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A B S T R A C T   

Desktop software applications, such as ArcGIS and QGIS, provide GIS tools for conducting suitability analysis, a 
fundamental step in formulating a land-use plan. When building complex suitability models with these appli
cations, there are several limitations, including operating system (OS) dependency, lack of dedicated modules, 
less efficient model building process, and difficult, if not impossible, deployment on a computing cluster. In 
attempting to address the challenges, this paper introduces PyLUSAT: Python for Land Use Suitability Analysis 
Tools, an open-source package dedicated to fulfilling tasks in a suitability modeling workflow. PyLUSAT tools 
were evaluated against comparable tools in ArcMap 10.4 with respect to accuracy and computational efficiency. 
Results showed that PyLUSAT tools were two to ten times faster depending on the job’s complexity while 
generating outputs with equivalent spatial accuracy. Besides, PyLUSAT features cross-platform compatibility and 
high extensibility, allowing leveraging parallel computing in land-use suitability modeling, and permitting 
automation and customization.   

1. Introduction 

Since its first introduction in the late 1960s, Geographic Information 
System (GIS)-based suitability analysis continues playing a significant 
role in contemporary practices of land use planning (Collins et al., 2001; 
Malczewski, 2004; McDowell et al., 2018; Seyedmohammadi et al., 
2019). It is particularly favored by land-use practitioners because the 
technique can effectively synthesize spatial analytics, expert knowledge, 
and community values, all of which, from a planning perspective, are 
critical factors to consider when making land-use decisions. In practice, 
suitability analysis is usually performed using off-the-shelf (OTS) GIS 
software via a graphical user interface (GUI), such as ArcGIS and QGIS 
(Abdullahi et al., 2015; Mesgaran et al., 2017). And since both software 
applications provide a Python site package (namely ArcPy and PyQGIS) 
as an interface to their respective functions, suitability analysis can also 
be performed through scripting. Because it allows researchers to auto
mate and customize processes, the second approach is preferable when 
dealing with complex spatial models. 

However, suitability modeling frameworks offered by desktop GIS 
are either constrained to only run inside the application or requiring of 
the main application installed on the desktop computer (Steiniger and 

Hunter, 2013). Relying solely on a desktop GIS also creates obstacles for 
suitability mapping to become an integral module of a larger framework 
that involves analyses, for example, transportation and hydrologic 
modeling, completed by third-party software. For developing countries, 
where land use suitability mapping is arguably more useful and needs to 
be extensively applied, proprietary GIS software, such as ArcGIS (43% 
share of the global market), is cost-prohibitive for those countries who 
have not yet received any financial aid on purchasing licenses (Chang 
et al., 2009; Esri, 2015). Additionally, ArcGIS is only available on 
Windows platform, which prevents modeling land use suitability (for a 
large territory) on a supercomputer since most of them run on a 
Linux-based OS (Strohmaier et al., 2020; Tang and Matyas, 2018). 

Instead, a programming library could be an alternative solution to 
desktop GIS, that can help lower the mentioned barriers. At the time of 
writing, there exist a wide variety of programming libraries (written in 
Python) that are developed to study urban-related questions, with ex
amples being UrbanSim—simulating urban real estate markets, 
OSMnx—analyzing street networks, and UrbanAccess—measuring 
transit accessibility (Waddell, 2010; Boeing, 2017; Blanchard and 
Waddell, 2017). Despite being an influential technique for land use 
planning, there lacks a domain-specific programming library for land 
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use suitability analysis. To fill in this gap, we present a free and 
open-source software (FOSS) package—PyLUSAT: Python for Land-Use 
Suitability Analysis Tools. PyLUSAT provides a wide-ranging set of 
tools that is capable of carrying out spatial and aspatial operations 
entailed by suitability analysis. Moreover, PyLUSAT is cross-platform 
and can run on a supercomputer to take advantage of 
High-performance computing (HPC). 

In this paper, Section 2 reviews the literature and explains the choice 
of adopting a vector-based GIS approach. Section 3 describes three main 
categories of PyLUSAT functions including geospatial, transformation, 
and aggregation functions. Section 4 presents validation and perfor
mance evaluation of PyLUSAT functions. Finally, Section 5 summarizes 
the paper and briefly discusses future research. 

