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Abstract A fast normalized cross correlation (FNCC) based machine vision algorithm

was proposed in this study to develop a method for detecting and counting immature green

citrus fruit using outdoor colour images toward the development of an early yield mapping

system. As a template matching method, FNCC was used to detect potential fruit areas in

the image, which was the very basis for subsequent false positive removal. Multiple

features, including colour, shape and texture features, were combined in this algorithm to

remove false positives. Circular Hough transform (CHT) was used to detect circles from

images after background removal based on colour components. After building disks cen-

tred in centroids resulted from both FNCC and CHT, the detection results were merged

based on the size and Euclidian distance of the intersection areas of the disks from these

two methods. Finally, the number of fruit was determined after false positive removal

using texture features. For a validation dataset of 59 images, 84.4 % of the fruits were

successfully detected, which indicated the potential of the proposed method toward the

development of an early yield mapping system.
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Introduction

Estimating early yield of immature green citrus fruit is very important for citrus growers.

This information can help growers with preparation of packing and storage facilities, and

estimation of harvesting logistics and expected cost. It can also help the growers to identify

spatial yield variability of their citrus groves, which would further help them optimize their

site-specific management and increase their profits. Florida produced about 70 % citrus of

the US during the last decade (USDA-NASS 2011). As the production of citrus increased,

greater accuracy of yield mapping would be desired. Until now, yield mapping is based on

estimates and projections from manual counting and measurements of selected trees, which

are simple in concept but complex in planning and management. The counting and mea-

surements are also time consuming and labour intensive. There are four basic parameters in

citrus production forecast: number of bearing trees, number of fruit per tree, fruit size, and

fruit loss from droppage (USDA-NASS 2011). Among these four parameters, the first two

have greatest impact on the forecast, and the number of fruit per tree is the key for

production forecast. Therefore, to help the farmers get early yield mapping data, this

research focused on studying how to determine the number of immature citrus fruit per tree

based on machine vision toward the development of an early yield estimation system. A

machine vision based system is an excellent choice because of its efficiency and capability

of recognizing size, shape, colour, texture and numerical attributes of the objects (Shin

et al. 2012). In comparing with the current method of manual fruit counting, the machine

vision based system could help the farmers investigate larger citrus groves faster and more

efficiently. This study focused on automatic immature green citrus fruit counting in natural

outdoor red–green–blue (RGB) images.

Many studies have been reported to automatically detect immature green fruit in ima-

ges. These studies usually fall into two categories based on the imaging systems used. One

category is those studies using infrared (IR), multispectral, and hyperspectral imaging.

Some of them described applications of thermal imaging for detecting objects or plant parts

in a low contrast background because thermal imaging utilizes different thermal charac-

teristics of observed objects compared with the use of visual cameras. For IR images,

Sapina (2001) computed six texture features based on co-occurrence matrix, which is the

second order statistics method characterizing spatial interrelationships of grey tones. The

texture images showed good results of variance and correlation for all tested images, which

were helpful to identify warm objects and background in low contrast images. Stajnko

et al. (2004) developed an algorithm to estimate number and diameter of apple fruits in an

orchard by thermal imaging during a growing season. The coefficients of determination,

R2, were used to show the relationship between the manual measurement and estimated

results. They reported that the R2 between the manually counted number of fruit and the

number estimated was ranged from 0.83 to 0.88, and the R2 between the manually mea-

sured fruit’’ diameter and the estimated diameter was ranged from 0.68 to 0.70 based on

their algorithm. Some researchers have explored the feasibility of detecting fruits utilizing

multispectral or hyperspectral information. Annamalai and Lee (2004) conducted spectral

analysis for immature green citrus fruits and leaves using a spectrophotometer in a labo-

ratory. They found two important wavelengths, 815 and 1190 nm, which were significant

for fruit identification. Kane and Lee (2007) used a monochrome near-infrared camera with

interchangeable optical band pass filters to capture images of green citrus fruit in Florida.

The images were processed using indices and morphological operations. The results

showed an R2 of 0.74 between the predicted number of citrus pixels and number of pixels
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manually masked. Okamoto and Lee (2009) developed a hyperspectral image processing

method to detect green citrus fruit in individual trees from hyperspectral images captured

in 369–1042 nm. The detection success rates were 70–85 %, depending on the citrus

varieties.

For immature green fruit detection, standard colour cameras have also been used.

