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Abstract: For a good interpretation of radar backscatter sensitivity to vegetation water dynamics,
we need to know which parts of the vegetation layer control that backscatter. However, backscatter
sensitivity to different depths in the canopy is poorly understood. This is partly caused by a lack of
observational data to describe the vertical moisture distribution. In this study, we aimed to understand
the sensitivity of L-band backscatter to water at different heights in a corn canopy. We studied changes
in the contribution of different vertical layers to total backscatter throughout the season and during
the day. Using detailed field measurements, we first determined the vertical distribution of moisture
in the plants, and its seasonal and sub-daily variation. Then, these measurements were used to define
different sublayers in a multi-layer water cloud model (WCM). To calibrate and validate the WCM,
we used hyper-temporal tower-based polarimetric L-band scatterometer data. WCM simulations
showed a shift in dominant scattering from the lowest 50 cm to 50–100 cm during the season in all
polarizations, mainly due to leaf and ear growth and corresponding scattering and attenuation. Dew
and rainfall interception raised sensitivity to upper parts of the canopy and lowered sensitivity to
lower parts. The methodology and results presented in this study demonstrate the importance of
the vertical moisture distribution on scattering from vegetation. These insights are essential to avoid
misinterpretation and spurious artefacts during retrieval of soil moisture and vegetation parameters.

Keywords: vertical distribution; vegetation water content; dew; radar; backscatter; interception;
water cloud model; multi-layer

1. Introduction

Multiple experimental studies have demonstrated that radars operating at different
frequencies show substantial temporal differences in their backscatter from vegetated land,
both on seasonal timescales [1–3] and sub-daily timescales [2,4]. Higher frequencies gener-
ally show lower sensitivity to soil moisture under the foliage because of higher attenuation
by the vegetation layer [5–7]. This depends to a great extent on the presence of moisture in
the vegetation layer. It has been shown that these frequency-dependent differences in pene-
tration depth could potentially be used to disentangle soil and vegetation contributions to
the backscatter signal with multi-frequency radars [8]. Moreover, recent studies argue that
multi-frequency radars have the potential to be used for determining water content across
different heights in the canopy [9]. However, the link between variations in backscatter and
water dynamics in vegetation is still poorly understood.

Much of what we know about scattering from vegetation and how it varies with
frequency, polarization and viewing geometry has been obtained by physical forward
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model simulations. These models are developed to understand the signal received by a
sensor and predict this signal based on a particular set of input parameters. The semi-
empirical water cloud model (WCM), for example, simulates backscatter as the incoherent
sum of the contributions from canopy and ground. This model needs to be calibrated
using observed backscatter data and information about soil and vegetation and is widely
used because of its simplicity and limited number of input parameters. More sophisticated
models are available, such as the Tor Vergata model [10] and MIMICS [11]. However, these
models require a detailed description of the geometry and dielectric properties of the soil
and vegetation, which is seldom available.

None of these widely-used electromagnetic models have yet been able to account
for a realistic vertical distribution of moisture in vegetation. Both the Tor Vergata and
MIMICS model are able to distinguish between leaf and stem water content. In addition,
some versions of these models divide the vegetation into two layers [11,12] to account
for different types and densities of scatterers in the sublayers, e.g., trunk and crown layer.
However, a (realistic) vertical distribution of moisture in vegetation has not been introduced.
This also holds for the semi-empirical water cloud model (WCM) [13], which assumes that
the vegetation layer can be represented as a single cloud with uniform volume scattering
and attenuation properties.

Some studies aimed to account for the vertical heterogeneity of moisture in the WCM.
A study by Ulaby et al. [14], for example, divided the cloud of a corn canopy into a top layer
containing all the leaves and a bottom layer containing the stalks. From the simulations,
it was concluded that most of the seasonal variations in backscatter from 8.6–35.6 GHz
frequencies could be explained by variations in leaf area index (LAI) alone. Hoekman [15]
proposed a multi-layer WCM after analyzing the effect of height deviations on the pulse
returned from a poplar stand. Substantial differences in backscatter originating from
different heights in the canopy were found. Liu et al. [16] modified the WCM and included
a parameter that describes the moisture distribution between the top-half and bottom-half
of a soybean canopy. Their results showed that backscatter simulations were significantly
affected by building in vertical inhomogeneous layers. Although these studies provided
useful insights in the importance of vertical inhomogeneity of moisture on scattering, their
analyses were limited by the availability of observational data to describe the vertical
moisture distribution in a canopy.

Previous studies have demonstrated that the moisture distribution in a corn canopy
is non-uniform and changes during the season [17,18]. Inspired by these findings, the
objective of the current study is to better understand which parts of the vegetation layer
are controlling the backscatter dynamics by accounting for a realistic vertical moisture
distribution. We focused on a corn canopy from emergence to harvest and the L-band
frequency. Using detailed destructive sampling, we quantified the vertical distribution of
moisture in the vegetation and its variations during the season, during the day and under
dew and rainfall conditions. These data were used to define different layers for a multi-
layer WCM. The WCM was calibrated using hyper-temporal tower-based polarimetric
L-band scatterometer data and used to quantify the contribution of the individual layers to
total backscatter.

