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Abstract. Huanglongbing (HLB) or citrus greening is an extremely severe disease in citrus trees which is 
incurable and causing a huge loss in the citrus industry in Florida. However, early detection and removal of the 
infected canopies may decrease spreading of the disease and avoid an enormous loss. The disease symptoms 
are not clear in the early stages of infection. Subjective disease detection methods such as ground scouting 
and other objective means are also either inaccurate or costly and time consuming. This paper introduced an 
easy, inexpensive, fast, and accurate method of HLB detection which is more applicable and affordable for 
citrus growers. A customized image acquisition system was developed to acquire images of citrus leaves 
(Valencia) at a waveband of 591 nm. Polarized filters were used in both illumination and imaging system to 
highlight the HLB disease symptoms. Several types of textural features were extracted from the leaf images 
and the best sets of features which could describe the infection characteristics were ranked using five different 
feature selection methods. The performances of seven classifiers were evaluated in a step by step 
classification approach. Since HLB symptoms are similar to some nutrient deficiencies, magnesium and zinc 
deficient samples were also included in the classification process. Healthy and HLB symptomatic samples were 
identified with an accuracy of 100%; however, some of the nutrient deficient samples were misclassified into 
other classes using this method. The overall accuracies of 86.5% and 89.6% were achieved in five-class 
identification and two-class (healthy or HLB) detection, respectively. 

Keywords. Classification, HLB, Image Processing, Polarized Light, Textural Features.  
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Introduction 
Citrus is a very important crop in Florida. In the 2010-2011 season, 7.4 million tons of citrus were produced in 
Florida which included 63 percent of the total United States citrus production (Putnam, 2012). Citrus greening 
or Huanglongbing (HLB) is a very severe disease which has decreased the citrus production in Florida. The 
disease is caused by the insect-vectored α-protobacterium Candidiatus Liberibacter Asiaticus (Mishra et al., 
2007). Blotchy mottle on leaf, yellow shoots, inverted color, and uneven fruits are some of the disease 
symptoms; however, it is unlikely that they would appear altogether in the same tree. The disease reduces the 
production, degrades the fruit quality and finally destroys the tree (Gonzalez et al., 2012). Although, no 
practical treatment has been reported for the disease yet, detecting and removing the infected trees can avoid 
spreading the infection to the other trees. 

Many studies have focused on HLB detection and several methods have been tried for this purpose. In 1996, 
polymerase chain reaction (PCR) method was proven to be an effective HLB detection method (Hocquellet et 
al., 1999). Li et al. (2006) also developed a real-time and quantitative PCR assay method and examined it 
successfully for HLB confirmation in Florida. However, the PCR method is a laboratory based approach which 
is expensive and time consuming, and so cannot be used in a real-time in-field application. Currently, growers 
try to find noticeable HLB symptoms to identify the infected trees. However, it is not easy to differentiate the 
symptoms resulting from nutrient deficiency and HLB. Therefore, a portable and real-time sensing system is 
needed, which is able to identify the HLB symptoms and differentiate them from nutrient deficiencies. This 
paper presents an applicable detection approach for this purpose. 

Early and quick detection has been considered widely in recent studies. The use of near-infrared and mid-
infrared spectroscopy, for example, has been investigated to identify the HLB infected trees from healthy or 
nutrient deficient ones under laboratory and field conditions (Mishra et al., 2007; Mishra et al., 2011; Mishra et 
al., 2012; Sankaran and Ehsani, 2011; Sankaran et al., 2010; Sankaran et al., 2011). 

Airborne hyperspectral and multispectral imaging approaches have also been employed in HLB disease 
detection (Kumar et al., 2012; Li et al., 2012a; Li et al., 2011; Li et al., 2012b). Based on their results, the 
difference between the reflectance signatures of HLB and healthy trees can be used to highlight the severely 
symptomatic areas. Some researchers examined the capability of laser-induced fluorescence spectroscopy 
and imaging for citrus disease identification (Belasque Jr. et al., 2008; Lins et al., 2009; Marcassa et al., 2006). 
Pereira et al. (2011), for instance, achieved an accuracy of 95% for detection of HLB symptomatic in early 
stages from healthy samples. Microscopic image from the citrus leaf turned out to be a capable method to 
identify the HLB symptoms from nutrient deficiencies by Kim et al. (2009). They extracted color co-occurrence 
features from the leaf images and obtained the overall accuracy of 97% using a selected feature-set and a 
discriminant classifier. 