2. Literature review 

2.1. Land use suitability analysis 

Malczewski (2004), defined land use suitability analysis as the 
analysis aiming at “identifying the most appropriate spatial pattern for 
future land uses.” The procedure involving superimposing 
semi-transparent maps proposed by McHarg (1969) is often considered 
the precursor of GIS-based land use suitability analysis that are known 
today (Steinitz, 1976; Collins et al., 2001). The analysis has very distinct 
applications at different spatial scales. At macro (regional) scales, where 
land is seen as a resource (not attached to specific uses), applications of 
suitability analysis are more focused on addressing food production 
(Mesgaran et al., 2017; Scopesi et al., 2020; Yohannes and Soromessa, 
2018), ecological function (Marull et al., 2007; Owusu et al., 2017), and 
regional management (Bolleter et al., 2021; Ingmire and Patri, 1971; 
Steiner et al., 2000). On the other end of the spectrum, i.e., micro 
(landscape) scales, the connotation shifts to the human employment of 
land parcels, and consequently applications of suitability analysis fo
cuses more addressing site search (Xiao et al., 2002), and urban planning 
issues (Abdullahi et al., 2015; Berry and BenDor, 2015). 

From a historical perspective, methodological advancement in land 
use suitability analysis went in parallel with the development and evo
lution of GIS (Malczewski, 2004). Computer-assisted overlay was the 
predominant method for suitability analysis in the early years of GIS 
between 1950s and 1970s (Hopkins, 1977; Steinitz, 1976). Example 
software at this stage includes SYMAP and GRID systems developed by 
the Harvard Labortory for Computer Graphics and Spatial Analysis (Lyle 
and Stutz, 1983). At this stage, GIS software, like computers, are still 
only available to large institutions (Coppock and Rhind, 1991). With the 
advancement in computing hardware, the 1980s have witnessed 
perhaps the greatest improvement in GIS software, in that 
general-purpose GIS that prevails today started to emerge (Collins et al., 
2001). The primary method used for suitability mapping has also 
changed to Map Algebra and Weighted Linear Combination (WLC) in this 
period (Tomlin, 1990). Example software includes ARC/INFO, Idrisi, 
GRASS (Eastman, 1997; Neteler et al., 2012). After 1990s, 
general-purpose GIS has becomes more mature and has gradually 
become the dominant tool used for suitability modeling (Collins et al., 
2001; Malczewski, 2004). In this period, the Multi-Criteia Decision 
Analysis (MCDA) has been introduced to land use suitability analysis 
and was considered having a stronger theoretical basis than the WLC 
method (Thill, 1999; Seyedmohammadi et al., 2019). Fuzzy logic (Jiang 
and Ronald Eastman, 2010) and evolutionary programming (Xiao et al., 
2002; Cao et al., 2012) are some other methodologies applied to eval
uating land use suitability in more recent literature. However, these 
methods are out of the scope of this paper, hence not discussed in details 
here. 

Consistent improvements in general-purpose GIS have made such 
systems popular for suitability analysis in recent years (Berry and 
BenDor, 2015; Bolleter et al., 2021; Girmay et al., 2018; Mesgaran et al., 
2017; Seyedmohammadi et al., 2019; Scopesi et al., 2020). For example, 

several GIS offer graphical modeling environments, such as ArcGIS 
ModelBuilder, QGIS Graphical Modeler, and Idris Macro Modeler, to 
automate complex process in suitaiblity modeling, which led to the 
developments of ILARIS (Jones and Grant, 2007) and LUCIS (Carr and 
Zwick, 2007) models. Despite these successful applications, there are 
still a few limitations, as mentioned in Section 1, in today’s GIS software, 
that can be further complemented by a portable, free, cross-platform, 
and domain-specific package such as PyLUSAT. 