2. Materials and Methods
2.1. Experimental Sites

The measurements for this study were mainly conducted as part of our field campaign
in Florida (FL), USA, in 2018. The experiments were conducted in Citra (29.410N, 82.179W)
at the Plant Science Research and Education Unit (PSREU) of the University of Florida
and the Institute of Food and Agricultural Sciences (UF|IFAS). Sweet corn was planted on
13 April, and harvested on 18 June for human consumption. We measured vertical profiles
of internal vegetation water content (VWC) throughout the season by destructive sampling
(Section 2.2.1) and surface canopy water (SCW) using leaf wetness sensors (Section 2.2.2).
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Moreover, we collected L-band backscatter observations from this field using a tower-based
scatterometer (Section 2.3).

To determine the extent to which the vertical distribution of VWC changes during the
day, we sampled multiple times per day during a follow-up campaign in Reusel (51.319N,
5.173E), the Netherlands in 2019, see [19]. In Reusel, the field corn is allowed to ripen in
the field, so the growing season extends into September. Details of both experimental sites
are given in Table 1. The development of both crops, as well as the weather conditions
during both seasons, are described in more detail in [19,20].

Table 1. Details of the experimental sites. Measurements from Reusel, the Netherlands (2019), were
used for examining sub-daily variations in the vertical distribution of VWC only. For all other
analyses, we used data from Citra, Florida (2018).

Citra (2018) Reusel (2019)

Type of corn sweet corn field corn
Length of season 66 days 148 days
Plant density 7.9 plants m−2 8 plants m−2

Peak dry biomass 0.85 kg m−2 2.0 kg m−2

Peak VWC 4.5 kg m−2 6.4 kg m−2

Max. height 210 cm 275 cm
Type of soil >90% sand sandy soil
Climate humid subtropical temperate maritime

2.2. Vertical Distribution of Moisture
2.2.1. Internal Vegetation Water Content

Samples were taken from designated sampling areas just beyond the radar footprint.
During each sampling event, eight plants were selected and cut from the base of the stem.
The number of samples is a trade-off between (a) collecting as many samples as possible to
obtain a field-representative average, (b) limiting the time between sampling and weighing
the samples to determine aboveground fresh biomass, and (c) oven space to dry the samples
properly. Since (b) and (c) also prevented measuring within-field variability, we focused
on ensuring that the samples were field-representative. This was accomplished by first
choosing the samples from an area with field-representative plant density (∼7–8 plants per
meter in a row). Then, taking the two plants with average plant height from that meter and
without anomalous properties (such as ear rot). This sampling protocol was repeated four
times at four different locations, and is in line with protocols used by the SMAP cal/val
community [21–24].

Leaves, tillers, tassel and ears were separated from the stems, and any surface water
was removed with paper towels. Stems were cut in sections of 10 cm and numerically
labelled from the base (0–10 cm) to the top (e.g., 170–180 cm). The sections with the same
labels were collected in paper bags and weighed to determine average fresh biomass (m f ).
Then, the bags were oven-dried at 60 ◦C for 4–7 days, depending on growth stage, and
weighed again to determine average dry biomass (md). Plant density (ρplant) was used to
estimate the field-average VWC per stem section (Equation (1)).

VWC = (m f − md)ρplant (1)

Gravimetric water content (GWC), which is the mass of water per unit mass of fresh
biomass, was calculated by Equation (2):

GWC =
m f − md

m f
(2)

The same procedure was followed for leaves, tillers, tassels and ears. Leaves were
numerically labelled from the bottom leaf (leaf 1) to the top leaf (e.g., leaf 15). Because
the bottom leaves die and fall off from the stem elongation stage onward, monitored
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leaf heights were used to ensure a leaf was assigned to the correct label and to ensure
consistency through the season. Ears were labelled based on the leaf they were attached to.
Tassels and any existing tillers were measured as whole organs.

2.2.2. Surface Canopy Water

Dielectric leaf wetness sensors (PHYTOS 31, METER Group) were installed to estimate
surface water on the canopy. These sensors mimic thermodynamic and surface properties
of actual leaves, which means that the presence of liquid water films and droplets on the
sensors and leaves closely match [25]. The sensors measure the dielectric constant of the
sensor’s upper surface, which is altered by the presence of water. The output signal [mV]
was recorded by an EM50 logger every 15 min, including the number of minutes water was
detected on the sensor. To estimate the mass of water on the sensor surface [g], we used the
default calibration [26] for sensor outputs recorded with EM50 loggers.

Three sensors were installed after plant emergence, mounted to a wooden pole in the
early season and attached to plants once the stems were strong enough. Sensor heights were
regularly adjusted as the canopy grew to ensure that there was one sensor representing each
1/3 of the plant and that no sensor was touched by a leaf. We adjusted the angles of the
sensors to correspond with the angles of neighbouring leaves. Data from the middle sensor
were omitted from this study because its performance deteriorated as the season progressed.

