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Many sensing systems have been developed for use in precision agriculture in Florida over the past dec-
ade. These systems have been designed for specialty crops such as citrus and blueberry. Systems include
those for fruit recognition for yield mapping as well as those for disease detection systems using ground-
and aerial-based platforms. Other systems discussed are used in soil phosphorus detection using near-
infrared (NIR) and Raman spectroscopy, debris detection generated from citrus mechanical harvesting,
detection of citrus fruit dropped on the ground due to disease, citrus leaf nitrogen detection, silage yield
mapping, soil nutrients and grain insect detection using NIR spectroscopy. A summary of past efforts is
presented in this paper, applications of these different sensing systems are discussed, and future direc-
tions are described.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

Precision technologies have been developed mostly for tradi-
tional crops since the advent of precision agriculture in the early
1990s. The concept of precision agriculture involves the assess-
ment of in-field spatial variability of different factors such as fertil-
ity, soil type and characteristics, and water content in a field and
the subsequent management of each crop production input in a
more precise and site-specific manner according to the variability.
However, in Florida, specialty crops such as citrus and blueberry
are mainly grown, rather than traditional row crops, and therefore,
alternative technologies are needed in order for precision agricul-
ture to be applied. Over the past decade, much effort has been
made to develop sensing technologies for site-specific crop man-
agement in Florida, and they were evaluated in actual crop produc-
tion so that growers can increase yield and profit and maintain the
quality of the environment to assure sustainability.

The United States is the second largest citrus producer in the
world. Sixty-five percent of its citrus industry is in Florida, which
corresponds to more than 450,000 acres of citrus groves. The Flor-
ida citrus industry has an estimated economic impact of $8.9 billion
(Hodges and Spreen, 2012). In recent years, citrus production has
been seriously affected by the emergence of exotic diseases such
as citrus greening or Huanglongbing (HLB), citrus canker, and citrus
black spot. Citrus production costs have increased from $800 per
acre in 2004 to $1800 per acre in 2012. This $1000 increase in pro-
duction cost in less than ten years is mainly due to additional costs
of managing HLB disease. It has been estimated that citrus greening
alone has cost about $3.63 billion in lost revenues. With globaliza-
tion and expansion in the trade of agricultural commodities, this
disease is feared to quickly spread from one area to another. Disease
management is quickly become one of the most serious challenges
in agriculture. In managing plant disease, detection is one of the
most important steps. Detecting disease at an early stage, especially
at the asymptomatic stage, could be the most cost-effective method
of disease control. Currently, human scouting is most commonly
used technique for disease detection in the majority of crops. How-
ever, human scouting is costly, time-consuming, and limited to
human senses for the detection of disease. In recent years, progress
in the area of low-cost, low-altitude satellites and unmanned aerial
systems have provided an opportunity for continuous monitoring
of plants. Such a crop monitoring system consists of a sensor system
and a platform that carries the sensor. As shown in Fig. 1, the sensor
could be hand-held, ground vehicle-based, or aerial-based. Changes
in the spectral characteristics of the plant canopy in the visible,
near-infrared (NIR), and mid-infrared (MIR) parts of electromag-
netic spectrum are the basis for most commonly used sensors in
detecting plant disease and stresses.

The objectives of this study are (1) to provide an overview of
sensing systems for precision agriculture developed in Florida,
which are different than those developed for traditional grain
crops, and (2) to discuss and present future directions.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.compag.2014.11.005&domain=pdf
http://dx.doi.org/10.1016/j.compag.2014.11.005
mailto:wslee@ufl.edu
mailto:ehsani@ufl.edu
http://dx.doi.org/10.1016/j.compag.2014.11.005
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2. Various sensing systems for fruit and tree crops

2.1. Fruit recognition

This section presents different sensing systems developed
for identifying fruit and tree crops which are used in the
development of fruit yield mapping systems. The yield mapping
systems are considered as a first step in implementing precision
agriculture.
Fig. 2. Reflectance spectra of immature green citrus and leaves (adapted from
Annamalai and Lee (2004)).
2.1.1. Citrus yield mapping by detecting immature green and mature
citrus

