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CITRUS HUANGLONGBING DETECTION USING  
NARROW-BAND IMAGING AND POLARIZED ILLUMINATION 

A. Pourreza,  W. S. Lee,  E. Raveh,  R. Ehsani,  E. Etxeberria 

ABSTRACT. The insect-spread bacterial infection known as citrus greening or Huanglongbing (HLB) is a very destructive 
citrus disease and has caused massive losses in Florida’s citrus industry. Early, easy, and less expensive HLB detection 
based on particular symptoms, such as starch accumulation in the citrus leaf, would increase the chance of preventing the 
disease from being spread and causing more damage. The ability of narrow-band imaging and polarizing filters in detect-
ing starch accumulation in symptomatic citrus leaf was evaluated in this study. A custom-made image acquisition system 
was developed for this purpose in which leaf samples were illuminated with polarized light using narrow-band high-power 
LEDs at 400 nm and 591 nm, and the reflectance was measured by two monochrome cameras. Two polarizing filters were 
mounted in perpendicular directions in front of the cameras so that each camera acquired an image with reflected light in 
only one direction (parallel or perpendicular to the illumination polarization). Four groups of textural features, including 
gray, local binary pattern, local similarity pattern, and gray-level co-occurrence features, were extracted and ranked us-
ing several feature selection methods. Seven classifiers (support vector machine, linear, naive Bayes linear, quadratic, 
naive Bayes quadratic, Mahalanobis, and k nearest neighbor) were evaluated, and the best classifiers and sets of features 
were selected based on their accuracy. The leaf samples were collected from the ‘Hamlin’ and ‘Valencia’ varieties of cit-
rus. Three classes of samples (magnesium-deficient, HLB-positive zinc-deficient, and HLB-negative zinc-deficient) were 
considered in the classification process to confirm the starch detection ability of the system. Overall average accuracies of 
93.1% and 89.6% in HLB detection were obtained for the ‘Hamlin’ and ‘Valencia’ varieties, respectively, using a step-by-
step classification method. The results of this study showed that the starch accumulation in HLB-symptomatic leaves rotat-
ed the polarization planar of light at 591 nm, and this property can be effectively used in a fast and inexpensive HLB de-
tection system. 
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itrus is the largest fruit crop in the state of Florida 
(Putnam, 2012). Based on 2012 statistics, more 
than 63% of the total U.S. citrus production is 
grown in Florida. The industry employs nearly 

76,000 people directly or indirectly, and it generates almost 
$1 billion in tax revenues (Brown et al., 2011). One of the 
harshest diseases affecting citrus production is Huanglong-
bing (HLB), which is most likely caused by the insect-
vectored α-protobacterium Candidatus Liberibacter asiati-
cus (Albrecht and Bowman, 2008). Yield reduction, decline 
in flavor quality, uneven color development, deformity, and 
eventual tree death are direct consequences of this disease. 
An overall 10% loss has been reported due to citrus fruit 
drop as a result of HLB disease (Choi et al., 2013). In Flor-

ida, HLB was first detected in 2005, and it has since spread 
to all of Florida’s citrus-producing counties. Blotchy mott-
led leaves, lopsided fruits with inverted color, yellow 
shoots, and aborted seeds are some common symptoms of 
HLB (Gonzalez et al., 2012). To date, no effective treat-
ment has been reported for this disease; however, early 
detection and removal of infected trees can help minimize 
the spread of the disease to other adjacent trees in the 
grove. Ground inspection of visual symptoms and polymer-
ase chain reaction (qrt-PCR) tests are two common meth-
ods of HLB detection. Both methods are costly and time 
consuming. 

Fast and easy methods of detection for plant diseases 
have improved farming productivity and prevented major 
losses in the agricultural industry. Machine vision is one of 
the most successful approaches in disease control and de-
tection for both trees and herbaceous crops. Fluorescence, 
hyperspectral, and multispectral imaging, as well as infra-
red and nuclear magnetic resonance (NMR) imaging, are 
different machine vision-based methods that enable farmers 
to monitor their fields and effectively protect their products 
from diseases (Sankaran et al., 2010a). 

Several vision-based methods have been tested for HLB 
detection. Mishra et al. (2007) reported that the wavelength 
regions including 530-564 nm (green peak), 710-715 nm 
(red edge), and two wavelengths (1041 nm and 2014 nm) 
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in the near-infrared region have the maximum discrimina-
bility between HLB-symptomatic and healthy trees. Kim et 
al. (2009) evaluated the ability of co-occurrence features 
extracted from color images of citrus leaf samples to classi-
fy the leaves in seven symptomatic classes including green-
ing blotchy mottle, green islands, iron deficiency, magnesi-
um deficiency, zinc deficiency, young flush leaves, and 
normal mature leaves. They employed stepwise discrimi-
nant analysis for feature selection and classification pur-
poses. A classification accuracy of 86.7% was obtained 
when all classes were considered; however, the accuracy 
increased to 97.3% when the young flush and blotchy mott-
le classes were omitted from the classification procedure. 

Mid-infrared spectroscopy has been employed by San-
karan et al. (2010b) to identify HLB infection in diseased, 
healthy, and nutrient-deficient citrus leaves. They showed 
that the spectral signature in the range of 5.15 to 10.72 μm, 
which was acquired from each ground sample, was capable 
of identifying HLB infection in leaves. An accuracy of over 
90% in HLB detection was obtained using the k nearest 
neighbor (KNN) algorithm. In another study, Fourier trans-
form infrared-attenuated total reflection (FT-IR-ATR) spec-
troscopy was employed to detect HLB-infected leaves. 
With this method, the leaf sample should be dried and 
ground before the analysis. The HLB status for 95% of 
179 samples was correctly identified in this study (Hawkins 
et al., 2010). 

Tree canopy reflectance measurements in four bands 
(570 nm and 670 nm in the visible range, and 870 nm and 
970 nm in the near-infrared range) were determined to be 
capable of identifying HLB-symptomatic citrus trees. 
Mishra et al. (2011) calculated eleven different vegetation 
indices and used them in five classifiers: decision trees, 
KNN, logistic regression, neural network, and support vec-
tor machine (SVM). An accuracy of 97% was obtained for 
HLB detection using SVM and decision tree based classifi-
cation algorithms. In a separate study, the authors noted 
that a single observation of the canopy spectral reflectance 
data in the range of 350 to 2500 nm was not sufficient to 
detect diseased trees; however, they achieved an HLB de-
tection accuracy of >90% using multiple measurements and 
SVM or a weighted KNN classifier (Mishra et al., 2012). 

Sankaran et al. (2011) extracted 86 spectral features in 
the visible and near-infrared range of 350 to 2500 nm with 
25 nm intervals from citrus groves. The reduced number of 
features, including first derivatives, second derivatives, and 
a combined dataset, was acquired using principal compo-
nent analysis (PCA) and used in several classifiers. The 
highest overall accuracy of 95% was obtained using the 
second derivatives dataset in a quadratic discriminant anal-
ysis (QDA) classifier. In another study, Sankaran and 
Ehsani (2011) evaluated the features of the same spectra 
including spectral reflectance and vegetation indices. They 
employed stepwise discriminant and regression analyses for 
feature selection and classifiers such as QDA and soft inde-
pendent modeling of classification analogies (SIMCA) for 
citrus greening detection. They confirmed that using both 
types of features can result in classification accuracy higher 
than 80%. 