Wachs et al. (2010) developed a machine vision system aiming at recognizing occluded

green apples within a tree canopy using both IR and colour images. Their apple detection

algorithm was based on low-level and high-level visual features. Low-level features, which

meant Haar wavelet features in the paper, were obtained in colour and thermal infrared

images through an Adaboost algorithm. High-level features were colour and geometric

properties obtained through image pre-processing, clustering and morphology operations.

The results revealed that the low-level feature approach was superior to the high-level one,

because it relied on shape descriptors rather than colour descriptors, which made it more

robust to unconstrained illumination in natural scenes. And the recognition accuracy

increased when the two approaches were combined. Zhou et al. (2012) developed apple

recognition algorithms for two fruit development periods, i.e., after June drop and during

ripening. A colour feature based method was used to estimate the number of apple fruits in

an image after June drop, when the fruits were mostly young and small green fruitlets. This

method yielded an R2 of 0.80 between the fruit counting algorithm and manually counted

number of fruit. Linker et al. (2012) developed and validated an algorithm for estimating

the number of apples in natural outdoor colour images. The four step method detected

more than 85 % of the apples in the first dataset, while it detected close to 95 % of the

actual apples in the second dataset of images, which were manually underexposed and

recorded. Kurtulmus et al. (2011) developed a green citrus detection method using

‘eigenfruit’, colour and circular Gabor texture features under natural outdoor conditions.

Gabor texture is a powerful tool in texture analysis, and the circular Gabor texture is a

modified version of traditional Gabor texture, a circular symmetric version. They con-

cluded that circular Gabor texture was a useful method for identifying fruit texture regions

in the natural outdoor canopy. For a validation dataset, 75.3 % of the actual fruits were

successfully detected using the proposed method. Then Kurtulmus et al. (2014) further

developed an immature peach fruit detection method in colour images, which were also

captured under natural outdoor conditions. Three methods were used to separate fruit

objects in the images, including scanning an entire image with a sub-window process to

extract the ratio of fruit object, extracting potential fruit regions with a morphological

opening operation of binary image, and extracting potential fruit regions with a radial

symmetry transform. Statistical classifiers, a neural network and a support vector machine

classifier were built and used for detecting peach fruit, besides ‘eigenfruit’ and circular

Gabor texture features. The proposed methods yielded correct detection accuracies of

71–85 % for a validation dataset. Bansal et al. (2013) proposed a fast Fourier transform

(FFT) leakage based green citrus detection method, which yielded a correct detection rate

of 82.2 %. A consumer grade digital colour camera was chosen to obtain images in this

study because it is easier to operate and more affordable for growers, in comparison to

multispectral or hyperspectral cameras. Also Sengupta and Lee (2014) conducted imma-

ture green citrus fruit identification and counting using similar images captured by an

ordinary standard digital camera in a canopy under different light conditions. They

developed a machine vision based algorithm which included two integral parts: shape

analysis and texture classification. The green citrus detection accuracy they reported in a

validation set of images was 80.4 %. Some researchers tried to use images captured by a

mobile phone camera to detect mature fruits having different colour from the background.
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For example, Gong et al. (2013) developed a new method based on an 8-connectedness

chain code to estimate number of mature fruit, using images taken by an Android mobile

phone. The performance of the fruit-counting algorithm achieved a recognition rate of

90 % for 40 validation images of citrus trees.

Compared with green fruit detection using infrared (IR), multispectral, and hyper-

spectral imaging, or non-green fruit detection using colour images, the task to be achieved

in this study was much more difficult. It mainly has three challenges: colour similarity

between fruits and leaves, non-uniform illumination, and partial occlusion. Some

researchers have tried to solve these problems. Colour, texture, and shape were the most

commonly used features for target classification or detection in machine vision. For

example, Kurtulmus et al. (2011) used eigenfruit approach using intensity and saturation

components, and circular Gabor texture. Pourreza et al. (2012) identified nine Iranian

wheat seed varieties utilizing 131 textural features extracted. The average accuracy of

98.5 % was obtained. In this study, all of these mentioned features, colour, texture and

shape, were used in the proposed method, to improve green fruit detection accuracy.