Various methods were developed to detect immature green and
mature citrus fruit for the purpose of yield mapping. In the early
2000s, Annamalai and Lee (2003) developed an image processing
algorithm to detect citrus fruit in an image using hue and satura-
tion thresholds of citrus fruit, leaves, and background classes. They
reported an R2 of 0.76 between the number of fruit by the machine
vision algorithm and the number by manual counting. The total
processing time for an image was 283 ms with a 750 MHz Pentium
processor excluding image acquisition time. Further, Annamalai
and Lee (2004) investigated spectral signatures of immature green
citrus fruit and leaves for the purpose of developing spectral-based
fruit identification and an early yield mapping system. Diffuse
reflectance of fruit and leaf samples were measured in the range
of 400–2500 nm, and two important wavelengths, 815 nm and
1190 nm, were identified as shown in Fig. 2. A ratio of these two
wavelengths was used to distinguish immature green fruit from
leaves.

Zaman and Schumann (2005) utilized an ultrasonic system to
measure citrus tree volumes in Florida and compared the results
with manual measurements. They also investigated relationships
between tree volumes measurements and row spacings as well
between tree volumes and tree ages. Their measurements pro-
duced good results with manual measurements (R2 = 0.95–0.99).
They found out that the ultrasonic measurements were more accu-
rate for young trees with narrower row spacing and that more fre-
quent measurements would be needed for groves with wider
spacing and old trees. Further Zaman et al. (2006) extended the
ultrasonic measurement of tree volumes to fruit yield estimation.
Their results from a 17 ha Valencia grove in Florida yielded an
average fruit yield prediction accuracy of 90.6% with a root mean
square error (RMSE) of 4.2 Mg/ha. They reported that the relation-
ship between ultrasonic tree size and fruit yield was significant
with an R2 of 0.80. In another citrus fruit recognition study,
Bulanon et al. (2009) implemented image fusion of a visible image
and a thermal infrared image to increase fruit identification. They
performed image registration, Laplacian pyramid transform, and
Fig. 1. Types of sensor on a crop monitoring system: (a) han
fuzzy logic to detect fruit and reported that fuzzy logic was better
for identifying fruit due to its robust inference engine.

Employing an outdoor hyperspectral imaging system, Okamoto
and Lee (2009) developed algorithms to detect green immature cit-
rus for three different varieties using the range of 369–1042 nm. A
linear discriminant analysis for pixels was used to identify fruit
objects and spatial image processing steps were used to detect
green citrus. They reported detection accuracies of 70–85%
depending on citrus varieties and 80–89% accuracy for the fruit
in the foreground. For a combined set of three varieties, a 75.8%
success rate was reported for the validation set images. Young
leaves were the main obstacle for correction identification since
they were spectrally very similar to green citrus.

Since hyperspectral imaging systems are usually expensive,
attempts were made to utilize a typical consumer-grade digital
camera to detect immature green citrus fruit. Kurtulmus et al.
(2011) developed a machine vision algorithm to distinguish imma-
ture green citrus fruit from other objects in natural outdoor color
digital images using color, circular Gabor texture, and a novel
‘eigenfruit’ method. They reported a correct identification of
75.3% for immature green citrus for a validation set. In Bansal
et al. (2013), a percent leakage of the fast Fourier transform was
used to distinguish fruit from other objects in natural outdoor color
digital images, and 82% of fruit were correctly identified from a set
of 60 validation images. Also, Sengupta and Lee (2014) developed a
method for identifying immature green citrus from digital color
images and reported a detection accuracy of 80.4% in a validation
set. A Hough circle detection and texture classification by a support
vector machine (SVM) were used to find all potential citrus fruit.
d-held, (b) ground vehicle-based, and (c) aerial-based.