2.2. Vector-based GIS approach 

In GIS literature, many studies have discussed which data for
mat—vector (a view based on discrete objects) or raster (a view based on 
continuous fields)—leads to a better representation of our world. For 
example, Egenhofer and Frank (1987) proposed an object-oriented data 
model to address the deficiencies of storing, manipulating, and querying 
spatial data in conventional relational database management systems 
(RDBMS). However, Goodchild (1989) argued that the object view is a 
continuation of a tradition inherited from Cartography, and the field 
representation is more realistic and accurate. Bian (2007) went a step 
further to generalize all environmental phenomena into three categories 
and discussed each category’s applicability of adopting the object rep
resentation. Vector and raster representations operate on two distinct 
sets of logic, but they both stem from and partially exhibit human per
ceptions of the world. Instead of viewing them as competing or con
flicting, we should deem vector and raster as complementary 
representations of the real world as suggested by Couclelis (1992) 
“people manipulate objects, but cultivate fields.” Today, we find the two 
representations and their corresponding analytical methods co-exist in 
harmony in GIS applications, in spite of the attempts to develop a 
“general theory” of geographic representation (Liu et al., 2008; Good
child et al., 2007; Winter and Frank, 2000). 

Vector-based GIS routines were implemented in PyLUSAT primarily 
because it fits well conceptually with the object-oriented nature of Py
thon, as the same choice made by other land-use modeling programs 
(Barreira-González, Gómez- Delgado, and Aguilera-Benavente, 2015; 
Bolte et al., 2007). Furthermore, such approach has two additional ad
vantages over the raster representation. First, vector-based GIS tools 
bypass the modifiable areal unit problem (MAUP) since measurements or 
statistics are not derived from a raster grid whose cell size is arbitrarily 
determined (Jelinski and Wu, 1996), but directly from individual ob
jects. Secondly, a vector-based land-use model is more politically rele
vant since objects, e.g., property parcels, reflect and honor the land 
ownership. Just as Couclelis (1992, p. 67) argued that “it is at this lowest 
level of real estate …, that we find the cultural grounding of the notion 
of space as objects.” As PyLUSAT deals with suitability analysis for urban 
(land use) planning, that is, the human employment of land parcels on 
micro (landscape) scales, vector-based GIS is a more appropriate choice. 

2.3. Developing open-source geospatial tools in Python 

We used Python to develop PyLUSAT package. At the conceptual 
stage, we considered using R (R Core Team, 2021) because it integrates 
well with existing GIS software and has several established packages 
dedicated to spatial analysis e.g., sp: Classes and Methods for Spatial Data 
and sf: Simple Features for R (Bivand et al., 2013; Pebesma, 2018). 
Although R is strong in statistical computing, Ma et al. (2020) showed 
that in a land use regression (LUR) application, a Python-based package, 
PyLUR, offers greater processing efficiency and software stability 
comapring to RLUR, a package with similar functions implemented in R. 
In addition, Python is a general-purpose language, a preferable feature 
to software development (custom programing), whereas R more 
commonly is used to apply existing methods of analysis (Muenchen, 
2017). 

There is an abundant resource of open-source geospatial packages in 
Python (Carreira, 2016). For I/O-related tasks, Fiona (Gillies and 
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Others, 2011), an API of the OpenGIS Simple Features Reference 
Implementation (OGR), is capable of handling a variety of forms of 
vector data from local Shapefiles to data on stored on a Post
GIS/PostgreSQL database. Shapely (Gillies and Others, 2007), a Python 
API of the Geometry Engine Open Source (GEOS), provides methods 
related to set-theoretic analysis and manipulation of planar features. 
GeoPandas (Jordahl et al., 2019) is arguably the most powerful 
open-source geospatial package when it comes to vector GIS, in that it 
merges the functionalities of the two packages above, plus the data 
structures of pandas (McKinney, 2010), a fast, flexible, high-level 
building block for data analysis in Python. For raster data inputs, Ras
terio (Gillies and Others, 2013) based on the Geospatial Data Abstrac
tion Library (GDAL) can deal with I/O related tasks as well as converting 
from (or to) vector data. 

3. PyLUSAT functions for suitability analysis 

Functions in PyLUSAT adhere to vector-based GIS routines, i.e., 
taking vector input and generating vector output after performing one or 
more geospatial operations. In most cases, a PyLUSAT function takes a 
collection of polygons representing land units as input, in which a single 
uniform land-use decision can be made. For example, these polygons can 
be property parcel data or an output of a series of GIS operations using 
multiple datasets, such as the Integrated Decision Units (IDUs) (Bolte 
et al., 2007; Wu et al., 2015). 