It was assumed that the water droplets on other constituents were negligible compared
to the water droplets on the leaves. Consequently, quantitative estimations of surface water
on the plants were made using the estimated mass of water on the sensor surface [g],
calculations of leaf areas (Alea f ) and distance between leaves and sensors. Leaf areas were
estimated by regularly measuring the leaf lengths (l) and leaf widths (w) of multiple plants,
averaging them and assuming an elliptical shape (Equation (3)).

The distance between leaf height (Hlea f ) and sensor height (Hs) was used to calculate
a weighting factor ( fw) between 0 and 1 for the lower sensor (s1) and the upper sensor (s2),
see Equation (4). This factor is used to determine how much each sensor should contribute
to the estimation of leaf surface water (Equation (5)). The ratio between leaf area and sensor
area (As) was used to convert the mass of water on the sensor (Mw) to the mass of water on
a leaf. Finally, the resulting mass of water on a leaf [g] was multiplied by the plant density
(ρplant) to estimate SCWlea f in [kg m−2] (Equation (5)).

Alea f = πl
w
4

(3)

fw(s1) =


1, if Hlea f ≤ Hs1

0, if Hlea f ≥ Hs2

1 − Hlea f −Hs1
Hs2−Hs1

, if Hs1 < Hlea f < Hs2

fw(s2) = 1 − fw(s1) (4)

SCWlea f = ( fw Mw(s1)
Alea f

As
+ fw Mw(s2)

Alea f

As
) ρplant (5)

2.3. Backscatter Data

Radar backscatter observations (σ0) were made with the University of Florida L-band
Automated Radar System (UF-LARS). UF-LARS is a tower-based scatterometer which
operates at a centre frequency of 1.25 GHz. The system is designed to acquire data at four
combinations of vertically (V) and horizontally (H) polarized microwaves (VV, HH, VH
and HV) with a dual polarization horn antenna, e.g., VH represents vertical transmit and
horizontal receive. Since VH and HV observations were similar, these were averaged and
are referred to here as cross-polarized backscatter (σ0

XP), or simply XP. The system was
mounted on a Genie manlift and lifted to a height of 14m above the ground. From there, the
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cornfield was scanned with a fixed incidence angle of 40◦. Each acquisition is an average
of 27 independent samples; nine for each of the three azimuthal scans at −9◦, 0◦, and +9◦.
There are, on average, 32 acquisitions per day for most of the season. The last eight days of
the season, the daily observation frequency was lowered to 16 to avoid radio frequency
interference with other microwave sensors. The radar footprint was free of human and
material disturbance. UF-LARS system specifications are described in Table 2. More details
about the observations and system specifications can be found in [20,27,28], respectively.

Table 2. UF-LARS system specifications.

Parameter UF-LARS

Frequency (GHz) 1.25
3 dB Beamwidth (deg) E-plane 14.7

H-plane 19.7
Bandwidth (MHz) 300

Antenna type Dual-polarization horn
Range resolution (m) HH/VV/XP 8.5/6.2/6.2

Azimuth resolution (m) HH/VV/XP 4.7/6.4/4.7
NEσ0 (dB) HH/VV/XP −23.43/−25.58/−48.12

Error in σ0 (dB) Systematic 1.49
Random 0.85

Incidence angle (deg) 40
Platform height (m) 14

2.4. Water Cloud Model
2.4.1. Original Model

The water cloud model (WCM), developed by [13], simulates the power backscattered
from a vegetated area (σ0) as the incoherent sum of the contributions from the vegetation
layer and the underlying soil (see Equation (6)). The backscatter contribution from the
vegetation layer (σ0

veg) is simulated using Equation (7), where W represents the volumetric
water content of the vegetation layer, H the height of the vegetation layer, θ the incidence
angle, and C and D are empirically-determined model parameters. In the derivation of this
equation, it is assumed that the water in the vegetation layer can be represented as a cloud
with identical water droplets, uniformly distributed over the vegetation layer [13].

σ0 = σ0
veg + τ2 σ0

soil (6)

σ0
veg = C cos(θ)(1 − exp(−2D W H/cos(θ))) (7)

τ2 = exp(−2D W H/cos(θ)) (8)

Parameter C is a function of the radar cross section and the total attenuation cross
section for one single water particle. Parameter D relates to the total attenuation cross
section for a unit of mass of water. Because all particles are assumed to be identical,
parameters C and D are assumed to be frequency-dependent constants. W H equals VWC
[kg m−2]. Since VWC is laborious or difficult to measure, other vegetation descriptors
are often used as a substitute, such as vegetation indices from the optical and microwave
domain (e.g., [29,30]).

The potential backscatter from the underlying soil (σ0
soil in Equation (6)), is typically

simulated using a simple linear relation between volumetric soil moisture (SSM) backscatter
and empirically found parameters [18,31]. Alternatively, a physical model such as the
Integral Equation Method (IEM) [32] is used. The extent to which σ0

soil is attenuated by
the vegetation is modelled by a factor representing the two-way transmission through the
vegetation layer (τ2) and depends on the VWC (Equation (8)).
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2.4.2. A Multi-Layer WCM

The original single-layer WCM does not allow us to consider the sensitivity of total
backscatter to contributions from different levels in the canopy. Based on Hoekman [15],
we built in n discrete vertical layers in the water cloud and estimated the contribution from
each layer to total σ0

veg (see Equation (9), where index n refers to the top layer and index
1 refers to the bottom layer). The vegetation scattering from the top layer n, σ0

n , can be
estimated using Equation (7) and replacing W H by VWC of layer n only. Each layer below
is affected by the attenuation from the layer(s) above, which is estimated by Equation (10).
The number of layers and height of each layer were specified based on the vertical moisture
profiles found by destructive sampling (Section 3.1).