Fig. 4. In-field debris cleaning machine for mechanically harvested citrus (adapted
from Shin et al. (2012)).
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Then, false positives were removed using Canny edge detection
and keypoints obtained by a scale invariant feature transform
(SIFT). They reported that varying illumination, partial occlusion
in outdoor images, and detecting immature green citrus in the
presence of green leaves were major problems and that an
additional method would be needed to remove more false
positives.

2.1.2. Determining citrus count and size on a citrus mechanical
harvester and debris cleaning machine

A study was conducted to develop a yield mapping system for a
citrus mechanical harvester. Chinchuluun et al. (2009) developed a
machine-vision based citrus fruit counting system for a continuous
canopy shake and catch harvester. A Bayesian classifier along with
morphological operations and a watershed algorithm was used.
The algorithm was able to identify the mass of citrus fruit success-
fully with an R2 of 0.96 between the actual and estimated fruit
mass when the classifier was evaluated on a test bench. The num-
ber of fruit was also estimated using a Bayesian classifier with an
R2 of 0.89.

Due to infectious citrus diseases such as citrus black spot, grow-
ers are required to dispose of leaves and twigs in the grove before
transporting harvested fruit to juice processing plants or cover
their load with tarp to avoid spread of infected plant materials.
Patil et al. (2009) developed a system for removing debris and
quantifying its mass from a continuous canopy shake and catch
harvester for citrus using a machine vision and a set of pinch roll-
ers. They reported that mass estimation of debris materials yielded
an R2 of 0.84 using pixel areas in the images. They also reported
problems of large twigs stopping rotation of rollers due to being
trapped in between rollers and varying sunlight intensity in
acquiring high quality images. In order to estimate mass of debris
generated from mechanical harvesting, Bansal et al. (2011) devel-
oped a machine vision system using various image processing
steps and a novel ‘‘Parse and Add’’ algorithm. They achieved an
R2 of 0.946 between actual and estimated debris mass and an R2

of 0.815 between the actual and the estimated debris mass with
an RMSE of 1.88 kg. They also generated a map of the debris mass
from a field experiment as shown in Fig. 3. This map could be used
to identify important factors related to debris generation and to
efficiently manage trees to reduce the amount of debris in future
harvesting.

For a debris cleaning system as shown in Fig. 4, Shin et al.
(2012) developed an in-field machine vision system capable of
estimating citrus fruit count, fruit mass, and fruit size. Pixel classi-
fication algorithms using logistic regression were developed and a
highly saturated area recovering (HSAR) algorithm was imple-
Fig. 3. A geo-referenced map of debris mass estimated from images (adapted from
Bansal et al. (2011)).
mented to reduce any incorrect identification of fruit due to the
highly saturated area on fruit surface. They reported a coefficient
of determination of 0.945 between the measured fruit mass and
the estimated fruit mass with a RMSE of 116 kg. A watershed algo-
rithm with an H-minima transform was implemented for a more
accurate fruit count and recognition.

2.1.3. Other fruit detection systems
As a first step toward the development of a blueberry yield

mapping system, Yang et al. (2012) investigated spectral signa-
tures of seven representative southern highbush blueberry varie-
ties for the development of a blueberry yield mapping system.
Reflectance of blueberry fruit samples at different growth stages
(mature, near-mature, near-young, young, and leaf) was measured
in the range of 200–2500 nm, and normalized indices were used to
classify them. Classification tree, principal component analysis and
multinomial logistic regression techniques were used to identify
fruit growth stages, and accuracies of 95–100% were obtained for
fruit and leaf classification. Important wavelengths were identified
for fruit recognition, which can be used for yield mapping using
multispectral imaging. In another study, Kurtulmus et al. (2014)
developed machine vision algorithms for immature peach fruit
detection on trees that can be used to create yield maps and to
adjust management practices to increase yield and profit. Regular
digital color images of peach tree canopies were acquired under
natural illumination conditions and used for fruit identification
using circular Gabor texture, an ‘eigenfruit’ approach, statistical
classifiers, a neural network, and a support vector machine. Correct
detection accuracies of 71–84% were obtained depending on image
scanning methods used.

