
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=tjde20

International Journal of Digital Earth

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/tjde20

Understanding root-zone soil moisture in
agricultural regions of Central Mexico using
the ensemble Kalman filter, satellite-derived
information, and the THEXMEX-18 dataset

Héctor Ernesto Huerta-Bátiz, Daniel Enrique Constantino-Recillas, Alejandro
Monsiváis-Huertero, Juan Carlos Hernández-Sánchez, Jasmeet Judge &
Ramón Sidonio Aparicio-García

To cite this article: Héctor Ernesto Huerta-Bátiz, Daniel Enrique Constantino-Recillas, Alejandro
Monsiváis-Huertero, Juan Carlos Hernández-Sánchez, Jasmeet Judge & Ramón Sidonio Aparicio-
García (2022) Understanding root-zone soil moisture in agricultural regions of Central Mexico
using the ensemble Kalman filter, satellite-derived information, and the THEXMEX-18 dataset,
International Journal of Digital Earth, 15:1, 52-78, DOI: 10.1080/17538947.2021.2012534

To link to this article:  https://doi.org/10.1080/17538947.2021.2012534

© 2022 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group

Published online: 04 Feb 2022.

Submit your article to this journal 

View related articles 

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=tjde20
https://www.tandfonline.com/loi/tjde20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/17538947.2021.2012534
https://doi.org/10.1080/17538947.2021.2012534
https://www.tandfonline.com/action/authorSubmission?journalCode=tjde20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=tjde20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/17538947.2021.2012534
https://www.tandfonline.com/doi/mlt/10.1080/17538947.2021.2012534
http://crossmark.crossref.org/dialog/?doi=10.1080/17538947.2021.2012534&domain=pdf&date_stamp=2022-02-04
http://crossmark.crossref.org/dialog/?doi=10.1080/17538947.2021.2012534&domain=pdf&date_stamp=2022-02-04


Understanding root-zone soil moisture in agricultural regions of
Central Mexico using the ensemble Kalman filter, satellite-derived
information, and the THEXMEX-18 dataset
Héctor Ernesto Huerta-Bátiz a, Daniel Enrique Constantino-Recillas a,b,c,
Alejandro Monsiváis-Huertero a, Juan Carlos Hernández-Sánchez a,b,
Jasmeet Judge d and Ramón Sidonio Aparicio-García a

aEscuela Superior de Ingeniería Mecánica y Eléctrica Unidad Ticomán, Instituto Politécnico Nacional, Mexico City,
Mexico; bEscuela Superior de Ingeniería Mecánica y Eléctrica Unidad Zacatenco, Instituto Politécnico Nacional,
Mexico City, Mexico; cTecnológico Nacional de México-TESE, Ecatepec, Mexico; dDepartment of Agricultural and
Biological Engineering, University of Florida, Gainesville, FL, USA

ABSTRACT
An Ensemble Kalman Filter (EnKF)-based assimilation algorithm was
implemented to estimate root-zone soil moisture (RZSM) using a Soil-
Vegetation-Atmosphere Transfer (SVAT) model during a complete
growing season of corn in Central Mexico. Synthetic and field soil
moisture (SM) observations and NASA SMAP SM retrievals were used to
understand the effect of vertically spatial updates and uncertainties in
meteorological forcings on RZSM estimates. Assimilation of RZSM every 3
days using SM observations at 4 depths lowered the averaged standard
deviation (ASD) and the root mean square error (RMSE) by 60 % and 50
%, respectively, compared to the open-loop ASD. The assimilation of
synthetic SM at the top 0-5 cm obtained RZSM closer to observations
compared to THEXMEX-18 SM measurements and SMAP SM retrievals.
Differences between EnKF estimates and SM observations and SMAP SM
retrievals are mainly due to misrepresentation of vegetation conditions.
The results improved SM estimates up to 10-cm depth using SMAP SM
retrievals; however, additional studies are needed to improve SM at
deeper layers. The implemented methodology can estimate SM at the
top 10 cm of the soil every 3 days to mitigate the impact of the climate
change on agricultural production over rainfed areas, particularly in
developing countries.
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1. Introduction

Information of the root-zone soil moisture (RZSM) is crucial in hydrology, micrometeorology, and
agriculture studies (Hanson, Rojas, and Schaffer 1999) to estimate energy and moisture fluxes at the
land surface. In agricultural applications, the RZSM is defined as the soil moisture in a column from
the soil surface up to 1-m depth (Reichle et al. 2018). Soil moisture (SM) plays a significant role in
simulating the sensible and latent heat at the ground surface and infiltration and runoff in the soil
(Western and Bloschl 1999). Soil Vegetation Atmosphere Transfer (SVAT) models are used to esti-
mate energy and moisture transport in soil and vegetation at the land surface and in the root-zone
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(Casanova and Judge 2008). Most SVAT models rely on measurements or empirical functions to
simulate the effects of growing vegetation on land surface models. However, the RZSM estimates
from SVAT models still diverge from in situ measurements due to errors in model conceptualiz-
ation, computation, and numerical implementation, and due to uncertainties in model parameters,
forcings, and initial conditions.

Although various efforts have been made worldwide to obtain long-term in situ SM measure-
ments to correct these errors and improve the knowledge of RZSM (e.g. Dorigo et al. 2021).
Among these efforts, the field experiments have provided valuable information to improve the
understanding of temporal and spatial variations of SM. For instance, the Australian Airborne Cali-
bration/Validation Experiments for the Soil Moisture and Ocean Salinity mission (AACES) (Peischl
et al. 2012) was performed in South-East Australia and contributed to evaluate the SM estimates
from the European Space Agency (ESA)-Soil Moisture and Ocean Salinity (SMOS) mission, par-
ticularly, over agricultural regions during summer seasons. Similarly, the ELBARA SM network
(Wigneron et al. 2012; Fernández-Morán et al. 2015; Rautiainen et al. 2011) was implemented by
ESA to obtain in situ SM measurements and improve the SMOS estimations of surface parameters
over Europe. Recently, the USA National Aeronautics and Space Administration (NASA) has
implemented a series of field experiments called Soil Moisture Active Passive Validation Exper-
iments (SMAPVEXs) to validate and improve the SM estimates derived from the Soil Moisture
Active-Passive (SMAP) mission over agricultural regions in USA and Canada (McNairn et al.
2015; Bhuiyan et al. 2018; Colliander et al. 2019; Judge et al. 2021). In developing countries,
China has been conducting field experiments to help in the evaluation of satellite products in
the recent years (e.g. Li et al. 2013; Zhao et al. 2020). These databases are crucial to represent chan-
ging interactions in the vegetation layer and compute realistic estimates of the fluxes when using the
SVAT models. In developing countries, there is still missing information characterizing their
regions to improve SM at these latitudes. When there is no information in some regions, the veg-
etation conditions are usually obtained using empirical functions or allometric equations based on
indirect observations (Kolassa et al. 2020). However, the global representation over agricultural
areas does not characterize correctly phenological changes in the plant (Kolassa et al. 2020; Gao
et al. 2021). This indicates that there is still a need of studies focused on calibrating values to rep-
resent appropriately changes in land surface conditions in SVAT models over developing countries
and improve the RZSM estimates. Such studies can provide unique insights into the biophysics
implemented in the model.

The RZSM estimates can also be significantly improved by assimilating remotely sensed SM
observations into an SVAT model (Reichle and Koster 2005; Reichle et al. 2007; Monsiváis-Huer-
tero et al. 2010; Nagarajan et al. 2011). These remotely sensed SM observations can be obtained by
using sensors such as the Time Domain Reflectometers (TDR) or retrievals from satellite infor-
mation such as that from the NASA SMAP mission (Entekhabi et al. 2010) and the ESA SMOS mis-
sion (Kerr et al. 2016). Ensemble-based assimilation techniques such as the Ensemble Kalman filter
(EnKF) and the Particle Filter (PF) have been widely used for land data assimilation research and
applications since they can be applied to nonlinear and discontinuous models (Huang et al. 2008;
Brandhorst, Erdal, and Neuweiler 2017; Yan and Moradkhani 2016). Nagarajan et al. (2011) com-
pared the performance of a PF-based algorithm with the EnKF to improve RZSM estimates over a
crop field during a complete growing season. They found that both the filtering techniques offered
significant improvement in RZSM estimates compared to the open-loop; nevertheless, the presence
of unaccounted biophysical errors in the model affects PF performance more than the EnKF leading
to higher errors when the crop plant is fully developed. Furthermore, the EnKF performance has
been reliable enough to generate global SM products using microwave satellite observations (De
Lannoy and Reichle 2016). The assessment of SM and RZSM products based on assimilation frame-
works and satellite observations over croplands shows a difference higher than 0.04 m3 m−3 when
compared to in situmeasurements (De Lannoy and Reichle 2016; Reichle et al. 2017; Nair and Indu
2019). Among the different sources of uncertainties that cause this error, it has been mentioned the
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need of regional information of forcings, particularly precipitation, and long-term datasets at differ-
ent soil depths over diverse climates to build up reliable reference data over agricultural areas and
calibrate the SVAT models.

