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Introduction

Motivation:
• The steadily increasing global population.

• The decreasing availability of agricultural workers.

• Fertigation and yield prediction are critical tasks in agriculture.

• Plants and fruits should be sprayed or counted exactly once.

Context:

• The use of agricultural robots is still under-explored.

• Great part of the perception systems rely on computer vision.

• Modern computer vision makes use of deep learning models.

• Tracking in agricultural scenarios imposes additional challenges such
as homogeneity of objects.

Case Study Dataset

LettuceMOT [1]

• Sequences: 8

• Navigation types: 3

• Instances: 707

• Frames: 5466

• Annotations: 42735

Baseline & Experiments

LettuceMOT [1]: Training with straight1 and straight3. Testing on
the remaining sequences.

LettuceTrack [2]: Training with straight3 and straight4. Testing on
the remaining sequences.

Approach

Global framework: Improved Tracktor [3] + spatial association module.
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Definitions:
Name Description

It frame at time t
Kt keypoints found for frame at

time t
Bt bounding boxes for active

tracks at time t
B∗t bounding boxes for potential

new tracks at time t
Xt global camera position at

time t
Hu,v transformation between

camera positions at u and v
bk
t bounding box for track k at

time t
skt confidence scores for track k

at time t
Dt set of detections at time t

Plant Tracktor: Tracking by detection inspired in [3] adapted for plant tracking.
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Quantitative Results

Dataset Method HOTA IDF1 Dataset Method HOTA IDF1

B&F1
LettuceTrack [2] 76.81 85.3

B&F2
LettuceTrack [2] 70.32 81.9

Ours 98.1 98.6 Ours 98.1 98.4

O&I1
Best in LettuceMOT [1] 65.6 58.7

O&I2
Best in LettuceMOT [1] 52.9 46.2

Ours 74.11 61.3 Ours 72.6 58.1

straight1
Best in LettuceMOT [1] 80.0 94.0

straight3
- - -

Ours 98.5 98.7 Ours 98.2 98.6

straight2
Best in LettuceMOT [1] 87.2 94.7

straight4
Best in LettuceMOT [1] 84.4 92.7

Ours 98.2 98.5 Ours 97.1 95.5

Qualitative Illustration

Leveraging spatial relationship amongst plants:

B&F O&I Straight

Conclusions

• The tracking-by-detection paradigm is well-suited for related agri-
cultural tracking problems.

• The novel method for spatial association improves tracking perfor-
mance as long as at least one object remains visible to the camera.

• The tracking paradigm offers a framework to convert detection
datasets into tracking datasets.
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