2.2. Disease detection systems for citrus

This section compares the results and studies of different opti-
cal techniques used in detecting citrus HLB and citrus canker dis-
eases. This section presents the advantages and disadvantages of
different techniques and their applications in disease detection.
Table 1 summarizes various methods for detecting citrus diseases
and stress.

2.2.1. Visible and NIR bands
Visible and NIR bands are ideal for developing sensors for

disease detection because the detectors used in this part of the
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electromagnetic spectrum are relatively inexpensive. The first step
in developing a sensor for detecting a specific disease is to find a
specific spectral signature associated with that particular disease.
This part is usually done with a portable spectrometer, and data
are collected in the 350–2500 nm range.

Sankaran and Ehsani (2013) used a portable spectrometer (SVC
HR-1024) in the 350–2500 nm range for detection and classifica-
tion of citrus greening or HLB and citrus canker from healthy trees.
They used quadratic discriminant analysis and a K-nearest neigh-
bor classifier; both techniques provided a high percent of detection
accuracy. Similar studies were performed with different classifica-
tion techniques by Sankaran and Ehsani (2011), Mishra et al.
(2012), and Sankaran et al. (2013). Sankaran et al. (2012) also used
a hand-held spectrometer to collect data from asymptomatic,
symptomatic, freeze-damaged, and healthy plants. Linear discrim-
inant analysis, quadratic discriminant analysis, Naïve-Bayes, and
bagged decision trees were used as classifiers with 77%, 92%,
Table 1
Various methods for detecting citrus diseases and stress.

Method Fruit disease Category of trees Device

Airborne multispectral HLB HLB1
HLB2
Nutrient deficient
Healthy

SVC HR-

Airborne hyperspectral HLB HLB1
HLB2
Nutrient deficient
Healthy

SVC HR-

Airborne hyperspectral HLB Diseased
Healthy

AISA
EAGLE
VNIR

Visible-NIR HLB and
canker

Diseased
Healthy

SVC HR-

Visible-NIR HLB Diseased
Healthy

ASD

Visible-NIR HLB Diseased
Healthy

MCA, MI

Visible-NIR (using vegetation
indices)

HLB Diseased
Healthy

SVC HR-

MIR HLB & canker Diseased
Healthy

InfraSpe

Fluorescence spectroscopy HLB Diseased
Nutrient deficient
Healthy

Multiple

Active optical sensor HLB Diseased
Healthy

Active o
sensor

Hyperspectral radiometry HLB Diseased
Healthy

SVC HR-

Thermal imaging HLB Water Stress TAU 640

MIR HLB Diseased
Nutrient deficient
Healthy

InfraSpe
84%, and 99% accuracy, respectively. All classifiers were able to dis-
criminate symptomatic-infected leaves from freeze-damaged
leaves, but some asymptomatic leaves were incorrectly detected
as a healthy leaves.

Low-cost, rugged disease specific sensors can be built by using
only a few selected bands rather than collecting the spectral data
in the whole range of visible and NIR bands. Multi-band sensors
are high density illuminators at a specific narrow band for detecting
disease and stress. These bands are either tailored for a specific dis-
ease or they use two bands in the red and NIR range to calculate the
normalized difference vegetation index for general stress detection.
Mishra et al. (2011) used a four-band active optical sensor for
detecting HLB in citrus, two of which were in the visible region
(570 and 670 nm), whereas the other two were in the NIR region
(750 nm and 870 nm). They used the K-nearest neighbor, support
vector machines, and the decision tree as classification techniques
and achieved 96%, 97%, and 95.5% accuracy, respectively.
Range Classifier Accuracy (%)

1024 Blue (430–470 nm)
Green (530–570 nm)
Red (630–670 nm)
NIR (810–850 nm)

SAM
MTMF
LSU

(SAM) 80–
86.6

1024 128 bands (457.2–921.7 nm with 3.63
intervals)

SAM
MTMF
LSU
ESAM

60–66.6
73.3–80
56.6–73.3
86

Blue (450–510 nm)
Green (510–580 nm)
Red (630–690 nm)
NIR (770–895)
Coastal (400–450 nm)
Yellow (585–625 nm)
Red-edge (705–745 nm)
Longer NIR (860–1040 nm)

