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Land cover (LC) change is an integrative indicator of changes in ecosystems due to
anthropogenic or natural forcings. There is a significant interest in the investigation of
spatio-temporal patterns of LC transitions, and the causes and consequences thereof.
While the advent of satellite remote sensing techniques have enhanced our ability to track
and measure LC changes across the globe, significant gaps remain in disentangling
specific factors that influence, or in certain cases, are influenced by, LC change. This study
aims to investigate the relative influence of regional-scale bioclimatology and local-scale
anthropogenic factors in driving LC and environmental change in Ghana. This analysis
builds upon previous research in the region that has highlighted multiple drivers of LC
change in the region, especially via drivers such as deforestation, urbanization, and
agricultural expansion. It used regional-scale remotely sensed, demographic, and
environmental data for Ghana across 20 years and developed path models on causal
factors influencing LC transitions in Ghana. A two-step process is utilized wherein causal
linkages from an exploratory factor analysis (EFA) are constrained with literature-based
theoretical constructs to implement a regional-scale partial least squares path model
(PLSPM). The PLSPM reveals complex interrelationships among drivers of LC change that
vary across the geography of Ghana. The model suggests strong effects of local urban
expansion on deforestation and vegetation losses in urban and peri-urban areas. Losses of
vegetation are in turn related to increases in local heating patterns indicative of urban heat
island effects. Direct effects of heat islands are however masked by strong latitudinal
gradients in climatological factors. The models confirm that decreases in vegetation cover
results in increased land surface albedo that is indirectly related to urban and population
expansion. These empirically-estimated causal linkages provide insights into complex
spatio-temporal variations in potential drivers of LC change. We expect these models and
spatial data products to form the basis for detailed investigations into the mechanistic
underpinnings of land cover dynamics across Ghana. These analyses are aimed at building
a template for methods that can be utilized to holistically design spatially-disaggregated
strategies for sustainable development across Ghana.

Keywords: urbanization, climate, MODIS, remote sensing, partial least squares path modeling, deforestation,
exploratory factor analysis, Ghana

Edited by:
Juergen Pilz,

University of Klagenfurt, Austria

Reviewed by:
Devaraju Narayanappa,

University of Oslo, Norway
Temesgen Abera,

University of Helsinki, Finland
Tekleab Gala,

Chicago State University,
United States

*Correspondence:
Julie A. Peeling

juliepeeling@ufl.edu

Specialty section:
This article was submitted to

Environmental Informatics and Remote
Sensing,

a section of the journal
Frontiers in Environmental Science

Received: 22 June 2021
Accepted: 08 December 2021
Published: 12 January 2022

Citation:
Peeling JA, Singh A and Judge J

(2022) A Structural Equation Modeling
Approach to Disentangling Regional-
Scale Landscape Dynamics in Ghana.

Front. Environ. Sci. 9:729266.
doi: 10.3389/fenvs.2021.729266

Frontiers in Environmental Science | www.frontiersin.org January 2022 | Volume 9 | Article 7292661

ORIGINAL RESEARCH
published: 12 January 2022

doi: 10.3389/fenvs.2021.729266

http://crossmark.crossref.org/dialog/?doi=10.3389/fenvs.2021.729266&domain=pdf&date_stamp=2022-01-12
https://www.frontiersin.org/articles/10.3389/fenvs.2021.729266/full
https://www.frontiersin.org/articles/10.3389/fenvs.2021.729266/full
https://www.frontiersin.org/articles/10.3389/fenvs.2021.729266/full
https://www.frontiersin.org/articles/10.3389/fenvs.2021.729266/full
http://creativecommons.org/licenses/by/4.0/
mailto:juliepeeling@ufl.edu
https://doi.org/10.3389/fenvs.2021.729266
https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org/journals/environmental-science#editorial-board
https://doi.org/10.3389/fenvs.2021.729266