Gonzalez et al. (2012) proved that the starch content in HLB-infected leaves increases compared to the healthy 
ones. Their results indicated that the accumulated starch in HLB symptomatic leaves were not biochemically 
similar to the healthy leaves’ starch which was accumulated as a result of a mechanical injury. Therefore, the 
starch measurement in citrus leaves can be considered as a HLB detection method. Furthermore, starch was 
determined to be able to rotate the polarization planer of light (McMahon, 2004). This capability of starch on 
polarized light was previously evaluated by the authors and an imaging system which was able to highlight the 
starch accumulated on HLB leaf was developed. The system was examined for Hamlin variety of citrus in four 
classes of healthy, HLB symptomatic, zinc deficient, and HLB symptomatic-zinc deficient samples and the 
overall accuracy of 90% was achieved. The classification rate increased to 93% when the HLB detection was 
considered as the purpose of the classification. 

In this study, we evaluated the same method for another citrus variety (Valencia) to confirm the robustness of 
our proposed system. We also added one more class of magnesium deficient samples to test our system in a 
more challenging situation. 

The main objective of this study was to evaluate a machine vision based sensing system for identification of 
HLB symptomatic citrus leaves from healthy and nutrient deficient samples. The particular objectives were: 

 To compare the performance of the proposed method for two different varieties of citrus. 
 To evaluate the system capability of discriminating between HLB and nutrient deficiency symptoms. 
 To assess the capabilities of image textural features for HLB detection. 

Materials and Methods 
The starch accumulation in the HLB symptomatic leaves can be emphasized in images captured with a narrow 
band illumination and a polarizing filter. Because starch rotates the polarization planer of the light, this effect 
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can be used to differentiate between HLB symptoms and nutrient deficiency symptoms. In May 2010, a 
preliminarily experiment was conducted in the Citrus Research and Education Center (CREC) in Lake Alfred 
and it was determined that the maximum and minimum polarization rotation caused by accumulated starch in 
HLB symptomatic leaves mostly happened at 600 nm and 400 nm wavebands, respectively. Based on these 
results, an imaging system was designed and tested for the Hamlin variety of citrus. The classification results 
showed that the proposed system is able to differentiate HLB symptomatic leaves from healthy and zinc 
deficient leaves. In order to confirm the reliability of the proposed method, it was examined with a different 
citrus variety (Valencia) and also additional nutrient deficiency classes. 

Data Collection 

A total of 96 citrus leaf samples of the Valencia variety in four classes of healthy, HLB symptomatic, zinc 
deficient, and magnesium deficient leaves were collected from the CREC grove in December, 2012. In order to 
identify the HLB infected samples, a PCR test (Sankaran et al., 2010) was conducted for each individual leaf in 
the diagnostic laboratory of the United States Sugar Corporation (USSC)/Southern Gardens located in 
Clewiston, Florida. The starch concentration for each leaf was also measured in µg starch/mm2 based on the 
method introduced by Gonzalez et al. (2012). The starch concentration value of 5 µg/mm2 was defined as the 
threshold to evaluate the HLB infection status of samples, as it was suggested by them. 

Image Acquisition 

An image acquisition system was designed to take citrus leaf images in a controlled illumination system. Four 
high power LEDs (LZ1-00A100, LED Engine, San Jose, California) at 591 nm were used for illumination 
purpose. A monochrome camera (EBC-B100G, EZ SPY CAM, Los Angeles, California) was also used to 
capture the leaf reflectance with a good spectral sensitivity characteristic at 591 nm (Sony CCD image sensors, 
ICX404AL) and a horizontal resolution of 420 TV lines. Since the camera output was analog, a USB frame 
grabber (Model 2255, Sensory, Tigard, Oregon) was employed to produce digital images with a 640×480 pixel 
resolution. Two polarizing filters (Visible linear polarizing laminated film, Edmund Optics, Barrington, New 
Jersey) in perpendicular directions were employed; one was placed in front of the LEDs and the other was 
mounted in front of the camera lens. Therefore, the camera was able to capture the minimum reflectance of the 
leaf; however, since the HLB symptomatic leaves contained starch accumulation, which rotates the polarization 
planer of the light, the HLB symptomatic areas were expected to be highlighted with brighter gray levels. The 
imaging and illumination components were assembled in a wooden box with 16 cm length, 14 cm width, and 
47.5 cm height. The distance between the camera lens and the leaf was 39 cm. 

