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Huanglongbing (HLB) is a devastating citrus disease worldwide, without known cure. Since

this disease shows visible symptoms on newly developed canopies, remote sensing

methods based on spectral principles are considered as an effective tool. To explore a fast

way to monitor HLB in large citrus groves, a satellite multispectral (MS) image with a 2-m

resolution acquired by WorldView-2 was studied to evaluate its capability on HLB detec-

tion. Ground truth was conducted and two spectral libraries were constructed. Library 1

was based on RTK GPS locations, and Library 2 was combined with prior knowledge from

the ground spectral features. To compare with the classification accuracy of previous work

using airborne spectral images, the same classification methods were carried out. In the

satellite MS image, Library 2 had higher average overall accuracy, higher Kappa coefficient,

and higher producer's and user's accuracies than Library 1, indicating Library 2 which

combined with prior knowledge was more effective. Mahalanobis distance had the highest

overall accuracy of 81% and a Kappa coefficient of 0.464 with Library 2. The accuracy

comparison between the satellite MS image and the airborne spectral images showed that

the satellite MS image had the highest average producer's accuracy with Library 2, followed

by the airborne MS image and the satellite MS image with Library 1, indicating that con-

struction of an effective library was the most important step, and that the satellite MS

image with a proper spatial resolution showed good potential to be a better choice than the

airborne spectral image.

© 2015 IAgrE. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Huanglongbing (HLB), which is also known as the citrus

greening or yellow dragon disease, is one of the most serious

citrus diseases in the world. Once a tree is infected, there is no

known cure, and it should be removed and destroyed to

reduce further infection. It has devastatedmillions of hectares

of citrus crops worldwide. HLB was presumed to originate in

Asia in the late 19th century, and then was widely spread to

Africa several decades ago (Batool, Iftikhar, Mughal, Khan, &

Jaskani, 2007). Several years ago, it was also found in two of

the largest citrus growing regions in the world - S~ao Paulo,

Brazil, and Florida, USA (Bov�e, 2006).

Polymerase chain reaction (PCR) method is the most defini-

tive way to confirm HLB disease in leaves, but this molecular

biochemical method is time consuming and costly. Since this

disease exhibits obvious symptoms on new leaves, especially

after the middle infection stage, a visual examination by expe-

rienced workers is commonly used to detect the disease. But

this ground scouting method is time-consuming and labour-

intensive for large groves. In recent years, some ground-based

spectral sensors for other applications have been designed

and reported (Gonzalez-Mora, Vallespi, Dima, & Ehsani, 2010;

Mishra, Karimi, Ehsani, & Albrigo, 2011; Pydipati, 2004; Qin,

Burks, Ritenour, & Bonn, 2009), trying to assist workers to effi-

cientlymanagedifferentdiseases, but they still havemade little

improvement on the speed to cover large groves.

Satellite spectral imagery can easily cover hundreds of

hectares, and their spatial resolution has improved from

dozens of metres decades ago to several metres, or even sub-

metre (Mulla, 2012). It has been widely studied and used for

agricultural applications, such as estimating nitrogen de-

ficiencies in sugar beet (Seelan, Laguette, Casady, & Seielstad,

2003) and maize (Bausch & Khosla, 2010), leaf area for vines

(Johnson, Roczen, Youkhana, Nemani, & Bosch, 2003), and

wheat yield (Doraiswamy, Moulin, Cook, & Stern, 2003; Labus,

Nielsen, Lawrence, Engel, & Long, 2002).

Studies on monitoring plant disease based on satellite

imagery have also been reported. Mirik et al. (2011) used

Landsat 5 Thematic Mapper (TM) images to detect the wheat

streak mosaic disease, and their accuracies were between 89

and 99% when compared to field observations with a

maximum likelihood classifier. Bhattacharya and

Chattopadhyay (2013) combined EO-1 satellite imagery with

surface weather data, and explored an effective way to predict

mustard rot disease in three stages. Apan, Held, Phinn, and

Markley (2004) evaluated classification accuracies of 40 spec-

tral vegetation indices derived from EO-1 Hyperion imagery to

discriminate ‘orange rust’ (Puccinia kuehnii) disease in sugar-

cane, and reported that several newly formulated indices

consisting of visible and near-infrared bands and the

moisture-sensitive band (1660 nm) yielded improved results.

The traditional normalised difference vegetation index

(NDVI) is a well-established mechanism for identifying vege-

tation pixels. It relies on the principle that the chlorophyll in

living plant material strongly absorbs visible light, and

strongly reflects NIR light.