 

Airborne multispectral and hyperspectral imaging meth-
ods have also been used in detection of HLB (Li et al., 
2011; Li et al., 2012a; Li et al., 2012b; Li et al., 2013). 
These researchers determined that the reflectances of 
healthy and HLB canopies were different in both the visible 
and near-infrared (NIR) ranges. Their methods were able to 
detect most of the severely infected areas and achieved 
various accuracies ranging from 43% to 95% depending on 
the ground truthing accuracies and classifiers implemented. 
Additionally, laser-induced fluorescence imaging was con-
sidered as a potential tool for early citrus greening detec-
tion with a 95% confidence level (Pereira et al., 2011). 

The overall objective of this study was to develop a 
sensing system based on machine vision that is capable of 
discriminating between HLB-symptomatic and healthy 
leaves using polarized light. This concept is based on the 
prominent starch accumulation that takes place in HLB-
symptomatic leaves compared to the lack of starch in oth-
erwise healthy leaves or those under any other biotic or 
abiotic stress. Additionally, the known capability of starch 
to rotate the polarization planar of polarized light (McMah-
on, 2004) was evaluated for HLB-symptomatic citrus 
leaves. The specific objectives were: 

• To determine how starch accumulation in an HLB-
symptomatic leaf affects the polarized light and how 
this can be used in HLB detection. 

• To develop an imaging system that can highlight the 
starch accumulation in leaves under field conditions. 

• To determine the best set of image features that dif-
ferentiates HLB-symptomatic and healthy leaves. 

• To evaluate the accuracy of the proposed method 
compared with other techniques such as qrt-PCR 
analysis, starch measurement, spectroscopy, and air-
borne imaging. 

MATERIALS AND METHODS 
PRELIMINARY EXPERIMENT 

In order to evaluate the effect of starch accumulation in 
HLB-symptomatic leaves on the polarization planar of the 
light, an initial experiment was conducted in May 2010 in 
the Citrus Research and Education Center (CREC) in Lake 
Alfred, Florida. In this experiment, citrus canopies were 
illuminated (after sunset in darkness) with a halogen lamp 
(100 W, JCD type, GY 6.35) and a polarized filter mounted 
in front of the lamp. Leaf reflectance was measured using a 
portable spectrometer (HR-1024, Spectra Vista Corp., 
Poughkeepsie, N.Y.) with another polarized filter installed 
in front of the spectrometer in two separate positions: paral-
lel to the lamp filter (to measure the maximum reflectance) 
and perpendicular to the lamp filter (to measure the mini-
mum reflectance). 

Figures 1a and 1b show maximum and minimum reflec-
tance using parallel and perpendicular filters, respectively. 
The spectra are averages of ten different sample measure-
ments, and their standard deviations are shown as error bars 
at each wavelength. Figure 1c is the minimum to maximum 
reflectance ratio of control (healthy) and greening (HLB-
symptomatic) samples. The ratio of the healthy and symp-
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tomatic leaf reflectance ratios is plotted in figure 1d. As 
shown in this figure, the highest ratio (1.6) was found near 
600 nm, which suggests that this is the optimal wavelength 
for detecting HLB-symptomatic leaves. In addition, the 
ratio was close to 1.0 at 400 nm, which means that the 
min/max ratio of healthy and HLB-symptomatic leaves is 
the same, so this wavelength can be used as a reference 
wavelength. 

ROTATION ANGLE OF POLARIZATION  
PLANAR AS CAUSED BY STARCH 

In order to establish the degree to which pure starch ro-
tates the polarization planar of the light, pure starch powder 
(cornstarch, Clabber Girl, Terre Haute, Ind.) was illuminat-
ed with polarized light, and its reflectance was measured 
using a spectrometer in the range of 400 to 1000 nm 
(USB2000+, Ocean Optics, Clearwater, Fla.). Based on the 
initial experimental results, the maximum rotation occurred 
at around 600 nm. Therefore, high luminous efficiency 
LEDs (LED Engin, San Jose, Cal.) at 591 nm (LZ1-
00A100, 4 LEDs, 5 W per LED) were selected for illumi-
nating the starch samples, since LEDs at exactly 600 nm 
were not available. A visible linear polarizing laminated 
film (Edmund Optics, Barrington, N.J.) was used for polar-
izing the light. One filter was mounted in front of the light 
source, and another was placed in front of the spectrometer 
sensor in the parallel direction. The angle between the spec-
trometer’s filter and the light source’s filter was then varied 
from 0° (parallel) to 90° (perpendicular) in 10° increments, 
and the reflectance was measured in each step. It was de-
termined that the maximum reflectance of pure starch oc-
curred when the light source’s filter and the spectrometer’s 
filter were exactly perpendicular to each other. 

 

DATA COLLECTION 
Two datasets were collected for this study. In each da-

taset, there were two main super classes: HLB-positive and 
HLB-negative. The HLB-positive super class included the 
HLB-symptomatic samples as well as the nutrient-deficient 
samples that also were HLB infected. The HLB-
symptomatic class contained the samples whose HLB in-
fection was confirmed by qrt-PCR test but that did not 
show any nutrient-deficiency symptoms. On the contrary, 
healthy samples and non-HLB-infected nutrient-deficient 
samples were included in the HLB-negative super class. 
The first dataset contained 90 citrus leaf samples (‘Hamlin’ 
sweet orange) in four classes, including healthy (32 sam-
ples), HLB-symptomatic (28 samples), HLB-negative zinc-
deficient (15 samples), and HLB-positive zinc-deficient 
(15 samples) leaves, were collected from a grove located at 
the CREC in August 2012. The second dataset, which was 
collected from the same grove in December 2012, con-
tained 96 citrus leaf samples (‘Valencia’) in five classes, 
including healthy (20 samples), HLB-symptomatic 
(20 samples), HLB-negative magnesium-deficient (20 sam-
ples), HLB-negative zinc-deficient (6 samples), and HLB-
positive zinc-deficient (30 samples) leaves (Pourreza et al., 
2013). 

The concentration of starch in each leaf was measured in 
μg starch mm-2 according to the procedure described by 
Gonzalez et al. (2012). For this measurement, a tissue disk 
of 27.3 mm2 from each leaf was excised with a paper 
puncher and homogenized in water. After a series of steps, 
including boiling, alcohol precipitation, and re-suspension 
of the starch in water, aliquots were combined with a 2% 
iodine solution. The absorbance was determined using a 
micro-plate reader (model 680, BioRad, Hercules, Cal.) at 
595 nm. Starch concentration was calculated from an estab-
lished standard curve. Finally, the threshold of 5 μg mm-2 

 

Figure 1. Detection of HLB-symptomatic canopy using diffuse reflectance in a citrus grove: (a) maximum reflectance, (b) minimum reflectance, 
(c) ratio of maximum and minimum reflectance, and (d) ratio of healthy leaf reflectance ratio and HLB-symptomatic leaf reflectance ratio. 
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was used for HLB-infection detection (Gonzalez et al., 
2012). For verification, a qrt-PCR analysis (Sankaran et al., 
2010b) was also conducted in a diagnostic laboratory locat-
ed at the U.S. Sugar Corporation’s Southern Gardens pro-
cessing plant in Clewiston, Florida, for each individual leaf 
to determine their infection status. 