In Latin America, due to the lack of high temporal and spatial (vertical) density datasets over
agricultural lands such as in (López-Lambraño et al. 2020; Monsiváis-Huertero et al. 2019), rigorous
studies applying the EnKF to SM observations are very unusual. When there are databases available
describing SM conditions, generally, these studies describe the near-surface (0–5 cm) conditions of
the soil by using sparse SM networks or SM retrievals from microwave satellite sensors. It has been
demonstrated that, although the improvement in the RZSM estimates when assimilating near-sur-
face SM is lower compared to the assimilation of SM information describing the complete SM
profile, the assimilation of the near-surface SM observations are very helpful to generate horizontal
resolution estimates of the full SM profile with complete spatio-temporal coverage and often with
better results than those of the model or satellite observations alone (Monsiváis-Huertero et al.
2010; Kolassa et al. 2017; Reichle et al. 2017; Mladenova et al. 2020). Ines et al. (2013) developed
a EnKF framework using a modified Decision Support System for Agro-technology Transfer --
Cropping System model to assimilate SM retrievals from the AMSR-E instrument to improve
RZSM and yield forecasting over a growing season of corn. Authors found that it was possible
to improve the estimation of yield and RZSM; however, the RZSM estimates were not accurate
enough during wet conditions mainly because of a bias in the satellite SM retrievals. In Mladenova
et al. (2019), authors assimilated SMAP SM retrievals using an EnKF-based algorithm and the Pal-
mer model from the US Department of Agriculture (USDA) Foreign Agricultural Service (FAS) to
monitor operationally SM conditions in the root zone. They concluded that the lowest improve-
ment in RZSM is obtained in data-poor-areas because of high levels of random error in the soil
and vegetation parameters. For regions with limited reliable databases describing the land surface
conditions, such as Latin America, the evaluation of RZSM estimates from an EnKF-based frame-
work using a calibrated SVAT model to assimilate bias-corrected SM retrievals from satellite oper-
ational missions can provide valuable insights for hydrological applications. This complete
framework can account for the relationship between the observed SM near land surface and SM
deeper in the soil profile.

The goal of this study is to compare the performance of RZSM estimates using an EnKF frame-
work and an SVAT model when assimilating SM from in situ measurements and microwave satel-
lite retrievals at different depths over an agricultural region located in Central Mexico. We use
observations from the Terrestrial Hydrology Experiment in Mexico conducted in 2018 (THEX-
MEX-18) (Monsiváis-Huertero et al. 2019) to compare the results from the EnKF using synthetic
observations and SM retrievals from the NASA SMAP mission at a 36-km grid. Particularly, we
aim at: (1) calibrating the SVAT model, called Land Surface Process (LSP) model (Judge, Abriola,
and England 2003; Judge et al. 2008) for the soil and vegetation conditions in Central Mexico, (2)
providing insights in the RZSM estimates when assimilating SM at depths of 0–5, 10, 20, and 30 cm
and the assimilation of near-surface SM only, and (3) evaluating the accuracy in RZSM when assim-
ilating SM from the SMAP L2SMP product.

2. Study area and datasets

2.1. General description

Mexico is a country with a large area of territory that is made up of different ecosystems and diverse
climates, thus it is extraordinary land for agricultural activities. In specific, an area with a great pres-
ence of rain-fed agriculture and a temperate subhumid climate is been located between the parallels
22◦ and 18◦. This region is characterized by the presence of volcanoes and mountains. The soil types
in this region are loam and sandy loam that have a permanent wilting point of about 0.15m3/m3,
based on field observations (Inzunza-Ibarra et al. 2018), classing the area as a region with atypical/
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extreme conditions for crop development. Within this area, it is located the municipality of Hua-
mantla in the State of Tlaxcala, Mexico (see Figure 1). This municipality is considered the main pro-
ducer of Mexican native corn, so this seed represents the most important crop with a coverage of
approximately 65% of the total cultivated land in the zone (Torres-Salcido et al. 2015).

This positions Huamantla as one of the most important regions of the agricultural sector in Mex-
ico. This zone has a temperate subhumid climate with a rainy period for most of the year usually
from April to September. In winter, there is a range of temperatures between 2 and 18 degrees
during the same day. The main relief feature is the Malinche volcano and the altitude of the area
varies between 2300 and 3000 meters above sea level (Constantino-Recillas et al. 2020).

In this region, there are two types of corn varieties that are mainly cultivated: creole and hybrid.
The creole cultivar is the native corn in Central Mexico, whereas the hybrid corn has been planted
recently to support the new dry conditions as an effect of the climate change in the region. These
two varieties have a high root density up to 50–60 cm depth in the soil where most of 80% of the
roots are located and the corn plant has a growing season of 6 months, in average (Altieri and Trujillo
1987; Maria-Ramírez, Volke-Haller, and Guevara-Romero 2017; Velázquez-Cardelas et al. 2018).

2.2. The THEXMEX-18 dataset

The Terrestrial Hydrology Experiments in Mexico (THEXMEXs) are a series of field experiments
conducted over different Mexican biomes to monitor the dynamics of soil and vegetation (Monsi-
váis-Huertero et al. 2019, 2020). The Terrestrial Hydrology Experiment in Mexico 2018 (THEX-
MEX-18) was carried out in Huamantla to monitor surface parameters in rainfed fields of corn
from April 14th to October 14th in 2018. During the THEXMEX-18, an area located between
the parallels 19◦ 11’ and 19◦ 27’ North latitude and meridians 97◦ 47’ and 98◦02’ was covered.

Figure 1. Geographical location of Huamantla into a EASEGrid 2.0 cell at 36 km, Tlaxcala, Mexico.
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Table 1 presents the geographical location of the monitored site. The creation of the database was
conformed with the data collected by monitoring stations and several visits to the study sites in the
Huamantla region. Soil, vegetation, and meteorological conditions were collected following the pro-
tocols (Monsiváis-Huertero et al. 2019):

1. TDR and soil temperature stations. Ground stations were programmed to collect data every 20
min. Each stations included sensors of SM and soil temperature. Soil moisture was measured
using CS616 TDR sensors from Campbell Scientifics horizontally located at depths of 2.5, 5,
10, 20, and 30 cm. The SM measurements were calibrated at each depth and for each site
using soil samples collected monthly to cover different SM conditions. The calibrated SM
measurements showed a difference < 0.03 (m3 m−3) when compared to gravimetric SM. In
the case of soil temperature, the 108L Thermistors from Campbell Scietnfic were used at the
same depths. One station containing a set of sensors was located at each monitored site.

2. Theta probe measurements. Surface SM (0–5 cm) was measured vertically using a ML3 ThetaP-
robe SM device. The measurements were uniformly distributed within the corn fields to charac-
terize the spatial distribution of the surface SM. Simultaneously to the measurements of soil
moisture, the surface soil temperature was measured at the same points.

3. Gravimetric sampling and soil texture. Soil samples were extracted at the depths of 2.5, 5, 10,
20, and 30 cm with a constant volume of 125 cm3 (for depths of 2.5 and 5 cm) and 250 cm3 (for
depths of 10, 20, and 30 cm). The samples were placed in a plastic bag to minimize moisture loss,
weighted wet, oven dried for 24 h at 100 ◦C, and reweighted dry to obtain the gravimetric soil.
Finally, using the dried soil samples and applying the sieving method, the soil texture in terms of
percentages of sand, clay, and silt was determined.

4. Vegetation measurements. A vegetation measurement protocol was carried out every 3 weeks
to obtain descriptive parameters of the vegetation such as: vegetation water content (VWC),
plant height, plant width, and leaf area index (LAI) (see Figure 2). In order to obtain a represen-
tative description, the measurements were carried out at 3 different sites within each crop field.

5. Meteorological forcings. In an additionalmodule of the ground stations, sensorsmeasuring relative
humidity, air temperature, and precipitation were included. These sensors collected information
every 20min on the fields to characterize meteorological conditions in the study area. Additionally,
we included the information collectedby themeteorological stationsofCONAGUA(NationalWater
Commission of Mexico) to complement the meteorological conditions in the Huamantla region.

6. Land cover map. The land cover map was computed using information from the National Insti-
tute of Statistics and Geography of Mexico (INEGI) and a classification algorithm based on a
Genetic Algorithm (GA) and a Support Vector Machine (SVM) code to process Sentinel-2
images (Mountrakis, Im, and Ogole 2011). The training and validation steps used 50 agricultural
fields. The final classification showed an overall accuracy higher than 80% at 36-km scale.
Table 2 shows the percentage of the main land cover classes and Figure 1 shows the land
cover map during the THEXMEX-18. Fraction cover of the vegetation classes was evaluated
using the temporal information of the land cover map.