Green normalised difference vegetation index (GNDVI) has

proved more sensitive than NDVI when predicting
chlorophyll-a (Gitelson, Kaufman, & Merzlyak, 1996), and has

beenwidely used tomeasure plant chlorophyll content, tissue

nitrogen (Bell et al., 2004), and biomass (Hunt et al., 2011;

Moges et al., 2005). It has been also adopted to detect dis-

eases in soybean (Vigier, Pattey, & Strachan, 2004) and winter

wheat (Yuan et al., 2013).

Spectral reflectance information intherededgeregioncould

also infer chlorophyll content variations. Horler, Dockray, and

Barber (1983) found that the red edge measurements were

valuable for chlorophyll status and leaf area index assessment,

andwere particularly suitable for early stress detection. Zarco-

Tejada and Miller (1999) conducted a land cover classification

study using red edge spectral information acquired by a

compact airborne spectrographic imager. The producer's and

user's accuracies were about 68.6% and 61.2%, respectively.

Researchers have also shown that a Red to Red-Edge compari-

son (simple ratio index, SRI) is better able to discriminate be-

tween healthy trees and those impacted by disease.

Previous studies (Li et al., 2012; Li, Lee, Wang, Ehsani, &

Yang, 2014) analysed the difference between ground-based

spectra of healthy and HLB infected canopies, and the re-

sults showed obvious differences in the reflectance at visible

andNIR bands, and at REP (red edge position). Several airborne

hyperspectral and multispectral images were also acquired to

detect the HLB more efficiently and yielded detection results

of about 65% with minimum distance method. In order to

further explore a more economic and larger coveragemethod,

satellite spectral imagery with comparable spatial resolution

was considered as an alternative tool. In this research, a

WorldView-2 multispectral image was adopted to evaluate its

potential usage for HLB disease detection, since WorldView-2

provides one of the highest spatial resolutions (1.85 m at

nadir) so far available among all the satellite multispectral

products. Thus, the objectives of this study were to: 1) analyse

the satellite spectral difference between HLB and healthy

canopies; 2) apply supervised classification methods to

explore the possibility for HLB detection; 3) compare detection

accuracy with that from airborne images in a previous study.
2. Materials and methods

2.1. Image acquisition

The experiment area was two orange blocks at the southwest

corner of a commercial citrus grove (Southern Garden),

located in the Hendry County, Florida, USA. This area was

completely planted with the citrus variety Valencia, and was

partly infected by HLB disease. At the time of image acquisi-

tion, oranges with green or yellowish green colour were pre-

sent on the trees. The tree spacing was 3.0e3.7 m in the row,

and the row spacing was 7.0e8.5 m.

The multispectral (MS) and hyperspectral (HS) airborne

images in the previous studies (Li et al., 2012) were acquired by

two prototype systems (developed by Yang, Everitt, Davis, and

Mao (2003) and Yang (2010), as shown in Fig. 1a), at 2:30 p.m.

local time on December 3, 2010. The spatial resolutions were

0.5 m and 1.0 m, respectively.

In order to best match the airborne images, WorldView-2

satellite images with the closest acquisition time and spatial

http://dx.doi.org/10.1016/j.biosystemseng.2015.01.009
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Fig. 1 e Equipment for the satellite and aerial imaging: (a) airborne HS andMS imaging systems (Yang, 2010), (b) WorldView-

2 satellite, and (c) HR-1024 handheld spectrometer along with a white panel for ground spectral measurements.
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resolution were selected for this study. The WorldView-2

(Fig. 1b), which was launched in October 2009, is the first

high-resolution 8-band multispectral commercial satellite,

with an operating altitude of 770 km (Digital Globe, 2013). The

spatial resolution of the satellite panchromatic andMS images

are 0.5 and 2 m, respectively. The WorldView-2 satellite im-

ages which contained a panchromatic and a MS image were

acquired at 11:28 a.m. local time, December 20, 2010. The sun

zenith angle was 41.2�, and azimuth angle was 164.4� (in a

clockwise direction from the north). The satellite zenith and

azimuth angles were 31.8� and 206.3�, respectively, and so the

satellite was looking northeast. The image was taken in an off

nadir angle of 27.9�, and was resampled with nearest neigh-

bour which kept the original information of each pixel. The

satellite images of the study area are shown in Fig. 2. Basic

information of these four images is listed in Table 1.
Fig. 2 e WorldView-2 satellite images of the s
2.2. Ground truth investigation