σ0
veg = σ0

n + τn σ0
n−1 + τn τn−1 σ0

n−2 + ... + τn τn−1 ...τ2 σ0
1 (9)

τi = exp(−2D VWCi/cos(θ)) (10)

2.4.3. Calibration and Validation

The WCM was calibrated for each polarization to find parameters C and D. We
assumed that the type of scatterers in the various layers are the same, i.e., C and D are
identical for each layer. Data inputs for the calibration were the measurements of total
plant VWC, backscatter observations (σ0

obs) and surface soil moisture (SSM). To increase
the robustness of the calibration, VWC was estimated for the days between sampling days
using linear interpolation between the measurements and included in the data set. To
exclude the effect of SCW, we only considered the observation times with negligible SCW.
However, the presence of dew was generally at its maximum around predawn sampling
times (06:00), which would exclude a lot of data points. From a previous study [19], we
know that predawn VWC (around 6:00) should be more or less stable between 21:00 and
06:00. Therefore, we used the SCW and radar observations between 21:00 and the predawn
sampling time with minimal SCW. If the plants were wet the night before due to rainfall, we
used the first acquisitions for which dew was (almost) dissipated, around 09:00. This time
should be closest to the 6:00 VWC sample without dew. If both were not an option and the
vegetation was wet all the time, we removed the day from the data set. This was the case
for five days in May and one day in June. To reduce the random variability of backscatter
observations, backscatter was averaged over 2–4 acquisitions within 1–1.5 h, depending
on the observation frequency. This resulted in three time series (one for each polarization)
with 49 observations of σ0

obs, VWC and SSM from crop emergence until harvest.
For each polarization, two-thirds of each time series was used to calibrate the WCM.

The remaining third was reserved for validation; σ0
soil was found by the Integral Equa-

tion Method (IEM) proposed by [32]. The IEM is a physically based radiative transfer
backscattering model which provides site-independent relationships between backscatter
and soil moisture. Moreover, it covers the range of surface roughness values encountered
with agricultural soils. The input parameters for the IEM were the frequency, incidence
angle and polarization (Section 2.3), surface roughness parameters defined as the standard
deviation of the surface heights and the surface correlation length [20], the exponential
autocorrelation function and the dielectric constant of the soil media, which is calculated
using SSM measurements and Mironov’s soil dielectric model [33]. Footprint-averaged
SSM was estimated using two calibrated EC-5 sensors installed at a 5 cm depth and 40 m
apart [20].

Finally, the time series of σ0
obs, σ0

soil and VWC were used to calibrate parameters C
and D using Equations (6)–(8). C and D were optimized by maximizing the Kling–Gupta
Efficiency (KGE; [34]), see Equation (11), using the basinhopping optimization algorithm of
the scipy.optimize Python package.

KGE = 1 −
√
(r − 1)2 + (α − 1)2 + (β − 1)2 (11)
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where r is the linear correlation coefficient (Pearson R) between simulated and observed
σ0, α is the ratio between the standard deviations of simulated and observed σ0, i.e., a
measure of the relative variability in the simulated and observed values, and β is the ratio
between the mean simulated and mean observed σ0, i.e., the bias [34]. KGE is a measure
for the goodness-of-fit, with KGE = 1 indicating perfect agreement between simulations
and observations, and is used in previous studies for calibrating the WCM as well [35].

For cross-pol (XP), a two-step optimization was necessary to avoid unrealistic values
of D due to the limited sensitivity of total backscatter to D. A sensitivity analysis showed
that when VWC is at its seasonal maximum (∼ 4 kg m−2), σ0

sim is mainly determined by
parameter C once D > 0.1. For that reason, the first step was to optimize parameter C for
the period between 25 May and 13 June, assuming D = 0.2. Then, this fixed value for C was
used to optimize parameter D for the entire data set.

The performance of the calibration was evaluated by first simulating σ0
sim for the

validation data using the calibrated C and D parameters and then calculating the Root
Mean Squared Error (RMSE) of σ0

sim with respect to σ0
obs.

3. Results and Discussion
3.1. Seasonal Changes of Internal Vegetation Water Distribution

Figure 1 shows the vertical distribution of VWC (a,c,e,g) and GWC (b,d,f,h) for the
different plant constituents and their development during the season. The distribution of
VWC is first of all determined by the plant’s structure. Stem water content is, for example,
concentrated in the lowest and thickest part of the stem. The first 50 cm of the stems
contained 100% (early season) to 60% (late season) of total stem VWC. The four biggest
leaves, located between 50 and 100 cm, contained 60% of total leaf VWC in mid- to late
season. Attached to these big leaves are the ears, which stored up to 25% of total plant
VWC in the late season.