Table 1. Geographical coordinates and soil types of the corn rainfed fields monitored during the THEXMEX-18 experiment
(Monsiváis-Huertero et al. 2019).

Site ID Latitude Longitude Soil type

Macario 19◦18’34” N 97◦53’ 58”W Fluvisol
Alvaro 19◦18’53” N 97◦56’53” W Regosol
Alfredo 19◦21’34” N 97◦54’11” W Fluvisol
Palafox1 19◦19’26” N 97◦58’15” W Regosol
Palafox2 19◦23’07” N 97◦56’57” W Cambisol
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2.3. SMAP L2 soil moisture product (SMAP L2SMP)

In addition to the in situ information, concurrent SMAP L2 soil moisture product (SMAP L2SMP)
data (O’Neill et al. 2018) were acquired. The NASA launched the Soil Moisture Active Passive
(SMAP) satellite in January 2015 with a radar (1.26 GHz) and a radiometer (1.14 GHz). Unfortu-
nately, due to a failure in the radar in July 2015, the active sensor stopped working; however, the
SMAP radiometer continues acquiring observations in an ascending orbit at 6 pm and in a descend-
ing orbit at 6 am, local time. SM products are derived from brightness temperature (TB) obser-
vations at different spatial resolutions. The passive SM product level-2 (L2SMP, version 7) has a
grid resolution of 36 km, based on Equal-Area Scalable Earth (EASE) Grid, version 2. To retrieve
SM, a passive τ-ω model is used as the forward model (Chan et al. 2016). For this work, we use
the L2SMP product based on the V-polarization Single Chanel Algorithm (SCA-V) from April
14th to October 14th in 2018 to be incorporated in the assimilation framework. Currently, the
SCA-V algorithm is considered as the default option to generate the SMAP SM retrievals (Collian-
der et al. 2017; O’Neill et al. 2018).

Figure 2. Vegetation parameters measured during the THEXMEX-18 experiment.

Table 2. Percentage of land cover classes in the 36 km pixel (see Figure 1).

Land cover class Percentage (%)

Alfalfa 0.2
Bare soil 8.7
Urban and greenhouses areas 31.8
Corn 27.7
Vegetables 4.7
Oat 4.9
Pumpkin 1.8
Water bodies 0.2
Wheat 2
Forest 18
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3. LSP model and enKF algorithm

3.1. Land surface process (LSP) model

The LSP model simulates in 1-d the transport of moisture and energy in the atmosphere, canopy,
soil surface, and vadose zone (Judge, Abriola, and England 2003; Judge et al. 2008). This model
simulates energy and moisture transport in soil and vegetation using a fuzzy-type equation, and
estimates energy and moisture fluxes at the soil surface and in the root zone, including dynamic
vegetation conditions(Judge et al. 2008). The main equations that describe the energy balance with-
ing the LSP model are shown below (Casanova and Judge 2008):

Qnet,c = Hsc + Rs,c + Rl,c −Hca − LEtr − LEev (1)
Qnet,s = −Hsc + Rs,s + Rl,c −Hsa − LEtr − LEes (2)

The equations (1) and (2) represent the energy balance between the soil and the canopy. For this
equations, Qnet,c is the energy flux at the canopy, Qnet,s is the energy flux at the soil, Hsc are the
heat fluxes between canopy and soil, Hca are the heat fluxes between canopy and air, Hsa are the
heat fluxes between soil and air, LEtr are the latent heat fluxes of transpiration, LEev are the latent
heat fluxes of canopy evaporation, LEes are the latent heat fluxes of soil evaporation, Rs,c is the net
solar radiation intercepted by the canopy and Rl,c is the net long-wave radiation at the canopy.
Then, Equation 3 describes the moisture balance based on the infiltration of moisture at the soil
surface:

Inet,s = P fB + D− R− E (3)
where Inet,s is the net infiltration of moisture at the soil surface, P fB is the variable related to precipi-
tation, D is the canopy drainage from the canopy to the soil, E is the soil evaporation, R is the runoff
and D is the rate of change in moisture intercepted by the canopy. The equations (4), (5) and (6)
define the soil processes based on heat and moisture transport in the soil.

∂u

∂t
= −∇qm (4)

Cs,v
∂T
∂t

= −∇qh (5)

qm = ql + qh (6)
where θ is the volumetric soil moisture, T is the soil temperature, Cs,v is the volumetric heat capacity
of soil, qh is the heat flux, ql is the liquid flux, and qm is the moisture transport in the soil.

In general, these equations depend on the amount of moisture contained in the soil, veg-
etation, atmosphere, the temperature and how they interact with each other. Although most
of the parameters used were obtained in situ measurements during the THEXMEX-18, some
of these needed to be obtained from a literature review due to the complexity to be measured
in the field.

3.2. Ensemble kalman filter (EnKF) algorithm

The assimilation algorithm implemented in this study is based upon the EnKF, as described in
Evensen (2003), and used with favorable results in the assimilation of microwaves over agricultural
fields (e.g. Zhao, Chen, and Shen 2013; Monsivais-Huertero et al. 2016). The EnKF uses an ensem-
ble of simulations composed of different members. Each of these members represents possibility SM
conditions. The variation among members indicates the propagation of uncertainty from different
sources within the LSP model (see Table 4).
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Equation (7) represents the states of the EnKF conforming the ensemble members, A, shown in
Equation (8).

xi−t = f (xi+t−1, u
i
t−1, u

+
t−1, t − 1)+ vi

t−1 (7)

A = {x1, x2, . . . , xN} (8)
In these equations, f (·) represents a non-linear model, xi−t indicates the prior state of the ith element
at time t before update, xi+t−1 indicates the posterior state of the i-th ensemble member at time t−1,
u+t−1 represents the parameters of the non-linear model, uit−1 is considered as the meteorological
forcings, and vi

t−1 is the model error. The A matrix ( Equation (8)) is conformed by each member
of the ensemble represented by xi. In equation (8), N indicates the number of ensemble members.

Uncertainty in observations are mainly due to random inherent perturbations in the sensor.
Equation (9) describes the conformation of the ensemble of perturbed observations.

D = {d1, d2, . . . , dN}
g = {e1, e2, . . . , eN}

(9)

The elements d are observations at time t described by di = hxi−t + e
j
t , where h(·) is the operator

relating the state space to the observation space. Then, the ensemble of perturbed observations
(D) is conformed based on the elements d. In this case, ε represents the error associated in obser-
vations with zero mean and γ is the ensemble of perturbations.

The representative equation of the EnKF can be written as (Monsiváis-Huertero et al. 2010;
Evensen 2003):

A+ = A− + A′A′THT(HA′A′THT + ggT)−1(D−HA−) (10)
where A+ denotes the posterior ensemble member, A− denotes the ensemble of prior states, K rep-
resents the Kalman gain and H the operator relating the ensemble of perturbed observations to the
ensemble of states. The ensemble perturbation matrix,A′, is expressed asA′ = A− − �Awith �A being
the mean matrix of A−.

4. Methodology

An EnKF-based assimilation framework was implemented to estimate RZSM using the LSP model
in Huamantla, Tlaxcala. The methodology of this work is made up of several steps (see Figure 3).
First, the database is composed of meteorological information, soil and vegetation parameters
obtained from the THEXMEX-18 campaign, and satellite information. Afterwards, a calibration
process of the LSP model was performed to obtain the optimal in situ parameters. The next step
was the coupling of the LSP model and the EnKF algorithm to conform the assimilation algorithm
in order to compare the SM simulations with in situ measurements and SM retrievals from SMAP
L2SMP product.

4.1. LSP calibration

The LSP model is forced with seven micrometeorological parameters and requires 13 ground sur-
face parameters and 15 parameters related to vegetation. For this work, the soil profile is defined by
two layers with different properties. The first layer is from the soil surface (0 m) to 0.20-m depth and
the second layer was considered between 0.2 m and 1.7 m. Based on soil texture, the first layer was
identified up to a depth of 20 cm, containing the TDR measurements at 2.5, 5, and 10 cm. The next
layer contains the measurements at 20 and 30 cm, the optimal case was identified with the method
of Pareto front comparing both strata. The parameters that were not possible to obtain from in situ
measurements were calibrated using the Monte Carlo method with ranges shown in Table 3, based
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on the literature. The parameter calibration was conducted using the mean square error as objective
function. Soil parameters were calibrated under bare soil conditions and those describing the
canopy throughout the vegetated period.

Figure 3. EnKF-based assimilation framework.

Table 3. Parameters included in the LSP model. The intervals for canopy parameters were from Goudriaan (1977) and ranges for
soil parameters were from Rossi and Nimmo (1994).

