

OCTOBER 1 - 5, 2023

IEEE/RSJ International Conference on Intelligent Robots and Systems

Introduction

Motivation:

- The steadily increasing global population.
- The decreasing availability of agricultural workers.
- Fertigation and yield prediction are critical tasks in agriculture.
- Plants and fruits should be **sprayed or counted exactly once**.

Context:

- The use of agricultural robots is still under-explored.
- Great part of the perception systems rely on computer vision.
- Modern computer vision makes use of deep learning models.
- Tracking in agricultural scenarios imposes additional challenges such as homogeneity of objects.

Case Study Dataset

LettuceMOT [1]

- Sequences: 8
- Navigation types: 3
- Instances: 707
- Frames: 5466
- Annotations: 42735

Baseline & Experiments

LettuceMOT [1]: Training with **straight1** and **straight3**. Testing on the remaining sequences.

LettuceTrack [2]: Training with straight3 and straight4. Testing on the remaining sequences.

Multiple Plant Tracking for Precision Agriculture Applications

Byron Hernandez and Henry Medeiros

Department of Agricultural and Biological Engineering University of Florida

Quantitative Results

Dataset	Method	HOTA	IDF1	Dataset	Method	HOTA	IDF1
B&F1	LettuceTrack [2]	76.81	85.3	B&F2	LettuceTrack [2]	70.32	81.9
	Ours	98.1	98.6		Ours	98.1	98.4
O&I1	Best in LettuceMOT [1]	65.6	58.7	O&I2	Best in LettuceMOT [1]	52.9	46.2
	Ours	74.11	61.3		Ours	72.6	58.1
straight1	Best in LettuceMOT [1]	80.0	94.0	straight3	_	-	_
	Ours	98.5	98.7		Ours	98.2	98.6
straight2	Best in LettuceMOT [1]	87.2	94.7	straight4	Best in LettuceMOT [1]	84.4	92.7
	Ours	98.2	98.5		Ours	97.1	95.5

Qualitative Illustration

Leveraging spatial relationship amongst plants:

- cultural tracking problems.
- datasets into tracking datasets.

- Plant Science, vol. 13, 2022.
- Frontiers in Plant Science, vol. 13, 2022.
- 951, 2019.

Conclusions

• The tracking-by-detection paradigm is well-suited for related agri-

• The novel method for spatial association improves tracking performance as long as at least one object remains visible to the camera.

• The tracking paradigm offers a framework to convert detection

References

[1] N. Hu, S. Wang, X. Wang, Y. Cai, D. Su, P. Nyamsuren, Y. Qiao, Y. Jiang, B. Hai, and H. Wei, "LettuceMOT: A dataset of lettuce detection and tracking with re-identification of re-occurred plants for agricultural robots," Frontiers in

[2] N. Hu, D. Su, S. Wang, P. Nyamsuren, Y. Qiao, Y. Jiang, and Y. Cai, "Lettuce-Track: Detection and tracking of lettuce for robotic precision spray in agriculture,"

[3] P. Bergmann, T. Meinhardt, and L. Leal-Taixe, "Tracking without bells and whistles," in IEEE/CVF International Conference on Computer Vision, pp. 941-