The objective for this study was to develop methods that can detect immature green

citrus fruits accurately in the RGB images acquired outdoors by a standard digital colour

camera. Figure 1 shows an example image captured by the camera, which was employed to

develop the proposed algorithm. Specific objectives were:

1. to develop a method for removing background as much as possible based on colour

component analysis,

2. to develop a fast normalized cross correlation (FNCC) based method to detect

potential fruit positions, and

3. to identify as many green citrus as possible through combining colour, texture, and

shape feature analysis.

Materials and methods

Image acquisition

Under natural daylight conditions, 118 digital colour images were acquired in October,

2010 from an experimental citrus grove in the University of Florida, Gainesville, Florida,

Fig. 1 An example RGB image
containing immature green citrus
fruit (Color figure online)

Precision Agric

123



USA, using a consumer grade regular digital camera (PowerShot SD880IS, Canon Inc.,

USA). The citrus variety was Orlando Tangelo. The images were taken between 11:00 am

and 4:00 pm, in 1 week period. The interval of the picture obtaining time was random. The

weather conditions were sunny or cloudy, when the pictures were taken. The images were

taken for both sunny and shadow side of the citrus canopy under natural daylight. The

images were saved as 24-bit colour JPG format images with 3648 9 2736 pixels, corre-

sponding to approximately 24 9 18 cm2 actual scene. Matlab (Ver. R2010a, Mathworks,

Natick, MA, USA) was used to realize the proposed green citrus detection algorithm in this

study. Among the 118 images, 59 images were randomly selected as training images, and

the other 59 were used as validation images. All the RGB images were resized to

912 9 684 pixels, using bilinear interpolation method, to improve computational

efficiency.

Algorithm description

The flow charts of the proposed method are shown in Figs. 2 and 3. Figure 2 shows general

steps for the method, which was divided into five steps. Firstly, FNCC (Lewis 1995) was

applied to obtain potential fruit positions by calculating cross correlation between an input

image and a template fruit image. A square was placed around the potential fruit position in

the original RGB image based on the FNCC. The square obtained was called a ‘‘patch’’ in

the rest of this study, and these specific patches were used as the study targets. Then false

positive positions were filtered out through colour analysis for each patch. Thirdly, colour

and shape feature were combined for detecting potential fruit positions utilizing circular

Hough transform (CHT) (Duda and Hart 1972). R, B and H colour components were

chosen to remove background (non-fruit objects), using the same colour component

analysis method developed in Li et al. (2014), which will not be detailed in this paper. R, B

was red and blue component in RGB image, respectively. H was hue component in HSV

image, which was the result image after rgb2hsv colour space transformation was per-

formed on the RGB image. Then the detection results from steps 2 and 3 were merged.

Input RGB image

Step 1: Cross correlation based fruit position detection

Step 3:  Fruit detection based on circular Hough transform

Step 4: Combine multiple detections from steps 2 and 3

Step 5: Remove false positives using texture and determine final number of fruit

Step 2: Filter out false positives through colour analysis

Fig. 2 General flow chart for the proposed algorithm
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Lastly, false positives were further filtered out through texture analysis for the remaining

patches. Figure 3 shows more specific flow chart of the proposed method. In this figure,

N1, N2, N3 and N4 indicate the total number of patches resulting from different steps.

More specific details are discussed in the following subsections.

Input image

Calculate normalized cross 
correlation between fruit template 
and image_grey

Obtain areas with normalized cross 
correlation parameter larger than 0.7

Abandon the ith patch

Set i=0, and N2=0; Obtain the 
number of fruit pixels, n(i), in the ith 

patch utilizing a prebuilt fruit-
background training dataset and 
applying KNN classifier

Hough circle detection 
on edge image of 
image_grey_removed 
and find patches based 
on circle positions (N3)

Combine N2 and N3 patches, and merge the neighboring 
ones to create N4 patches

Remove false positives using texture analysis and 
determine the final number of fruits in the image

Label the N1 objects (number of 
detected area) 

No

Keep the ith patch; i=i+1, N2=N2+1

Remove part of the 
background by 
histogram based image 
segmentation, and 
obtain
image_grey_removed

n(i) >= 450?

Convert RGB into normalized chromaticity coordinates, and transform it
to image_grey

Yes

i = N1?

Yes

No

Step1

Step3

Step2

Step4

Step5

Fig. 3 Flow chart for the proposed algorithm with more details
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Normalized chromaticity coordinates

Conclusions could not be made directly based on non-normalized RGB pixel values of an

object, because the non-normalized pixel values are highly sensitive to the illumination

difference of the lighting source (Gonzalez and Woods 2002). Therefore, RGB images

used in this study were transformed to normalized chromaticity coordinates first, since non-

normalized RGB pixel values are proportional to total light reflected from a surface.