Two kinds of ground truth investigation were conducted in

the study area in Fig. 2: one was a rough investigation, and the

other was an accurate investigation. In the rough investiga-

tion, all trees were scouted by ground inspection crews, and

suspicious diseased trees with HLB symptoms were marked

out by recording their GPS locations with a positioning accu-

racy of 1e3 m. Some of the scouted-as-diseased/healthy trees

were chosen for accurate investigation, including PCR test,

ground spectral measurement and RTK GPS position

recording (with a static horizontal accuracy of 3 mm by HiPer

XT, Topcon, Livermore, CA, USA). PCR test is a common and

reliable lab method to confirm infection status. The ground

reflectance of the healthy and diseased tree leaves were

measured by a handheld spectrometer (HR-1024, Spectra Vista
tudy area (Southern Garden citrus grove).

http://dx.doi.org/10.1016/j.biosystemseng.2015.01.009
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Corporation, Poughkeepsie, NY, USA, shown in Fig. 1c). During

the reflectance measurement, the instrument was put about

0.2 m above the target leaf, and the lens axis was perpendic-

ular to the leaf surface, with a field of view of 4�. In the ac-

curate investigation, leaf samples were divided into two

classes according to their symptom visibility and their PCR

test results, as shown in Table 3. Leaves in HEA_PCR_N class

had no symptoms and showed negative in PCR test; leaves in

S_PCR_P class had obvious symptoms and PCR positive sign.

Since most of the samples in the accurate investigation were

distributed in the sub-image area in Fig. 2, the subsequent

analysis and classifications were mainly focused in this sub-

image. The sample quantities for each class were also listed

in Table 3. More details about the ground truth investigation

have been described in the previous study (Li et al., 2012).

2.3. Satellite image analysis

SA_MS was used for image classification, because it had

original digital numbers (DN). The satellite MS image analysis

was mainly carried out with ENVI software (version 4.8, ITT

VSI, White Plains, NY, USA). Figure 3 shows the main pro-

cessing and analysing procedures, including ground truth

investigation, image correction, image spectra analysis and

image classification.

The ground truth contained the ground spectrum and lo-

cations. Image correction included geometric correction,

radiometric correction and spectral correction. Pixel spectral

differences between healthy and HLB samples were analysed

and vegetation indices (VIs) were further calculated and ana-

lysed. Several supervised classificationmethodswere adopted

in image classification.

2.3.1. Satellite image pre-processing
2.3.1.1. Radiometric and geometric correction. The satellite

images were geo-referenced by the image provider to UTM

N17 projection with the datum of WGS-84, the same projec-

tion as that of the airborne images. Sensor corrections, geo-

metric corrections and radiometric corrections were also

conducted by the image provider, with a standard procedure

which applied to every image product. Sensor corrections

included corrections for internal detector geometry, optical

distortion, scan distortion, and line-rate variations. Geometric

corrections removed spacecraft orbit position and altitude

uncertainty, Earth rotation and curvature, and panoramic

distortion. Since the original DN values should not be altered

when doing quantitative classifications, nearest neighbour

was chosen when resampling the image because it ensured

unaltered DN values. Radiometric corrections included rela-

tive radiometric response between detectors, non-responsive

detector fill and conversion for absolute radiometry (Digital

Globe, 2010).

2.3.1.2. Spectral radiance and reflectance conversion. The pixel

data or DN values in the satellite images provided by the

image provider were unique to WorldView-2. In order to

conduct further comparisonwith imagery from other sensors,

and calculate proper VIs, Top-of-atmosphere spectral radi-

ance and reflectance should be further converted from the DN

values for the satellite images.
Top-of-atmosphere spectral radiance was defined as the

spectral radiance entering the telescope aperture at the

WorldView-2 altitude of 770 km. Equation (1) was used to

convert the DN values in each satellite image band to top-of-

atmosphere spectral radiance (Digital Globe, 2010):

LlPixel; Band
¼ KBand$qPixel; Band

DlBand
(1)

where LlPixel; Band
is image pixels in spectral radiance

(W$m�2$sr�1$mm�1), qPixel, Band is radiometrically corrected

image pixels, or the DN values, KBand and DlBand are the ab-

solute radiometric calibration factor (W$m�2$sr�1$count�1)

and the effective bandwidth (mm) for a given band, respec-

tively; KBand and DlBand are given in the image metadata.

By ignoring atmospheric effects, the surface reflectance

could be calculated from the top-of-atmosphere spectral

radiance with the following equation:

rlPixel; Band
¼ LlPixel; Band

$d2
ES$p

EsunlBand
$cosðqs

� (2)

where rlPixel; Band
is the target diffuse spectral reflectance,

EsunlBand
is the solar spectral irradiance at specific band, qs is

the solar zenith angle, and dES is the Earth-Sun distance.