ESAM 86

1024 350–2500 nm QDA
KNN
SIMCA
LDA

92.5 ± 5.3
89.4 ± 7
91.7
90.3

350–2500 nm KNN
SVM
LR

93.5
97
81

C-005 440–900 nm LDA
QDA
BDT
SVM

81 ± 6
80 ± 6
80 ± 3
87 ± 3

1024 350–2500 nm GDA
SIMCA

80–83
68–84

c VFA-IR 5.15–10.72 lm QDA
KNN

98 ± 0.9
99 ± 0.9

x 3 UV
Blue
Green
Red

NB
BDT

85
>94

ptical Visible (570, 670 nm)
NIR (870, 970 nm)

KNN
SVM
BDT

96
97
95.5

1024 350–2500 nm LR >90

7.5–13.5 lm NB
BDT

80

c VFA-IR 5.15–10.72 lm KNN
QDA

98.8
80
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2.2.2. Mid-infrared bands
MIR refers to the radiation band in the range of 2500–

50,000 nm. MIR spectroscopy usually requires sample preparation
which is a disadvantage compared to NIR spectroscopy. However,
MIR spectroscopy has some advantages over NIR spectroscopy.
One of the major advantages of MIR spectroscopy is that many
chemicals have a fundamental peak or signature in this region
which makes spectral interpretation easy compared to the NIR
region where the spectra is composed of overlapping overtones
of absorption bands of many interfering chemicals. Sankaran and
Ehsani (2013) used a portable MIR spectrometer (InfraSpec VFA-
IR) in the range of 5.15–10.72 lm to detect healthy leaves as well
as those infected with HLB and canker. The leaves were ground
into a fine powder and were placed on the crystal window of a
MIR spectrometer. The scan time was 1 min. Quadratic discrimi-
nant analysis and K-nearest neighbor were used as classifiers,
and resulted in high accuracies of 98 ± 0.9% and 99 ± 0.9%,
respectively.

2.2.3. Fluorescence spectroscopy
Fluorescence spectroscopy is another optical sensing technique

that is widely used for plant stress detection. A hand-held multi-
parameter optical sensor (Multiplex� 3) was used to detect HLB
disease in leaves of two different sweet orange cultivars, Hamlin
and Valencia. This sensor is a non-destructive real-time sensor.
Four excitation wavelengths were used: UV, blue, green, and red.
For each wavelength, yellow, red, and far-red fluorescence was
measured. The classifiers used were Naïve-Bayes and bagged deci-
sion tree with accuracies of 85% and greater than 94%, respectively.
The bagged decision tree classifier had a better performance in
comparison with Naïve-Bayes; however, it needed more time for
the computation process, at least 10 times more than the Naïve-
Bayes (Sankaran and Ehsani, 2012).

2.2.4. HLB detection using polarized light
The HLB-symptomatic citrus leaves exhibit starch accumula-

tion, which in turn resulted in rotating the polarization planar of
light near 600 nm. Pourreza et al. (2014) developed a detection
system for HLB disease using narrow-band imaging and polarized
filters. Four groups of textural features and seven classifiers were
used to detect HLB-symptomatic leaves, and accuracies of 93.1%
and 89.6% were reported for Hamlin and Valencia varieties,
respectively.
2.2.5. HLB detection by airborne hyperspectral and multispectral
imaging

