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Abstract. Florida citrus industry has been suffering from an extremely serious infection, called Huanglongbing 
(HLB) or citrus greening disease for several years. The disease has been seen in all citrus producing counties 
in Florida and also some infection has been recently reported in Texas and California. No effective cure has 
been discovered for this disease yet, still a quick and easy HLB detection method can help citrus growers to 
remove the infected trees and protect the rest of their groves. Starch accumulation on an infected citrus leaf is 
one of the HLB symptoms, which create some green islands and yellowish blotch mottles on the leaf. In this 
study, a new version of a machine vision based sensor was developed which is able to identify the HLB 
symptomatic leaves under simulated field conditions. The combination of a sensitive monochrome camera and 
a narrow band polarized illumination system in this sensor could highlight the starch accumulation in HLB 
infected citrus leaves and differentiate it from yellowish leaves caused by other stresses such as nutrient 
deficiency. This sensor was examined in both simulated and actual in-field conditions for HLB symptomatic, 
healthy and nutrient (zinc) deficient leaf samples. Simple statistical histogram features were used for the 
classification and classification accuracies of over 95% were achieved. Compared to the previous version of 
our HLB detection system, this approach improved the detection accuracy with a less complicated classification 
method. 
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Introduction 
Citrus production plays an important role in Florida’s agricultural industry. Over 76,000 people work in the $9 
billion citrus industry in Florida. However, this business has always been under the risk of citrus diseases such 
as citrus canker, citrus greening, and citrus black spot. Huanglongbing (HLB) also called citrus greening is 
known as the most dangerous citrus disease in the world (Bové, 2006) with no effective cure which was first 
seen in 2005 in Florida (Halbert, 2005). The statistics showed that the citrus production in Florida significantly 
decreased after 2005 (Salois et al., 2012) and citrus diseases (including HLB) were the major reason. Although 
no efficient treatment was reported for this disease, a quick identification and elimination of the affected tree 
can help to protect the rest of grove from the infection. HLB causes some leaf and fruit symptoms but one of 
the early symptoms is the appearance of asymmetric yellow shoots on the affected leaf. Etxeberria, Gonzalez, 
Achor, and Albrigo (2009) showed that the accumulation of starch in an HLB affected leaf which caused the 
leaf yellowing could be used as an early diagnosis symptom. However, this symptom is comparable to some 
nutrient deficiencies’ symptoms such as zinc deficiency (Gonzalez-Mora, Vallespi, Dima, & Ehsani, 2010) 
which makes it difficult to be recognized only by a field assessment. Futch, Weingarten, and Irey (2009) 
showed that the best HLB diagnosis conducted by trained inspectors resulted in an accuracy of 59%.  

Sankaran, Maja, Buchanon, and Ehsani (2013) analyzed the visible, near infrared (NIR), and thermal spectral 
reflectance data to detect the HLB affected citrus trees. They achieved an overall accuracy of 87% using 13 
spectral features from the three bands. Aksenov et al. (2014) showed that the volatile organic compounds 
released from HLB affected trees could be explained using spectrometry methods and be used for diagnosis 
purpose with the accuracy of ~90%.  

Airborne imaging is another vision based diagnosis approach in plant disease identification which was also 
employed for HLB detection. Li, Lee, Wang, Ehsani, and Yang (2014) introduced an extended spectral angle 
mapping (ESAM) method for analyzing the airborne hyperspectral images to identify the HLB affected trees. 
Utilizing this method a classification accuracy of 86% was achieved. 

It was shown that the starch accumulation in an HLB affected citrus leaf can be highlighted by narrow-band 
imaging and a customized use of polarizing filters (Pourreza, Lee, Raveh, Ehsani, & Etxeberria, 2014). The 
objective of this study aimed to increase the efficiency of the previously introduced approach by developing an 
improved vision sensor prototype. Enhancing the HLB detection accuracy (especially within the zinc deficient 
samples), employing a simpler classification algorithm, and adding the capability of on-the-go diagnosis were 
considered in designing the new prototype. 

Materials and Methods 
The crystalline structure of starch causes its birefringence characteristic which is the ability of rotating the 
polarization planar of light in a certain waveband (McMahon, 2004). It was shown that the accumulated starch 
in HLB affected leaves rotated the planar of polarized light at around 600 nm by 90 degrees (Pourreza, Lee, 
Raveh, Hong, & Kim, 2013). This feature was used in designing and developing the vision sensor prototype. 
Figure 1a shows the vision sensor prototype and its components including 10 high power LEDs (LZ4-00A100, 
10 W, LED Engin, San Jose, California) at 591 nm powered by 5 LED drivers (RCD-48, 70 W, RECOM, 
Brooklyn, New York) and a sensitive grayscale camera (DMK 23G445, TheImagingSource, Bremen, 
Germany).  