Normalized RGB coordinates could be obtained using the following equation (Woeb-

becke et al. 1995):

R ¼ RC

RM

; G ¼ GC

GM

; B ¼ BC

BM

ð1Þ

where RC, GC, BC are the non-normalized values, and RM, GM, BM are the maximum non-

normalized RGB values.

The chromaticity coordinates is defined as the ratio of each of a set of three tristimulus

values to their sum by CIE (Brill 2014). Hence, the chromatic coordinates for RGB colour

space is defined by Eq. 2.

r ¼ R

Rþ Gþ B
; g ¼ G

Rþ Gþ B
; b ¼ B

Rþ Gþ B
ð2Þ

Since RM = GM = BM = 255 for 24-bit colour images, Eqs. 3 and 4 could be given

through combing Eqs. 1 and 2:

r ¼ RC

RC þ GC þ BC

; g ¼ GC

RC þ GC þ BC

; b ¼ BC

RC þ GC þ BC

ð3Þ

r þ gþ b ¼ 1 ð4Þ

After the images were normalized to chromaticity coordinates, the effect of illumination

was reduced, because the normalized chromatic coordinates for shaded and unshaded

surfaces were not as variable as non-normalized RGB values (Woebbecke et al. 1995).

FNCC based potential fruit position detection

After an RGB image was normalized to chromaticity coordinates, it was converted to grey

scale image, which was named image_grey.

Fig. 4 Template image used for
FNCC
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FNCC is a template matching method for feature detection. It requires a typical tem-

plate for the object to be detected. To obtain potential fruit positions in the image, FNCC

coefficients were calculated between a fruit template and image_grey. The fruit template

used in this study as shown in Fig. 4 was obtained by calculating an average for 20 small

30 9 30 pixel patches, which were randomly chosen from the training images.

This method normalizes the image and feature vectors to unit length, yielding a cosine

similarity function like a correlation coefficient (Lewis 1995) shown as Eq. 5,

cðu; vÞ ¼
P

x;y f ðx; yÞ��fu;v
� �

tðx� u; y� vÞ � �t½ �
P

x;y f ðx; yÞ � �fu;v
� �2P

x;y tðx� u; y� vÞ � �t½ �2
n o0:5

ð5Þ

where f is an input grey scale image, and the sum in the numerator and denominator is over

under the window containing the feature (the fruit template) positioned at u, v; c is the

correlation coefficient between the fruit template and image_grey; �t is a mean of the

template and �fu;v is a mean of f(x, y) in the region under the template area. This equation is

referred to as a normalized cross correlation.

The FNCC, which was proposed by Lewis (1995), has improved the computation

efficiency greatly. It utilized the technique of computing a definite sum from a pre-com-

puted running sum. And the algorithm could be found in Matlab as a function ‘normx-

corr2’. The resulting matrix contains correlation coefficients and its values may range from

-1.0 to 1.0. For the training image dataset, nine cross correlation coefficient thresholds

from 0.1 to 0.9 with a 0.1 interval were tried to determine the best threshold for green fruit

detection. The best result was given when ‘‘0.7’’ was chosen as the threshold. Therefore,

pixels with a coefficient higher than 0.7 were identified as potential fruit pixels. The total

number of areas in the result image with a size bigger than 40 pixels was counted, and was

assigned to N1 in Fig. 3. The threshold of 40 pixels was determined based on the trade-off

analysis between the fruit detection accuracy and the algorithm running time, which

indicated most of the areas smaller than 40 pixels were non-fruit objects.

Filter out false positives through colour analysis

For each of those N1 positions, a 30 9 30 pixel square patch located at the centroid of each

area was cropped, and was used for colour analysis. The more pixels in each patch belong

to a fruit class, the more likely that this patch belongs to a fruit. To identify how many

pixels were fruit in each patch based on the colour information, fruit and background pixels

needed to be investigated.

Therefore, a fruit-background pixel dataset including 10,000 fruit pixels, and 20,000

background pixels (10,000 leaf pixels and 10,000 all other background pixels) was built.