IMAGE ACQUISITION 
Preliminarily evaluation showed that the accumulation 

of starch rotated part of the polarization planar of the light 
by 90° in a detectable magnitude. Based on this fact, an 
image acquisition system was designed to measure leaf 
reflection of the polarized light in both the parallel and per-
pendicular directions to the direction of the polarized illu-
mination. In addition, 591 nm and 400 nm were selected for 
narrow-band illumination sources based on the preliminari-
ly results, as described earlier. 

Figure 2 shows a diagram of the image acquisition sys-
tem for detecting HLB-symptomatic leaves. Two commer-
cial monochrome cameras (EBC-B100G, EZ Spy Cam, Los 
Angeles, Cal.) with ICX404AL Sony CCD image sensors 
that had a horizontal resolution of 420 TV lines were used. 
The cameras were equipped with 25 mm narrow field of 
view lenses and were mounted at the top of the imaging 
box. A four-channel USB frame grabber (model 2255, Sen-
soray Co., Tigard, Ore.) was used to convert the analog 
output of the cameras to digital images with a resolution of 
640×480 pixels. 

A total of five high luminous efficiency LEDs (LED 
Engin, San Jose, Cal.), one at 400 nm (LZ1-00UA00, 5 W) 
and four at 591 nm (LZ1-00A100, 5 W), were mounted at 
the top of the imaging box for narrow-band illumination. 
Narrow field of view LED lenses were used to prevent any 
reflection inside the box. Two polarizing filters (visible 

linear polarizing laminated film, Edmund Optics, Barring-
ton, N.J.) were also used: one in front of the illumination 
system and one of the cameras, and the other in front of the 
other camera in a perpendicular direction to the first filter. 
Therefore, at each wavelength, one camera acquired an 
image with reflected light that was in parallel polarization 
to the illumination polarization planar (maximum reflec-
tion), and the other camera acquired an image with reflect-
ed light that was in perpendicular polarization (minimum 
reflection). The imaging platform was enclosed in a wood-
en box (16 × 14 × 47 cm), so the LED light was the only 
source of illumination available for the sample images. An 
electronic circuit was designed to control the light intensity 
and switch between the two wavelengths. It also contained 
a 70 W LED driver (RCD-48-0.70-W, RECOM Electronic 
GmbH, Neu-Isenburg, Germany) that was designed for 
driving high-power LED applications. Therefore, the image 
acquisition system was able to produce images of each 
sample in four different conditions, i.e., using parallel and 
perpendicular filters at 400 nm and 591 nm illumination. 
The cameras’ common field of view was determined by 
manual comparison of the images captured by the two 
cameras. 

IMAGE PREPROCESSING 
Commercial cameras are customarily equipped with au-

tomatic gain control (AGC), a feature that maintains similar 
image intensity and contrast regardless of the illumination 
conditions. In this study, the effect of AGC was removed 
using a calibration process because the real measurement of 
intensity was required. In order to solve this problem, cali-
bration of images was conducted using the same back-
ground in all images. As the first step of this calibration, the 
average background gray levels in images captured with the 

 

Figure 2. Image acquisition system for detecting HLB-symptomatic leaves. The top part of the imaging box can be opened to adjust the camera
lenses and polarizing filters. The illumination intensity and wavelength can be adjusted at the top panel. 
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same illumination-polarization conditions was measured, 
and the ratio between this average to each image’s back-
ground gray level was used as a unique gain multiplier for 
the corresponding image. As the second step, the exact re-
flectance of the background in all four illumination-
polarization conditions was measured using a spectrometer, 
and the ratios between these values were used to adjust the 
intensity. 

PIXEL-BASED ANALYSIS 
All data analyses were conducted using MATLAB (ver. 

R2011a, The MathWorks, Natick, Mass.). Every pixel be-
longing to the leaf area in the images of all 90 samples (the 
‘Hamlin’ dataset) was used in this analysis. Four mono-
chrome images of each sample were acquired in four dif-
ferent illumination-polarization conditions: 

• 400 nm (Max) image: acquired with the 400 nm LED 
and parallel polarizing filters mounted in front of the 
camera and the LED. 

• 400 nm (Min) image: acquired with the 400 nm LED 
while the polarizing filter mounted in front of the 
camera was in a perpendicular direction to the polar-
izing filter mounted in front of the LED. 

• 591 nm (Max) image: acquired with the 591 nm 
LEDs and parallel polarizing filters mounted in front 
of the camera and the LEDs. 

• 591 nm (Min) image: acquired with the 591 nm 
LEDs while the polarizing filter mounted in front of 
the camera was in a perpendicular direction to the po-
larizing filter mounted in front of the LEDs. 

“Max” represents the maximum reflectance, which was 
acquired using polarizing filters in parallel directions for 
the camera and the LEDs, and “Min” represents the mini-
mum reflectance, which was acquired with polarizing fil-
ters in perpendicular directions for the camera and the 
LEDs. All four images were acquired of the same scene; 
therefore, there were four different values for each pixel, 
representing the reflectances for the four imaging condi-
tions. In order to determine which imaging condition had 
the ability to differentiate the pixels belonging to the 
healthy and HLB-symptomatic areas, a k-means clustering 
method was conducted for each imaging condition sepa-
rately. Therefore, k-means was applied to a one-dimen-
sional feature vector at every iteration. As a result, it tried 
to determine the best gray-level threshold for image seg-
mentation. Two clusters (healthy and HLB-symptomatic) 
were defined for the k-means algorithm, and the accuracy 
of correct clustering was evaluated and used to judge each 
imaging condition’s ability in HLB detection. The cluster-
ing was performed in two runs: first, it was applied to the 
pixels belonging to all the images at the same time (general 
clustering); in the second run, it was applied to each im-
age’s pixels separately (individual clustering). 

TEXTURAL FEATURE EXTRACTION 
Textural features of the 591 nm (Min) images were used 

because the pixel-based analysis showed that only this im-
aging condition provided useful information for HLB de-
tection (as explained later in the Results section). The fea-

tures were extracted from the leaf area in four different 
groups, including gray, local binary pattern (LBP), local 
similarity pattern (LSP), and gray-level co-occurrence ma-
trix (GLCM) features. 

LBP is a creative approach in image textural description 
in which each pixel in a 3×3 window is thresholded by the 
central gray level and replaced by 0 if its value is smaller 
than the central pixel value and by 1 if its value is larger 
than the central pixel value. The thresholded values are 
then considered an 8-bit binary value, and the equivalent 
decimal value replaces the central pixel value (Ojala et al., 
1996). LSP uses almost the same principle of comparing 
the neighborhood pixels with the central pixel as used in 
LBP, but LSP uses a different approach. In LSP, a 2-bit 
code describes the relation between each neighbor pixel 
and the central pixel. A similarity range is defined in LSP, 
and if the neighbor pixel value is below, within, or above 
the similarity range, it is replaced by 00, 01, or 10, respec-
tively. Each neighbor pixel code is multiplied by the corre-
sponding weight, and the LSP code is created. The same 
approach used in LBP was also used in LSP to make it a 
rotational invariant. Both the LBP and LSP codes are rotat-
ed to obtain their minimum possible values, and this proce-
dure makes them rotational invariants (Pourreza et al., 
2011). The GLCM for an 8-bit gray-scale image is a 
256×256 matrix that shows how often two different gray 
values are neighbors in four main directions (0°, 45°, 90°, 
and 135°). The normalized GLCM as described by Majum-
dar and Jayas (1999) was used in this research. 