In addition, the aging of the plants has an important effect on the distribution of
moisture. The GWC in most of the plant tissue slowly decreases after the first emer-
gence of tassels (25 May), and this drop accelerates after the emergence of ears (1 June;
Figure 1b,d,f,h). Leaf senescence starts when the ears separate from the stem (4 June). It
starts from the ground up with the lowest leaves, followed by the top leaves from which it
progresses down. The largest leaves in the middle of the plant dry out last. Simultaneously,
the upper stem dries out. Because this senescence does not occur simultaneously across the
vertical profile, variation in moisture across the profile increases from mid- to late season.

Finally, a plant’s moisture content is determined by external factors, such as availability
of root zone soil moisture and evaporative demand of the atmosphere, in combination with
the hydraulic strategy of the plant . For our corn plants, the effect of these external factors
was mainly visible on a sub-daily timescale (see Section 3.2).

Roughly, we can divide the canopy into three vertical layers marked with horizontal
dashed lines in Figure 1 and further visualized in Figure 2. The lowest layer, hereafter
referred to as layer 1, contains the entire plant in the early season. During the mid- and late
season, 60 to 90% of the VWC in the lower layer is stem water, respectively. The amount of
water the tillers contained is significant in the mid-season, with 20–25% of total plant VWC
in this layer. Compared to the other two layers, layer 1 contains most water until 4 June
(Figure 2b).

Layer 2 contains the four biggest leaves, the ears and 50 cm of stem in mid- to late
season (Figure 2). The leaf water content in this layer is relatively stable between 21 May
and 13 June and is about 0.5 kg m−2. The relative contributions to total VWC in layer 2
change from 70% leaf and 30% stem on May 18 to 40% leaf and 60% stem on 28 May, just
before ear formation, to 25% leaf, 25% stem, and 50% ear on 13 June. From 4 June onward,
layer 2 contains most water (Figure 2b).
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Figure 1. Vertical VWC (left) and GWC (right) profiles and their seasonal changes for sweet corn:
with leaves (a,b); stems (c,d); ears (e,f); tillers (g); and tassels (g,h). Each marker is the average
of 8 plants at a certain height from the ground. Note that the VWC-axes are different among the
constituents. The horizontal dashed lines represent the separation of layers for the water cloud model.

The upper layer, layer 3, is up to twice as thick as the lower layers and has the lowest
water content (Figure 2. It contains the tassels, four leaves and the thinnest part of the
stem. Once the layer water content reaches its peak on 30 May, it stays relatively constant
(Figure 2b). Despite the decrease of their GWC, leaf and stem VWC remains 0.2 and
0.3 kg m−2, respectively. This can be explained by the growth of the leaves and stems in
this layer and the distribution of water over increasing biomass. Tassel VWC decreased
from 0.15 kg m−2 on 25 May to 0.06 kg m−2 on 13 June.

May 23 June 6

Layer 3
Layer 2
Layer 1

Total

date date

Figure 2. Canopy height divided into three layers including LAI (a); total plant VWC divided into
three layers (b); and visualisations of the layer division in two different growth stages (c).



Remote Sens. 2022, 14, 3867 9 of 18

3.2. Sub-Daily Changes of Internal Vegetation Water Distribution

The architecture of a plant also plays a role when it comes to diurnal variations
in moisture distribution. It determines which leaves are more or less exposed to solar
radiation and wind, the temperature gradient within the canopy and consequently the
extent to which the leaves participate in photosynthesis and transpire water [36]. The
diurnal patterns in Figures 3 and 4 are the results of sub-daily destructive sampling from
field corn in our 2019-campaign in the Netherlands. Figure 3 shows a slightly larger diurnal
variability in leaf (a–e) and stem GWC (f–j) in layer 3 on most days, which confirms the role
of architecture. However, differences between the layers are minor. Moreover, Figure 4p–t
shows that the diurnal variations in layer 3 are limited and that most of the diurnal variation
is in the lower two layers.
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Figure 3. Five days of diurnal leaf (a–e); stem (f–j); and ear (k–o); GWC variations in field corn, and
the difference between the three vertical layers in the canopy. The sampling was performed five times
between sunrise and sunset in the 2019 campaign.

External factors, such as soil moisture availability and evaporative demand also affect
the diurnal variability of VWC. On 23 July, we observed leaf ’rolling’, a mechanism for
drought-stressed corn plants to reduce the leaf area exposed for transpiration [19]. In
Figure 3a,f,k, we see that for this day, per constituent, the diurnal GWC pattern of all
layers is similar in response to the water deficit. However, leaves, stems and ears respond
differently. Where leaves recharge in the evening (a), the water content in the stems stays
more or less constant (f), and ear water content still drops (k). From the VWC cycles of
23 July (Figure 4a,f,k), we see that stem VWC dominated layer 1 , and, to a lesser extent,
also layer 2. The diurnal VWC patterns of layer 1 and 2 are therefore similar (Figure 4p).