Aerial hyperspectral imaging can rapidly detect potentially dis-
ease-infected trees within a large area and can be very useful for
quickly identifying areas where inspections should be focused,
since ground inspection is time consuming and labor intensive.
Kumar et al. (2012) utilized two sets of aerial hyperspectral and
multispectral images for the HLB detection. An image-derived
spectral library, spectral angle mapping (SAM), mixture tuned
matched filtering (MTMF), and linear spectral unmixing were used.
They obtained a detection accuracy of 87% using multispectral
images and an accuracy of 80% for one of the test sites using hyper-
spectral images. One of the main sources of error was sample coor-
dinates due to possible inaccurate ground truthing. MTMF yielded
a better result than SAM. Different vegetation indices such as
anthocyanin reflectance index (ARI), atmospheric resistant vegeta-
tion index (ARVI), carotenoid reflectance index (CRI), and red edge
normalized difference vegetation index (RENDVI) were used to
remove false positives. Li et al. (2012) also acquired aerial hyper-
spectral and multispectral images to detect HLB disease, analyzed
spectral features of healthy and symptomatic canopies, and
achieved various levels of accuracies (28–90% for hyperspectral
images and 59–95% for multispectral images) using different clas-
sification methods including parallelepiped, minimum distance,
Mahalanobis distance, SAM, spectral information divergence
(SID), spectral feature fitting (SFF), and MTMF. They reported that
a simple red edge position (REP) worked well with a 90% accuracy
to identify HLB-infected canopy from ground measurements;
however, it did not work for the aerial images due to low spatial
resolution. Further, Li et al. (2014) proposed a novel method,
‘extended SAM (ESAM)’, for the purpose of developing a standard
procedure to detect HLB-infected canopies in aerial hyperspectral
images. The ESAM method consisted of noise removal using the
Savitzky-Golay smoothing, background pixel removal using SVM,
pure endmember selection using vertex component analysis
(VCA), detection of infected canopy by SAM, and false positive
removal using REP. When compared with the traditional SAM, they
described that VCA and REP were the main advantages since VCA
could select pure endmembers, and REP could remove false
positives by utilizing the unique vegetation characteristics. The
ESAM method yielded detection accuracies of 64–86% for
HLB-infected trees, while both Mahalanobis distance and K-means
yielded an accuracy of 64% using the same dataset.
2.2.6. Identification of other citrus diseases
Another study was conducted to identify other citrus diseases.

Pydipati et al. (2006) investigated the potential of using the color
co-occurrence method (CCM) to detect normal and diseased
(greasy spot, melanose, and scab) citrus leaves in a laboratory. Dis-
criminant analysis using CCM textural features obtained from hue,
saturation, and intensity (HSI) yielded correct identification of
more than 95% for all diseases. They reported that data models
using hue and saturation features produced higher detection
accuracies when compared with models developed using
intensity, indicating that they can be better used under varying
light conditions.
2.3. Other sensing systems

2.3.1. Soil phosphorus detection using NIR and Raman spectroscopy
In Florida, excess phosphorus (P) entering from agricultural

fields, dairy farming, and beef cattle ranching in Lake Okeechobee
causes many problems such as periodic algal blooms and displace-
ment of native ecosystems. Typically P concentration is measured
from the samples obtained at monitoring stations in the lake
through standard laboratory analysis procedure, which is very time
consuming, costly and labor intensive. Thus, to facilitate the iden-
tification of problem areas (‘‘hot-spots’’) throughout the drainage
basin, various techniques were investigated for cost-effective P
detection which can decrease the time and labor required for
monitoring P-levels in the Lake Okeechobee region. Bogrekci and
Lee (2005a) used ultraviolet (UV), visible, and NIR spectroscopy
in 225–2550 nm to determine soil and grass P concentrations.
Absorbance spectra of dry soil and vegetation are shown in
Fig. 5. Stepwise multiple linear regression (SMLR) and partial least
squares (PLS) analyses were used to develop prediction models.
Strong predictions were obtained for soil P concentrations with
R2 of 0.922, 0.914, and 0.778 for total P, Melich-1 P, and water-
soluble P, respectively, however the models did not work well for
grass P concentrations (R2 = 0.435).

Also Bogrekci and Lee (2005b) studied the effect of soil particle
size on application of the reflectance spectroscopy to determine P
concentrations. Fig. 6 shows absorbance of wet and dry sandy soil
samples with different particle sizes. They reported that coarse soil
particles absorbed more light than medium and fine particles.
Using multiple linear regression and linear partial least squares,



Fig. 7. Average absorbance of four common soil phosphates (adapted from Bogrekci
and Lee (2005d)).
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soil P concentrations were estimated better if soil particle sizes of
unknown samples were identified first.