Table 1 lists the features extracted from normalized his-
tograms (p(i), where i is the gray level, which ranged from 
0 to 255) in 591 nm (Min) images. These features are 
common statistical image descriptors that have been used 
frequently by other researchers. The first six features in 
table 1 (mean, standard deviation, third moment, smooth-
ness, uniformity, and entropy) were also extracted from the 
normalized histograms of the LBP and LSP matrices 
(Pourreza et al., 2012). Table 2 lists equations used for ex-
tracting ten features from the normalized GLCM matrices 
(g(i,j), where i and j are the indices of GLCM matrix ele-
ments) of 591 nm (Min) images. 

Table 1. Features extracted from normalized histograms of gray, LBP,
and LSP matrices. 

Feature Equation 

Mean 
( )

i

ip iμ =

Standard deviation ( ) ( )2
 

i

i p iσ = − μ

Third moment ( ) ( )3  
i

i p i− μ

Smoothness ( )21 1 1/− + σ

Uniformity ( )2

i

p i

Entropy ( ) ( ){ }  
i

p i log p i−

Maximum gray-level  
probability 

( )( )| i p i max=

Range ( )( ) ( )( ){ } | 0   | 0max i p i min i p i≠ − ≠
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CLASSIFICATION MODELS 
Two principal component analysis (PCA) was per-

formed on the feature vectors of both datasets, and all sam-
ples in each dataset were illustrated in separate two-
dimensional plots in which the x and y axes were the first 
and second PCs. These plots show the distributions of sam-
ples that were used to design the step-by-step classification 
models. Figure 3 shows the classification model for the 
‘Hamlin’ dataset, which was designed in three successive 
steps. In the first step, zinc-deficient samples were detect-
ed, followed by two HLB detections that were carried out 
separately as the second and third steps in the non-zinc-
deficient class and the zinc-deficient class. Since there was 
an additional class of magnesium-deficient samples in the 
‘Valencia’ dataset, the classification model was designed in 
four successive steps for this dataset (fig. 3). In the first 
step, the healthy and magnesium-deficient samples were 
detected from the rest of the dataset, and these two classes 
were divided in the second step. In the third step, the HLB-
symptomatic samples were identified from the zinc-
deficient samples, followed by another HLB detection con-

ducted within the zinc-deficient class as the fourth step. 
Gray, GLCM, LBP, and LSP features were investigated 

and ranked both separately and together. The “rankfea-
tures” function of MATLAB was used to rank the features 
that contribute more in each step of the classification. In 
this method, a nonlinear matrix equation under an or-
thonormal coordinate system was solved, and the optimal 
transformation matrix solution was determined from the 
nonlinear matrix equation using a recursive algorithm 
(Xuan et al., 1996). The performance of seven supervised 
learning methods, including support vector machine 
(SVM), linear, naive Bayes linear, quadratic, naive Bayes 
quadratic, Mahalanobis, and KNN, were evaluated using 
MATLAB functions. SVM tries to minimize the misclassi-
fication error by constructing a hyperplane that maximizes 
the margin between the two classes’ nearest training data 
points. The linear method tries to project all the data points 
to a one-dimensional space and classify them based on the 
training set. The quadratic classifier is similar to the linear 
classifier with the assumption of normally distributed fea-
tures in each class; however, each class’s covariance is not 
necessarily identical. The naive Bayes classifiers add an 
assumption (to the linear and quadratic classifiers) in which 
the existence of a specific descriptor in a class is not related 
to the existence of any other descriptor. The Mahalanobis 
classifier works based on the general squared interpoint 
distance (or Mahalanobis distance) between data points of 
the classes. The KNN method also classifies samples based 
on the closest training examples’ label (Bishop, 2006). A 
k-fold (five-fold) cross-validation method (Huang and 
Chang, 2007) was employed in all classification steps to 
confirm that the achieved results were independent of the 
training and validation sets. The dataset was randomly di-
vided into five folds (four folds for training and one fold 
for validation) in each classification, and the whole process 
was repeated ten times. Then the range and average accura-
cy were determined and considered for the system evalua-
tion. In order to find the optimized number of features in 
each step, each classifier was employed several times using 
different numbers of top features (starting with one feature) 
until the accuracy reached its highest level. The classifier 
that achieved the highest accuracy with the minimum num-
ber of features was considered the best classifier in the cor-
responding step. 

Table 2. Features extracted from normalized GLCM matrices. 
Feature Equation 

Mean ( )
i , j

ig i, jμ =   

Variance ( ) ( )22  
i , j

i g i, jσ = − μ  

Entropy ( ) ( ){ }  
i , j

g i, j log g i, j−  

Uniformity ( ){ }2
 

i , j

g i, j  

Homogeneity ( ) ( ){ }2
1  

i , j

g i, j / i j+ −  

Inertia ( ) ( )2
 

i , j

i j g i, j−  

Cluster shade ( ) ( )3
2  

i , j

i j g i, j+ − μ  

Cluster prominence ( ) ( )4
2  

i , j

i j g i, j+ − μ  

Maximum probability ( ){ }max g i, j  
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i , j

i j / g i, j− μ − μ σ  

Figure 3. Step-by-step classification models for the ‘Hamlin’ (left) and ‘Valencia’ (right) datasets. 



57(1): 259-272  265 

After determining the best combination of features and 
classifier for all the steps, each dataset was divided ran-
domly into two equal sets. The whole model was then con-
ducted with one set was used as the training set and the 
other set used as the validation set. Afterward, the classifi-
cation model was repeated with the two sets in exchanged 
roles. Therefore, classification results for all samples were 
obtained. 

RESULTS 
IMAGE PREPROCESSING 

Figure 4 shows examples of leaves representing each 
class in both datasets. Healthy samples were mostly evenly 
green in color, while HLB-symptomatic, magnesium-
deficient, and zinc-deficient leaves had some similar yellow 
molting patterns. The molting symptoms on HLB-
symptomatic samples were in a range of very clear symp-
toms (for advanced levels of infection) to unclear symp-
toms (for early stages of infection). Additionally, HLB 
symptoms were typically in an asymmetric pattern, while 
zinc and magnesium deficient leaves usually had a symmet-
ric pattern of molting; nevertheless, they were not easily 
distinguishable. HLB infection in a zinc-deficient leaf was 
even more difficult to detect, since the zinc symptoms 
masked HLB symptoms. 

Figure 5 shows example images of two leaves (one 
healthy and one HLB-symptomatic) before and after the 
calibration. The average intensity usually decreased after 
calibration of the images that were acquired using perpen-
dicular filters, i.e., the 400 nm (Min) and 591 nm (Min) 
images. The effect of AGC was mostly cancelled using the 

proposed gain adjustment method. Although the original 
reflectance was not completely recovered using this meth-
od, the correct reflectance ratios between two polarization 
conditions in each wavelength were retrieved, which was 
acceptable for this study. 