1 INTRODUCTION

Patterns of land cover change (LCC) are often integrative
indicators of climatic, environmental, and anthropogenic
effects across the globe. While factors influencing LCC include
changes in environmental conditions, anthropogenic forcings
often promote unstable ecological regimes and disruptions in
natural processes that exacerbate LCC (Lambin et al., 2003).
Drivers of LCCmay therefore be difficult to measure and assess as
they represent complex interactions of many different forcings.
There is therefore considerable interest in studying the
intersections between environmental, socioeconomic, and
climatic data as causes or consequences of LCC. For example,
changes in land cover (LC) have been found to be correlated to
measurable indicators such as erosion, population expansion,
industrial growth, surface heating, and soil quality (Teuling et al.,
2010; Kuenzer et al., 2014; Rahaman et al., 2020). Direct human
activity, such as increased agricultural land use, has been a
significant component of change throughout history in natural
LC dynamics (Malhi et al., 2013; Lewis et al., 2015; Addo-
Fordjour and Ankomah, 2017). In turn, shifting land
dynamics are influential in altering anthropogenic
characteristics such as culture, economics, and urban
expansion (Owusu, 2009; Edusah, 2011; Frondoni et al., 2011).
Although governments have often created protective policies in
an attempt to preserve environmental stability, a lack of
enforcement and the continuation of illegal activity strains
these boundaries (Nang, 2016; Kyere-Boateng and Marek,
2021). Ecologically detrimental practices have been a
complicated problem to address, in part due to difficulties in
identifying definitive long-term consequences of these
interferences (Frondoni et al., 2011; Malhi et al., 2013).

Technological andmethodological advances in remote sensing
techniques have helped close this knowledge gap. Using satellite
data, LC trends have been examined to investigate how regions
have undergone environmental modifications and been
influenced by human activities (Enaruvbe and Atafo, 2016)
(Kleemann et al., 2017a). As population growth and
anthropogenic developments have escalated over time, many
studies have focused on identifying ecological changes, such as
within climate and vegetation, that occur with the expansion of
urban LC classes (Kleemann et al., 2017b; Asabere et al., 2020;
Nyamekye et al., 2020). The large amounts of natural resources
required by rapid industrial growth has placed significant
demands on the environment that advances LCC beyond
natural shifts (Yiran et al., 2012; Kuenzer et al., 2014; Mensah
et al., 2019; Sedano et al., 2020). The methods used to acquire
these materials also create disturbances within LC dynamics (Alo
and Pontius, 2008; Kusimi, 2008; Tutu Benefoh et al., 2018).

Remote sensing techniques have also been used to capture
specific environmental indicators and investigate how they follow
LC patterns (Jamali et al., 2015; Liu et al., 2017; Rahaman et al.,
2020; Chowdhury et al., 2021). Time-series data on vegetative
growth has been used to demonstrate the importance of LC
conditions on plant productivity (Haile et al., 2019). Rahaman
et al., 2020 used remotely sensed measures including land surface
temperature (LST), leaf area index (LAI), and normalized

difference vegetation index (NDVI) to demonstrate the
susceptibility of the environment to these variables involved in
LCC. Environmental indicators such as NDVI, rainfall, and
temperature gathered through remote sensing were used to
predict future land degradation risk zones in Ghana (Mensah
et al., 2015). Remote sensing methods have also been utilized to
generate LC maps of various regions and time periods, furthering
our knowledge of what drives landscape dynamics at large scales
(Hackman et al., 2017; Boryan et al., 2011; Masiliu�nas et al., 2021).
Historical maps of previous LC classes provide base knowledge of
past environmental dynamics (Bodart et al., 2013; Spruce et al.,
2020). Maps of LCC can also be generated for the purpose of
investigating temporal patterns occurring in various LC classes
(Fry et al., 2011; Vittek et al., 2013; Bicudo da Silva et al., 2020;
Calderón-Loor et al., 2021).

Detecting LCC is especially important in environmentally
sensitive nations whose policy-making has the potential to
significantly impact their future ecological state and the well
being of their populations. This is especially true for regions
where regular cloud cover limits the availability of viable satellite
data (Hackman et al., 2017). Gaps in satellite coverage often result
in information misinterpretations or incomplete characterization
of ecological variables. However, modern developments have
incorporated algorithms that remove or reduce cloud cover
interference from the satellite images to provide clearer data
(Lossou et al., 2019).