Similar to the sweet corn plants (Figure 2; 4 June 2018), we observed a shift in the
contribution of the lower two layers to total plant VWC in these field corn plants: after
23 July 2019, layer 2 contains more water than layer 1. In both years, this shift corresponded
with the growth of ears. For the diurnal cycles in Figure 4, this means that in July, the
diurnal cycles in layer 2 were still dominated by stems and leaves. VWC in layer 2 was
lower than (23 July) or equal to (25 July) VWC in layer 1. In August, the ears determined
the shape of the diurnal VWC cycle in layer 2 to a great extent.
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Figure 4. Five days of diurnal leaf (a–e); stem (f–j); ear (k–o); and layer (p–t); VWC variations in field
corn [kg m−2], and the difference between the three vertical layers in the canopy. Layer VWC is the
sum of the moisture in all constituents within a certain layer. The sampling was performed five times
between sunrise and sunset in the 2019 campaign.

3.3. Distribution of Surface Water: Dew and Rainfall Interception

Figure 5a shows the difference between the mass of dew detected by the upper and
lower sensors, Atzema et al. [37] found that 95% of the measured dew could be attributed
to dewfall and only 5% to dew-rise, which is the upward soil water vapour flux into the
atmosphere during the night. This difference was explained by the fact that a tall and
dense crop reduces the amplitude of the daily temperature wave in the non-saturated soil
(e.g., [38]) and therefore reduces the dew-rise. However, in the case of a well-watered soil
and a stable atmosphere above the canopy, dew-rise will increase as a result of the unstable
air between the cooling upper canopy and the heat supply from the soil [37,39,40].

Unlike dew, both sensors detected similar amounts of water during rainfall (Figure 6).
This suggests that raindrops penetrated the entire canopy, even during light rain events.
The distribution of raindrops through the cascade system of the foliage is a complex process,
depending on form, texture and angle of the surface, canopy architecture and density and
the number of layers in the cascade [41,42]. However, given the minor differences between
the sensor outputs, our estimated interception profiles (Figure 6c) strongly reflect the
vertical distribution of leaf area (Figure 5b).
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Figure 5. Vertical distribution of dew, with: (a) water detected on upper and lower sensors [g m−2]
during dew accumulation and dissipation, averaged over 14 dew events; (b) averaged vertical profiles
of leaf area for mid-to-late season, with leaf area relative to maximum leaf area and height relative to
maximum plant height; and (c) resulting vertical dew profiles changing during the night, including
relative heights of sensors.
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Figure 6. Vertical distribution of rainfall interception, with the averaged mass of water detected on
upper and lower sensors [g m−2] during: (a) 6 light rain events (P < 2 mm); and (b) 4 heavy rain
events (P > 2 mm) in the period between 1 June and 13 June; and (c) the resulting vertical interception
profiles changing during light (green) and heavy (red) rain events, including relative heights of
sensors. Note that the data are aggregated. Nocturnal rain events tend to lead to longer periods of
canopy wetness, while rainfall interception during the day tends to evaporate rapidly.

3.4. Multi-Layer WCM: Seasonal Variations

Table 3 shows the WCM calibration results, including the RMSEs of the simulations
with respect to the observations as a measure of the model performance.

Table 3. WCM calibration results

C D RMSE [dB]
VV HH XP VV HH XP VV HH XP

0.51 0.39 0.026 0.14 0.20 0.13 1.22 1.28 1.24

Figure 7 shows the results from the three-layer WCM, and the observed L-band
backscatter (σ0

obs) for VV (a), HH (b) and cross-pol (c). The contribution from the different
layers to total σ0

veg changes during the season. In early season, σ0
veg equals the contribution

from the lowest layer, σ0
veg,L1; σ0

veg,L1 decreases with increasing vegetation growth above this
layer. Rapid accumulation of VWC in layer 2 (Figure 2) resulted in a dominant contribution
from layer 2 when VWC > 1 kg m−2 (from 23 May onward; Figures 2b and 7), in all
polarizations. The simulations showed similar sensitivity of σ0

veg to layers 1 (lowest 50 cm)
and 3 (upper 100 cm) for VV-pol and cross-pol in the last two weeks of the season. In
HH-pol, layer 3 is more dominant in this phase than layer 1. Finally, the simulations
showed negligible sensitivity to the attenuated soil moisture signal (σ0

soilτ
2) for co-pols

(from VWC > 1 kg m−1 onward) and cross-pols (from VWC > 0.5 kg m−1 onward).
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Figure 7. Seasonal variations in the contributions of the three different vegetation layers to total
vegetation scattering (σ0

veg), simulated by the 3-layer water cloud model. The different polarizations
are separated in: (a) VV; (b) HH; and (c) XP.

Figure 8 shows the simulated transmissivity (τ) decreasing over time and depth in the
vegetation layer. The transmissivity in VV-pol (a) and cross-pol (c) is largely similar. For HH-
pol, the model found lower transmissivity (and thus higher attenuation). Transmissivity is
directly related to Vegetation Optical Depth (VOD; [43]). Consequently, Figure 8 shows that
dynamics in a VOD estimate would largely be due to dynamics in layer 1 in the early season
and in layer 2 in the late season. This demonstrates the potential value for a multi-layer
WCM to interpret VOD estimates.
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Figure 8. Seasonal variations in the transmissivity (τ) at different depths of the vegetation layer,
simulated by the 3-layer water cloud model. The different polarizations are separated in: (a) VV; (b)
HH; and (c) XP.