A total of 60 citrus leaves (20 HLB-negative, 20 HLB-positive, and 20 zinc-deficient) from ‘Hamlin’ variety were 
collected in September 2013 from the Citrus Research and Education Center (CREC) grove, University of 
Florida, Lake Alfred, FL. All samples’ HLB statuses were confirmed by a qrt-PCR test which was conducted at 
the United States Sugar Corporation (USSC), Technical Operations, Southern Gardens (Clewiston, FL). 

Sample images were acquired individually (figure 1b) and also in a simulation of in-field condition on an 
artificial citrus tree. The vision sensor had a customized illumination system and it was designed to acquire 
images after the sunset for a real in-field experiment. Therefore, for this experiment, the images were acquired 
in a dark room so that the samples only reflected the polarized light they received from the illumination system 
of the vision sensor. A fixed distance of 80 cm was used between the sensor and every sample because the 
reflection of all symptomatic or healthy areas on different type of leaves were within the dynamic range of the 
camera’s sensor with minimum amount of saturated or dark pixels at this distance. 

Two basic image descriptors, gray values mean and standard deviation (SD), were extracted from the leaf 
region in each image and were employed for further analysis.  
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Figure 1. The vision sensor and sample images. (a) The vision sensor prototype including the LEDs, camera, and the polarizing 
filters as well as the wooden housing and its dimensions. (b) Sample images of citrus leaves in four different classes acquired by 
the vision sensor. 

In order to assess the separability between the four classes, all samples were illustrated in a 2-dimensional 
scatter plot based on their means (horizontal axis) and SD (vertical axis) features. The optimum threshold 
between the adjacent pair of classes were obtained by conducting a maximum margin approach (Bishop, 
2006). A classification model (figure 2) was designed according to the samples’ distribution in the scatter plot in 
which at each step the input dataset was divided into two sub classes. A support vector machine (SVM) 
classifier was employed at all classification steps. A K-fold (3-fold) cross validation method was used to confirm 
that the results were independent to the selection of training and validation data set. 

 

Figure 2. The classification model which was designed based on the scatter plots. 

Feature extraction and classification was conducted using MATLAB (version R2011a, MathWorks, Natick, MA) 
and scatter plots were created in Excel (Microsoft Office, Microsoft, Redmond, Washington). 

Results and Discussion 
Table 1 includes the gray values means and SDs of HLB-negative, HLB-positive, and zinc-deficient samples. 
The zinc-deficient class contained two subclasses of 10 HLB-positive and 10 HLB-negative samples. In 
average, zinc-deficient samples had the greatest means and SDs in both individual leaves and those in an 
artificial tree datasets, while HLB-negative samples had minimum means and SDs. HLB-negative samples had 
normal starch content and no zinc deficiency symptoms; therefore, they did not include any high or medium 
intensity areas. This explains the smaller gray values mean and SDs. HLB-positive samples, on the other hand, 
had accumulated starch content which caused medium intensity pixel values as well as asymptomatic areas 
with low intensity. This was the reason for greater means and SDs in HLB-positive class. Zinc-deficient HLB-
positive samples contained low intensity (asymptomatic areas), medium intensity (HLB symptomatic areas), 
and high intensity (zinc deficiency symptomatic areas) pixels which caused the maximum averages of gray 
values means in both datasets. On the contrary, zinc-deficient HLB-negative samples did not contain any 
medium intensity (HLB symptomatic areas) pixels; therefore, they had a relatively smaller average mean but a 
greater average SD because there was a gap in their image histograms between low and high pixel values. 
Generally, leaves on an artificial tree had smaller gray values and consequently smaller SDs compared to 
individual leaves. The images of individual leaves were captured at the exact distance of 80 cm, while this 
distance varied between 79 cm to 82 cm for the leaves on an artificial tree due to the mounting limitation. That 
was the reason of different feature values for the same samples in two different imaging conditions. 

All datasets 
HLB-negative 

1. HLB-positive 
2. Zn-deficient 

HLB-positive

Zn-deficient

Zn-deficient and
HLB-positive

Zn-deficient and
HLB-negative
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Table 1. The samples features in the both imaging conditions: images of individual leaves, and leaves on the artificial tree. 