While previous studies have provided vital information on
relationships between the environment, human activity, and
LCC, most research has focused largely on correlative analyses
of remote sensing-based proxies with measured changes. A lack
of the understanding of causal connections of LCC is still a major
gap. This study aims to combine socio-ecological and remotely
sensed data to determine potential causal linkages between these
variables, which are measurable data used in the study, and LC
trends. Specific objectives include: 1) assessing spatial patterns of
long-term regional-scale environmental and socio-ecological
changes using satellite imagery, climate data, and socio-
demographic datasets; 2) identifying underlying structural
characteristics that explain the linkages between socio-
ecological and environmental variables; and 3) utilizing a
structural modeling approach to determine causal relationships
between regional-scale patterns of landscape, demographic, and
environmental change. The methodology is implemented in
Ghana, which has undergone significant LCC in recent
decades, especially with respect to anthropogenic agents such
as urbanization and deforestation (Hackman et al., 2017).

2 METHODS

2.1 Study Area and Datasets
Ghana is a West African nation bordering Togo to the East, Cote
d’Ivoire to theWest, and Burkina Faso to the North, and bound to
the South by the Atlantic Ocean (Figure 1). Ghana measures ca.
240,000 km2, and is representative of a diversity of terrain and
landscapes, including savannas, forests, wetlands, and mountains
(Hackman et al., 2017). Ghana has a tropical climate with
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precipitation ranging from 900 to 2000 mm during the months of
April-June in the South and April-November in the North
(World Bank Group, 2020). Forest cover (21.7%) in Ghana
displays a marked North-to-South gradient, with most forests
concentrated in the South (Butler, 2020). Ghana’s LC primarily
consists of agriculture (65.0%), while urban LC and protected
areas make up around 16.8 and 15.5% of the region, respectively.
Ghana’s reported population is around 30 million people (2019),
with an estimated 2.15% annual growth.

Ghana’s land use has undergone significant changes in recent
decades, with anthropogenic influence being an important driver
(Hackman et al., 2017). For example, in recent decades, Ghana
has experienced significant deforestation due to mining activities,
lumber extraction, and agricultural intensification (Alo and
Pontius, 2008). Ghana is also rapidly urbanizing, with direct
links to reductions in urban open spaces, loss of vegetation, and
stresses on water resources (Kleemann et al., 2017b; Asabere et al.,
2020). Recent research in the region has established connections
between agricultural change with indicators such as soil quality,
population density, and road networks (Braimoh and Vlek, 2005).
LC transitions in Ghana have also been linked to changes in
climatic and land surface conditions in Ghana (Ghartey-Tagoe
et al., 2020). A map of current LC classes across Ghana is
presented in Figure 2.

This study combined remotely sensed data with
environmental and anthropogenic variables (Table 1) to
disentangle the spatio-temporal relationships between land
surface dynamics with changes in these variables. The Google

Earth Engine (GEE) cloud platform was the primary platform for
curating and pre-processing all geospatial data in this study. All
data obtained from GEE were retrieved using high-quality QA
bits and scaled to a uniform resolution of 5 km. Coarse-scale data
were linearly down-sampled and fine-scale data were up-sampled
through linear averaging. For assessing spatio-temporal trends,
linear regressions to pixels across the entire area of Ghana were
conducted over a 20-year period, from 2000 to 2020, except for
night lights and forest cover data, which were available over 11
and 15 years, respectively, as shown in Table 1. The temporal
coverage varies slightly due to the multi-source nature of the
dataset, but the data were processed for maximized consistency
and all trends were considered on an annual scale. Slopes
estimated from the regression were used as indicators of long-
term trends in temporal variables (e.g., NDVI, temperature,
precipitation) on a pixel-wise basis. Long-term means of each
temporal dataset were calculated to represent average conditions
across the region. Reducing the multi-temporal dataset to slopes
minimizes temporal noise, identifies secular trends, and provides
a spatial representation of the pattern of changes over time. On
the other hand, estimates of means provide time-integrated
indicators of the long-term steady-state conditions of the
landscape. Combined, the means and slopes help compare and
contrast the steady-state with secular changes to provide a richer
representation of landscape dynamics across this diverse
landscape. Figures 3–5 show the means and slopes of
vegetative, biophysical, and climatic and landscape variables,
respectively. In addition to the above datasets, road density

FIGURE 1 | Ghana, location within the larger West African region, major cities, and regional borders.
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was scaled to 5 km with a moving window approach and included
in the analysis (see Figure 2). Distance to cities was also added as
a variable. These static variables were included in the analysis to
provide spatial references to variables in combination with
discovered trends.