So far, little research has been conducted on the relative importance of different vertical
layers on the backscatter signal. However, we could compare the findings of our modelling
study with the results from a recent tomography study by Joerg et al. [44] on field corn.
They estimated 3D backscatter profiles from field corn for VV, HH and HV at different
frequencies, including L-band, for two growth stages: (1) just before fruit development,
and (2) just after fruit development. In our modelling study, we found that the VV and
cross-pol scattering contributions from layers 1 and 2 are equally dominant just before fruit
development (around 29 May) and more dominant than scattering from layer 3 (Figure 7).
In HH-pol, scattering from layer 2 was already most dominant. At this stage, model
simulations showed negligible scattering from the ground. Joerg et al. [44] found that at
this stage the maximum scattering in all polarizations is centred at ground-level, despite
a plant height of 1.9 m. This means scattering from the lowest vegetation layer and the
ground. After fruit development (around 13 June), we found dominant scattering from
layer 2 in all polarizations. Joerg et al. [44] found that at this stage the maximum return in
L-band VV-pol came from scattering at 1/2 to 1/3 of the crop height, which would also
be equivalent to layer 2. In addition, they found that the maximum return in HH-pol and
HV-pol came from scattering at about 1/4 of the crop height, which would be equivalent to
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the boundary between layers 1 and 2. This is lower than at VV-pol and also slightly lower
than our modelling results.

Compared to previous findings [19], simulations from the WCM used here underes-
timate the sensitivity to surface soil moisture in the mid- and late season. An important
explanation could be that vegetation–ground interactions are not included in the WCM.
Previous studies have shown that this term could be considered an important scattering
mechanism in corn (e.g., [45,46]). It is expected that considering a vegetation–ground scat-
tering term would increase the sensitivity to surface soil moisture and also might influence
the attenuation from the vegetation layer simulated by the WCM.

3.5. Multi-Layer WCM: Sub-Daily Variations

The effect of free SCW on variations in layer contributions to σ0 was estimated by
treating SCW as part of the water cloud. In other words, the SCW in a given layer, shown in
Figures 9a and 10a, is added to the internal VWC of this layer. The VWC is assumed to be
constant in each layer for the model simulations to isolate the effect of SCW. For simplicity,
we assumed that parameters C and D, which were calibrated for dry situations, are also
valid in these wet situations and that any geometry-related effect accounted for in C and D
remains the same regardless of whether the water is VWC or SCW.

Figures 9 and 10 show the effects of dew and rainfall interception on the variations in
layer contributions to σ0, respectively. Observed σ0 from dew events could be aggregated
and was added to the figure. This was not possible for σ0 from interception events due to
the difference in backscatter acquisition timing since the start of the events. From Figure 9a,
it can be seen that nocturnal dew accumulation mainly occurs in layers 2 and 3. When
using these estimates as inputs for the WCM, a significant increase in backscatter from
layer 3 was found. However, scattering from layer 2 was almost constant or even had a
counterbalancing effect (HH) on σ0. The latter also holds for layer 1 in all polarizations.
The effect of all layers combined was a simulated σ0 variation of 0.15 dB (VV), 0.10 dB
(HH) and 0.16 dB (cross-pol). The fact that dew affects cross-pol and VV-pol more than
HH-pol σ0 is consistent with the observations and previous findings [19]. Both VV- (b) and
cross-pol (d) σ0

obs show a gradual increase corresponding to dew accumulation and a sharp
drop corresponding to dew dissipation. This behaviour was not observed in HH-pol (c).
However, the amplitude of the simulated nocturnal ‘cycle’ is much smaller than what is
observed in VV-pol and cross-pol. For rainfall interception (Figure 10), we found similar
dynamics, except that there was simply more surface water from interception, particularly
in layer 2. As a consequence, backscattering from layer 2 had a stronger effect on variation
in σ0

sim, which was 0.3 dB (VV), 0.2 dB (HH) and 0.3 dB (XP).
Figure 11a shows the layer contribution to diurnal VWC variation for 25 July 2019.

Total plant VWC and distribution of moisture between the layers is comparable to that of
early June sweet corn in 2018 (Figure 2b). Hence, measurements of this date were used
as input for the sweet-corn-calibrated model. It can be seen from Figure 11b–d that σ0 is
dominated by scattering from layer 2 in all polarizations, also with significant contributions
from layers 1 and 3. Simulated σ0 varied with 0.38 dB (b; VV), 0.25 dB (c; HH) and 0.40 dB
(d; XP). However, results from [19] suggest that diurnal variations in σ0 should be in the
order of 2 dB as a result of these changes in VWC. Together with differences between
observed and simulated σ0 during dew events (Figure 9), this suggests that sub-daily
variations in the WCM simulations are highly underestimated. This is further illustrated
in Figure 12. Figure 12a–c shows the observed and simulated VV, HH and XP backscatter
variations in the last six days of the season, respectively. Variations in VWC, SCW and SSM
are shown in Figure 12d. The sum of SCW and VWC was considered the moisture input for
the WCM. Since the difference between simulated σ0 and σ0

veg was negligible at this stage,
only σ0

veg is depicted. From the analysis in three previous studies [19,20,47], we found that
variations in VWC, SCW and SSM affected σ0 significantly at this stage of the season.