Parameter Description Interval

CANOPY zob Bare soil roughness length (m) in situ
x Leaf angle distribution parameter 10−2 − 2
σ Leaf reflectance 10−2 − 0.5
ec Canopy emissivity 0.95−0.995
es Soil emissivity 0.95−0.995
cd Canopy drag coefficient 10−5 − 1
iw Canopy wind intensity factor 10−3 − 102

lw Leaf width (m) in situ
Fb Base assimilation rate (kg CO2/m2s) −10−8 −−10−10

e photo Photosynthetic efficiency (kg CO2/J) 10−7 − 10−5

soila Slope parameter for rs (m2s/kg H2O) 0− 5× 103

soilb Intercept parameter for rs (m2s/kg H2O) 0−−6× 102

SOIL λ Pore-size index 0.1−0.9
(0-0.2 m) c0 Air entry pressure (m H2O) 0.05−1.0

Ksat Saturated hydraulic conductivity (m/s) 10−5 − 10−3

ϕ Porosity (m3/m3) 0.2−0.55
SOIL λ Pore-size index 0.1−0.9
(0.2-1.7 m) c0 Air entry pressure (m H2O) 0.05−1.0

Ksat Saturated hydraulic conductivity (m/s) 10−5 − 10−3

ϕ Porosity (m3/m3) 0.2−0.55
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To complement the meteorological conditions, the long-wave radiation was calculated as (Idso
and Jackson 1969; Satterlund 1979):

Rl = sT4
A(1− 0.261exp(− 7.77x10−4(273− TA)

2)) (11)
where Rl is the long-wave radiation, σ is the Stefan-Boltzmann constant, and TA is the air tempera-
ture. The rest of the parameters were obtained from the in situ stations.

4.2. Assessment of SMAP L2SMP product

The assessment of the SMAP LS2SMP product over the agricultural region of Huamantla is evaluated
by comparing the SMAP SM retrievals and the upscaled SM measurements. The upscaled SM is
obtained by using the soil-weighted method as recommended by the SMAP team to evaluate the
SMAP SM products (Colliander et al. 2017; Bhuiyan et al. 2018). The upscaled SM is computed by:

SMS,t =
∑M
i=1

wiSMi,t

sS,t =
������������������������∑M
i=1

wi(SMi,t − SMS,t)
2

√ (12)

where SMS,t is the temporal upscaled SM, sS,t is the temporal standard deviation, wi indicates the
weights based on the soil texture map, SMi represents the averaged surface SM of all stations
located in the i-th soil-texture class. To develop the soil-weighted scaling approach, each in
situ surface SM value is identified based on its corresponding soil texture. Then, soil texture
data are intersected to the SMAP pixel, and percent area statistics are derived for each of the
soil texture types (Colliander et al. 2017). In this work, we use the soil texture map provided
by the National Institute of Statistics and Geography of Mexico (INEGI) (2017). The Huamantla
region is composed of fluvisol (7.05%), cambisol (47.61%), and regosol (45.34%) (see Table 1).

The performance of the SM from the SMAP L2SMP product is evaluated by the bias (Bias), the
Root Mean Square Difference (RMSD), the unbiased RMSD (ubRMSD), and the Pearson corre-
lation coefficient (r). The Bias, RMSD, ubRMSD, and r are evaluated as (Gruber et al. 2020):

Bias = 1
N

∑N
i=1

(SMSMAP,i − SMupscaled,i) (13)

RMSD =
����������������������������������
1
N

∑N
i=1

(SMSMAP,i − SMupscaled,i)
2

√√√√ (14)

ubRMSD =
�����������������
RMSD2 − Bias2

√
(15)

r = 1
N − 1

∑N
i=1

(
SMSMAP,i − SMSMAP,i

sSMSMAP,i

)(
SMupscaled,i − SMupscaled,i

sSMupscaled,i

) (16)

where SMSMAP is SM from the SMAP L2SMP product, SMupscaled is the upscaled SM, and N is the
number of (SMSMAP,i, SMupscaled,i) pairs. These pairs are composed of coincident times between
SMAP SM retrievals and upscaled SM. In equation (16), the overline indicates the mean, and
sSMSMAP,i and sSMupscaled,i represent the standard deviation of the SMAP L2SMP product and the
upscaled SM measurements, respectively.
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4.3. Implementation of the EnKF

For this work, the nonlinear propagator mentioned in equation (7) is the LSP model and the SM
values describing the soil profile are obtained from the LSP model. The state vector, x, is conformed
by the LSP SM estimates from the 35 nodes, as shown in equation (17). The meteorological forcings
are presented as uit−1, u

+
t−1 and are the invariant inputs in the LSP model (see equation (7)). The SM

observations from the THEXMEX-18 are obtained from measurements at 0–5, 10, 20, and 30 cm.

xi =

SMi1

SMi2

..

.

SMik

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦ (17)

For this equation, i is the number of ensemble and k represents the number of nodes representing
the soil profile in the LSP model. One hundred (N = 100) ensembles realizations were used for
assimilation to achieve reliable estimates (Nagarajan et al. 2011; Monsiváis-Huertero et al. 2010).

The 0–5 cm SM represents near-surface soil moisture (SM0−5 cm), comparable to SM from the
SMAP L2SMP product, and the SM at 0–100 cm represents the RZSM. The 0-5 cm SM and
RZSM estimates and observations are calculated by the equation:

SM0−5 cm or RZSM =
∑k
i=1

SMiDzi (18)

where k indicates the total number of nodes (blocks) within 0–5 cm or the root-zone, Dzi the thick-
ness of the ith node, and SMi the soil moisture at ith node.

Among all the inputs/forcings to the LSP model, precipitation observations typically have the
highest errors compared with other micrometeorological parameters. A Gaussian error with zero
mean and standard deviation equal to 12% of the observed precipitation value was introduced
during events (Habib, Krajewski, and Kruger 2001). An error with a Poisson distribution and
0.45 mean was introduced in the absence of the events. In this paper, forcing variables vary within
a physically reasonable range based on (Dunne and Entekhabi 2006; Monsivais-Huertero et al.
2016), as shown in Table 4.

4.3.1. Synthetic and field observations
The synthetic truth was obtained from one of the realizations from an open-loop simulation of the
LSP model. The truth was not included in the ensemble of 100 members during the assimilation.
The field observations were obtained from the THEXMEX-18 experiment, described in Section
2.2. A Gaussian error with zero mean and standard deviation of 0.02 m3 m−3 was added to SM
values for both synthetic and field observations, based on field information. The temporal frequency

Table 4. Sources of uncertainty in forcing variables and soil parameters in the LSP
model based on (Dunne and Entekhabi 2006; Monsivais-Huertero et al. 2016).

Parameter Range Distribution

Short wave radiation 0.9–1.1 Gaussian multiplicative
Air temperature −3− 3 Gaussian additive
Relative humidity −1− 1 Gaussian additive
Wind speed −0.3− 0.3 Gaussian additive
Precipitation 0–1 Poisson
Porosity (layer 1) −0.3− 0.22 Gaussian additive
Pore-size index (layer 1) −0.55− 0.16 Gaussian additive
Porosity (layer 2) −0.3− 0.036 Gaussian additive
Pore-size index (layer 2) −0.55− 0.0795 Gaussian additive
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of assimilation for both the synthetic and field observations is every three days at 6 a.m., local time,
corresponding to the descending pass of the SMAP satellite.

Different assimilation scenarios with synthetic and field SM observations were performed. The
evaluation of the assimilation algorithm was compared by assimilating SM at four depths (0–5, 10,
20, and 30 cm) and SM at 0–5 cm only. This evaluation was used to understand the improvements
in the SM estimates over the complete SM profile from the assimilation scenarios.

5. Results

5.1. LSP calibration

The calibration of the LSP model was carried out for different depths within the study area. The
depths considered for the calibration were 0–5, 10, 20, and 30 cm. Table 5 presents the calibrated
values for soil and vegetation parameters within the LSP model. Overall, the SM values from the
calibrated LSP model show an RSMD , 0.0194(m3 m−3) (1.94 %SM) at all depths during the
THEXMEX-18, indicating a general good agreement with TDR measurements. The highest
RMSD was found at 10-cm depth. When comparing the calibrated values with previous calibrations
of the LSP model over corn fields reported in the literature (Casanova and Judge 2008), it is found
the major differences with previous values are mainly due to the different cultivars of corn and soil
type. Casanova and Judge (2008) calibrated the LSP model for sweet corn over a sandy soil, whereas
in Central Mexico, farmers cultivate hybrid and creole corns over a sandy loam soil. This impacts
the optimal values of the parameters related to the plant growth, such as σ, ec, cd, iw, lw, Fb, and
e photo. Table 6 shows RMSD at each depth. It is observed that the behavior of the LSP simulations
are close to in situ information with an RMSD ranging between 0.0149 and 0.0195 (m3 m−3) at all
depths.