Preprocessing 

Automatic gain control (AGC) is a camera capability which increases the average gain if the image is too dim 
and reduces the gain if the image is too bright (Fowler, 2004). AGC is typically a non-deactivatable feature for 
the commercial cameras. Since the real reflectance of the leaf was required for this study, the AGC effect was 
not favorable. In order to cancel the AGC effect on the images, a similar background was used in all the 
images. Then, they were calibrated using a ratio of an average of background gray values in all the images to 
an average of those in each image, as a gain multiplier for each individual image.  

Feature Extraction 

MATLAB (version R2011a, MathWorks, Natick, MA, USA) software was used for all steps of feature extraction, 
features selection, data analysis, and classification. A total of 30 textural features in four groups were extracted 
from the images. The features included statistical histogram features from gray level, local binary pattern 
(LBP), and local similarity pattern (LSP) matrices as well as gray level cooccurrence matrix (GLCM) features. 
Equations 1 through 8 show the formulas which were used to extract the statistical features from the 
normalized histogram (݌ሺ݅ሻ) of each image’s gray level matrix when the gray level (ranged from 0 to 255) was 
shown with ݅. 

Mean ߤ ൌ ∑ ሺ݅ሻ௜݌݅  (1) 

Standard Deviation (STD) ߪ ൌ ඥ∑ ሺ݅ െ ሺ݅ሻ௜݌	ሻଶߤ  (2) 

Third Moment ∑ ሺ݅ െ ሺ݅ሻ௜݌	ሻଷߤ  (3) 

Smoothness 1 െ 1/ሺ1 ൅  ଶሻ (4)ߪ

Uniformity ∑ ሺ݅ሻଶ௜݌  (5) 

Entropy െ∑ log	ሺ݅ሻ݌ 	ሼ݌ሺ݅ሻሽ௜  (6) 
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Maximum Gray Level Probability ሺ݅|	݌ሺ݅ሻ ൌ  ሻ (7)ݔܽ݉

Range ሼmax 	ሺ݅|	݌ሺ݅ሻ ് 0ሻ െ	min 	ሺ݅|	݌ሺ݅ሻ ് 0ሻሽ (8) 

LBP is an innovative image textural descriptor which was first introduced by Ojala et al. (1996). In this method 
each matrix element in a 3×3 neighborhood is compared to the central element and substituted by 1 if it is 
greater than the value of the central element, and by 0 if it is smaller than the central element. The thresholded 
values are then assumed to be an 8-bit binary number and its corresponding decimal number substitutes the 
central element. Similarly, in LSP the neighborhood elements are compared with the central element; however, 
the relation between each neighbor element and the central element is described with a 2-bit code. In this 
method the neighborhood elements are substituted with 00, 01, or 10 if they are below, within or above a 
defined similarity range, respectively. Then each element code is multiplied by its respective weight (Pourreza 
et al., 2011). LBP and LSB employ the same approach to prevent the variation caused by code rotation. The 
rotational invariance is obtained by rotating the codes to achieve their least possible decimal values. The 
equations 1 through 6 were also used to extract the statistical features from the normalized histogram of LBP 
and LSP matrices.  

GLCM is a 256×256 matrix (for an 8-bit gray level image) in which each ሺ݅, ݆ሻ element shows the number of 
times that two gray values of ݅ and ݆ were adjacent in any of four principal directions (0°, 45°, 90°, and 135°). 
Equations 9 through 18 show the formulas which were used to extract the textural features from the normalized 
GLCM matrix (Pourreza et al., 2012).  

Mean ߤ ൌ ∑ ݅݃ሺ݅, ݆ሻ௜,௝  (9) 

Variance ߪଶ ൌ ∑ ሺ݅ െ ,݃ሺ݅	ሻଶߤ ݆ሻ௜,௝  (10) 

Entropy െ∑ ݃ሺ݅, ݆ሻ	log 	ሼ݃ሺ݅, ݆ሻሽ௜,௝  (11) 

Uniformity ∑ 	ሼ݃ሺ݅, ݆ሻሽଶ௜,௝  (12) 

Homogeneity ∑ ݃ሺ݅, ݆ሻ/ ሼ1 ൅ ሺ݅ െ ݆ሻଶሽ 	௜,௝  (13) 

Inertia ∑ ሺ݅ െ ݆ሻଶ	݃ሺ݅, ݆ሻ௜,௝  (14) 

Cluster Shade ∑ ሺ݅ ൅ ݆ െ ,݃ሺ݅	ሻଷߤ2 ݆ሻ௜,௝  (15) 

Cluster Prominence ∑ ሺ݅ ൅ ݆ െ ,݃ሺ݅	ሻସߤ2 ݆ሻ௜,௝  (16) 

Maximum Probability maxሼ݃ሺ݅, ݆ሻሽ (17) 

Correlation ∑ ሺ݅ െ ሻሺ݆ߤ െ ,ଶ݃ሺ݅ߪ/ሻߤ ݆ሻ௜,௝  (18) 

When ݃ሺ݅, ݆ሻ was the normalized GLCM matrix and ݅ and ݆ were the indices of each normalized GLCM matrix 
element. 