The classic suitability analysis framework contains three steps: (1) 
evaluate land units based on identified criteria, (2) transform the mea
surements to a uniform suitability scale, and (3) combine the results to 
generate a single suitability score for each land unit (Steiner et al., 2000; 
Marull et al., 2007). The three tasks of suitability analysis can be carried 
out respectively by the three types of PyLUSAT functions: geospatial 
functions, transformation functions, and aggregation functions. The rest 
of this section explains in greater detail how the three categories of 
PyLUSAT’s functions operate. 

3.1. Geospatial functions 

The suitability of a parcel of land for a given land use depends greatly 
on its spatial relationship with the amenities, institutions, service pro
viders, and natural features in the area. Therefore, the geospatial func
tions are crucial to understanding land-use suitability. PyLUSAT 
provides a variety of functions to evaluate spatial relationships among 
vector objects, such as calculating distance and density, examining to
pological predicates (Strobl, 2008), and interpolation. 

3.1.1. Nearest Neighbor search 
Distance, a direct measurement of proximity, is one of the most 

fundamental factors determining land-use suitability. For example, due 
to agglomeration effects, land parcels in the vicinity of a central business 
district (CBD) (Ottaviano and Thisse, 2004) or urban sub-centers (Yang 
et al., 2019) are highly suitable for commercial uses, whereas residential 
uses often favor parcels remote from nuisances, such as quarries or 
poultry farms. In these examples, land parcels/units can be conceived as 
a source set paired with a second set, we call targets, where distance from 
a source to the nearest target affects suitability. Thus, calculating dis
tance amounts to a search for the Nearest Neighbor (NN). To generalize, 
given a set of m sources, i.e., S = {s1, s2, …, sm}, and a set of n targets, i. 
e., T = {t1, t2, …, tn}, the distance between si and tj, the corresponding 
NN of si in T, determines si’s suitability, from a proximity standpoint. 
We use de(si) and dm(si) for the Euclidean and Manhattan distances, 
respectively, as defined by the following equations. 

de

(

si

)

= min
j

⃦
⃦si − tj

⃦
⃦

2, for j = 1, 2,…, n (1)  

dm

(

si

)

= min
j

⃦
⃦si − tj

⃦
⃦

1, for j = 1, 2,…, n (2)  

, where si = (si1, si2)
′

and tj = (tj1, tj2)
′

are in R2; ‖‖2 denotes the 
Euclidean (or l2) norm, i.e., 

⃦
⃦si − tj

⃦
⃦

2 = [(si1 − tj1)2
+ (si2 − tj2)2

]
1/2; and 

‖‖1 denotes the Absolute-value (or l1) norm, i.e., 
⃦
⃦si − tj

⃦
⃦

1 = (|si1 −

tj1| + |si2 − tj2|). Note that, here, we use a single representative point, 
usually a centroid, to represent a land unit. Fig. 1 provides an illustration 
of the NN search based on the Euclidean distance. 

Evidently, the computational complexity for this process will be 
ℴ(mn), if a brute-force search was conducted (Xiao and George, 2016). 
However, it would be overly expensive when the magnitude of mn is 
large. The function pylusat.distance.to_point uses scipy.spatial.ckdtree 
which implements a sliding midpoint method to construct KDtree 
(K-dimensional tree) objects to search for the NN more efficiently (Vir
tanen et al., 2020). Like regular KDtree construction, the sliding 
midpoint method attempts to split the data at the median (midpoint) on 
each axis first, but the plane will then slide to the closest point if a trivial 
(all points on one side of the plane) split occurs (Maneewongvatana and 
Mount, 1999). Such a process results in a KDtree whose height need not 
to be ℴ(log(n)), the height of a regular KDtree, which in turn makes the 
construction of KDtree less computationally expensive. Man
eewongvatana and Mount (1999) have shown that this implementation 
offers a better performance in NN search, especially when data are 
clustered along one axis of R2. 