EsunlBand
was given by Digital Globe, qs could be found in the

satellite imagery metadata and dES could be calculated by the

following equations:

g ¼ 357:529þ 0:98560028*ðJD� 2451545:0Þ (3)

dES ¼ 1:00014� 0:01671 cos gð Þ � 0:00014$cosð2gÞ (4)

where JD is the Julian Day corresponding to the image acqui-

sition time, and g is in degrees.

The corrected spectral signatures for a healthy pixel are

shown in Fig. 4.

2.3.1.3. Ground truth location unification. In this research,

mostof the infected treeswereat theearlyandmiddlestagesof

thedisease, andmost of the infectionareasweremuchsmaller

thana2-m-pixel, andwere randomly scattered. In theaccurate

ground investigation, the RTK receiver was placed at the left

side of the trees (shown as diamonds for HEA_PCR_N and cir-

cles for S_PCR_P in Fig. 5) to record the tree positions rather

than the specific infection canopy. Since the trees were more

than 7 m wide and 4 m tall, forming hedge rows, the exact

infectionareas for each infected tree couldn't bedeterminedby

theseGPS records. So each treewas studied as awhole, and the

tree centres were taken as sampling references. Accordingly,

all the original GPS recordswerehorizontallymoved to the row

centre (shown as crosshairs in Fig. 5).

2.3.1.4. Image background masking. In order to reduce the

background influence from grass, shadow, bare ground, etc.,

an image mask for the tree canopy was built using support

vector machine (SVM) method, the same as used with the

airborne images in the previous study (Li et al., 2012). Since the

satellite images were taken at 11:28 a.m., with the sun's zenith
angle of 41.2�, each tree row had an observable sunlit side

(east side) and a shadowed side (west side), as shown in Fig. 5.

In order to reduce the light influence on classification results,

those two sides were masked out as well.

http://dx.doi.org/10.1016/j.biosystemseng.2015.01.009
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Table 1 e Information for the satellite images and compared airborne images.

Image Description Imaging sensor Acquisition
time

Altitude Spatial
resolution

Spectral resolution

SA_PAN Satellite panchromatic

image

WorldView-2 11:28 a.m.,

Dec. 20, 2010

770 km

at nadir

0.5 m One panchromatic band from 450 to

800 nm with centre wavelength of 625 nm

SA_MS Satellite multispectral

image

2.0 m Eight bands (Table 2)

AB_MS Airborne multispectral

image

Experimental

imaging system

developed by

Yang et al. (2003)

and Yang (2010)

2:39 p.m.,

Dec.3, 2010

1220 m 0.5 m Four bands at 450, 550, 650, and 830 nm,

with the bandwidth of 40 nm

AB_HS Airborne hyperspectral

image

2:30 p.m.,

Dec.3, 2010

910 m 1.0 m 128 bands from 457.2 to 921.7 nm with

an interval of 3.6 nm
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2.3.2. Spectral feature analysis
2.3.2.1. Library constructions. For image classification, espe-

cially with supervised classification methods, the method to

construct an effective library was vital. Due to the relatively

low image spatial resolution, two different procedures were

carried out to build different spectral libraries for both healthy

and HLB classes.

When building Library 1, the right half of the sub-image

(the right side of the ditch) was used as the training area,

and the left half as the testing area. All the samples in the

training area were considered as training samples. Only the

centre pixel of each training sample in HEA_PCR_N and

S_PCR_P classes was collected into the healthy and HLB

libraries.

Since the GPS positions only pointed at the tree centres

instead of the specific infected canopies, another procedure

was implemented to build Library 2. Library 2 was based upon

the ground reflectance features between the healthy and HLB

class found in the previous study (Li et al., 2012), i.e., the

healthy class had lower reflectance in the visible bands, and

higher reflectance in the NIR bands. In Library 2, we first

expanded the Healthy and HLB sample sets by including

neighbouring pixels which had great possibility to be the

healthy or HLB pixels, then we used prior knowledge to select

pixels with typical features to form the training set for each

class. The other samples were left as testing samples. In this

procedure, since most of the trees had at least four pixels in

the MS image, four neighbouring pixels for each sample (with

an area of 4 � 4 m) in S_PCR_P and HEA_PCR_N were collected

to form two datasets. Their reflectance in green and NIR1

wavebands were then exported to the n-D Visualizer, as

shown in Fig. 6. According to the ground reflectance features
Table 2 e Band information of the WorldView-2 satellite
MS image.