This prebuilt data library was used for colour component selection. These pixels were

randomly chosen from the 59 training images. A half of these pixels (5,000 ? 10,000

pixels) were used for training and the other half were used for validation. The classification

based on different colour components from different colour spaces can yield different

classification results (Gonzalez and Woods 2002). Four commonly used colour spaces

include red (� green (G), and blue (B); hue (H), saturation (S), and intensity (I); luminance

(Y), blue-difference chroma (Cb), and red-difference chroma (Cr); and luminance (Y), in-

phase (I), and quadrature-phase (Q). The training dataset was used to choose the best

colour components, and the validation dataset was used to validate the efficiency of the

chosen components. To choose which colour component subset could yield the best result,
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a nonparametric measurement selection method, forward feature selection algorithm

(FFSA) as described by Whitney (1971) and Kumar et al. (2001) was chosen. The general

idea for this method is as following. Firstly the best single component with the highest

accuracy is selected first, and then the best pair of features is selected where the pair

includes the best single selected feature. A new component is added to the previously

selected component(s) so that the classification accuracy increases maximally when it is

added. This procedure is repeated with the rest of the features until the classification

accuracy does not improve considerably or all components are used up. From the pre-

liminary analysis by FFSA, the R, B, and H components were proved to be most efficient.

These three components, R, B, and H, of the training dataset were used in the proposed

algorithm. Firstly, they were used for calculation of the number of fruit pixels in the N1

patches in step 1. Here N1 in Fig. 3 indicates the number of patches using FNCC. Then the

histograms of the R, B, and H components of the training dataset were used in step 3 to

help with the background removal. Using these three colour components, a K-nearest

neighbour (KNN) (Duda et al. 2001) classifier was built and used for the pixel classifi-

cation in step 2, because it performed best in the preliminary tests. If the pixel number in

each patch was bigger than 450, which was a half of the patch size, this patch would be

identified as a fruit, and it would be kept for further analysis. Otherwise, it was identified as

background, and was abandoned. N2 in Fig. 3 indicates the total number of patches

remained after colour analysis.

Colour based background removal and CHT based fruit detection

Since the colours of green leaves and green fruit are very similar, only colour information

is not enough to identify fruit from the image (Kurtulmus et al. 2011; Bansal et al. 2013;

Kurtulmus et al. 2014). Therefore, shape feature was also considered. Step 3 in Fig. 3

shows the general idea for shape based fruit detection. If grey images were directly used

for circle detection, there would be many false positives. Thus, part of the background was

removed based on histogram analysis of R, B, and H components of the image. The edge

image of image_grey_removed, which was created in step 3, was obtained by edge

detection using the ‘canny’ operator. Then the CHT (Duda and Hart 1972) was applied on

the edge image of image_grey_removed, and N3 patches were found based on the centroids

of circle positions.

The circular Hough transform was extended from the Hough transformation for line

detection. A circle in the edge image could be described by Eq. 6. Then an arbitrary image

point will be transformed into a surface in a parameter space defined by Eq. 7 (Duda and

Hart 1972).

ðx� a1Þ2 þ ðy� b1Þ2 ¼ R12 ð6Þ

ðxi � a1Þ2 þ ðyi � b1Þ2 ¼ R12 ð7Þ

Each point in the edge image will be transformed into a right circular cone in a three-

dimensional parameter space. A right circular cone is a cone whose axis is a line segment

joining the vertex to the midpoint of the circular base. If the cones correspond to many

figure points intersected at a single point, then all the figure points lie on the circle defined

by those three parameters, which are a1, b1 and R1. Based on the size of fruits on the

images, the minimum and maximum radius was set to be 60 and 180 pixels, respectively.
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The maximum number of circles found in an image was set to be 15 because it was the

maximum number of fruits found in the captured images.

Merging multiple detections

N2 and N3 potential fruit positions were found in steps 2 and 3, respectively, as shown in

Fig. 3. Multiple detections might occur for a single fruit, which will introduce false pos-

itives. Therefore, merging was necessary for multiple detections.

For merging, a very simple yet efficient procedure was used. Firstly, three binary

images initialized with the same size of the input image (912 9 684 pixels) were built. The

value of all the pixels on them was initialized as ‘0’. Then, disks with a radius of 60 pixels

were built corresponding to N2 and N3 centroids in the first two binary images, respec-

tively, and the value of the pixels on the disks was set to ‘1’. The threshold of 60 pixels was

chosen because it was approximately the minimum fruit radius found in the images, as

mentioned in the last section. It means that if two fruits have more than one half over-

lapped, they will be identified as one since the distance between the overlapped fruit is

smaller than 60 pixels. Then the intersection for these two images was calculated in the

third binary image. The areas in the third binary image bigger than 600 pixels were

identified as fruit. Here, ‘‘600’’ was a parameter determined based on trial and error from

the training set images.