STARCH MEASUREMENT AND QRT-PCR ANALYSIS 
In a qrt-PCR analysis, a positive reaction is identified by 

the accumulation of a fluorescent signal. The cycle thresh-
old (CT value) is the number of cycles necessary for the 
fluorescent signal to cross the threshold. A CT threshold of 
33 was selected to indicate HLB infection, as is customary 
for state labs (Li et al., 2006). CT values below this thresh-
old indicated HLB infection of the samples. Tables 3 and 4 
show the results of the qrt-PCR analysis by the CT values 
for each sample as well as the corresponding starch concen-
trations for the ‘Hamlin’ and ‘Valencia’ datasets, respec-
tively. The CT values in the healthy, magnesium-deficient, 
and zinc-deficient HLB-negative classes were above the 
threshold; therefore, they were considered HLB-negative 
samples. Contrarily, the CT values in the HLB-
symptomatic and zinc-deficient HLB-positive classes were 
below the established threshold value. Based on these re-
sults, the ‘Hamlin’ dataset included 32 healthy, 28 HLB-
symptomatic, 15 zinc-deficient HLB-negative, and 15 zinc-
deficient HLB-positive samples. The ‘Valencia’ dataset 
included 20 healthy, 20 HLB-symptomatic, 20 magnesium-
deficient, 6 zinc-deficient HLB-negative, and 30 zinc-
deficient HLB-positive samples. 

PIXEL-BASED ANALYSIS 
Figure 6 shows some examples of images acquired using 

Figure 4. Images of leaves in four classes for the ‘Hamlin’ dataset (left) and in five classes for the ‘Valencia’ dataset (right) used for HLB anal-
yses. Three samples are presented for each category to demonstrate the variability for each condition and the frequent overlapping of charac-
teristics. Magnesium-deficient leaves were the most difficult to differentiate from HLB-symptomatic leaves. HLB infection within the zinc-
deficient class was also impossible to identify by eye.  
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the image acquisition system, including healthy, HLB-
symptomatic, zinc-deficient HLB-negative, and zinc-
deficient HLB-positive leaves from the ‘Hamlin’ dataset. 
The first column shows each sample’s color image, and the 
following four columns show the same sample images in 
four different imaging conditions. 

An example of image segmentation based on general 
clustering (a single threshold for all images) in which the  
k-means algorithm was applied once to all the samples at 
the same time is shown in figure 7. The investigation estab- 
lished that the 400 nm (Max) images did not contain any 
 

 

Figure 5. Example of calibration results for two ‘Hamlin’ leaves: (top) healthy sample and (bottom) HLB-symptomatic sample. 

Table 3. Results of qrt-PCR analysis and starch measurement for the ‘Hamlin’ dataset. 
Healthy 

 

HLB-Symptomatic 

 

Zinc-Deficient HLB-Negative 

 

Zinc-Deficient HLB-Positive 
Sample 

No. 
qrt-PCR 

(CT) 
Starch 

(μg mm-2) 
Sample 

No. 
qrt-PCR 

(CT) 
Starch 

(μg mm-2) 
Sample 

No. 
qrt-PCR 

(CT) 
Starch 

(μg mm-2) 
Sample 

No. 
qrt-PCR 

(CT) 
Starch 

(μg mm-2) 
1 40 1.46  33 31.98 20.02 61 40 7.65  76 24.6 18.47 
2 40 2.13  34 30.99 25.19 62 40 7.44  77 24.11 57.01 
3 40 1.91  35 27.36 10.79 63 40 8.04  78 23.97 58.99 
4 40 1.07  36 26.09 12.49 64 40 12.41  79 23.81 17.51 
5 40 2.10  37 22.93 29.26 65 40 5.60  80 23.7 17.37 
6 40 3.16  38 22.92 8.35 66 40 9.11  81 23.51 2.58 
7 40 1.77  39 22.81 46.62 67 39.78 7.27  82 23.38 21.72 
8 40 2.58  40 22.54 61.24 68 39.46 2.63  83 23.19 8.99 
9 40 3.47  41 22.49 82.32 69 39.32 14.81  84 22.62 9.42 
10 40 1.31  42 22.46 5.12 70 38.83 18.13  85 22.53 43.15 
11 40 2.03  43 22.43 11.94 71 37.93 11.55  86 22.23 41.48 
12 40 1.48  44 22.34 61.77 72 37.18 4.04  87 21.76 45.98 
13 40 0.86  45 22.17 82.32 73 36.86 10.67  88 21.61 74.11 
14 40 1.79  46 22.08 71.24 74 36.78 28.06  89 21.47 82.32 
15 40 2.51  47 22.07 51.43 75 36.24 2.63  90 21.21 9.95 
16 40 0.79  48 22.05 60.04         
17 40 2.01  49 21.86 39.28         
18 40 1.07  50 21.45 54.90         
19 40 1.67  51 21.45 43.66         
20 40 1.24  52 21.37 72.75         
21 40 0.93  53 21.35 61.86         
22 40 0.91  54 21.31 11.38         
23 40 2.29  55 21.27 70.86         
24 40 1.05  56 21.11 82.32         
25 40 1.17  57 21.11 38.54         
26 40 1.77  58 20.86 69.28         
27 39.84 2.37  59 20.76 82.32         
28 37.30 0.55  60 20.7 65.02         
29 36.51 2.25             
30 36.00 1.53             
31 34.91 2.44             
32 33.53 21.72             
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useful information about the symptomatic areas, and the 
clustering procedure only distinguished the glossy (high 
intensity) parts of the leaf from the non-glossy (low intensi-
ty) parts. The pixel values belonging to healthy and HLB-
symptomatic (or zinc-deficient) areas were also not signifi-
cantly different in the 400 nm (Min) images, as expected 
based on the preliminarily results. In the 591 nm (Max) im-
ages, the pixel values belonging to healthy, HLB-
symptomatic, and zinc-deficient areas were different; how-
ever, there were also some glossy parts on the leaves (espe-
cially on healthy leaves) in which the pixel values were ex-
tremely similar to non-healthy parts, such as HLB-
symptomatic and/or zinc-deficient parts. However, the 
591 nm (Min) images contained very useful information, and 
the non-healthy parts were distinctive, as shown in figure 7. 

Due to the incomplete cancelation of the AGC effect, the 
overall average intensity of the image for some samples 
was different from that of others in the 591 nm (Min) im-
ages. This led to a misclassification of some healthy pixels 
into non-healthy classes, including HLB-symptomatic or 
zinc-deficient classes; however, the healthy and non-
healthy areas were distinguishable when the clustering was 
performed for individual samples separately. Figure 8 
shows two examples of segmentation based on general and 
individual clustering. The top sample in figure 8 is an 
HLB-symptomatic sample in which the image intensity was 
below the average, so the general clustering segmented 
most of its pixels into a healthy cluster (green color), while 
the individual clustering (individual threshold for each im-
age) was able to detect the symptomatic areas more accu- 

Table 4. Results of qrt-PCR analysis (CT values) and starch measurement (μg mm-2) for the ‘Valencia’ dataset. 