Band
name

Centre
wavelength

(nm)

Minimum lower
band edge (nm)

Maximum
upper band
edge (nm)

MS1 (Coastal) 425 400 450

MS2 (Blue) 480 450 510

MS3 (Green) 545 510 580

MS4 (Yellow) 605 585 625

MS5 (Red) 660 630 690

MS6 (Red Edge) 725 705 745

MS7 (NIR1) 835 770 895

MS8 (NIR2) 950 860 1040
for each class, pixels with higher reflectance in the green band

and lower reflectance in the NIR band were manually picked

out as anHLB library, and the healthy librarywas picked out in

the opposite way.

2.3.2.2. Vegetation indices calculation. Since WorldView-2 has

two NIR bands, one red-edge band, and five common visible

bands, three types of widely used VIs were adopted in this

research: NDVI, SRI, and GNDVI. All the VIs were calculated

from the MS reflectance image. According to the different

bands used in those VIs, a total of nine VIs were calculated, as

shown in Table 4.

2.3.3. Image classification methods
Classification methods are commonly applied to the first

several principal component images which are derived from

the original image, especially for hyperspectral images that

have a large numbers of spectral bands. But since the principal

component conversion is only based on the statistical signif-

icance of the spectra, some small objects with unique spectra

might manifest in the last several principal component im-

ages, whichwould probably be discarded, causing unexpected

loss of valuable information (Dhodhi, Saghri, Ahmad, & Ul-

mustafa, 1999). Thus, in this research, since the MS image

has only 8 bands in total, all of them were directly used in the

image classification process to keep the maximum amount of

useful information.

In order to compare the classification accuracy with the

airborne images, the same supervised classification methods

and spectral mapping methods were used, including paral-

lelepiped,minimumdistance (MinDist), Mahalanobis distance

(MahaDist), spectral angle mapper (SAM), spectral informa-

tion divergence (SID), mixture tuned matched filtering

(MTMF). More detailed description of these methods has been

given in the previous study (Li et al., 2012). For each method,

the error matrix was used to calculate the user's and pro-

ducer's accuracies, the overall accuracy, and Kappa

coefficient.
3. Results and discussion

3.1. Library spectral signature comparison

The mean spectra for each class in Library 1 and 2 are shown

in Fig. 7, the numbers in parentheses are the sample quanti-

ties. Means test was also applied between healthy and HLB

http://dx.doi.org/10.1016/j.biosystemseng.2015.01.009
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Table 3eClassification information for different samples. In the class column, “HEA” stands for “healthy”, “PCR” stands for
“polymerase chain reaction”, “P” stands for “positive”, and “N” stands for “negative”.

Class Sample numbers in sub-image Sample source Symptom PCR test result

HEA_PCR_N 18 Healthy tree Asymptomatic Negative

S_PCR_P 71 HLB infected tree Symptomatic Positive

Fig. 3 e Block diagram of satellite imagery analysis

procedure.
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class to examine whether there were significant differences

(shown in Table 5). For Library 1, the reflectance of the HLB

library showed little difference from that of the healthy library

in the visible range, but was somewhat lower in the NIR range.

The means test for Library 1 showed no significant difference

for any band between the two classes (p-value� 0.05). Usually,

less significant difference in the library indicates more diffi-

culty and less accuracy in the subsequent classification.

The similar features in Library 1 were mainly caused by:

(1) Most of the HLB infection areas were smaller than one

pixel in the early and middle infection stages, the

spectral features of diseased canopies could be diluted

by nearby healthy canopy in the same pixel, thus

causing similar neutral spectral features;

(2) The HLB pixels in Library 1 which were simply collected

from tree centres might not contain infected canopies;

this further made the differences in Library 1 much

narrower.

(3) At the time of the experiment, the trees had some

yellow-green citrus fruit on them, and the fruit could
Fig. 4 e Different types of spectral signatures for a healthy pixel:

atmosphere reflectance.
also influence the canopy spectrum and dilute the

healthy and diseased spectral features.

In Fig. 7b, the two classes in Library 2 showedmuch greater

differences in the visible and NIR range. The means test also

showed significant differences at each band except for Band 4

(B4) and Band 6 (B6), and the spectral features were identical

with the ground truth.

3.2. Vegetation indices comparison

Means tests were also conducted to compare the differences

for vegetation indices between healthy and HLB classes

(Tables 6 and 7). The results showed that, for all the VIs, the

healthy class had higher average values and lower sample

variances than the HLB class for both libraries, but Library 1

had much narrower differences between each class. A t-test

was also conducted for each VI to further explore the signifi-

cance of differences. It showed that, in Library 1, NDVI1,

NDVI2, NDVI_RE, SRI2 and GNDVI2 have significant difference

at a significance level of 0.01; in Library 2, all the indices

showed significant differences.