Data Analysis and the Classification Model 

Based on the PCR results, all samples were categorized into five classes of healthy, HLB symptomatic, 
magnesium deficient, zinc deficient, and zinc deficient & HLB symptomatic samples. Then a principal 
component analysis (PCA) was performed on the data and all 96 samples were plotted using the first two 
principal components to visualize them in a two dimensional scatter plot. It was inferred from this scatter plot 
that the classification can be done in several 2-class identifications steps. Figure 1 illustrates the classification 
model which was designed based on the principal component analysis. At the first step, all samples were 
classified into two merged classes of healthy or magnesium deficient samples, and HLB symptomatic and zinc 
deficient samples. Then the samples at the left side of the model were classified into healthy and magnesium 
deficient classes. Samples at the right side of the model were also classified into two classes of HLB 
symptomatic and zinc deficient. Finally at the last step, HLB symptomatic samples were detected within the 
zinc deficient class.  

The performances of seven classifiers including linear, naive Bayes linear, Mahalanobis, quadratic, naive 
Bayes quadratic, support vector machine (SVM), and K-nearest neighbors (KNN) were evaluated in this study. 
To prove that the obtained classification results do not depend on the validation and training sets, a K-fold 
cross validation approach (Huang and Chang, 2007) with five folds was used in all classification steps. For this 
purpose, the dataset in each step was randomly separated in five folds; one for validation and four for training.  

In order to find the best set of features for each step of the classification model, five different feature ranking 
methods containing t-test, entropy (or Kullback-Leibler distance), Bhattacharyya distance (or Chernoff bound), 
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ROC (receiver operating characteristic), and Wilcoxon test (or Mann-Whitney) were conducted using 
rankfeatures.m function in Matlab and evaluated. Then, all seven classifiers were trained using different 
number of top features which were ranked with each of the five ranking methods to determine the best set of 
features and classifier with the highest accuracy. Therefore, a total of 1050 different features-classifier sets (30 
different number of top features × five ranking methods × seven classifiers) were compared to each other and 
the classifier which employed the minimum number of top features to yield the most accurate rate was selected 
for each step. 

 
Figure 1. The step by step classification model which was designed based on the principal component analysis. 

Classification 

In this part, the whole classification model was run for each sample to classify it in each of five classes. For this 
purpose, all the data-set was divided randomly into two equal sets. Then the whole classification model was 
performed on the first half while the second half was used as the training set. The classification model was 
repeated for the second half, and this time the first half was used as the training set. Therefore, the results 
were available for all 96 samples. The best set of features and classifiers which were determined in the 
previous part were used in each step of the classification. 

Results 

PCR test and Starch Measurement Results 

The PCR results were used to confirm the HLB infection of samples as a reference for creating the training and 
validation sets in the classification steps. Five different classes including healthy (20 samples), HLB 
symptomatic (20 samples), magnesium deficient (20 samples), zinc deficient (6 samples), and zinc deficient-
HLB symptomatic (30 samples) leaves were defined based on the PCR results. Figure 2 shows some samples 
of each class. The starch measurement was also conducted for all samples. The results showed that the starch 
concentration in all healthy samples was below the defined threshold with an average of 1.48 µg/mm2. All 
samples except healthy class samples contained some yellow or light green areas and usually with similar 
patterns. For example, HLB symptomatic and magnesium deficient classes included an analogous light green 
symptom. However, the starch measurement results confirmed that the starch concentration in all magnesium 
deficient leaves was below 2 µg/mm2 (with an average of 0.78 µg/mm2), while the starch level in all HLB 
symptomatic samples exceeded the defined threshold (with an average of 37.46 µg/mm2). It can be concluded 
that the light green symptom in the magnesium deficient class was not due to the starch concentration despite 
the fact that it looked similar to HLB symptom. The HLB infection within the zinc deficient samples was also 
extremely difficult to identify, since the zinc deficiency symptoms buried the HLB symptoms. Although the PCR 
results did not identify any HLB infection in six zinc deficient samples, the starch concentration exceeded the 
defined threshold in all six samples of this class with an average of 20.58 µg/mm2. However, it was still less 
than the starch concentration average in HLB symptomatic leaves within the zinc deficient class which was 
29.71 µg/mm2. 