3.1.2. Affine transformation 
When the target set is comprised of line features, an efficient 

approach to compute distances is to transform the line features from 
individual vector shapes to a raster grid. The function pylusat.distance. 
to_line implements this approach by using the Affine transformation 
defined by the following equation. 
⎡

⎣
vx
vy
1

⎤

⎦=

⎡

⎣
c 0 l
0 − c t
0 0 1

⎤

⎦

⎡

⎣
rx
ry
1

⎤

⎦ (3)  

, where c is the cell size used to rasterize the 2-D plane shaped by the 
extent of the line dataset; vx and vy are the (x, y) coordinates of the 

Fig. 1. The Nearest Neighbor, in terms of Euclidean distance, of each source in 
the target set. 
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vertices of the line features; l and t are the left and top bound of the 2-D 
plane; and, finally, rx and ry represents the row and column number of 
the cell located on the transformed raster grid. The affine transformation 
matrix (ATM), i.e., the augmented matrix in the equation, performs a 
linear transformation (a scaling and a rotation) followed by a translation 
(shifting the origin), which preserves the relative spatial relationship 
among the line features (Wheaton et al., 2012). 

After applying an Affine transformation, the problem of calculating 
distance to line features reverts to a search for NN since lines are pixe
lated into a definite amount of cells, wherever any part of any line exists. 
Note that the precision of the calculated distances will depend on c, the 
cell size of the converted raster grid. Fig. 2 shows an example of the 
transformation whose ATM’s entries are c = 100, l = 5000, and t = 4500. 

3.1.3. Density and Zonal Statistics 
Density is an important instrument in suitability analysis since it 

directly, from a 2-D perspective, measures the intensity of land-use 
related activities/phenomena on a landscape. For example, the density 
of single-family dwelling units in a given region reveals characteristics 
of the neighborhood, and the density of a road network reflects the level 
of accessibility it provides to vehicles. Because of its vector-based 
characteristic, PyLUSAT’s density module calculates density within a 
user-defined set of input zones (polygons). Using an analogy of source 
and targets in the distance definition, the density of targets in a given 
source zone i is defined as ρi = (

∑m
j=1tjvj)/Ai, where tj = 1, if target j is 

within the area of i (Ai); otherwise tj= 0, and vj—the value corresponding 
to target j—equals to 1, if not specified. 

To evaluate spatial containment of point targets, we used the func
tion geopandas.sjoin, which supports three types of topological predi
cates: intersect, contain, and within. When targets are line features, 
PyLUSAT will first apply an Affine Transformation to convert them to a 
raster grid, and then use rasterstats.zonal_stats to calculate the total 
amount of cells within each source zone. Fig. 3 illustrates the case of 
calculating line density. 

3.1.4. Interpolation 
Interpolation methods are used to estimate values of unknown data 

points using the known ones, of which the Inverse Distance Weighted 
(IDW) interpolation is widely applied in GIS-based suitability analysis 
(Tercan and Dereli, 2020; Varatharajan et al., 2018; Yao et al., 2013). 
IDW, as a GIS technique, is one of the classic realizations of the so-called 
first law of geography: “everything is related to everything else, but near 
things are more related than distant things” (Tobler, 1970, p. 236). The 
most commonly adopted version of IDW is Shepard’s (1968) method 
defined below. 

f (P) =

⎧
⎪⎨

⎪⎩

∑N

i=1
(di)

− uzi
∑N

i=1
(di)

− u
if di ∕= 0 for all i = 1, 2,…,N.

zi if di = 0 for some i = 1, 2,…,N.

(4)  

, where P is the point of interest, zi and di are, respectively, the value at 
the i-th known data point and its Euclidean distance to P, and u is a 
predefined positive number also known as the power parameter. Note 
that, the negative sign before u makes the i-th point’s weight inversely 
proportional to its distance to P in the estimation, hence how the method 
got its name. As distance increases, the known values’ influences on the 
estimation of P declines faster as u gets bigger, which shifts the algo
rithm from a global model to a local model. The process of determining 
the best value of u is relatively deterministic. PyLUSAT provides a 
function, pylusat.interpolate.idw_cv, which allows users to pick a proper 
value for u through Cross Validation. 

3.2. Transformation function 

The goal of transformation functions is to translate measurements 
based on various criteria into a standardized “suitability” scale, which is 

Fig. 2. An Affine Transformation that converts lines features (left) to a raster grid (right).  