3.3. Image classification result

TheMinDistmethodwas recommended in the previous study,

and in this study, its classification result for the satellite image

is given in Fig. 8 as an example. Because the rough ground

truth had too much positioning error, and its infection status

was not confirmed by PCR test either, only accurate ground

truth was used as the referenced true value. In the accurate

ground truth, only S_PCR_P class, which had obvious symp-

toms, was used as the true values for HLB infected trees, and

HEA_PCR_N class was used for healthy trees to count the

classification accuracy. Samples which were used to build the

libraries were considered as the training samples, and the rest

were the testing samples. When counting the accuracy, a

whole tree was considered as the smallest unit, i.e., if one

pixel from four close pixels (which was considered as a tree)
(a) DN Value, (b) top-of-atmosphere radiance, and (c) top-of-

http://dx.doi.org/10.1016/j.biosystemseng.2015.01.009
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Fig. 5 e GPS records correction. Diamonds and circles

represent the original GPS locations of HEA_PCR_N and

S_PCR_P respectively, crosshairs represent the corrected

GPS locations; green represents HEA_PCR_N, and white

represents S_PCR_P.

Table 4 e Vegetation indices and their calculation
formulae.

VI Calculation formulae

NDVI NDVI1 NDVI2 NDVI_RE
NIR1�Red
NIR1þRed

NIR2�Red
NIR2þRed

RedEdge�Red
RedEdgeþRed

SRI SRI1 SRI2 SRI_RE
NIR1
Red

NIR2
Red

RedEdge
Red

GNDVI GNDVI1 GNDVI2 GNDVI_RE
NIR1�Green
NIR1þGreen

NIR2�Green
NIR2þGreen

RedEdge�Green
RedEdgeþGreen
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was classified as HLB infected, the whole tree was classified as

HLB infected. This assumption indicated that a tolerance of

one pixel was allowed between ground truth location and

classified result.

The producer's and user's accuracies for both HEA_PCR_N

and S_PCR_P classes in the testing set are listed in Table 8. The

overall accuracy and Kappa coefficient were also calculated

and listed in Table 9. Several points were found in the results:

(1) The average producer's accuracies for S_PCR_P and

HEA_PCR_N were 63% and 70% with Library 1, 64% and

76% with Library 2, respectively. The average user's ac-

curacies for those two classes were 35% and 88% with

Library 1, 41% and 89% with Library 2, respectively. The

overall accuracies ranged from 65%e73%with Library 1,

and 65%e81% with Library 2. The Kappa coefficients

were mostly less than 0.3 with Library 1, but half of

them were higher than 0.35 with Library 2. For each

indicator, Library 2 had higher accuracy than Library 1,

indicating a better performance. This also showed that
Fig. 6 e Library 2 construction in the n-D Visualizer: ‘△’

and ‘B’represent the universal datasets for healthy and

HLB class); ‘£’ and ‘þ’ represent the healthy and HLB

libraries selected according to the ground spectral features.
the library building procedure combined with prior

knowledge was more effective.

(2) The accuracies in HEA_PCR_N were lower than in

S_PCR_P, especially for the user's accuracy. This was

mainly caused by the unbalanced sample populations

between those two classes.

(3) Among the six classification methods, MahaDist had

the highest overall accuracy of 81% and Kappa coeffi-

cient of 0.464 with Library 2, and this was in accordance

with the conclusion of the previous study on the

airborne spectral images (Li et al., 2012).

(4) Although Library 1 had an overall accuracy of 69%,

which showed moderate performance, its average

Kappa coefficient was only 0.257, indicating poor

accordance with the ground truth, so it was not rec-

ommended in this classification.

(5) The classification methods based on different vegeta-

tion indices had no obvious advantages over those

based on the reflectance bands.
3.4. Detection accuracy comparison

Since the same ground truth and classification methods were

used in the previous study on airborne images (Li et al., 2012),

the detection accuracy (here referring to the producer's ac-

curacy of HLB) in each image was compared and the result is

shown in Fig. 9. The average producer's accuracy for each

image is also present as horizontal lines in the plot. The

airborne image used only one kind of library which was con-

structed from the tree centre pixels, like Library 1. From the

plot, we had those following conclusions:

1) The satellite MS image with Library 2 had the highest

average accuracy of 76%, this mainly benefited from its li-

brary construction method which used prior knowledge.