Figure 4 shows the comparison between the SM estimates at depths of 0–5, 10, 20, and 30 cm
from the LSP model and THEXMEX-18 observations. For the period of bare soil (DoY 105-160
), a good agreement is observed between estimates from the LSP model and THEXMEX-18 obser-
vations at depths of 0–5 and 10 cm. However during the vegetated period (DoY 160-280), differ-
ences up to 3.61% SM, 2.98% SM, 2.76% SM and 1.58% SM at 0–5 cm, 10 cm, 20 cm and 30 cm,
respectively, are observed during periods of frequent rainfalls and the late season when the plant
is completely developed and the ears are in development. As reported in previous studies, most

Table 5. Calibrated parameters describing soil and vegetation in the LSP model.

Parameter Calibrated value

CANOPY zob 0.00898
x 0.62166
σ 0.15409
ec 0.9506
es 0.9698
cd 0.9953
iw 33.2099
lw 0.07790
Fb −9.7× 10−9

e photo 1.6× 10−6

soila 545.77
soilb −562.77

SOIL λ 0.5767
(0–0.2 m) c0 0.0565

Ksat 5× 10−4

ϕ 0.5273
SOIL λ 0.8205
(0.2–1.7 m) c0 0.4049

Ksat 1.37× 10−5

ϕ 0.51
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of the SVAT models fail in estimating SM during rainfall events, as observed in this case. At depths
of 20 and 30 cm, the differences between LSP estimates and SM observations reduce, but there are
still differences during the presence of rainfall events. It is also noted that after DoY 260, when the
corn plant started senescence, the LSP estimates and SM observations reduced their differences
because of the effects of the vegetation in the energy balance also reduce. This evidences that the
main sources of error during the vegetated period in the LSP SM estimates after calibration
come from the vegetation parameters.

In Figure 4, two anomalous dry periods are identified. The fist one is from DoY 160 to 180, and
the second one, from DoY 200 to 220, for which the SM values for both LSP estimates and SM
observations are below the wilting point of 0.15 m3 m−3 (Inzunza-Ibarra et al. 2018). From DoY
160 to 180, both LSP simulations and field observations indicated an extremely dry period. At
depths of 0–5 and 10 cm, both SM estimates and SM observations are very close. However, at depths
of 20 and 30 cm, SM observations show drier conditions than the LSP estimates. In contrast, during
second dry period from DoY 200 to 220, the SM observations show wetter conditions than the LSP
estimates. As observed in Figure 4, around DoY 160, there are different rainfall events reported by
the rain gauges that were not captured by the TDR observations. At DoY 210, the intensities in rain-
falls reported by the rain gauges are lower to reproduce the SM values using the calibrated LSP
model. This indicates that the differences between the SM estimates and SM observations are
mainly due to uncertainties in the meteorological forcings provided to the LSP model and misre-
presentation of soil parameters during extreme conditions.

Table 6. Root mean square difference (RMSD) between SM
estimates from the calibrated LSP model and THEXMEX-18 SM
observations at depths of 0–5, 10, 20, and 30 cm for the entire
growing season of corn.

Depth (cm) RMSD ( m3 m−3)

0–5 0.0194
10 0.0197
20 0.0169
30 0.0149

Figure 4. Comparison of the SM estimates from the LSP model using the calibrated values and SM observations during the THEX-
MEX-18 experiment at 36 km over the agricultural area of Huamantla, Tlaxcala, Mexico.
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5.2. Performance of the SMAP L2SMP product

The upscaled SM showed a standard deviation , 0.40 (m3 m−3) (40% SM) throughout the THEX-
MEX-18 when using the soil-weighted method, that is in agreement with previous works (Bhuiyan
et al. 2018; Caldwell et al. 2019). The mean value of the coefficient of variation of 0.314 indicates that
standard deviation is significantly lower than the mean upscaled SM, assuring representative SM
conditions at 36 km. Table 7 presents the statistics of the evaluation for the SCA-V SMAP
L2SMP product when compared to the upscaled SM measurements. Overall, the SMAP L2SMP
product shows an ubRMSD of 0.043 (m3 m−3) (4.3% SM) for the agricultural region in Huamantla;
thus, the SMAP SM retrievals are close to the SMAP mission requirements of ubRMSD
, 0.04 (m3 m−3) (4% SM) (Entekhabi et al. 2010). It is also observed that the bias is the main com-
ponent of the difference with in situ SM observations. Because the upscaled in situ SM measure-
ments and the SMAP L2SMP product are at the same spatial scale, the RMSD is primarily due
to a composed effect of inaccurate values of the input parameters used in the SMAP SM retrieval
algorithm such as surface temperature, vegetation representation, and surface soil roughness
(Walker et al. 2019; Judge et al. 2021).

When comparing the statistical metrics for bare soil and vegetated conditions, it is found that the
bias and the ubRMSD increment by 0.034 (m3 m−3) (3.4% SM) and 0.023 (m3 m−3) (2.3% SM),
respectively, demonstrating that they are time-variant. Variations in the performance of the
SMAP L2SMP product have been identified when going from bare soil to vegetated conditions
over agricultural regions (Zheng et al. 2020). During bare soil conditions, the bias is the result of
uncertainty in effective soil temperature and soil roughness, whereas during vegetated conditions,
it is mainly due to uncertainty in vegetation representation (Colliander et al. 2019; Judge et al.
2021). The characterization of the systematic component (bias) and the random component
(ubRMSD) of the difference is not an easy task and the SMAP SM retrievals are usually assumed
as unbiased when included into an assimilation framework (Mladenova et al. 2019). This is true
for regions covered by the SMAP core validation sites; however, it has been demonstrated that
this assumption is not valid for other regions (Singh et al. 2019; Zheng et al. 2020). Bias correction
methods range from simple algorithms (Ryu et al. 2009) to more complex correction frameworks
(Monsivais-Huertero et al. 2016) based on the sources causing the bias. Because the sources of bias
in the SMAP SM retrievals do not degrade the mean performance of the retrieval algorithm model
according to the SMAP mission requirements of ubRMSD (Colliander et al. 2017), it is possible to
use a simple bias-correction method (Ryu et al. 2009). The bias could be considered as constant
within specific temporal intervals based on the land cover conditions over the agricultural region.
In this study, we correct the bias using a constant value of 0.039 (m3 m−3) (3.9% SM) for bare soil
conditions and 0.073 (m3 m−3) (7.3% SM) for vegetated conditions based on Table 7.

Table 7 also shows the statistics of the SM estimates at 0–5 cm from the calibrated LSP model
when compared to upscaled in situ measurements. It is observed that the ubRMSD from the LSP
model and the SMAP L2SMP product is , 0.045 (m3 m−3) (4.5% SM) for all conditions and
both LSP SM estimates and SMAP SM show the same order of magnitude in ubRMSD. Neverthe-
less, a significant difference is observed when comparing the biases from the LSP SM estimates and

Table 7. Root Mean Square Difference (RMSD), Bias, unbiased RMSD (ubRMSD), and correlation coefficient (r) when comparing
the upscaled SM measurements at 0–5 cm with the SM from SMAP L2SMP product and the 0–5 cm SM estimates from the
calibrated LSP model at 36-km scale.

Conditions RMSD (m3 m−3) Bias (m3 m−3) ubRMSD (m3 m−3) r

SMAP Overall 0.078 0.065 0.043 0.71
Bare soil 0.044 0.039 0.022 0.87
Vegetated 0.085 0.073 0.045 0.61

LSP Overall 0.032 0.016 0.027 0.72
Bare Soil 0.020 0.011 0.017 0.92
Vegetated 0.035 0.017 0.030 0.65
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the SMAP SM. Whereas the bias from the LSP SM is , 0.017 (m3 m−3) (1.7% SM), it is
. 0.039 (m3 m−3) (3.9% SM) for the SMAP SM. This indicates that once the bias is corrected,
the values from SMAP L2SMP product are comparable to the LSP SM estimates and capture the
SM dynamic over the studied region with values close to the actual SM.

5.3. Assimilation of different SM depths

Table 8 presents the RSMD and average standard deviations (ASD) in RZSM when assimilating
depths of 0–5, 10, 20, and 30 cm and 0–5 cm only using synthetic and THEXMEX-18 observations.
In all cases, the ASD in RZSM reduces by 1.39–1.57 %SM (50–57 %) compared to open-loop when
assimilating either 4 depths or 0–5 cm only. This indicates that the assimilation process reduces sig-
nificantly the uncertainty in RZSM estimates. The highest reduction in the ASD is when assimilat-
ing 4 depths.