HLB-negative samples  HLB-positive samples  Zinc-deficient samples 

ID 
*  ** 

 ID 
    Zinc-deficient HLB-negative 

Ind.*** AT****  Ind. AT  Ind. AT  Ind. AT  
ID 

   
21 38.3 38.1  5.7 8.1  41 48.5 37.9  14.8 13.6  Ind. AT  Ind. AT 
22 28.4 16.8  4.2 3.8  42 51.5 33.6  14.9 10.0  1 84.7 55.4  65.8 35.2 
23 49.5 32.0  8.0 4.9  43 78.7 48.3  38.9 20.5  3 110.3 79.3  65.7 52.7 
24 26.5 26.1  3.7 5.5  44 59.7 51.3  18.8 17.1  4 89.4 114.5  58.6 66.2 
25 20.9 21.5  4.7 4.2  45 63.8 57.3  26.9 24.6  5 107.9 104.7  58.6 51.9 
26 26.8 29.2  4.9 4.5  46 49.3 56.8  13.6 14.2  7 121.4 112.2  85.4 78.8 
27 28.0 24.1  3.2 3.0  47 46.2 41.2  12.7 9.7  10 127.5 122  77.5 71.8 
28 26.3 19.4  4.8 3.2  48 53.4 36.9  13.5 9.6  12 119.4 111.1  82.2 71.6 
29 23.1 24.6  3.8 4.4  49 52.2 54.2  23.7 22.8  15 98 77.3  55.3 41.1 
30 23.7 28.2  3.8 5.5  50 51.8 54.4  15.6 16.0  16 128.6 108.6  69.2 61.4 
31 35.8 31.1  4.0 4.4  51 81.2 75.9  23.0 23.6  17 89.3 65.9  63.7 40.3 
32 34.3 23.9  5.1 3.5  52 47.8 36.9  21.1 14.4  Avg. 107.65 95.1  68.2 57.1 
33 30.2 17.5  4.8 2.6  53 56.1 41.3  18.7 14.1        
34 29.3 25.9  6.0 4.5  54 76.0 62.7  17.8 13.9  Zinc-deficient HLB-positive 
35 33.7 24.9  4.7 3.9  55 57.5 45.7  11.0 8.2  2 100.4 71.5  42.6 31.1 
36 26.2 22.7  5.6 3.5  56 64.1 60.3  17.3 15.0  6 114.8 119.6  37.1 49.1 
37 31.9 21.9  5.3 4.0  57 69.0 45.4  15.5 10.2  8 121 86.9  44.1 38.2 
38 36.6 30.8  5.1 4.8  58 103.5 89.6  39.9 34.4  9 213.8 212.9  59 50.3 
39 41.8 36.7  4.5 6.0  59 47.8 52.9  12.1 13.4  11 102.9 92  62.4 57.5 
40 34.3 28.6  6.6 4.3  60 52.9 43.2  18.4 12.0  13 140.9 93.4  65.7 53.7 

Avg. 31.3 26.2  4.9 4.4  Avg. 60.6 51.3  19.4 15.9  14 134.5 111.3  64.3 53.3 
              18 98.7 85.6  44.5 36.8 
              19 162.1 159.1  64.5 65.5 
              20 162.3 149.7   49.7 45.1 
              Avg. 135.14 118.2  53.39 48.06 

*        : The mean of the gray values 
**       : The  SD of the gray values 
*** Ind. : Images of individual leaves  
**** FA : Images of leaves on an artificial tree 

 

Figure 3 shows the two dimensional scatter plots of samples according to their gray values mean and SDs. The 
dashed lines in each plot indicate the thresholds between the adjacent pair of classes which were obtained 
using the maximum margin method. The three thresholds in the individual leaves dataset (figure 3a) separated 
the four classes with only two mis-clustered samples. The number of mis-clustered samples increased to four 
for the leaves on an artificial tree dataset. The samples which are specified with a circle were the support 
vectors defining the possible margins of each class.  

 

Figure 3. Illustration of samples in a two dimensional scatter plot based on their gray values mean and SD: (a) samples in 
individual leaves dataset, and (b) samples in leaves on an artificial tree dataset. 
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Although, it seems a customized threshold drawn by visual observation can perform a better separation in 
some cases, but using maximum margin method provided a more general separation with less dependency to 
a specific dataset. 

Figure 4 shows the classification and misclassification rates for each class in two datasets. Samples in HLB-
negative and zinc-deficient HLB-negative classes were classified with the accuracy of 100% in both datasets. 
Also over 95% of HLB-positive samples were correctly classified in both datasets. Few HLB-positive samples 
within the zinc-deficient class were misclassified in zinc-deficient HLB-negative class. Overall accuracies of 
97% and 95.5% were achieved using the introduced classification model for individual leaves and leaves on an 
artificial tree datasets, respectively. Only two simple image descriptors and SVM classifier were employed for 
identification purpose which resulted in a significantly better accuracies compared to our previous study.  

 

Figure 4. Classification and misclassification rates achieved using the classification model: (a) classification results in individual 
leaves dataset, and (b) classification results in leaves on an artificial tree dataset. 

Conclusion 
In this study, an optimized HLB detection approach was introduced and its performance in a simulation of the 
in-field condition was assessed. The approach had clear advantages compared to other methods. The vision 
sensor was developed with inexpensive items which makes it an affordable diagnosis solution for every citrus 
grower. Not only is this sensor able to identify the HLB symptomatic area, but also it is able to differentiate the 
zinc deficiency from HLB infection. No sample collection and preparation is required for this method and the 
sensor can be used for an on-the-go diagnosis application. The results of this research showed that the proper 
use of narrow band illumination and polarizing filters could enhance the accuracy and simplify the identification 
algorithm. 
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