Healthy 
Mg deficient1 

HLB Symptomatic
Zn deficient2 

HLB & Zn deficient3

Healthy Mg deficient HLB Symptomatic HLB & Zn deficientZn deficient

Zn deficient 
HLB & Zn deficient

All Samples

1. Mg deficient: Magnesium deficient 
2. Zn deficient: Zinc deficient 
3. HLB & Zn deficient: HLB symptomatic and zinc deficient
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Preprocessing 

All images were calibrated so the averages of their background pixel values were similar after the calibration. 
Using the suggested gain adjustment approach, the AGC effect was partially cancelled because the images 
were calibrated to be analogous and they did not represent the original reflectance yet. However, since the 
textural features were used in this study, the relative variation in pixel values was good enough for the rest of 
the analysis, because they do not depend on the original reflectance. 

 
Figure 2. Leaf samples images in five different classes. Three samples are shown for each class to illustrate the symptoms 

similarity and variability for each situation. HLB infection is almost impossible to be identified within the zinc deficient samples. 

Classification 

The classification model was designed to identify the five classes in four different steps as described in the 
materials and methods. The best combination of classifier and features in each step was determined based on 
its performance compared to other combinations (table 1). Mahalanobis classifier was able to identify the 
healthy and magnesium deficient leaves from the rest of samples with an accuracy of 100%. The top 13 
features (ranked with Wilcoxon method) which were used in this classifier included six gray features (mean, 
STD, third moment, smoothness, entropy, and uniformity), six GLCM features (uniformity, inertia, mean, 
homogeneity, cluster shade, and maximum probability), and one LSP feature (third moment). Healthy and 
magnesium deficient samples were also classified with an accuracy of 100% using two gray features (ranked 
with T-Test method) including entropy and maximum probability. On the right side of the model, a linear 
classifier was able to identify HLB infected leaves from all zinc deficient samples with an accuracy of 94.4%. 
The top six features (ranked with Bhattacharyya method) included two gray features (uniformity and maximum 
probability), three GLCM features (cluster shade, cluster prominence, and variance) and one LSP feature 
(STD). Finally, the HLB infection within the zinc deficient samples was detected with an accuracy of 83.3% 
using linear classifier and top four features (ranked with entropy method) including one LSP feature 
(uniformity), two LBP features (mean and STD) and one GLCM feature (uniformity). 
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Table 1. The best combinations of features and classifier in each step of the classification model. 

Step   Class 1   Class 2 Classifier Number of top Features Rank Method Accuracy 

1 
- Healthy 
- Magnesium deficient 

- HLB symptomatic 
- HLB symptomatic & 
  Zinc deficient 
- Zinc deficient 

Mahalanobis 13 Wilcoxon 100% 

       

2 Healthy Magnesium deficient SVM 2 T-Test 100% 

       

3 
- Zinc deficient 
- HLB symptomatic & 
  Zinc deficient 

HLB symptomatic Linear 6 Bhattacharyya 
94.4% 

 

       

4 Zinc deficient 
HLB symptomatic & 
Zinc deficient 

Linear 4 Entropy 83.3% 

The best combinations of classifier and features which were determined in the previous phase were employed 
to run the whole classification model on the dataset. Table 2 illustrates the classification results of the proposed 
model. The classification rates were shown in the diagonal of the table, and the rest of the grids demonstrated 
misclassification errors. Healthy and HLB symptomatic samples were identified correctly with the maximum 
accuracy of 100%. Magnesium deficiency was identified with an accuracy of 95% and only one sample of this 
class was misclassified in the HLB symptomatic class. Zinc deficiency was also identified with an accuracy of 
88.9%, however, 66.7% of those zinc deficient samples which were not HLB infected based on the PCR result, 
were misclassified into either HLB symptomatic or zinc deficient & HLB symptomatic classes. The high 
misclassification error in the non-HLB symptomatic zinc deficient class was probably because of the high level 
of starch concentration (20.58 µg/mm2 in average) in the samples, and since the proposed method was 
designed to highlight the starch in the leaf; their misclassification in the HLB symptomatic classes was 
expected. They can also be justified as HLB symptomatic samples which were not identified by PCR test 
because of the several inconsistencies caused by internal biotic conditions (Gottwald, 2010). The comparably 
high classification rate in magnesium deficient class also supported this idea, since the starch concentration 
levels in this class were considerably below the threshold (0.78 µg/mm2 in average) and the PCR results 
confirmed that as well. 