2) The satellite MS image with Library 1 had an average ac-

curacy of 70%, very close to that of the airborne MS image

which was 71%. Those two images were both applied with

the same kind of libraries, so the result indicated that their

difference on spatial resolution had very limited influence

on the classification results in this case.

3) The airborne HS image had the lowest accuracy (62%)

among all images, and this probably resulted from the

obvious distortion existed in the immature geometry

correction.

4) Not only did the satellite MS image have the highest

average accuracy using Library 2, but also it had greater

similarity of results among all the methods compared to

http://dx.doi.org/10.1016/j.biosystemseng.2015.01.009
http://dx.doi.org/10.1016/j.biosystemseng.2015.01.009


Fig. 7 e Mean spectral reflectance for each class in two libraries: (a) in Library 1; (b) in Library 2.
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the airborne image, indicating that the satellite remote

sensing with proper spatial resolution wasmore stable and

capable of detecting HLB trees as an alternative to the

airborne remote sensing method.
4. Conclusions

A satellite MS image with a 2-m spatial resolution was ac-

quired by WorldView-2 to study its capability for monitoring
Table 5 e The p-value of the means test between healthy (HEA)
significant difference between the healthy and HLB classes at

p-Value B1 (425 nm) B2 (480 nm) B3 (545 nm) B4 (605 nm

Library 1 0.625 0.094 0.165 0.873

Library 2 0.008* 0.000* 0.000* 0.145

Table 6 eMeans test for Library 1. The HLB class has 39 pixels,
there is a significant difference between the healthy and HLB c

Library 1 Class NDVI1 NDVI2 NDVI_RE SRI

Mean HLB 0.564 0.516 0.397 3.71

HEA 0.587 0.55 0.424 3.90

Std. deviation HLB 0.076 0.091 0.093 0.76

HEA 0.048 0.061 0.072 0.57

p-Value 0.022* 0.006* 0.042* 0.08

Table 7 e Means test for Library 2. The HLB class has 55 pixels
pixels (from 9 sample trees). “*” indicates that there is a signifi
significance level of 0.01.

Library 2 Class NDVI1 NDVI2 NDVI_RE SRI

Mean HLB 0.501 0.439 0.320 3.048

HEA 0.627 0.576 0.449 4.414

Std. deviation HLB 0.048 0.074 0.075 0.396

HEA 0.036 0.070 0.071 0.554

p-Value 0.000* 0.000* 0.000* 0.000
HLB disease in a citrus grove. In order to compare with the

classification accuracies based on an airborne spectral image

in a previous study (Li et al., 2012), the same supervised

methods were conducted on both the spectral reflectance

image and vegetation index image.

Two different libraries were constructed to explore po-

tential higher accuracy. In Library 1, whichwas constructed by

collecting the centre pixel of every training sample, the HLB

and healthy classes showed little difference on mean spectral

signatures. In Library 2, which was combined with prior
and HLB classes in each library. “*” indicates that there is a
a significance level of 0.01.

) B5 (660 nm) B6 (725 nm) B7 (835 nm) B8 (950 nm)

0.313 0.443 0.670 0.268

0.000* 0.247 0.000* 0.002*

and the healthy (HEA) class has 14 pixels. “*” indicates that
lasses at a significance level of 0.01.

1 SRI2 SRI_RE GNDVI1 GNDVI2 GNDVI_RE

7 3.264 2.39 0.395 0.336 0.195

4 3.519 2.523 0.412 0.366 0.215

8 0.743 0.493 0.063 0.083 0.081

3 0.593 0.409 0.052 0.068 0.076

6 0.020* 0.074 0.083 0.023* 0.131

(from 28 sample trees), and the healthy (HEA) class has 27
cant difference between the healthy and HLB classes at a

1 SRI2 SRI_RE GNDVI1 GNDVI2 GNDVI_RE

2.628 1.977 0.390 0.322 0.192

3.824 2.683 0.464 0.401 0.244

0.460 0.336 0.031 0.062 0.057

0.749 0.452 0.025 0.065 0.061

* 0.000* 0.000* 0.000* 0.000* 0.000*

http://dx.doi.org/10.1016/j.biosystemseng.2015.01.009
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Fig. 8 e Classification results by MinDist method: (a) classified with Library 1, and (b) classified with Library 2. “þ” and “B”

represent healthy samples in the training and testing sets, respectively; “£” and “D” represent HLB infected samples in the

training and testing sets, respectively.
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knowledge from the ground spectral features, the spectral

difference between the HLB and healthy classeswas obviously

wider.