For the synthetic case, the assimilation of the 4 depths improves the RZSM estimates by 2 %SM
(59%) compared to open-loop, whereas the assimilation of the top 5 cm of the soil improves by 1.8
%SM (54 %). In contrast, the assimilation of 4 depths and 0–5 cm from the THEXMEX-18 exper-
iment improves the RZSM by 0.7 %SM (28%) and 0.3 %SM (13%), respectively, compared to open-
loop simulations. As expected, the assimilation of synthetic observations show higher improvement
compared to field observations. Synthetic observations were obtained from a LSP simulation; thus,
these observations follow the same physics in soil and vegetation presented in the LSP equations
(see section 3.1). Unlike synthetic observations, THEXMEX-18 SM observations captured the actual
SM conditions in the soil, including heterogeneity in texture between sites and physical processes
that could be misrepresented in the LSP model. Beside these sources of error, the percentage of the
improvement in RZSM when assimilating real observations over the agricultural area in Central
Mexico is about the same order of magnitude than previous studies (e.g Monsiváis-Huertero
et al. 2010; Nagarajan et al. 2011).

When comparing the assimilation of 4 depths to the assimilation of 0–5 cm only, it is observed
that the improvement in RZSM is about 1.9 %SM (55%) in both cases, compared to open-loop.
However, this is also an effect that the synthetic observations follow the same physics than the
LSP model. For THEXMEX-18 observations, the assimilation of 0–5 cm only decreases by 3.7%
SM (15%) in improving RZSM estimates compared to the assimilation of 4 depths. When assimi-
lating the SM at top 5 cm of the soil, the Kalman equation (see Equation (10)) propagates statisti-
cally the improvement in the top layer into the deeper layers, based on the LSP simulations at the
time of the assimilation. Thus, improvement at deeper layers could be affected under certain con-
ditions such as a misrepresentation in the soil strata.

Table 9 compares the SM values at depths of 0–5, 10, 20, and 30 cm after assimilating obser-
vations at 4 depths and 0–5 cm only, for both synthetic and THEXMEX-18 observations. For syn-
thetic observations, the improvement in RMSD at all depths is 1.77–2.12 %SM (54–60%) and 1.59–
1.96 %SM (48–56%) when assimilating 4 depths and 0–5 cm, respectively, compared to open-loop.

Table 8. Root mean square differences (RMSD) and average standard deviation (ASD) in RZSM estimates when assimilating
synthetic and field observations at depths of 0-5, 10, 20, and 30 cm (4 depths), 0–5 cm only, and SMAP SM retrievals.
ubSMAP SM stands for unbiased (bias-corrected) SMAP SM retrievals.

Observations Depth Assimilated Open loop

RMSD ASD RMSD ASD
(m3 m−3) (m3 m−3) (m3 m−3) (m3 m−3)

Synthetic 0–5 cm 0.0155 0.0132 0.0339 0.0276
4 depths 0.0138 0.0127 0.0339 0.0276

THEXMEX-18 0–5 cm 0.0211 0.0137 0.0243 0.0276
4 depths 0.0174 0.0119 0.0243 0.0276

ubSMAP SM 0–5 cm 0.0325 0.0142 0.0243 0.0276
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In both scenarios of assimilation, the highest improvement occurs at 0-5cm depth, whereas the low-
est improvement happens at 30 cm depth. When analyzing the reduction in ASD compared to
open-loop, it is found that the enhancement ranges between 1.36–1.54 %SM (52–58%) at all depths
when assimilating either 4 depths or 0–5 cm. For THEXMEX observations, the ASD at all depths
improves by 1.37–1.6 %SM (52–57%) when assimilating either 4 depths or 0–5 cm only. This indi-
cates that the SM estimates at depths of 0–5, 10, 20, and 30 cm from an assimilation framework
increase their certainty when compared to open-loop simulations. In terms of the RMSD, when
assimilating 4 depths, it reduces by 1.15%SM (35%) at depths of 0–5 and 10 cm, and by 0.7%SM
(25%) at 20 cm. When assimilating 0–5 cm only, the depths of 0–5 and 10 cm improves their SM
estimates by 1.2–1.3%SM (36–37%) compared to open-loop, where the SM at 20 cm improves by
0.3%SM (12 %) compared to open-loop. The SM at a depth of 30 cm does not improve when assim-
ilating either the 4 depths or 0–5 cm only. This evidences the fact that the physics of the soil at this
depth is not properly represented in the LSP model, despite the calibration process. In order to pro-
pagate the improvement in SM estimates at the top 20 cm of the soil, it is necessary to use other
assimilation techniques such as the simultaneous state-parameter update (e.g. Monsiváis-Huertero
et al. 2010) and obtain a new value in some of the LSP parameters for each assimilation time.

Figure 5(a,b) shows the comparison between the time series of the SM at the 0–5 cm and RZSM
from open-loop simulations and when assimilating 0–5 cm observations for THEXMEX-18
measurements. This figure depicts that after every point of assimilation, the ensemble standard
deviation reduces, and this enhancement is gradually lost as the time goes on. It also is observed
that during bare soil conditions (DoY 105–160), both open-loop simulations and SM estimations
at 0–5 cm and in the RZSM follow a similar trend than THEXMEX-18 observations even during
extreme dry conditions (see for instance DoY 140 to 160). However, when the assimilated values
occur close to a rainfall event, the estimations of SM at 0–5 cm and RZSM predict wetter conditions
than those described by the in situ observations. This indicates that the drydown in the soil occurs
faster than that represented in the LSP equations. This behavior is more evident in the RZSM
because the effect of the misrepresentation in the soil infiltration is propagated in all layers. For
vegetated conditions (DoY 160–280), open-loop simulations predict wetter conditions than THEX-
MEX observations for both SM at 0–5 cm and RZSM, particularly from DoY 180 to 220 and from
DoY 260 and 280. After assimilating 0–5 cm depth, the SM estimates are closer to in situ obser-
vations. Nevertheless, when the assimilated values is outside the region of one standard deviation
(represented with a shaded area in the figure), after the assimilation process, the posterior values of
SMmarginally improve and the physics represented in the LSP model takes back the trend from the
SM simulations at both SM at 0–5 cm and RZSM.

Table 9. Root mean square differences (RMSD) and average standard deviations (ASD) of SM at different depths of the soil when
assimilating SM observations at depths of 0–5, 10, 20, 30 cm and 0–5 cm only for synthetic and field observations and unbiased
(bias-corrected) SMAP SM retrievals.

4 depths 0–5 cm Open loop

Observations Depth RMSD ASD RMSD ASD RMSD ASD
(m3 m−3) (m3 m−3) (m3 m−3) (m3 m−3) (m3 m−3) (m3 m−3)

Synthetic 0–5 cm 0.0139 0.0114 0.0155 0.0115 0.0351 0.0242
10 cm 0.014 0.0129 0.0158 0.0133 0.0351 0.0282
20 cm 0.0151 0.0131 0.0168 0.0136 0.0355 0.0281
30 cm 0.0152 0.0109 0.017 0.0127 0.0329 0.0263

THEXMEX-18 0–5 cm 0.0238 0.0108 0.0223 0.0123 0.035 0.0242
10 cm 0.02 0.0122 0.02 0.014 0.0316 0.0282
20 cm 0.0198 0.0125 0.0232 0.0144 0.0263 0.0281
30 cm 0.0213 0.0109 0.027 0.0126 0.0208 0.0263

unbSMAP L2SMP 0–5 cm − − 0.0334 0.0128 0.035 0.0242
10 cm − − 0.0315 0.0146 0.0316 0.0282
20 cm − − 0.0348 0.015 0.0263 0.0281
30 cm − − 0.0363 0.0131 0.0208 0.0263
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Figure 6(a,b) presents the comparison between the SM estimates at depths of 0–5, 10, 20, and 30
cm from open-loop simulations and when assimilating the THEXMEX-18 observations at 0–5 cm
depth. For bare soil conditions, at depths of 10, 20, and 30 cm, both the open-loop simulations and
assimilated values of SM follow similar trend as THEXMEX-18 in situ observations, but the assimi-
lated SM estimates obtained closer values to in situmeasurements and lower uncertainty than open-
loop. For vegetated conditions, field observations are biased low compared to open-loop, primarily
under dry periods (DoY 180–220 and 260–280), and although the assimilation algorithm compen-
sates this difference at the 3 depths, the improvement is lost after some points of simulations and
SM estimates continue being biased high compared to field observations. As concluded in Monsi-
vais-Huertero et al. (2016), the extended-state-vector technique to update simultaneously states and
parameters could be useful to reduce the biases during the assimilation process.

