
each of the trends. Thus, while the first trend was only
correlated with wells outside the cultivated plots (and
W13 inside) (Figure 3a), the second and the third trends
were positively correlated to all the wells in the culti-
vated area (except for W13). According to these results,
two main groups can be clearly distinguished according
to their position within the cultivated area or the sur-
rounding fallow area. W13 was not influenced by the
same latent effects as the remainder of the wells in the
cultivated area. The [N-NO3

�] in wells from Group C
(W5, W7, W8, W10, W12 and W14) were better corre-
lated with the second trend than those of Group D (W6,
W9 and W11) (Figure 3b). This was not observed with
the third trend (Figure 3c). The [N-NO3

�] in wells W1,
W17, and W18 showed also a negative weak correlation to
the second and third trends (Figure 3b and 3c). Since the
three common trends encompass sources of unexplained
variability, these represent other aspects not included in
the model that have some influence on the groundwater
[N-NO3

�]. Examples of this might be [N-NO3
�] in the

adjacent canal, and [N-NO3
�] that accumulates in the

soil and is leached to the groundwater (Muñoz-Carpena
et al., 2005).

The DFA was useful for studying the observed time
series of groundwater [N-NO3

�] in the area of study.
Although the visual inspection of these time series
showed no discernible effects, the DFA indicated that
[N-NO3

�] patterns in the 18 wells depend on the location
of the monitoring well within the field. Thereby, subareas
in the experimental site were identified where ground-
water nitrate concentration was affected by common
effects (hydrological variables and unknown effects).
Further interpretation of results for explaining how the
system works is not possible, especially because of the
complex nature of the coral limestone aquifer system,
which is characterized by heterogeneous and anisotropic
porosity that gives rise to a mosaic of semiconfining units
and preferential flow zones (Cunningham et al., 2004).

The performance of the selected best DFM to describe
the [N-NO3

�] in the 18 wells is given in Figure 4.
Although at some of the wells the DFM failed to match
isolated concentration peaks, in general the selected
DFM described satisfactorily the groundwater [N-NO3

�]
fluctuations, as expected from the high Ceff obtained.

CONCLUSIONS

In a 3-year study in an agricultural field in South
Florida, observation of groundwater [N-NO3

�] in 18
wells showed no discernible effects. The application of
DFA successfully identified the extent to which ground-
water nitrate fluctuations were explained by the hydrolog-
ical variables studied. The [N-NO3

�] patterns observed
from samples collected during the 3-year period at the
18 wells were influenced by three hydrological variables:
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Figure 3. Common trends and corresponding canonical coefficients for the best DFM. Dashed lines indicate the threshold for weak correlations.
Trend units multiplied by factor loadings units yield mg l�1

water table elevation, groundwater flow direction, and
precipitation. The groundwater gradient had the greatest
impact upon well concentrations southeast from the plots.
While precipitation and water table elevation affected the
concentrations observed at five wells on the cultivated
plots, their influence was not as large as what may have
been expected because of the highly porous nature of the
soil. Although not all the wells were similarly affected
by these variables, they could be grouped according to

their spatial location and the hydrological variables hav-
ing influence on them. It can be concluded that much
of the groundwater [N-NO3

�] variation observed was
successfully accounted for by these hydrological time
series. The remaining variation was related to the unex-
plained variability represented by three common trends.
The effect of these common trends on the observed
[N-NO3

�] showed a spatial structure across the field area
allowing the effective grouping of the wells by land use,
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Figure 4. Dynamic Factor Model fit for [N-NO3
�] in mg l�1 for the 18 experimental wells
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i.e. cultivated and fallow. Chemical aspects such as the
[N-NO3

�] in the soil and the adjacent canal may also
have affected the groundwater [N-NO3

�]. This effect is
likely encompassed by the common trends.

The results of this study indicate the complex nature of
the coral limestone aquifer system in this region. Shallow
water table conditions, rapid infiltration, and extremely
fast groundwater dynamics make it difficult to evalu-
ate the factors that most directly influence groundwater
loading using visual inspection or comparative statisti-
cal techniques. These confounding effects are in fact
present to different degrees in most groundwater qual-
ity studies. Despite this complexity, DFA was able to
identify the wells expected to be influenced by the crop.
In addition, groundwater concentrations southeast from
the plots were influenced by flow direction resulting
from the regional water management exercised by the
regional water authority (SFWMD) through the operation
of the drainage canal network. This means that local land
use/management effects (agriculture/fallow) can be effec-
tively separated from those of a more regional nature.
This information should prove useful in devising water
quality strategies and studies in the area.

In addition to representing a useful technique for
studying the interactions among the variables affecting
the complex aquifer system, DFA provides a model that
can also prove useful for agricultural and groundwater
management.
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