2.2 Statistical Analysis
The analyses were conducted in two steps, a preliminary
exploratory factor analysis (EFA) step to explore latent

relationships between observed variables, followed by a
structural equation model, partial least squares path modeling
(PLSPM), for formalized testing of hypotheses generated from the
literature and the EFA.

2.2.1 Exploratory Factor Analysis (EFA)
The EFA is a statistical analysis technique utilized primarily to
uncover the underlying structure of a dataset comprising
potentially several correlated variables. EFA works by reducing
measured variables to a smaller number of latent factors using an
eigenvalue decomposition. By this construct, these factors
represent the common axes of variation within the dataset and
are used to describe the output of the statistical process to which
the variables are linked (Yong and Pearce, 2013). In general,
factors are computed as linear constructs of measured
(“manifest”) variables:

Xj � aj1F1 + aj2F2 +/ + ajmFm + ej (1)

where Xj denotes the jth observed variable of the dataset, ajm
represents the factor loading of the variable onto the mth
underlying factor, Fm, and ej is representative of any
remaining variation.

The number of factors is generally determined using the
magnitudes of their computed eigenvalues (eigenvalues > 1.0
generally considered significant) or via a parallelized null model
framework (Franklin et al., 1995) that compares the full model to
one generated using random numbers (Wood et al., 2015). To
ensure convergence and to reduce redundancy, we first dropped
all variables that had a correlation value > 0.85 with other
variables (Yong and Pearce, 2013). As a result, enhanced
vegetation index (EVI) mean, EVI slope, LST mean, and
population mean were dropped from the dataset. The EFA
was conducted using the factor-analyzer package in Python
using an oblique rotation to allow correlations between factors
(Schmitt, 2011). We considered any variable with a loading lower
than 0.3 non-significant (Samuels, 2016). As each variable loads
onto each factor with varying significance, the EFA results were
constructed by assigning variables to the factor with which they

FIGURE 2 | MODIS land cover (2019), spatial variations in road density
and proximity to major urban centers. Data sources are presented in Table 1.

TABLE 1 | The comprehensive remote sensing, environmental, and socio-economic datasets used in this study. [1] �Hersbach et al., 2021; [2] �Schaaf andWang, 2021; [3]
� Sahel and West Africa Club, 2020; [4] � Didan, 2021; [5] � Townshend, 2016; [6] � Wan et al., 2015; [7] � Earth Observation Group Payne Institute for Public Policy
Colorado School of Mines, 2011; [8] � Linard et al., 2021; [9] � Running et al., 2021 [10] � OpenStreetMap contributors, 2017.

Variable Temporal
Res.

Spatial
Res.

Years
Available

Measures
—

Sources
—

Air Temp. Monthly 25 km 2000-20 Mean, Slope [1]
Albedo Daily 500 m 2000-20 Mean, Slope [2]
City Distance — — 2020 — [3]
Enhanced Veg. Index 16-Day 250 m 2000-20 Mean, Slope [4]
Forest Cover 5-Year 30 m 2000-15 Mean, Slope [5]
Land Surface Temp 8-Day 1 km 2000-20 Mean, Slope [6]
Night Lights Daily 1 km 2000-11 Mean, Slope [7]
Normalized Difference Veg.
Index

16-Day 250 m 2000-20 Mean, Slope [4]

Population Yearly 90 m 2000-20 Mean, Slope [8]
Potential Evapotranspiration 8-Day 500 m 2000-20 Mean, Slope [9]
Precipitation Monthly 25 km 2000-20 Mean, Slope [1]
Road Density — — 2017 — [10]
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had the highest correlation. The proposed variable-factor
relationships found through EFA were used as inputs in
PLSPM to create a structural equation model.

2.2.2 Partial Least Squares Path Modeling (PLSPM)
PLSPM is a structural equation modeling framework that allows
assessing the strengths of relationships between measured and
latent factors hypothesized to have causal linkages using partial
least squares techniques. PLSPM has been utilized for evaluating
environmental effects in areas of study such as species richness,
agritourism, and sustainability (Assaker et al., 2014; Ibrahim,
2017; Sanches Fernandes et al., 2018; Cataldo et al., 2020;
Kazlouski et al., 2020; Li et al., 2020).