Figure 7 compares the soil moisture profile up to 1-m depth for open-loop simulations and when
assimilating 0–5 cm observations during the THEXMEX-18 experiment every 3 days at 6 a.m. It is
found that that during bare soil conditions, the LSP model provides SM simulations similar to the
assimilation of 0–5 cm from THEXMEX-18 observations up to 1 m. From DoY 140 to 160, both the
LSP model and the assimilated SM estimates show dry conditions up to 65 cm, and wetter con-
ditions are observed at deeper layer. During the vegetated period (DoY 160–280), the LSP simu-
lations show wetter conditions for the depths up to 60 cm compared to assimilated in situ
observations. At depths deeper than the 60 cm, the LSP simulations and the assimilated SM esti-
mates are closer. This difference could be mainly due to the presence of high root density at the
top 60 cm. It is also noted that the effect of a fast infiltration is depicted by the assimilation of
THEXMEX-18 observations up to a depth of 70 cm. This indicates that during long dry periods
such as DoY 180–220, the plants may suffer of severe water stress if they do not develop roots larger
than 65 cm.

Overall, it was found that the assimilation of 0–5 cm SM observations improved the ASD of the
RZSM, comparable to the assimilation of depths at 0–5, 10, 20, and 30 cm. However, the improve-
ment in the RMSD after assimilating of 0–5 cm SM observations reduced when compared to
improvement of assimilating four depths. In order to reduce the RMSD in the RZSM, it is necessary

Figure 5. Comparison of THEXMEX-18 in situ observations and estimates of (a) SM at 0–5 cm and (b) RZSM when assimilating 0–
5 cm SM observations and unbiased (bias-corrected) SMAP SM retrievals, every 3 days. The shaded area represents the standard
deviation in the SM estimates.
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to investigate in future works the combination of SM information at depths lower or equal than 30
cm with SM at 0–5 cm.

5.4. Assimilation of SM from the SMAP L2SMP product

Table 8 presents the RMSD and ASD of the RZSM when assimilating unbiased (bias-correct) SMAP
SM at 36 km every 3 days. The ASD in RZSM estimates improve by 1.34 %SM (49%) compared to
open-loop simulations. However, the RZSM estimates do not improve when assimilating the SMAP
SM product, and even worse, the RZSM values are farther way from SM in situ observations. When
looking at Table 9, it is observed that only SM estimates at depths of 0–5 and 10 cm marginally
improve by 0.1 %SM (4.5%) compared to open-loop simulations. In contrast, SM estimates at
depths of 20 and 30 cm are farther way from THEXMEX-18 in situ observations. This lets us con-
clude that although the certainty in the SM estimates increases, the actual values only marginally
improve at the top 10 cm of the soil.

Figure 5 shows the estimates of SM at a depth of 0–5 cm and in the RZSM. When comparing the
SM estimates at 0–5 cm and in the RZSM, it is distinguished that the use of SMAP SM retrievals into
the assimilation framework improves only the top 5 cm of the soil. This result is in agreement with
the values presented in Table 9. This suggests that, to exploit the SMAP SM retrieval and estimates
RZSM conditions over agricultural areas in Central Mexico, it is still necessary to improve the sat-
ellite SM retrievals. Figure 6 presents the comparison between the SM estimates at depths of 0–5, 10,
20, and 30 cm from open-loop simulations and when assimilating the unbiased SMAP SM

Figure 6. SM estimates at depths of (a) 0–5 cm, (b) 10 cm, (c) 20 cm, and (d) 30 cm from open-loop simulations and when assim-
ilating every 3 days THEXMEX-18 observations at 0–5 cm and unbiased (bias-corrected) SMAP SM retrievals.
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retrievals. It is observed that for depths lower than 10 cm, the SM estimates after assimilation do not
improve the estimates. The trend in the SMAP SM retrievals produces an erratic trend at depths
lower than 10 cm, resulting in SM estimates far away from field observations. In general, the
trend from SM estimates are more stable during compared to rainy periods when assimilating
SMAP SM retrievals. This behavior explains the statistics presented in Table 9. The information
provided by the values from the SMAP SM retrievals is considered by the Kalman equation only
when it is within the one-standard-deviation areas, otherwise the assimilation process follows
mainly the physics computed in the LSP model. That is why, from DoY 220–240, the posterior
SM conditions after assimilation do not represent real SM values according to the LSP equations
and the LSP SM simulations go back to open-loop conditions, losing the improvement in the
RZSM values.

Figure 7(c) presents the soil moisture profile when assimilating unbiased SMAP SM retrievals
every 3 days at 6 a.m. It is found that when using the SMAP information, SM values show wetter
conditions for the complete soil moisture profile compared to the assimilation of THEXMEX-18
information. In addition, it is also noted that the SMAP SM retrieval algorithm provide wetter con-
ditions during the presence of rainfalls than field observations. This impacts the SM estimates
because after rainfalls with a low intensity, there is a significant increment in the SM values
throughout the complete soil moisture profile. The high values of SM from the SMAP retrieval
algorithm after rainfalls have been already reported in previous studies such as (Colliander et al.
2017).

Figure 7. Soil moisture profile up to 1-m depth for (a) Open-loop, (b) when assimilating 0–5 cm observations during the THEX-
MEX-18 experiment every 3 days at 6 a.m., and (c) when assimilating unbiased (bias-corrected) SMAP SM retrievals every 3 days at
6 a.m.
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Unlike the results presented in Tables 8 and 9 and Figures 5 and 7 (c), studies such as (Mlade-
nova et al. 2019, 2020) have successfully assimilated SMAP information to improve SM estimates at
different depths of the soil after correcting the bias. Colliander et al. (2017) showed that most of the
core validation sites used to calibrate SMAP SM products show low bias. However, in this study, we
monitored an agricultural area that is not included as a core validation site in the SMAPmission. As
mentioned in Colliander et al. (2017) and Chan et al. (2016), the accuracy in the SMAP SM retrie-
vals highly depends upon the calibration of the parameter values used in the t− v model, particu-
larly, on the parametrization to account for roughness and vegetation conditions. Nevertheless, this
is not an easy task, for instance, when comparing results from Casanova, Judge, and Jones (2006),
Walker et al. (2019) and Judge et al. (2021) over corn fields, it is evidenced that the h-empirical
roughness parameter, the b factor, and the vegetation water content have a wider range of values
depending upon the corn cultivar. Currently, the soil moisture community needs to exploit
measurements from sparse soil moisture networks to characterize regions lacking of information
such as Latin America.

In this section, we showed that the assimilation of SM intervals from the SMAP L2SMP product
reduced the ASD of the RZSM estimates, compared to open-loop simulation. The RMSD reduced at
depths of 0–5 and 10 cm; however, it did not improve when compared to open-loop SM. By using
SMAP SM retrievals at 36 km within an assimilation framework, it is possible to infer SM con-
ditions at the top 10 cm, replacing the need of in situ SM sensors. To improve the assimilated
SM at depths lower than 20 cm, it is necessary to improve the SMAP SM retrievals and reduce
the bias and ubRMSD over agricultural areas before going into an assimilation framework, as
reported in Mladenova et al. (2019) and Wigneron et al. (2017). The improvement of SMAP SM
retrievals requires collaborative efforts, particularly over regions lacking information. In the next
section, we discuss about opened questions remaining about this topic.

6. Discussion

Agricultural regions in developing countries, such as Mexico, affected by a limited infrastructure
require information of SM conditions at the root-zone column during regular times with intervals
lower than every 2 weeks. More regular information about SM conditions is very useful to under-
stand the effects of the climate change on the precipitation pattern and re-evaluate the plating dates
for economic activities based on rainfed local crops, if necessary. This need can be partially covered
by passive microwave sensors on-board satellite missions such as the NASA SMAP (Forgotson et al.
2020). Because the penetration of these sensors is limited to the top 5 cm of soil (Ulaby et al. 2014),
it is necessary to implement methodologies such as data assimilation to estimate the SM conditions
in the root-zone (Reichle et al. 2018). In this work, we found that the standard deviation of RZSM
estimates when assimilating in situ SM measurements at 0–5 cm is comparable to that when assim-
ilating SMAP SM retrievals from the L2SMP product with a spatial resolution of 36 km (see Tables 8
and 9). The improvement in the standard deviation indicates that the uncertainty in the value is
reduced; thus, the random component of the error is also reduced. However, the RMSD from
the RZSM estimates increases when assimilating SMAP SM retrievals by 0.015 (m3 m−3) when
compared to the assimilation of upscaled SM measurements, mainly due to the propagation of sys-
tematic errors within the LSP model and the EnKF algorithm. Section 5.4 shows the potential
benefit of assimilating bias-corrected SMAP SM retrievals to provide actual conditions in the
root-zone column, removing the dependence on in situ SM measurements.