Further false positive removal and determination of the final number of fruit

Since there were still some false positives occurring in the result after step 4, some texture

features were utilized for further false positive removal. Two texture features, smoothness

(S) and entropy (E), were calculated for each patch corresponding to the N4 centroids

obtained from step 4. Smoothness was chosen because most of the fruits had smoother

surface than leaves and other background. And entropy was chosen based on a preliminary

test, which indicated the patches on the fruits had lower entropy value compared with other

patches with multiple leaves or twigs in them. The features were extracted from normal-

ized histogram of the matrix for each patch in image_grey, which were calculated through

Eqs. 8 and 9 (Pourreza et al. 2012), respectively.

S ¼ 1� 1

1þ r2
ð8Þ

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i i� l2pðiÞ
p

, and l =
P

ip(i).

E ¼ �
X

i
pðiÞlogfpðiÞg ð9Þ

where p is the number of normalized pixel belonging to 256 bins, which were corre-

sponding to the [0,255] grey scales of an image.

Results

To demonstrate how the proposed method worked, the intermediate results for the example

image (Fig. 1) were displayed in the following subsections. This example image was

randomly chosen from the 59 validation images.
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Normalized chromaticity coordinates

Figure 5 shows the results after transforming the example image in Fig. 1 to normalized

chromaticity coordinates. Figure 5a shows the RGB image in normalized chromaticity

coordinates. R, B, and H components were proved to be most efficient from the preliminary

analysis by FFSA. Figure 5b shows an RBH composite image in normalized chromaticity

coordinates. In the RBH composite image, B was used instead of G, and H was used

instead of B component as in an RGB image. Comparing with Fig. 1, Fig. 5a shows

enhanced contrast between the fruit and background. Comparing with Fig. 5a, Fig. 5b

shows more enhanced colour difference between fruit and leaves.

Potential fruit position detection using FNCC

The intermediate results from potential fruit position detection using FNCC is shown in

Fig. 6. After calculating the normalized cross correlation between the template and im-

age_grey from Fig. 1, the pixels with a value higher than 0.7 is shown in Fig. 6b. Although

potential fruit areas were detected, there were also many other background pixels detected,

because of the similarity between fruits and leaves. The green circles in Fig. 6c, d show

FNCC results, which indicate potential fruit positions. The green circles in Fig. 6d indi-

cates the potential fruit positions after removing areas smaller than 40 pixels. To remove

those false positives, colour, shape and texture features were employed in the following

steps.

Colour analysis

Figure 7 shows the histograms of the prebuilt data library for the chosen colour compo-

nents, R, B and H, as explained in ‘‘Filter out false positives through colour analysis’’

section. In Fig. 7a, fruit and leaves are partially overlapped after 70, but most leaves show

lower R values, which indicates R component can help with the separation of fruit and

leaves. However, the histogram of background is very close to fruit, which indicates R

alone is not very useful for separation of fruit and background. Figure 7b shows that fruit

and background have only a small part overlapped in B histogram, which indicates that it

Fig. 5 Results after transforming the example image to normalized chromaticity coordinates: a RGB image
in normalized chromaticity coordinates; b RBH composite image in normalized chromaticity coordinates
(Color figure online)
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will help with the separation of fruit and background. Figure 8c indicates H value can be

very helpful in both fruit-background separation and fruit-leaf separation. Overall Fig. 7

shows that colour could be a very useful feature for false positive removal after obtaining

FNCC results.

A KNN classifier was used to identify the number of fruit pixels through the prebuilt

fruit-background training dataset for each 30 9 30 pixel patch corresponding to the cen-

troids in Fig. 6d. The patches with more than 450 pixels were classified as fruit. The result

after false positive removal is shown in Fig. 8, in which the green circles indicate the

patches being identified as fruit class. Four false positives needed to be removed further.

Therefore, the shape information was utilized in the following section.

Results from CHT

Figure 9 shows intermediate results from CHT based circle detection procedure. Figure 9a

shows the grey image after background removal based on the histograms shown in Fig. 7.