Fig. 3. Density of line features within input zones (after Affine Trans
formation applied). 
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arbitrarily chosen and then consistently applied throughout the analysis, 
for example, a scale of 1–9 (the lowest to highest suitability) adopted by 
the Land Use Conflict Identification Strategy (LUCIS) (Carr and Zwick, 
2007). In general, there are three mechanisms to define a trans
formation, which are by (a) unique categories, (b) range of classes, and 
(c) continuous functions. The first mechanism typically deals with 
nominal and ordinal data, in which individual values are associated with 
different degrees of suitability. The second method handles interval or 
ratio data and is more flexible, in that values fall into a certain range 
represent the same degree of suitability. PyLUSAT’s rescale.reclassify 
function allows users to do both transformations by leveraging the 
pandas.DataFrame object’s highly efficient indexing/slicing capability. 

Besides pre-defined ranges, ranges can be derived from the data as 
well. Jenks Jenks (1977) developed the natural breaks algorithm, origi
nally as a choropleth mapping technique, which was widely employed in 
land-use suitability analysis (Abdullahi et al., 2015; Berry and BenDor, 
2015; Owusu et al., 2017). Natural breaks seek to simultaneously 
minimize the differences within classes and maximize the differences 
between classes. The total variance in the data, also known as the 

squared deviation from array mean (SDAM), is defined as 
∑n

i=1(xi − x
̄
)
2, 

on the other hand, the within-class difference is captured by the squared 

deviation from the class mean (SDCM), that is 
∑k

j=1
∑nj

i=1(xi − x
̄
j)

2, 
where nj is the number of elements in the j-th class, and k is a pre-defined 
number of classes. The algorithm iterates through all possible breaks and 
computes the Goodness of Variance Fit (GVF), i.e., SDAM− SDCM

SDAM . The 
minimum GVF obtained corresponds to the so-called “optimal” range of 
classes. 

PyLUSAT supports linear transformation, also known as the min-max 
feature scaling, for continuous data transformation. This method is the 
most common technique to standardize a single criterion and has been 
used for feature engineering technique in many machine learning ap
plications (Malczewski, 2004; Tang et al., 2018). Besides its intuitive
ness, another advantage that makes the method appealing in suitability 
analysis is that it preserves the distribution of the original variable after 
the transformation (Cao and Obradovic, 2015). Without loss of gener
ality, the following equation defines a linear transformation of a variable 
X from its original scale [xmin, xmax] to an arbitrary scale [a, b]. 

x’
i =

⎧
⎪⎪⎨

⎪⎪⎩

a +
xi − xmin

xmax − xmin
(b − a) for i ∈ {1, 2,…n} (regular order).

b −
xi − xmin

xmax − xmin
(b − a) for i ∈ {1, 2,…n} (inverse order).

(5)  

, where n is the total number of observations. Note that, both cases in 
equation (5) are relevant to measuring land-use suitability. As with the 
two examples in Section 3.1.1, a relatively large value of the same 
measurement, i.e., distance, may be valued as either pros or cons, 
depending on the suitability criteria. 

3.3. Aggregation function 

In GIS-based suitability analysis, transformed measurements of 
various criteria are combined to make a land-use decision, which 
commonly is done by assigning weights to individual criteria, based on 
expert knowledge, and then summing the results (Kalogirou, 2002). 
PyLUSAT provides a utility function pylusat.util.weighted_sum for such 
operation. However, professionals or stakeholders (agents) often find 
themselves in a situation where a consensus on the weighting cannot be 
reached. Multi-criteria decision analysis (MCDA) can help resolve the 
differences. PyLUSAT offers a function, pylusat.utils.ahp, to conduct the 
Analytic Hierarchy Process (AHP) developed by Saaty (1990). 