In the classification result, Library 2 had an average overall

accuracy of 74%, and Kappa coefficient of 0.333. For each in-

dicator (also including the producer's and user's accuracy),

Library 2 had higher accuracy than Library 1, indicating a

better performance. This also showed that the library building
Table 8 e The producer's and user's accuracies for each metho
ground truth populations were 36 for Library 1, and 52 for Libr
represented MinDist method carried out on the NDVI1 band, a
VIs_MinDist was MinDist method carried out on an image com

Library Classification method Produc

HEA_PCR_N

Library 1 Parallelepiped 72%

MinDist 56%

MahaDist 72%

SAM 56%

SID 56%

MTMF 61%

NDVI1_MinDist 61%

GNDVI1_MinDist 67%

SRI1_MinDist 67%

VIs_MinDist 67%

Average accuracy 63%

Library 2 Parallelepiped 61%

MinDist 67%

MahaDist 67%

SAM 67%

SID 61%

MTMF 61%

NDVI1_MinDist 56%

GNDVI1_MinDist 67%

SRI1_MinDist 61%

VIs_MinDist 72%

Average accuracy 64%
procedure combined with prior knowledge was more effec-

tive. Among the six classification methods, Mahalanobis dis-

tance had the highest overall accuracy of 81% and Kappa

coefficient of 0.464 with Library 2, and this was accordance

with the conclusion of the previous study on airborne spectral

images (Li et al., 2012). Library 1, which had very low Kappa

coefficient, indicated poor accordance with the ground truth,

and was not recommended for classification. The
d with different libraries in the testing sets. The testing
ary 2. In the classification method column, NDVI1_MinDist
nd similar for GNDVI1_MinDist and SRI1_MinDist.
posed from all VI bands.

er's accuracy User's accuracy

S_PCR_P HEA_PCR_N S_PCR_P

63% 33% 90%

76% 37% 87%

69% 37% 91%

72% 33% 86%

68% 30% 86%

72% 35% 88%

69% 33% 88%

68% 34% 89%

70% 36% 89%

75% 40% 90%

70% 35% 88%

79% 42% 89%

80% 46% 90%

85% 52% 91%

77% 43% 90%

82% 46% 89%

66% 31% 87%

77% 38% 87%

79% 44% 90%

69% 33% 88%

66% 35% 90%

76% 41% 89%

http://dx.doi.org/10.1016/j.biosystemseng.2015.01.009
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Table 9 e The overall accuracy and Kappa coefficient for each method with two libraries.

Method Library 1 Library 2

Overall accuracy Kappa coefficient Overall accuracy Kappa coefficient

Parallelepiped 65% 0.248 75% 0.343

MinDist 72% 0.266 78% 0.403

MahaDist 70% 0.305 81% 0.464

SAM 69% 0.219 75% 0.366

SID 65% 0.177 78% 0.381

MTMF 70% 0.259 65% 0.202

NDVI1_MinDist 67% 0.230 73% 0.283

GNDVI1_MinDist 67% 0.253 76% 0.384

SRI1_MinDist 70% 0.283 67% 0.230

VIs_MinDist 73% 0.331 67% 0.276

Average 69% 0.257 74% 0.333
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classification methods based on different vegetation indices

had no obvious advantages over those based on the reflec-

tance bands.

The accuracy comparison between the satellite MS image

and the airborne spectral images in the previous study

showed that the satellite MS image with Library 2 had the

highest average producer's accuracy of 76%, followed by the

airborne MS image and the satellite MS image with Library 1,

the last was the airborne HS. This order reflected the impor-

tance of the following factors for HLB remote sensing with

similar spatial resolution: library > geometric correction

(which directly influenced the library accuracy) > spectral

resolution. The smaller variation in accuracies between

different methods in the satellite image also indicated a more

stable performance than the airborne images. All the results

indicated that satellite MS images with proper spatial reso-

lution have good potential to be an alternative choice to

airborne spectral images to monitor HLB infected trees.
Fig. 9 e Comparison of the producer's accuracy of HLB for

each method in different images, where AB_HS means

airborne hyperspectral image, AB_MS means airborne

multispectral image, SA_MS_Lib1 represents satellite

multispectral image with Library 1, and SA_MS_Lib2

represents satellite multispectral image with Library 2.
Further study with more comprehensive investigation of

ground truth is suggested, such as: (1) specific infected canopy

areas should be identified; (2) infection levels (including

infection size, infection degree, etc.) of each tree should also

be taken into account; (3) the infection status of every tree in

the research area should be confirmed by PCR test.
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