Here, ignoring the vegetation–ground scattering term in the WCM could also play
a role. Moreover, high attenuation prevents sub-daily backscattering variations from
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being captured, which becomes for example apparent from the difference in backscatter
contributions from layers 2 and 3 in Figure 9. Comparable amounts of dew were added to
layers 2 and 3, but because of much higher attenuation in layer 2 (see Figure 8), we found
no nocturnal cycle of σ0

veg,L2 compared to a strong nocturnal cycle of σ0
veg,L3. It could be that

the WCM simulations overestimated attenuation by the vegetation layer.
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Figure 9. Averaged dew estimates from 2018 separated by layer (a); and the corresponding nocturnal
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veg), simulated by the water cloud
model and separated by VV (b); HH (c); and cross-polarization (d).
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Figure 12. Six-day time series with observed backscatter (σ0
obs), simulated σ0

veg from the WCM, and
simulated σ0

soil from the IEM, for VV (a); HH (b); and cross-pol (c); moisture variations which served
as inputs for the models are shown in (d); with surface soil moisture (SSM) as input for the IEM,
VWC and CW, which is the VWC supplemented with dew or rainfall interception and is used as
input for the WCM. Sub-daily VWC variations are based on [19].

4. Conclusions

The aim of this study was to better understand which parts of the vegetation layer
control the L-band backscatter dynamics from a corn canopy. Destructive sampling and
sensor-based measurements were conducted to illustrate the dynamic vertical distribution
of both internal and surface canopy water, respectively, throughout the season. This infor-
mation was used to define three layers for a multi-layer WCM and simulate the individual
layer contributions to total backscatter.

We found that the vertical moisture distribution of VWC is highly dynamic in time.
Seasonal changes were mainly affected by the plant’s architecture and age. The bulk
of the VWC changed from the lowest 50 cm of the plants, mainly due to stem water
storage, to 50-100 cm after ear growth. Diurnal changes were mainly affected by moisture
demand and availability. Diurnal dynamics in gravimetric water content were similar
across different heights in the canopy. However, the lower parts of the stem and the
biggest leaves governed the diurnal VWC cycle together with the ears from mid-season
onward. Dew was mainly found in the upper and middle part of the canopy, while rainfall
penetrated the entire canopy.

This heterogeneity in moisture distribution means that the contribution of the different
vertical layers to total σ0

veg varies during the season. Water cloud model simulations showed
maximum scattering from the layer with the biggest leaves and the ears in mid-to-late
season. The contribution to σ0 from the lowest 50 cm, which contains most water and
mainly from stems, was comparable to the contribution from the top 100 cm for VV- and
cross-pol in this phase of the season. HH-pol simulations found more sensitivity to the top
100 cm than to the lowest 50 cm due to slightly higher attenuation. On a sub-daily timescale,
variations in σ0 are sensitive to different parts of the canopy, depending on whether they
are caused by dew, interception or fluctuations in VWC. However, variations simulated
σ0 are highly underestimated. This may be explained by overestimated attenuation of the
vegetation layers by the WCM or by the importance of the missing vegetation–ground
scattering term. Nevertheless, the simulations presented here provide valuable insight
into the influence of the changing vertical distribution of moisture in the simplest of radar
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backscatter models. Sensitivity studies using more sophisticated models that include
the ground–vegetation interaction terms are recommended. That said, it is important to
note that the WCM is widely used in many applications of microwave remote sensing
for vegetation.

This study provides new and unique insights into the contribution of different ’depths’
in a canopy on radar backscatter. Modeling studies, together with other techniques such as
tomography, can provide useful insights into the sensitivity of σ0 to scattering from distinct
vertical levels. Our results demonstrate the potential importance of accounting for the
vertical moisture distribution when understanding and interpreting backscatter dynamics
or products such as vegetation optical depth (VOD).

An important task for future research is to modify the WCM or other electromagnetic
models in such a way that they are able to capture sub-daily backscatter dynamics. It is
expected that this will improve the estimates of layer contributions to total backscatter.
Moreover, considering ground–vegetation scattering should improve the simulated contri-
butions from the different layers. Moreover, future research should focus on the scattering
mechanisms related to surface canopy water. The interactions between microwaves with
free water on the canopy surfaces (dew, rainfall interception) are still poorly understood.
For future field experiments, it is recommended to install a denser network of leaf wetness
sensors. This is expected to improve the field-average estimate, and the representation of
the uncertainty in the estimates.

To properly understand the potential of using multiple frequencies to determine
water content across different heights, it is advised to repeat this experiment with a multi-
frequency radar. In addition, shifting the type of vegetation to trees could be interesting.
Backscattering from different levels in the canopy may be even more relevant in complex
forest systems. A challenge for future research is to understand the backscatter dependence
on moisture distribution in forests. The methodology and results presented in this paper
contribute to increased interpretation capability of the scattering mechanisms in canopies.
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