According to cognitive pyschologist Blumenthal (1977), to make a 
judgement, either absolute or comparative, “a person must compare an 
immediate impression with impression in memory of similar stuimuli.” 
This premise that people can deal with only a few facts simultaneously is 

thoughtfully employed in AHP (Miller, 1956; Saaty, 1990). The MCDA 
technique converts a decision of multiple criteria into a series of 
pair-wise comparisons, with the result quantified using a scale from 1 to 
9. If item A is equally important to item B, the result is 1. And, if item A is 
extremely important than item B, the result is 9. The integers in between 
correspond to different levels of pair-wise importance comparisons. 
Moreover, the reciprocals of these values are used if one swaps the 
comparates, i.e., if A to B is 5(wA/wB = 5), then wB/wA = 1/5. According 
to this setup, AHP first creates a reciprocal matrix using results of the 
pair-wise comparisons. Then, it solves the eigenvalue equation, i.e., Av 
= λv, and retains the primary eigenvalue (the largest one among all 
eigenvalues) and the corresponding primary eigenvector. Finally, it 
normalize the primary eigenvector (dividing individual elements of the 
vector by their sum), to obtain the priority vector. Each element of the 
priority vector represents the weight of an initial criterion involved in 
the analysis, which reflects its relative importance in the final decision. 

AHP also involves a mechanism, Consistency Ratio (CR), to validate 
whether the decisions of the pair-wise comparisons are consistent, e.g., 
given wA/wB = 7 and wB/wC = 3, then if wA/wC = 1/5, we call it an 
“inconsistency” in the comparisons. In addition to the pylusat.utils.ahp 
function, PyLUSAT also provides a pylusat.utils.random_ahp function to 
generate random AHP weights that follows the rule of thumb, that is CR 
is less than 0.1. 

4. Validation and evaluation 

Fig. 4 shows two choropleth maps side-by-side, where the left one 
presents the result of measuring point distances (using ArcMap) between 
schools and centroids of census block groups (CBG) of Alachua County, 
Florida; and the right one shows the same phenomenon with the same 
color scheme but measured by PyLUSAT. The datasets used to create the 
two maps, the left by a layout of ArcMap and the right by the plotting 
function of GeoPandas and Contextily (for basemap tiles), are included 
in the GitHub repository mentioned in the first section. As the figure 
shows, from a cartographic perspective, the two results are identical. 

However, to validate tools in PyLUSAT, especially the geospatial 
functions, more rigorously, we compared outputs of five geoprocessing 
tools in ArcMap 10.4 with the outputs of corresponding functions in 
PyLUSAT by conducting a series of (two-tailed) paired-sample t-tests. 
The null hypotheses of these tests are identical, which is there exists no 
statistically significant difference between outputs from PyLUSAT 
functions and their ArcGIS counterparts. Table 1 lists (by function) the 
degree of freedoms (df), observed t statistics, and p-values of these t tests. 

In these t tests, the observations are different quantities measured 
against the 155 CBGs in Alachua County, hence 154 df. We used school 
and road network datasets in the county for point and line features 
respectively which, again, are included in the GitHub repository. For 
IDW, we used the Digital Elevation Model (DEM) as the value raster grid. 
As indicated by the p-values, none of the tests can reject the null hy
pothesis, which suggests that we can trust the results of PyLUSAT’s 
geospatial functions with confidence. PyLUSAT is developed with 
computing speed in mind as well. In contrast to conducting suitability 
analysis using GIS applications, computational efficiency is mainly 
gained from two sources: (a) the implementation of NumPy’s vectorized 
operation in PyLUSAT and (b) the I/O wait time saved from reading/ 
writing intermediate files (Harris et al., 2020). The latter is 
non-negligible in that intermediate outputs are usually saved on disk 
when conducting suitability analysis on desktop GIS software, whereas 
PyLUSAT keeps the study units (e.g., land parcels) in memory as a Geo
DataFrame object throughout the entire process of suitability analysis. 
Fig. 5 shows three time cost (wall time measured in seconds) compari
sons between PyLUSAT functions and their counterparts in ArcMap 10.4. 

Note that, pylusat.density.of_line() calculates line density in each 
input polygon or in a user-defined radius around each polygon’s 
centroid. Since the function is different from ArcMap’s Line Density tool, 
which only produces a raster grid with density values, a ModelBuilder 
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model consisting of Line Density and Zonal Statistics was used in the third 
comparison. As shown in the figure, PyLUSAT functions take less time to 
run in all three cases, and such effect become more significant as the 
total number of measurements increases. 