PLSPM utilizes an iterative algorithm to determine the weights
of latent variables (“inner variables”) vis-a-vis observed data
(“manifest,” “outer,” or observed variables) as linear constructs
of the measured variables (Assaker et al., 2014; Benitez et al.,
2020). This process produces loadings of the manifest variables
on the latent variables and path coefficients between the latent
variables (Assaker et al., 2014). The loadings indicate the strength
of relationships between the manifest variables and their
corresponding latent vectors, and the path coefficients indicate
the strengths of relationships between the latent vectors.

In contrast with standard covariance-based structural
equation models, PLSPM allows for the differentiation
between “reflective” or “formative” relationships between

latent vectors and manifest variables. If the manifest variable is
assumed to cause or be created by the given latent factor, the
association is considered reflective (e.g., population increase
causes urbanization). Conversely, if the manifest variable is
assumed to cause changes in the latent factor (e.g.,
urbanization causes temperature increases), the relationship is
considered formative (Benitez et al., 2020). In PLSPM parlance,
Mode A is used for the reflective variables and Mode B represents
the formative ones (Assaker et al., 2014).

We fit the PLSPM to our data using the plspm package in
Python after grouping the EFA outputs to reflect ecological and
anthropogenic linkages within the region based upon evidence
from literature (Benitez et al., 2020). For example, past studies
have found that population levels inWest Africa strongly indicate
LCC, especially in the declines of forested areas and expansion of
urbanized regions (Kusimi, 2008; Yiran et al., 2012; Kleemann
et al., 2017a). Shifting LC dynamics in Ghana tracked by NDVI,
such as vegetation loss have also been linked to changes in
temperature and rainfall (Asante and Amuakwa-Mensah, 2015;
Ghartey-Tagoe et al., 2020).

We repeated the modeling process till the model converged to
a form with acceptable measures of validity. Finally, we assessed
model performance using goodness-of-fit statistics produced by
PLSPM. Once the base model had been fit, we used 0.7 as an
acceptable cutoff for loadings to identify significant variables
within the model, following Sanchez, 2013.

FIGURE 3 | Spatial variations in mean and trends in MODIS-derived and
forest cover. Data sources are presented in Table 1.

FIGURE 4 | Spatial variations in means and trends of MODIS-derived
biophysical variables. Note albedo is dimensionless. Data sources presented
in Table 1.
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Model fit was assessed by inspecting commonality scores (how
well manifest variables explain their latent factors),
unidimensionality statistics (how well latent factors represent
manifest variables), goodness-of-fit (how well the latent structure
explains the variations in the data), and confidence intervals of
path loadings estimates. The average commonality is
estimated as:

∑ loadings( )2
n

(2)

where n is the number of loadings. Goodness-of-fit is then
calculated by the equation

GF �
������������������
AvgCom( )p AvgR2( )√

(3)

where GF represents the goodness-of-fit as a function of the
average communality and R-squared values of the model
(Sanchez, 2013). We used 500 bootstrapped iterations to
generate 95% confidence intervals (Henseler et al., 2014). We
considered variables whose confidence intervals contained zero
non-significant (Sanchez, 2013).

3 RESULTS

3.1 Trends in Climatological and Biophysical
Variables
Spatial trends of climatological and biophysical variables across
Ghana are presented in Figures 2–5. Climatic variables such as
air temperature, LST, potential evapotranspiration (PET), and
albedo are on average higher in the Northern part of Ghana,
closer to the equator and savanna ecosystem. Air temperature and
LST also seem to show increasing trends in the South and close to
major cities, such as Kumasi and Accra, likely indicating effects of
recent LCC from largely vegetated cover to more built-up uses
(see Figure 1). Precipitation (PPT) tends to be higher along the
coastline, and seems to show an increasing trend in the Volta
region. Measures of vegetation vigor such as NDVI and EVI
follow almost identical patterns of high average values (but
negative trends) closer to major cities, mirroring trends in LST
and temperature. Forest cover largely tracks vegetation indices,
but only along the forest belt along Southwestern Ghana.
Indicators of urbanization, including night lights, population,
road density, and city distance all follow trends that match with
the geographic locations of settled areas, and trends in night lights
and population growth identify urban growth centers of Kumasi,
Accra, and Tamale.