Healthy 
x 

HLB-Symptomatic 
x

Magnesium-Deficient 
x

Zinc-Deficient 
HLB-Negative 

x 

Zinc-Deficient 
HLB-Positive 

Sample qrt-PCR Starch Sample qrt-PCR Starch Sample qrt-PCR Starch Sample qrt-PCR Starch Sample qrt-PCR Starch
1 40 1.56  21 23.38 24.35  41 40 0.42  61 36.71 11.36  77 23.42 23.66 
2 40 1.61  22 23.14 44.12  42 40 0.57  62 37.37 20.90  78 22.56 4.36 
3 40 0.77  23 21.12 22.71  43 40 0.52  63 40 27.00  79 23.78 0.69 
4 40 0.74  24 22.35 43.05  44 40 0.52  64 40 11.13  80 23.38 13.02 
5 40 1.11  25 22.64 44.74  45 40 0.69  65 37.89 40.30  81 21.69 29.78 
6 40 1.96  26 21.61 20.85  46 40 1.31  66 36 12.79  82 21.35 51.53 
7 38 1.73  27 23.33 68.99  47 40 1.14      83 22.18 8.60 
8 40 1.66  28 22.39 44.02  48 40 1.04  Zinc-Deficient 

HLB-Positive 
 84 25.6 18.25 

9 40 3.37  29 22.06 42.98  49 40 1.44   85 26.93 2.08 
10 40 0.39  30 23.39 38.83  50 37.48 0.54  Sample qrt-PCR Starch  86 22.51 40.07 
11 38.85 1.93  31 21.07 32.09  51 40 0.69  67 22.9 47.12  87 22.41 47.81 
12 40 1.41  32 23.26 42.65  52 39.31 0.84  68 21.33 55.87  88 23.03 67.78 
13 40 1.46  33 24.34 5.68  53 40 0.62  69 21.41 10.69  89 21.25 19.66 
14 40 0.87  34 24.9 24.20  54 40 0.92  70 23.16 22.81  90 23.31 30.35 
15 40 1.31  35 23.39 34.47  55 40 0.72  71 23.35 39.50  91 25.67 22.74 
16 40 1.04  36 22.98 51.38  56 40 0.52  72 21.17 29.83  92 25.34 50.81 
17 40 0.94  37 22.22 54.11  57 40 0.27  73 22.54 14.51  93 23.05 35.02 
18 40 1.29  38 22.81 41.96  58 40 1.58  74 22.29 36.92  94 20.56 45.08 
19 40 2.58  39 23.9 26.78  59 40 0.92  75 21.64 49.03  95 29.24 3.94 
20 40 1.78  40 22.2 41.29  60 40 0.30  76 27.57 27.38  96 24.74 42.48 

 

Figure 6. Images acquired using the image acquisition system with four imaging conditions (‘Hamlin’ dataset). 
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STEP-BY-STEP CLASSIFICATION 
Table 5 lists the best set of features and classifier that re-

sulted in the maximum average accuracy in each step of the 
classification models. The Mahalanobis classifier presented 
the best performance in all three classification steps for the 
‘Hamlin’ dataset and in the first classification step for the 
‘Valencia’ dataset. 

Table 6 lists the best sets of features that were employed 
in the classification steps. Zinc deficiency in the ‘Hamlin’ 
dataset was detected with an average accuracy of 97.5% 
using the top 15 features of all feature groups. The healthy 
samples were identified with 100% accuracy using the 
14 top features, while the highest HLB identification rate 
was 92.9%. The zinc-deficient HLB-negative samples were 
also identified with 100% accuracy using only the top three 
features, which were from the LBP feature group, while the 
highest HLB detection within the zinc-deficient class was 
80%. Healthy and magnesium-deficient samples were iden-
tified with an accuracy of 100.0% at the first and second 
steps of the classification model using the Mahalanobis 
(with the top 13 features) and SVM (with the top two fea-
tures) classifiers, respectively. The HLB-symptomatic sam-
ples were also recognized from zinc-deficient samples us-
ing the linear classifier and the top six features, with an 
average accuracy of 94.5% at the third step of the classifi-
cation model. The best average classification rate (83.3%) 
for HLB identification within the zinc-deficient class was 
obtained using the linear classifier and the top four features. 

Using the best set of features and classifier for each step, 
complete classification models were performed for all sam-
ples in each dataset. Tables 7 and 8 illustrate the step-by-
step classification results for the ‘Hamlin’ and ‘Valencia’ 

 

Figure 7. Example of image segmentation based on general clustering using k-means for an HLB-symptomatic sample. Green and pink colors 
indicate healthy and symptomatic clusters, respectively (‘Hamlin’ dataset). 

Figure 8. Comparison of the results of two segmentation methods
based on general and individual clustering for an HLB-symptomatic
leaf (above) and a zinc-deficient HLB-positive leaf (below). Green and
pink colors indicate healthy and symptomatic clusters, respectively
(‘Hamlin’ dataset). 

 
rately. The opposite situation happened for the bottom sam-
ple in figure 8, in which the image intensity was higher
than the average and the general clustering misclassified
many healthy pixels into a symptomatic cluster. The indi-
vidual clustering was able to more accurately distinguish
the healthy and symptomatic areas in this case as well.
From these data, it was concluded that employing the pixel
values alone did not result in a general criteria with high
recognition accuracy; however, some features, such as tex-
tural features, that describe each sample individually could
play a more effective role in the classification process. 

Table 5. The best set of features and classifier for each step of the classification models.[a] 
Step 
No. Step Description 

TPR 
(%) 

FPR 
(%) 

Best 
Classifier 

No. of Top 
Features 

‘Hamlin’ dataset     
1 Identification of zinc-deficient samples from rest of dataset. 96.7 1.7 Mahalanobis 15 
2 Identification of HLB-positive samples within non-zinc-deficient class. 92.9 0.0 Mahalanobis 14 
3 Identification of HLB-positive samples within zinc-deficient class. 80.0 0.0 Mahalanobis 3 

‘Valencia’ dataset     
1 Identification of healthy and magnesium-deficient samples from rest of dataset. 100.0 0.0 Mahalanobis 13 
2 Identification of healthy samples from magnesium-deficient samples. 100.0 0.0 SVM 2 
3 Identification of HLB-symptomatic samples from zinc-deficient samples. 88.9 0.0 Linear 6 
4 Identification of zinc-deficient HLB-positive samples from zinc-deficient  

HLB-negative samples. 
83.3 16.7 Linear 4 

[a] TPR = true positive rate, and FPR = false positive rate. 
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datasets, respectively. The number of samples classified 
into the correct classes and their classification accuracies 
(in parentheses) are shown in the principal diagonal of the 
table, and the number of incorrect detections in each class 
and their misclassification errors (in parentheses) are 
shown in the other grids. Healthy samples were classified 
with 100% of accuracy in both datasets. The classification 
rates for HLB-symptomatic samples were 100% for the 
‘Valencia’ dataset and 85.7% for the ‘Hamlin’ dataset. 
However, two out of four misclassified HLB-symptomatic 
samples in the ‘Hamlin’ dataset were identified as zinc-
deficient HLB-positive, which means that their HLB infec-
tions were identified correctly. Only one magnesium-
deficient sample in the ‘Valencia’ dataset was misclassified 
in the HLB-symptomatic class, which was a remarkable 
result because magnesium deficiency symptoms in citrus 
leaves are very similar to HLB symptoms. The classifica-
tion rates in the zinc-deficient classes were usually lower 
than in the other classes because zinc deficiency symptoms 
hid the HLB symptoms in HLB-positive leaves. 