The improved computational efficiency by individual PyLUSAT 
functions could significantly reduce the total time cost of conducting a 
suitability analysis. Moreover, this effect can be further amplified by 
HPC. Since PyLUSAT is cross-platform, it can be installed on a 
computing cluster (usually running on Linux-based OS) with minimal 
effort. Thus, it enables urban planners and researchers to rapidly 
simulate future land-use scenarios to evaluate both the intended and 
unintended consequences of specific land-use policies under the 
framework of suitability analysis. This is a main goal of the development 
of PyLUSAT. Chen Chen (2019) conducted a feasibility study, in which 
PyLUSAT is used to port the LUCIS model to HiPerGator, a supercom
puter at the University of Florida (Carr and Zwick, 2007). In this study, 
ninety-six cores were used to simulate 120 alternative land-use scenarios 
in Orange County, Florida. The entire process took only slightly over 5 
min. 

5. Conclusion and future outlook 

Open-source software dedicated to GIS-based land use suitability 
analysis is rarely found in relevant literature. In this paper, we present a 
Python package—PyLUSAT—representing a promising candidate to 
help fill in this absence. As an alternative solution to existing GIS ap
plications, PyLUSAT facilitates the customization and automation of 
suitability analysis while maintaining the process highly scalable and 
reproducible. The performance of PyLUSAT’s functions were evaluated 
from both accuracy and efficiency perspectives. Five geospatial functions 

in PyLUSAT were selected and conducted paired-sample t tests between 
the outputs from these five functions and outputs from their counter
parts in ArcMap 10.4. Results of these tests showed that there are no 
statistically significant difference between the two sets of outputs. 
Additionally, we benchmarked the time costs (wall time) of three 
PyLUSAT’s geospatial functions and their corresponding tools in Arc
Map. Results showed that PyLUSAT functions are noticeably faster. 

PyLUSAT has been made available on the Python Package Index 
(PyPI) and also on GitHub at https://github.com/chjch/pylusat. It offers 
various tools (functions), allowing the package to handle tasks entailed 
by GIS-based land use suitability analysis. PyLUSAT can be used not only 
on a personal computer running on either Windows, Linux, or MacOS, 
but also on a supercomputer to take advantage of HPC. In addition, 
PyLUSAT is highly extensible. For example, it has been used to develop a 
QGIS plugin, PyLUSATQ, to support sustainable land management 
(SLM) in Ghana (Chen et al., 2021). Finally, methods and tools intro
duced in Section 3 of this paper can be used by developers in the FOSS 
community who are interested in developing geospatial packages and 
applications in Python. 

As the package is actively being used in applied research projects, 
continued efforts will be made to maintain the package and respond to 
feedback and issues reported through the GitHub repository. In addition, 
we plan to implement a couple of improvements in the forthcoming 
versions of the software, including 1) a comprehensive list of continuous 
transforming functions, e.g., gaussian, logistic decay, exponential, etc., 
2) further enhancing computational efficiency in PyLUSAT by taking 
advantage of a just-in-time (JIT) compiler such as Numba, and 3) 
incorporating a parameterized region growth (PRG) function to allow 
allocation of land uses based on user-defined rules, such as a region’s 
minimum (or maximum) area, minimum average suitability score, and 
minimum distance between two regions. 

Name of software 

PyLUSAT. 

Developer 

Changjie Chen. 

Fig. 4. Maps of measuring point distance. Left: by ArcGIS. Right: by PyLUSAT.  

Table 1 
Paired-sample t-tests between results from PyLUSAT and ArcGIS.  

Test function df t statistic p-value 

Distance to point 154 1.052 8 0.294 1 
Distance to line 154 0.361 3 0.718 4 
IDW 154 0.588 9 0.556 8 
Density of point 154 − 0.686 3 0.493 6 
Density of line 154 1.165 6 0.244 7  
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Contact information 

chj.chen@ufl.edu. 

Software license 

BSD. 

Year first available 

2020. 

Program language 

Python. 

Cost 

Free. 

Software availability 

https://pypi.org/project/pylusat/ 

Code repository 

https://github.com/chjch/pylusat. 

Program size 

4.2 MB. 
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