In order to identify soil spectral signatures for the purpose of
determining their P concentrations, Bogrekci and Lee (2005c) col-
lected a total of 345 soil samples in 10 different locations in the
Lake Okeechobee drainage basin in Florida and measured
reflectance in the UV–VIS–NIR regions. The soil samples in a
calibration set were leached and subtracted from those in the
validation set to obtain only the spectrum of soil constituents.
PLS prediction models yielded R2 values of 0.83 and 0.97 for the
original soil and constituent spectra, respectively. In another study,
Bogrekci and Lee (2005d) identified spectral signatures of four
commonly-found phosphates (CaPO4, AlPO4, FePO4H2O, and
Mg3(PO4)H2O) in the Lake Okeechobee drainage basin in Florida.
Fig. 7 illustrates absorbance spectra of the four soil phosphates in
Florida. Important wavelengths were identified using stepwise dis-
criminant analysis to build prediction models for P concentrations.
They reported that different P compounds could be identified with
1.9% classification error, and P concentrations were able to be
estimated with an R2 of 0.48–0.75 and an RMSE ranging from 27
to 43 mg/kg.

In order to reduce prediction errors obtained from the NIR sys-
tem (Bogrekci and Lee, 2005a), Raman spectroscopy was adopted
to develop a portable field sensor system (Fig. 8), which consisted
of a laser source at 785 nm, a laser probe assembly, a spectrometer,
and a computer (Bogrekci and Lee, 2005e). They used PLS and
SMLR to analyze Raman spectra of soil samples and reported an
R2 of 0.98 and an RMSE of 151 mg/kg using a PLS prediction model
for P concentrations. Further, Bogrekci and Lee (2006) investigated
the effect of soil particle size in Raman spectroscopy to enhance
accuracy of soil P estimation. They found that P concentration
could be estimated better when the sample contains similar parti-
cle sizes, and suggested grinding soil samples to make them uni-
form size before spectral measurement.
Fig. 5. Absorbance spectra of (a) dry soil and (b) dry vegetation samples with high (solid l

Fig. 6. Absorbance spectra of (a) wet sandy soil (8%) and (b) dry sandy soil samples wit
(2005b)).
2.3.2. Detection of citrus dropped on the ground
In recent years, premature citrus fruit drop before harvesting

has become a major problem in Florida. It would be very difficult
to manually count dropped fruit, and an automated system would
be needed. Choi et al. (2013) developed a machine vision system to
estimate the number of fruit prematurely dropped on the ground
before being harvested, mainly due to HLB and unfavorable envi-
ronmental conditions. Along with a DGPS receiver, two rugged out-
door cameras equipped with a microprocessor were installed on
the front of a truck and were used for imaging. They implemented
the Retinex algorithm to enhance the illumination of images, and
different classifiers (logistic regression, KNN and Bayesian) were
used to detect fruit which yielded accuracies of 88%, 84%, and
83%, respectively. A georeferenced fruit drop map was created to
help growers manage the problem more efficiently.
ine) and low (dotted line) P concentrations (adapted from Bogrekci and Lee (2005a)).

h three particle sizes without any P concentration (adapted from Bogrekci and Lee



Fig. 8. A prototype portable Raman P sensor (adapted from (Bogrekci and Lee, 2005e)).