Table 2. Number of samples classified into each of five classes and their corresponding classification accuracies or 
misclassification errors. 

Actual class  

Healthy 
Magnesium 

deficient 
Zinc 

deficient 
Zinc deficient & 

HLB symptomatic 
HLB 

symptomatic 
Sum 

P
re

di
ct

io
n 

Healthy 
20 

(100%) 
0 0 0 0 20 

Magnesium 
deficient 

0 
19 

(95%) 
0 0 0 19 

Zinc deficient 0 0 
2 

(33.3%) 
5 

(16.7%) 
0 7 

Zinc deficient & 
HLB symptomatic 

0 0 
3 

(50%) 
22 

(73.3%) 
0 25 

HLB symptomatic 0 
1 

(5%) 
1 

(16.7%) 
3 

(10%) 
20 

(100%) 
25 

 Sum 20 20 6 30 20 96 

 

The main purpose of this study was to identify the HLB symptomatic samples, and so in another evaluation, the 
nutrient deficiency of samples was disregarded and the results in the table 2 was merged into only two main 
classes of healthy and HLB symptomatic. Table 3 shows the classification accuracies and misclassification 
errors as well as the number of samples identified in each class, while only HLB detection was considered. The 
results showed that only five samples of each class were misclassified in the other class. The overall accuracy 
of 89.6% was achieved when only HLB detection was considered which included the accuracies of 90% for 
HLB class and 89.1% for healthy class.  Four out of five false positive samples were actually zinc deficient 
leaves which were identified as the non-HLB symptomatic by PCR test but contained high level of starch 
accumulation. Since the starch measurement results contradicted the PCR results for these samples, their 
infection status could be considered questionable. All false negative samples were also zinc deficient leaves 
which their HLB infection was not identified using this method. Training the classifier using these zinc deficient 
samples with questionable HLB statuses might be another factor which decreased the overall accuracy.  
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Table 3. Number of samples classified into each of healthy or HLB symptomatic classes and their corresponding classification 
accuracies and misclassification errors (%), the nutrient deficiency was disregarded in this table. 

Actual class 

P
re

di
ct

io
n 

HLB Healthy sum 

HLB 
45 

(90%) 
5 

(10.9%) 
50 

Healthy 
5 

(10%) 
41 

(89.1%) 
46 

sum 50 46 96 

Diagnostic approaches such as PCR test, starch measurement, and crop scouting are not absolutely accurate, 
and there is no 100% precise detection method that has been reported yet. Therefore, the assessment of the 
suggested method was definitely affected by this imprecision. 

Combination of polarizing filters and narrow band imaging was confirmed to be able to highlight the HLB 
infection symptom (starch accumulation) in the citrus leaf. In the previous study, the same method was applied 
to the Hamlin variety of citrus and the overall accuracy of 91% was achieved for four-class identification. We 
added one more class of magnesium deficiency in this study and applied the method on the Valencia variety 
and obtained the overall accuracy of 86.5%. The zinc deficient classes in both studies decreased the overall 
accuracy because either the zinc deficiency symptoms buried the HLB symptoms or their HLB statuses were 
questionable. If the zinc deficiency classes were disregarded in this study, the overall accuracy would increase 
to 98.3% for three-class (healthy, HLB symptomatic, and magnesium deficient) identification. 

Conclusion 
The results of this study suggested that the polarization planer rotation caused by the starch accumulated in 
the HLB infected citrus leaf can be effectively used for HLB detection. They also confirmed the results of the 
previous study which was conducted with a different variety of citrus. The wavelength of 591 nm was 
determined as a potential waveband in the visible range for the disease detection. Textural descriptors such as 
gray, GLCM, LBP, and LSP features were determined powerful tools to detect the polarization planer rotation 
caused by starch accumulation. However, gray and GLCM features contributed more effectively to the 
classification steps compared to the LBP and LSP descriptors. The magnesium deficiency which caused  
similar symptoms to HLB infection was identified with an excellent accuracy. It was determined that the HLB 
detection within the zinc deficient samples was not as accurate as the other classes, mostly because their HLB 
infection statuses were not confirmed precisely. However, it can be inferred from the overall accuracy that this 
method can be successfully employed in a fast and easy HLB detection application. 
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