3.2 EFA
Randomized simulations of EFA using the parallelizing methods
(see Figure 6) revealed that five factors were sufficient to
characterize variations in the data. The strength and direction
of the relationships between the factors is presented in Figure 7A.
Overall, the first factor strongly correlates to NDVI mean and
mean forest cover, and it negatively correlates to mean albedo and
air temperature, with the relationship to albedo being stronger in
magnitude by about 0.3. This factor seems to track cooler areas
with high forest cover. Factor 2 has the strongest association with
mean PET with moderate correlations with other variables (0.3 <
r < 0.7). Factor 2 also correlates positively to the slopes of night
lights, PPT, and PET and mean road density, and it has an inverse
relationship to mean city distance. Factor 2 therefore likely
correlates to local-to-regional scale effects of increasing peri-
urban development. Factor 3 is strongly related to mean
brightness of night lights and population growth (r > 0.7),
indicating growing population centers. Factor 4 is strongly
correlated with the slope of air temperature and mean PPT
and is likely indicative of regional-scale variations in climatic
gradients. Factor 5 is strongly related to the albedo slope and LST
slope, and it has a negative correlation with NDVI, likely
indicating decreasing greenness due to diversion of LC from
forested or otherwise vegetated land to other land uses. In
combination, the EFA suggests that larger patterns of
variations in vegetation cover and local-regional scale
bioclimatology is determined by a combination of factors that
include expansion of peri-urban areas, urban intensification, and
the loss of vegetative cover around cities. The effects are largely
seen in changing local-scale bioclimatologies and forest or other
vegetation losses, especially near large towns.

FIGURE 5 | Spatial variations in means and trends of precipitation,
temperature, night lights, and population density. Data sources are presented
in Table 1.
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3.3 PLSPM
Results obtained from the EFA provided a strong basis for
formulating hypotheses on the likely causal factors driving
LCC across Ghana. We utilized information from the EFA to
formulate the structure of the PLSPM (see Figure 7B) that might
be representative of observed patterns in greenness and
bioclimatology. Since the EFA and PLSPM are independent
statistical processes that represent their own variable-factor
relationships, even though the factors generated through them
are similar in their representations of LC, the factors from the
PLSPM are labeled with different symbols: A through E. The
overall goodness-of -fit of the PLSPM model was found to be
acceptable (GF: 0.71) (Sanchez, 2013). Factors D and E showed
values of Cronbach’s alpha below the acceptable standard (0.7)
(Table 2) (Sanchez, 2013). However, the Dillon-Goldstein’s rho
for each reflective variable was found to be acceptable (> 0.7);
this metric is considered to be a more valid representation of the
unidimensionality of a model (Sanchez, 2013). Additionally, each
eigenvalue of the latent factors was found to be significantly larger
than the second ones, which indicates that the model structure is
appropriate given the data available (Sanchez, 2013). Table 3
presents the values of the path coefficients as well as bootstrapped
95% confidence intervals obtained from the model fitting process.
All path coefficients showed low standard errors and did not
contain zero, indicating significant effects (Sanchez, 2013).

The model indicates that Factor A (interpreted as losses in
forest cover) tracks increased mean albedo (loading � 1.0) in
regions with low mean forest cover (and NDVI, loadings > 0.7).
Factor A also has a positive causal relationship with Factor B
(0.52) (interpreted as local changes in bioclimatology) indicated
by increases in mean air temperature and mean PET. Factor C
(interpreted as local population growth) tracks mean brightness
of night lights and increases in population. The model confirms
that localized urban growth (Factor C) drives forest/vegetation
losses (Factor E), especially in peri-urban areas (Factor A) which
in turn creates localized increases in air temperatures (Factor B).

This is especially true for regions with low and falling
precipitation rates (Factor D).