Although the nutrient-deficient classes were included in 
the datasets, the main purpose of this study was to detect 
HLB infection and not nutrient deficiency. Therefore, the 
contents of tables 7 and 8 were merged into only two clas-
ses (HLB-positive and HLB-negative) for each dataset (ta-
ble 9). Considering only HLB detection, average classifica-
tion accuracies of 93.1% and 89.6% were achieved for the 
‘Hamlin’ and ‘Valencia’ datasets, respectively. 

DISCUSSION 
This study investigated the effect of starch accumulation 

in HLB-symptomatic citrus leaves on the polarization pla-
nar of light at two specific wavelengths and employed it to 
develop a machine vision based sensing system that was 
able to distinguish between HLB-symptomatic and healthy 
leaves. 

Generally, the starch concentration of healthy sweet or-
ange leaf samples should not exceed 5 to 7 μg mm-2; howev-
er, the ‘Hamlin’ dataset contained one healthy and eleven 
zinc-deficient HLB-negative samples with starch concentra-
tions higher than 7 μg mm-2. The starch concentrations in all 
six zinc-deficient HLB-negative samples of the ‘Valencia’ 
dataset also exceeded 7 μg mm-2. This can be explained as 
either outliers or as HLB-symptomatic leaves not identified 

Table 6. Sets of features used in the step-by-step classification models. The features in each step were ordered based on their ranking, which
indicates the contribution level of each feature to an accurate classification process. 

Step Features 
‘Hamlin’ dataset 

1 LBP entropy, Gray smoothness, LSP uniformity, LBP standard deviation, GLCM cluster shade, GLCM maximum probability,  
LSP third moment, LBP mean, LSP smoothness, Gray mean, Gray entropy, GLCM correlation, Gray standard deviation,  
LSP mean, LSP standard deviation. 

2 LSP mean, Gray entropy, LBP uniformity, LSP standard deviation, Gray smoothness, Gray third moment, LSP third moment,  
LSP entropy, LSP uniformity, LBP mean, Gray uniformity, Gray standard deviation, GLCM homogeneity, LSP smoothness. 

3 LBP smoothness, LBP uniformity, LBP third moment. 
‘Valencia’ dataset 

1 Gray mean, Gray standard deviation, GLCM uniformity, Gray third moment, GLCM inertia, Gray smoothness, GLCM mean,  
GLCM homogeneity, LSP third moment, Gray entropy, Gray uniformity, GLCM cluster shade, GLCM maximum probability. 

2 Gray entropy, Gray maximum probability. 
3 Gray uniformity, Gray maximum probability, GLCM cluster shade, GLCM cluster prominence, LSP standard deviation, GLCM variance.
4 LSP uniformity, LBP mean, GLCM uniformity, LBP standard deviation. 

Table 7. Number of samples in the ‘Hamlin’ dataset classified into each of four classes, classification accuracies, and misclassification errors. 

Prediction 

Actual Class 

Sum Healthy 
HLB- 

Symptomatic 
Zinc-Deficient 
HLB-Negative 

Zinc-Deficient 
HLB-Positive 

Healthy 32 (100%) 2 (7.1%) 0 0 34 
HLB-symptomatic 0 24 (85.7%) 1 (6. 7%) 0 25 

Zinc-deficient, HLB-negative 0 0 14 (93.3%) 3 (20%) 17 
Zinc-deficient, HLB-positive 0 2 (7.1%) 0 12 (80%) 14 

Sum 32 28 15 15 90 

Table 8. Number of samples in the ‘Valencia’ dataset classified into each of five classes, classification accuracies, and misclassification errors. 

Prediction 

Actual Class 

Sum Healthy 
HLB- 

Symptomatic 
Magnesium- 

Deficient 
Zinc-Deficient 
HLB-Negative 

Zinc-Deficient 
HLB-Positive 

Healthy 20 (100.0%) 0 0 0 0 20 
HLB-symptomatic 0 20 (100.0%) 1 (5.0%) 1 (16.7%) 3 (10.0%) 25 

Magnesium-deficient 0 0 19 (95.0%) 0 0 19 
Zinc-deficient HLB-negative 0 0 0 2 (33.3%) 5 (16.7%) 7 
Zinc-deficient HLB-positive 0 0 0 3 (50.0%) 22 (73.3%) 25 

Sum 20 20 20 6 30 96 

Table 9. Number of samples classified into HLB-positive or HLB-
negative classes, classification accuracies, and misclassification errors, 
regardless of nutrient deficiency condition, for the ‘Hamlin’ and 
‘Valencia’ datasets. 

Prediction 
Actual Class 

Sum HLB-Positive HLB-Negative 
‘Hamlin’ dataset    

HLB-positive 38 (88.4%) 1 (2.1%) 39 
HLB-negative 5 (11.6%) 46 (97.9%) 51 

Sum 43 47 90 
‘Valencia’ dataset    

HLB-positive 45 (90.0%) 5 (10.9%) 50 
HLB-negative 5 (10.0%) 41 (89.1%) 46 

Sum 50 46 96 
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by qrt-PCR analysis due to the many inconsistencies brought 
about by internal biotic conditions (Gottwald, 2010). How-
ever, the most reasonable explanation relates to the bacteria 
life cycle. Visible symptoms of starch accumulation (indicat-
ing high starch content) only arise after phloem plugging 
(Schneider, 1968; Etxeberria et al., 2009). During the process 
of phloem plugging and eventual collapse, CLas concentra-
tion declines, resulting in diminished DNA fingerprinting 
and lack of PCR detection (Folimonova and Achor, 2010). At 
some point, this situation results in CLas-infected leaves 
with high levels of starch but no positive PCR signal. The 
reverse situation was also found. One HLB-symptomatic 
sample and one zinc-deficient HLB-positive sample in the 
‘Hamlin’ dataset, as well as four zinc-deficient HLB-positive 
samples in the ‘Valencia’ dataset, contained starch concentra-
tions of less than 7 μg mm-2, which could be considered an 
experimental error. However, the most reasonable explana-
tion relates to the long latency period between HLB infection 
and the appearance of starch accumulation symptoms. In 
such cases, early HLB-infected leaves will give a positive 
PCR signal when the starch accumulation is in its early stag-
es and has not yet reached the threshold level. 