In general, the assimilation frameworks have the drawback that if the observations are more than
one standard deviation away from the SM ensemble mean, the updated conditions could produce
unrealistic new SM conditions and the improvement from the EnKF will be lost since the physical-
based model will be back to the open-loop behavior (Monsiváis-Huertero et al. 2010). For instance,
from DoY 220–240, Figure 6 shows that SM observations from the SMAP SM retrievals are more
than one standard deviation way from the SM ensemble mean from the LSP model, resulting in loss
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of the improved conditions and the LSP model brings back the SM conditions into the open-loop
estimates. In this case, it is necessary to revise the validity of the assumption of constant parameters
within the physical-based model and the reliability of the SM retrievals in that specific period.
Studies such as (Monsivais-Huertero et al. 2016) have proposed the implementation of more com-
plex algorithms to correct simultaneously random and deterministic errors into an assimilation fra-
mework based on the EnKF. Among different bias correction methods, the simultaneous update of
state and parameters within the assimilation framework seems to be the best option due to the com-
puting time and propagation of the updated conditions within the physical-based models. Like the
state update only within the EnKF, the main drawback of this technique is that if the observations
are more than one standard deviation way from the SM ensemble mean, the updated conditions
could produce unrealistic SM conditions and incorrect values in the parameters.

Wigneron et al. (2017) analyze the sources of errors within the SM retrieval algorithms based on
passive microwave observations and shows that most of existing assimilation frameworks to
improve SM assume bias-corrected observations (e.g. Mladenova et al. 2019). The uncertainty of
SM estimates from the SMAP radiometer is a combined effect of calibration of in situ SM sensors
(McNairn et al. 2015; Gruber et al. 2020), pixel heterogeneity at the satellite scale (Colliander et al.
2019), the mismatch in the spatial scales between in situ SM measurements and satellite spatial
scales observations (Bhuiyan et al. 2018; Caldwell et al. 2019), and the incorrect values in the of
the input parameters within the SMAP SM retrieval algorithms (Judge et al. 2021).

In order to minimize the errors due to sensor calibration in this study, we calibrated the SM sen-
sors independently for each field and at each depth using soil samples with a difference
, 0.03 (m3 m−3) when compared to gravimetric SM in all cases (see Section 2.2) similar to previous
SM studies (McNairn et al. 2015; Bhuiyan et al. 2018). This methodology was developed during the
design of the NASA SMAPVEXs (McNairn et al. 2015) and is suggested to be implemented before
evaluating the performance of SM retrievals from satellite observations (Gruber et al. 2020). In these
protocols, it is recommended to collect soil samples as frequent as possible during different meteor-
ological conditions to cover a wide range of SM values. However, this condition could impact the
representativeness of large regions and the duration of field experiments using temporal and/or
sparse SM networks. International collaborative efforts such as the International Soil Moisture Net-
work (Dorigo et al. 2021) and the Joint Experiment for Crop Assessment and Monitoring (JECAM)
(Jolivot et al. 2021) have been conforming databases describing soil and vegetation over different
biomes worldwide; unfortunately, there are still several regions lacking of information, particularly
at tropical latitudes, evidencing the need of additional field experiments contributing in the under-
standing of these regions.

As shown in Figure 1 and Table 2, the pixel heterogeneity at 36 km was accounted by generating
a specific land cover map for the region of Huamantla. Colliander et al. (2019) pointed out the effect
of heterogeneity in agricultural regions on SM retrievals when varying the size of the satellite pixels.
Efforts such as the collection of the MODIS land cover product (García-Mora, Mas, and Hinkley
2012; Sulla-Menashe et al. 2019) and the ESA Climate Change Initiative’s Land Cover (ESA-
CCI-LC) dataset (Mousivand and Jokar Arsanjani 2019) can be useful tools since they provide glo-
bal classification maps; nevertheless, the classifiers implemented still need to be improved by incor-
porated addition control points over developing countries.

The upscaling method is another aspect that could produce bias in SM retrievals. We generated
the upscaled SM using the soil-weighted method as suggested in (Colliander et al. 2017). The stan-
dard deviation , 0.40 (m3 m−3) throughout the THEXMEX-18 and the mean value of the coeffi-
cient of variation of 0.314 in the 36-km upscaled SM confirm representativeness of this method
over the agricultural region of Huamantla. Bhuiyan et al. (2018) showed that either the soil-
weighted method or the Voronoï diagrams can be used to upscale SM at 36 km when using
dense SM networks. For sparse networks, Caldwell et al. (2019) shows that it is necessary to verify
the standard deviation, the coefficient of variation, and the number of require locations to verify the
representativeness of the upscaled SM at each spatial resolution to be evaluated. Because of the lack
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of representativeness in different sparse SM networks, there is lack of in situ SM information to vali-
date SM products at spatial scales lower than 10 km (Colliander et al. 2017).

Recent studies (Colliander et al. 2019; Judge et al. 2021) have found that the assumption of con-
stant parameters, such as soil roughness and the b factor used to estimate the vegetation optical
depth, is not correct since these parameters are time varying and this consideration requires to
be re-evaluated to improve the SMAP SM retrievals. Currently, the NASA L2SMP product obtain
the values for these parameters based on the lookup table technique based on land cover (O’Neill
et al. 2018). In order to obtain the new representation of these parameters, further studies are
needed due to diversity and heterogeneity in different biomes worldwide.

7. Conclusions

In this study, an EnKF-based assimilation algorithm was implemented to improve RZSM estimates
using the LSP model over an agricultural area of Central Mexico. The objective of this study was to
assimilate SM field observations and satellite SM retrievals during a complete growing season of
corn to understand the effects of uncertainties in meteorological forcing on RZSM estimates
when using the LSP model.

A comparison of EnKF performance using high spatio-temporal density observations from the
THEXMEX-18 experiment, synthetic observations, and SM retrievals at 0–5 cm (near-surface SM)
from the NASA SMAP mission at 36 km was conducted to differentiate model errors in biophysics
from errors in forcings. The SMAP SM retrievals were bias-corrected by identifying the temporal
variations of the bias between different land cover conditions. In order to reduce the error in the
model representation of the conditions over Central Mexico, the soil and vegetation parameters
of the LSP model were calibrated for the complete growing season using the Monte Carlo method.
The calibrated values produced an RMSD of 1.69%SM and 1.94%SM in RZSM and near-surface
SM, respectively. However, differences between SM estimates from the LSP and SM observations
from the THEXMEX-18 remained during frequent rainfall events and during the presence of ears.

Assimilating synthetic observations produced estimates of SM close to the true values through-
out the soil profile with an average error of about 1.38% SM (60% reduction of the open-loop
RMSE) for the entire growing season. When assimilating THEXMEX-18 observations produced
estimates with an average error of about 2.23% SM (36% reduction of the open-loop RMSE) in
the top 5 cm. In layers up to 30 cm, the SM had an average error of 1.74% SM (30% reduction of
the open-loop RMSE) during the growing season for the THEXMEX-18 observations. This differ-
ence between SM errors for the field experiment and synthetic case indicated that simplifications of
a homogeneous soil in the LSP model do not represent properly the physics in the soil. When assim-
ilating bias-corrected SM retrievals from the SMAP mission (SMAP L2SMP product), the average
error of 3.34% SM (5% reduction of the open-loop RMSE) was observed at the top 0–5 cm with an
averaged standard deviation of 1.42% SM. In contrast, the average error in the SM at deeper layers
was of 3.25% SM, particularly, over developing countries. The improvement in the soil layers when
assimilating SMAP SM retrievals was significantly lower than the assimilation of TDR observations
at the top 5 cm of the soil. This indicates that the SM retrievals from satellite missions operating at
L-band still need to be improved to infer SM conditions up to 100-cm depth using a data assimila-
tion framework. The improvement in the SM retrievals needs the re-calibration of the main par-
ameters governing the passive signatures from the t− v model, used as the baseline physical
model within the retrieval SM algorithm (Colliander et al. 2017; Chan et al. 2016).

The assimilation of four depths (0–5, 10, 20, and 30 cm) resulted in lower uncertainty in RZSM
estimation compared to the assimilation of SM at 0–5 cm only. However, these results demon-
strated that SM observations at 0–5 cm, such as those from SMAP mission, could be very useful
in an assimilation framework to estimate SM condition up to 10 cm. Although this improvement
covers the top 10 cm of the soil, this information could be very valuable particularly on rainfed agri-
cultural regions with lack of information about SM conditions such as Latin America, including
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Mexico. Frequent information (lower than every 2 weeks) of soil moisture at the top 10 cm of the
soil helps to local decision- makers in understanding the local effects of climate change at tropical
latitudes.

In this study, only the errors in soil and meteorological forcings were considered. Thus, the
observed differences in EnKF performance between synthetic and SM observations may indicate
errors in model biophysics that were not considered here, such as constant values in soil parameters
or predictions in vegetation description and root distribution. In addition, the SMAP SM retrievals
were used in the assimilation algorithm after bias correction based on field experiments. However, it
is necessary to use complex bias correction methods in the assimilation algorithms to improve
RSZM estimates when exploiting operational satellite SM products for regions without field infor-
mation available, such as proposed in Moradkhani et al. (2005) and Monsivais-Huertero et al.
(2016), or implement methodologies to improve the parameterization in the SMAP SM retrieval
algorithm using sparse soil moisture networks covering developing countries.
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