4 DISCUSSION

The overall intent of this research was to test if widely-used
satellite-data based proxies of urban growth can help disentangle
regional-scale changes in bioclimatic and land cover patterns
across Ghana. We postulated that losses of forest cover tracked by
available multi-temporal tree cover estimates would be related to
urban and agricultural expansion, and that these changes would
cause changes in local bioclimatology in nonrandom patterns
across Ghana. These assumption are supported by studies in the
region that have correlated reductions in NDVI measures with
forest losses (Ghartey-Tagoe et al., 2020). However, this
relationship may not be straightforward as declines in NDVI
may be confounded by changes in agriclutural practices (Liu et al.,
2017). Although NDVI can track forest density, increases in
NDVI can also indicate increased agricultural intensification
that might mask forest losses. As expected, forested areas
generally corresponded with lower albedo levels, high
measures of NDVI, and low air temperatures. Areas with
dense forest cover also corresponded with lower air
temperature and PET trends. This observation supports the
role of forests in regional cooling and suggests that losses in
forest cover may be leading temperatures increases in certain
regions (Mildrexler et al., 2011). We also found that declines in
forest density corresponded with declining precipitation trends.
While we do not have the data to corroborate this finding, low
rainfall levels have been predicted to result in increased
desertification and evapotranspiration (Asante and Amuakwa-
Mensah, 2015). Research on droughts in Ghana suggests that this
trend may lead to reduced forest productivity (Amissah et al.,
2018). Declining precipitation was also related to increasing
temperatures, but this observation may be an artifact of the
latitudinal gradient from the coastal regions northwards
towards the Sahel.

One of the apparent contradictions in our findings indicates
that population expansion has a negative effect on land
temperatures. According to previous studies conducted on
impacts of urbanization on local environments, increases in
population density should result in elevated temperatures in
and around highly urbanized regions. This is largely attributed
to the fact that urban areas tend to be less effective at dissipating
heat via evapotranspiration than rural regions (Zhao et al., 2014;
Deilami et al., 2016). We speculate that the patterns we find arise
out of a latitudinal climatological gradient across Ghana: coastal
regions in Ghana tend to be more populated and urbanized and
this spatial patterns corresponds strongly with the N-S
temperature and precipitation gradients from the coast to the
southern Sahel. Trends in urbanization may also indicate rural-
urban migration patterns following environmental stress and soil
fertility patterns that drive people south (Van der Geest, 2011).
The relationship between factor C and B is likely dominated by
this socio-environmental gradient. That said, the model does
suggest that urban expansion may indirectly affect local

FIGURE 6 | Scree plot of eigenvalues for selecting an optimum number
of factors for the exploratory factor analysis. The analysis utilizes a null-model
based randomization to propose a parsimonious formulation of the full EFA
model. Five factors were used for all subsequent analyses.
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climatology, albeit through an indirect link via an effect
through vegetation losses. The model suggests strong causal
linkages between urban expansion (Factor C) and low green
cover (Factor A), which in turn has a strong feedback on Factor

B. This observation suggests a scale-dependent relationship
between local urban heat island effects, and the proximal
drivers of these observations: while the model confounds
effects of urban expansion with national-scale gradients in

FIGURE 7 | (A) Preliminary form of the model suggested by the EFA. Solid arrows represent block correlations of factors with respective manifest variables, dashed
arrows represent covariances between latent vectors. Manifest variables are color coded as vegetation (green), climatic (blue), and anthropogenic (yellow). (B) Final form
of the PLS path model formulated for explaining the relationships between environmental, demographic, and spatial factors influencing LC change in Ghana.

TABLE 2 | Measures of unidimensionality from the PLSPM analysis, by factor. Reflective (A) or formative (B) relationships to variables are listed, as well as the number of
manifest variables assigned to each factor. The unidimensionality statistics, Cronbach’s alpha, Dillon-Goldstein’s rho, and the first and second eigenvalues are given for
the reflective variables.

Factor Mode Manifest variables Cronbach’s α D-G ρ 1st E-V 2nd E-V

Factor A A 3 0.90 0.94 2.5 0.3
Factor B A 2 0.91 0.96 1.8 0.2
Factor C B 2 N/A N/A 1.7 0.3
Factor D A 2 0.68 0.86 1.5 0.5
Factor E A 2 0.65 0.85 1.5 0.5
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climatology, it captures the fine-scale effects of vegetation
losses on elevated temperatures caused in part by
reductions in local vegetation cover (Deilami et al., 2016;
Simwanda et al., 2019). Areas with high population scores
correspond with areas of low forest, most likely due to the
agricultural expansion that accompanies migration
within Ghana (Damnyag et al., 2013). Due to the
substantial role it plays in Ghana’s economy and its
continual expansion, agriculture has previousy been
identified as a significant influence on deforestation (Kyere-
Boateng and Marek, 2021).