Our determination indicated that the 400 nm (Max), 
400 nm (Min), and 591 nm (Max) images did not provide 
useful information for the detection process. The results 
obtained with 400 nm illumination confirmed the prelimi-
narily results in which the reflectance ratio between healthy 
and HLB-symptomatic samples was close to one. The pixel 
values of the glossy regions of the 591 nm (Max) images 
were very similar to the pixel values of the HLB-
symptomatic or zinc-deficient regions; as a result, the in-
formation in these images was impractical. As expected 
from the preliminarily results (fig. 1), the pixels belonging 
to healthy, HLB-symptomatic, and zinc-deficient regions in 
the 591 nm (Min) images were different (fig. 7), but the 
classification based on these pixel values did not always 
result in increased accuracy (fig. 7). One important reason 
for this discrepancy might be due to the AGC effect, which 
was not completely canceled in the calibration process. 
Leaf color inconsistency was also a minor reason for some 
samples. Consequently, a detection method based on image 
segmentation using a single threshold that can be applied to 
all leaf samples was not promising. 

Most of the image textural descriptors, such as local pat-
tern based textural features, are gray-scale invariant (Ojala 
et al., 1996), and the overall image brightness does not af-
fect them. Hence, they were chosen for use in the detection 
process; as a result, the detection accuracy increased signif-
icantly. Local pattern features (LBP and LSP) included 
more than half of the features that were used for zinc defi-
ciency detection and for HLB detection within the non-
zinc-deficient class (table 5), as well as all three features 
that were used for HLB detection within the zinc-deficient 
class. Gray-scale invariant textural features such as entropy 
(which defines the busy-ness of an image) and smoothness 
and standard deviation (which depend on the image con-
trast) extracted directly from the images were also deter-
mined to be useful in zinc and HLB detection (table 6). It 
was concluded that the symptomatic areas of infected 
leaves generated different measures of image busy-ness and 

contrast compared to healthy leaves. The small contribution 
of GLCM features in all detection processes established 
that the pixels’ spatial relationships in healthy and sympto-
matic samples were not noticeably different compared to 
the other textural descriptors. The Mahalanobis classifier 
resulted in the best accuracies in all classification steps for 
the ‘Hamlin’ dataset and in the first classification step for 
the ‘Valencia’ dataset. 

The HLB detection accuracy within the zinc-deficient 
class was comparatively lower than in the non-zinc-
deficient class for both datasets. This lower accuracy was 
expected because the zinc-deficient leaves already included 
some higher-intensity areas in the 591 nm (Min) images 
that were very similar to HLB-symptomatic areas but unre-
lated to HLB infection. Additionally, according to tables 3 
and 4, the starch accumulations within the zinc-deficient 
classes (mostly in HLB-negative classes) were usually in-
consistent with the corresponding PCR test results. This 
might be another reason for the lower classification rates in 
the zinc-deficient classes. 

In total, five HLB-positive samples in each dataset were 
misclassified in the HLB-negative classes, which led to 
comparatively lower classification accuracies of 88.4%, 
and 90.0% for the HLB-positive classes in the ‘Hamlin’ and 
‘Valencia’ datasets, respectively. Three of these five sam-
ples in the ‘Hamlin’ dataset and all five samples in the ‘Va-
lencia’ dataset were within the zinc-deficient classes, and as 
explained before, HLB detection for zinc-deficient samples 
was less accurate. The measured starch concentrations for 
these samples were 2.63, 9.42, 12.49, 61.77, and 74.11 μg 
mm-2 in the ‘Hamlin’ dataset and 8.60, 10.69, 32.02, 47.12, 
and 51.53 μg mm-2 in the ‘Valencia’ dataset. One of these 
samples contained a starch concentration below the thresh-
old (5 μg mm-2), and the starch concentrations for five oth-
er samples were below the average for the HLB-
symptomatic class (37.4 μg mm-2). Therefore, the compara-
tively low concentration of starch might be a likely reason 
of misclassification. On the other hand, one HLB-negative 
sample in the ‘Hamlin’ dataset and five HLB-negative 
samples in the ‘Valencia’ dataset (all in nutrient-deficient 
classes) were misclassified into the HLB-positive classes. 
Although the CT values for these samples were “undetected” 
(which indicates that they were not infected), their starch 
concentration was 0.52, 8.0, 10.69, 11.13, 12.79, 20.90, and 
40.30 μg mm-2, which was above the threshold for five of 
them. Therefore, there is a possibility that the qrt-PCR analy-
sis did not recognize their HLB infection, given the many 
stated inconsistencies outlined by Gottwald (2010), or their 
starch concentrations were elevated due to a different biolog-
ical reason, a different disease, or a deficiency. 

None of the confirmation methods, including crop scout-
ing, starch measurement, and qrt-PCR analysis, are 100% 
accurate, and no absolute, precise detection approach has 
yet been reported. Consequently, the evaluation of the pro-
posed method was certainly under the influence of this in-
accuracy. Additionally, the incomplete gain adjustment pro-
cess might be another source of error. Using a camera 
without an AGC feature may resolve this problem and in-
crease the accuracy. 
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The results of this study demonstrate that starch accu-
mulation due to HLB infection can be detected using polar-
izing filters with citrus leaf images taken at a wavelength of 
591 nm. The starch accumulation in HLB-symptomatic 
leaves rotates the polarization planar of the light mostly 
around the 600 nm waveband, and a reflectance measure-
ment system was capable of sensing this polarization rota-
tion. However, this rotation was more clearly detected us-
ing textural features extracted from leaf images acquired 
with a commercial camera and proper use of polarizing 
filters. Using additional classes of nutrient-deficient sam-
ples that had visual symptoms similar to HLB infection 
verified that this system detected the starch accumulation in 
citrus leaves regardless of their visual color. 

Laboratory-based detection methods, such as qrt-PCR 
analysis and starch measurement, may have higher accura-
cy; however, they are time consuming, labor intensive, and 
relatively expensive. Using spectroscopic approaches, 
Hawkins et al. (2010), Sankaran et al. (2011), and Pereira et 
al. (2011) achieved up to 95% of accuracy in HLB detec-
tion; however, their proposed methods required expensive 
equipment and trained staff. Li et al. (2013) showed that 
HLB detection accuracy could increase up to 86% using an 
improved airborne image analysis method; however, air-
borne imaging is not affordable by every grower, and the 
weather can limit its performance. In our study, an easy and 
inexpensive method was presented that can be used as a 
real-time, portable, in-field diagnostic tool with acceptable 
accuracy. Additionally, the unique characteristics in polar-
ized light of the starch that accumulates in HLB-
symptomatic leaves was used successfully for the first time 
in a real-time detection application. 

CONCLUSION 
In this study, an image acquisition system was devel-

oped to acquire citrus leaf images at 400 nm and 591 nm 
with polarized filters in parallel (maximum reflectance) and 
perpendicular (minimum reflectance) directions to the po-
larization planar of the light. It was determined that the 
images at 591 nm with minimum reflectance contained 
useful information for HLB detection. Using step-by-step 
classification models and different sets of textural features, 
overall HLB detection accuracies of 93.1%, 89.6% were 
obtained for the ‘Hamlin’ and ‘Valencia’ datasets, respec-
tively. The results of this study demonstrate that the starch 
accumulation in HLB-symptomatic citrus leaves can be 
identified using the capability of starch to rotate the polari-
zation planar of light. Considering that a simple, inexpen-
sive imaging device in the visible range was used, and that 
there were two nutrient-deficient classes in the experiment, 
which made the detection more complicated, it can be con-
cluded that this method can be used effectively in detecting 
HLB-positive leaves. 
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