Pixels with R value lower than 70 and with H value lower than 40 or higher than 70, were

removed. Morphological opening and closing operations were applied to the background

removed image, resulted in Fig. 9a. Figure 9b shows the image after ‘canny’ edge

(a) (b)

(c) (d)

Fig. 6 An example of FNCC fruit potential position detection: a original image; b FNCC result; c green
circles indicate the potential fruit positions after removing small areas; d FNCC result shown on the RGB
image (Color figure online)
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Fig. 7 Histograms of R, B, and
H colour components of different
objects in the training dataset:
a histogram of R component;
b histogram of B component;
c histogram of H component
(Color figure online)
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detection of Fig. 9a. Figure 9c shows the circles detected by CHT, and Fig. 9d shows

Hough circles overlapped on the original colour image. These results could also help with

identifying the fruit size. However, since the focus of this study was to detect the number

of fruits rather than estimation of the fruit size, it was not pursued further.

Fig. 8 An example showing
results after filtering out false
positives through colour analysis
(Color figure online)

(a) (b)

(c) (d)

Fig. 9 Results from CHT: a grey image after background removal; b edge image of (a); c Hough circles on
edge image; d Hough circles on original image (Color figure online)
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Merging multiple detections and counting final number of fruit

After obtaining the detection results from steps 2 and 3, the next step was to decide how

many fruit there were indeed in the image. The colour, shape and also the template features

were considered for this step. Firstly a pixel disk with a radius of 60 was generated and

centred at each centroid obtained from steps 2 and 3, which are shown in Fig. 10a, b. Then

the intersection of Fig. 10a, b were calculated, as shown in Fig. 10c. The blue circles on

the original RGB image in Fig. 10d indicate the merging result. After this step, the

smoothness and entropy feature of these patches were analysed. These two features worked

because the fruit patch had smoother surface, and lower entropy, in comparison to other

patches with leaves and other background in them. The red circles in Fig. 10d shows the

final fruit identification result with the help of texture feature after removing false posi-

tives. The fruits in the image were correctly identified.

To illustrate the performance of the proposed FNCC based green citrus detection

method, Fig. 11 shows the detection results on four more example images in different

imaging conditions, such as under shadow or under sunshine. The blue circles indicate

results of merging multiple detections, and red circles indicate final detection results after

false positive removal based on textures. These figures show successful fruit detections on

(a) (b)

(c) (d)

Fig. 10 Merging procedure for multiple detections and false positive removal using texture features:
a disks centred at N2 centroids from step 2; b disks centred at N3 centroids from step 3; c intersection of
(a) and (b); d final result: blue colour indicates results of merging multiple detections, and red indicates final
detection results after false positive removal using texture (Color figure online)
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different situations: fruits of different colours and sizes (Fig. 11a), fruits in shadow and

with highly saturated regions (Fig. 11b), and fruits with less than a half occluded

(Fig. 11c). However, those fruits with more than a half of their edges missing or occluded

with branch in the middle were hard to detect. This problem will be further studied in the

future. Figure 11d shows that the fruits with brighter illumination were also correctly

detected, even though the colour of the leaves and fruits were very similar and the fruits

were overlapped. Through these examples, the potential of the proposed method for

immature green citrus detection could be observed. It was proved that it could correctly

detect fruits in different natural outdoor conditions as long as the fruits were occluded less

than a half. However, for those fruits occluded more than a half, further study will be

needed to detect them successfully. In contrast, Fig. 12 shows the detection results on two

more example images with false fruit detection and missed fruit detection. The missed fruit

detection was due to twig occlusion in Fig. 12a, and the colour similarity between the fruit

and leaves in Fig. 12b. There were some other factors such as large differences in illu-

mination conditions or visibility of fruit which could cause false or missed fruit detections

using this method, which were inevitable since it is difficult for one method to resolve all

the factors’ influences on the results. This study focused on the general accuracy while

considering as many factors as possible.

(a) (b)

(c) (d)

Fig. 11 More examples of fruit detection using the proposed FNCC based green citrus detection method:
a fruits of different colour and size; b fruits under shadow, c fruits with partial occlusion; d fruit with
brighter illumination. Blue circles indicate results of merging multiple detections, and red circles indicate
final detection results after false positive removal using textures (Color figure online)
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For all of the 59 images in the validation dataset, the same procedures were applied, and

the detection results are summarized in Table 1. It should be noted here that the fruit

counted were those fruits with more than a half shown in the images. There were 154 fruits

in total in the validation images, and a total of 130 fruits were correctly identified, while 24

fruits were missed, and 25 false positives were introduced. The correct fruit identification

accuracy was 84.4 %.