One of the limitations of this study is that we were unable to
incorporate specific measures of agricultural cover into the model
due to a lack of available data.While we can avail multiple sources
for estimating forest cover trends, a lack of accurate crop cover
data hampers the ability of our model to directly address causality
of losses in green cover in Ghana (Hackman et al., 2017). We have
attempted to deduce trends in agricultural land use by controlling
for forest cover against trends in generic indicators such as NDVI.
Locations where forest degradation are superimposed with
agricultural expansion may therefore be missed. Similarly,
some amount of population expansion (largely encoded as

TABLE 3 | PLSPM path coefficients of causal factor relationships with the original value before bootstrap validation, and the mean, standard deviation, and 95% confidence
interval range after bootstrap validation with 500 iterations.

From To Initial Mean SD 2.5 Percentile 97.5 Percentile

Factor E Factor A 0.17 0.17 0.009 0.15 0.18
Factor D Factor A 0.61 0.61 0.007 0.59 0.62
Factor D Factor B 0.47 0.47 0.006 0.46 0.49
Factor C Factor A 0.11 0.11 0.010 0.09 0.13
Factor C Factor B −0.16 −0.16 0.007 −0.17 −0.14
Factor A Factor B 0.52 0.52 0.006 0.51 0.53

FIGURE 8 |Maps of standardized latent vector scores obtained from the PLSPM: (A) Factor A; (B) Factor B; (C) Factor C; (D) Factor D; (E) Factor E. Values range
from −1.96 to 1.96, darker colors denote negative values. Note that the gradient is reversed for (B) and (C) for clarity.
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urban growth in our model) may be masked by increasing
agricultural land use (Braimoh and Vlek, 2005; Bicudo da
Silva et al., 2020). Results therefore indicate that
improvements in accurate agricultural LC mapping would
likely improve model fits further as agricultural activities
support a sizeable and growing Ghanaian population
(Braimoh and Vlek, 2005). Further, the difficulty in
distinguishing plantations (such as oil palm) from forests
may also obscure model interpretation when functional land
uses are considered (Chong et al., 2017). The two forest types
are relatively easily distinguishable in high spatial resolution but
not at coarser resolutions. While many of these issues are
gradually being resolved with ongoing improvements in
remote sensing instrumentation and algorithms, better access
to accurate agricultural data will be needed to resolve several of
these issues.

Figure 8 provides a visualization of spatial patterns of the
latent vector scores produced by the model. Note that scores for
Factors A, D, and E have been inverted to make interpretation
clearer (i.e., darker colors indicate higher forest density, PPT
levels, and vegetation increases, respectively). Taken together,
these maps provide insights into the spatio-temporal variation in
drivers of deforestation, urbanization, and bioclimatic changes
across Ghana. We hope that these maps can form a starting point
for further developing methods for informing regional-scale land
use planning policies for sustainably managing Ghana’s
landscapes.

5 CONCLUSION

Environmental systems naturally undergo transitions over time,
but in recent decades, these shifts have become amplified, leading
to largely unknown long-term effects. While location and
ecological characteristics are the major determinants of LCC,
human modification of the land surface can play a large role in
altering natural dynamics. In this regard, remotely-sensed
indicators of environmental change can be immensely helpful
in measuring and characterizing dynamics of the Earth’s surface
that might otherwise be difficult to assess. In this study of decadal
LCC and environmental dynamics across Ghana, we found that
RS-estimated measurements of surface reflectance, greenness,
temperature, precipitation, and population change

simultaneously impact, and are impacted by, complex
interactions between location, socio-economics of migration
and urbanization, and the biophysical impacts of such
interactions. We find strong evidence of the impacts of
spatially disaggregated and non-uniform urbanization and
population growth, especially on forest cover, and indirectly
on modulating the meso-scale climate of the region. The
establishment of these causal-phenomenological relationships
may allow predictions to be made about the future ecological
state of Ghana using observable and future data. Understanding
the nature of LCC in Ghana, and generating information on
interconnections between putative determining factors may be
important in guiding policy decisions at regional-to-national
scales for moving forward with the nation’s development in a
sustainable manner.
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