8 W.S. Lee, R. Ehsani / Computers and Electronics in Agriculture 112 (2015) 2–9
2.3.3. Nitrogen detection in citrus leaves and Chinese cabbage
Min and Lee (2005) investigated significant wavelengths for

detection of nitrogen content in citrus leaves using NIR spectros-
copy and multivariate statistical analyses. Fig. 9 illustrates
absorbance spectra of citrus leaves with two different nitrogen con-
centrations. They identified 448, 669, 719, 1377, 1773, and 2231 nm
as important wavelengths using a SMLR and a PLS regression. The
best prediction model by SMLR yielded an R2 of 0.839 with an RMSD
of 0.122% of nitrogen concentration. Further, Min et al. (2006)
extended the investigation to detect the nitrogen (N) content of Chi-
nese cabbage seedlings using VIS–NIR spectroscopy. A wavelength
of 710 nm was identified as the most important wavelength for esti-
mating N content, and some water-related wavelengths of 1467,
1910, and 1938 nm were found to be important in estimating N
content.
Fig. 9. Example of absorbance spectra of citrus leaves with two different amounts
of N content (adapted from Min and Lee (2005)).
2.3.4. Silage yield mapping system
Lee et al. (2005) developed a silage yield mapping system that

consisted of a DGPS receiver, load cells, a header switch, Bluetooth
modules for wireless transmission of moisture data, and a moisture
sensor. The system was tested in commercial silage fields, and
yielded errors in estimating silage mass between �1.95% and
4.9%, compared to mass measured by a platform scale. An example
silage yield map is shown in Fig. 10.
2.3.5. Grain insect detection using NIR
Using NIR spectroscopy, Khedher Agha et al. (2013) developed

prediction models for degrees of insect infestation (DI) in triticale
seeds. Reflectance was measured in the range of 400–2500 nm
for seed samples infested with 11 different DIs of two life cycle
stages of the insect (larvae 2nd instar and adult outside seed). Pre-
diction modes developed by SMLR yielded an R2 of 0.87 for both
the larvae and insect outside stages. They reported that prediction
of the early growth stage was more difficult than the adult stage
since the insect size at the instar stage was smaller.
Fig. 10. Sorghum silage yield map (adapted from Lee et al. (2005)).
3. Summary and conclusions

This study reviewed various sensing systems developed for pre-
cision agriculture in Florida. In Florida, more specialty crops are
grown than grain crops for which precision technologies were orig-
inally developed. In this study, sensing systems are described
including a yield mapping system that uses fruit recognition, dis-
ease detection sensors that are carried by ground- and aerial-based
platforms, soil P detectors that use NIR and Raman spectroscopy,
debris detectors for mechanically harvested citrus, an N detector
for citrus leaves, a silage yield mapping system, and soil nutrient
and grain insect detectors using NIR spectroscopy.
Applications of visible, NIR, and MIR spectroscopy and imaging
for disease detection have also been reviewed. In general, develop-
ing a disease detection system at the symptomatic stage is rela-
tively easier than at the asymptomatic stage. However, in most
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cases, disease detection systems are more useful if they can detect
the disease at the asymptomatic stage where human scouts are not
capable of detecting the disease.

4. Future recommendations

Florida’s agriculture is dominated by specialty crops such as
sugarcane, citrus, strawberry and tomato. This unique type of pro-
duction system requires more creative and adaptive technologies
that are not commonly available. Among the sensing systems
developed, the following have great potential to be adopted by
the growers: immature green citrus detection, debris detection
and cleaning system (currently in the process of being patented),
blueberry yield mapping system, the HLB detection systems devel-
oped using optical properties and starch accumulation, silage yield
mapping, grain insect detection using NIR, soil P sensing systems,
citrus debris detection system from mechanical harvesting, and
detection of dropped citrus fruit on the ground.

However, since the market for specialty crops is relatively small,
many manufacturers of sensors and sensing technology cannot jus-
tify the research and development costs to develop new sensing
systems for specialty crops as this would take a long time and
require much effort.

Before developing sensing systems, it is important to under-
stand the needs of the growers. For example, sensing systems for
irrigation and primary nutrients such as N, P, and potassium could
be high priorities for growers.

Growers are inclined to adopt new technology that is cost effec-
tive and has a high return on investment. Most importantly, it
should be based on credible science. The availability of inexpen-
sive, reliable, durable, user-friendly, and rugged sensing systems
are important for future adoption of precision technologies. New
technologies such as unmanned aerial vehicles enable growers to
more efficiently utilize sensors in their field operations.
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