Discussions

Compared with those studies on mature fruit detection using RGB images or immature

green fruit detection using multispectral or hyperspectral images, this study is much more

challenging. The natural outdoor RGB images can be easily affected by the illumination

change. And even with uniform illumination, there are still some big challenges from both

the complicated background and the fruits themselves. On one hand, their colour was

similar with that of green leaves, and on the other hand, the fruits were partially occluded

by leaves, other background or even other fruits. Therefore, all possible information was

needed in order to identify the green fruits correctly from the natural outdoor RGB image.

In this study, three most commonly used features, i.e., colour, shape and texture were

combined.

The goal of this study was to detect as many green fruits as possible in the captured

image. Therefore, the first step should be detecting potential positions for the fruits, which

was a very important step because those fruits lost in the first step would be irremediably

lost. The results of the first step could have direct impact on the output of the subsequent

Fig. 12 More examples showing false and missed fruit detections using the proposed FNCC based method:
a two fruits occluded by twig were missed; b one fruit was missed due to the colour similarity between the
fruit and the leaves. Blue circles indicate results of merging multiple detections, and red circles indicate final
detection results after false positive removal using textures (Color figure online)

Table 1 Fruit detection accuracy for validation dataset

Total fruit count Correct identification False positive Missed

Number of fruit 154 130 25 24

Percentage (%) 100 84.4 16.2 15.6
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procedures. The use of FNCC made this objective possible based on the preliminary tests.

This is because FNCC is a template matching based feature detection method, which

utilized correlation coefficients between the template and the images. Not only the position

information, but also the texture similarity was used in this method, which was exactly

needed in this study.

Although colour information itself could not be used independently to identify the fruit

from the image correctly, it was a good tool to help other method, especially when

combing R, B and H components. After FNCC, false positives were filtered out dramat-

ically with the help of the KNN classifier generated from the R, B, and H components of a

prebuilt fruit-background dataset. What’s more, before applying CHT, histograms of R, B

and H components helped with the background removal. The efficiency and accuracy of

CHT were improved because the edge points of the image reduced dramatically after this

procedure. The texture features used were selected among several others because of the

specialty of the challenges in this study. Smoothness and entropy were used in this study,

because the fruit usually has a smooth surface and lower entropy compared with the

complex background.

Finally, although the way of combining colour, shape and texture features in this study

proved to be unique and efficient, the detection method still needs some improvement. The

improvement could be obtained through improving the image acquisition time and camera

parameters. For example, the illumination effect of the green citrus detection could be

minimized through acquiring images close to sunset, instead of noon time, which will

provide diffusive light conditions to avoid colour saturation (Linker et al. 2012). And

instead of using automatic camera settings, the camera shutter parameter could be man-

ually set to achieve more uniform illumination for the images. It is easier to detect fruit

when they turn a little yellowish instead of dark green, which is helpful for distinguishing

them from leaves. Also, when taking images, a constant distance could be helpful to result

in more uniform fruit size.

Conclusions

FNCC based green citrus detection and counting method was proposed in this research. To

use as much information as possible from the RGB image captured in natural outdoor

conditions, multiple features were combined together in a unique way. The major findings

in this study can be summarized as following:

(1) Normalizing RGB images to chromaticity coordinates is helpful to enhance the

contrast of fruits and background.

(2) FNCC was able to identify as many potential fruit locations as possible in the first

step.

(3) R, B and H colour components analysis helped in both false positive removal after

FNCC and background removal before applying CHT.

(4) CHT utilized the shape information to locate the fruit, and was able to help merge

multiple fruit detections and also further remove false positives.

(5) After merging multiple detections, smoothness and entropy features of the

remaining patches were able to further filter out the false positives effectively.

The fruit detection accuracy of this study was 84.4 %, which indicates the potential of

the proposed algorithm toward the development of an early citrus yield mapping system.
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Both the algorithm and the image acquisition method will be improved and explored in the

future to improve the accuracy and finally achieve the goal of early yield mapping for

citrus growers.
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