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Abstract: Advanced machine learning techniques have been used in remote sensing (RS) applications
such as crop mapping and yield prediction, but remain under-utilized for tracking crop progress. In
this study, we demonstrate the use of agronomic knowledge of crop growth drivers in a Long Short-
Term Memory-based, domain-guided neural network (DgNN) for in-season crop progress estimation.
The DgNN uses a branched structure and attention to separate independent crop growth drivers
and captures their varying importance throughout the growing season. The DgNN is implemented
for corn, using RS data in Iowa, U.S., for the period 2003–2019, with United States Department of
Agriculture (USDA) crop progress reports used as ground truth. State-wide DgNN performance
shows significant improvement over sequential and dense-only NN structures, and a widely-used
Hidden Markov Model method. The DgNN had a 4.0% higher Nash-Sutcliffe efficiency over all
growth stages and 39% more weeks with highest cosine similarity than the next best NN during test
years. The DgNN and Sequential NN were more robust during periods of abnormal crop progress,
though estimating the Silking–Grainfill transition was difficult for all methods. Finally, Uniform
Manifold Approximation and Projection visualizations of layer activations showed how LSTM-based
NNs separate crop growth time-series differently from a dense-only structure. Results from this
study exhibit both the viability of NNs in crop growth stage estimation (CGSE) and the benefits
of using domain knowledge. The DgNN methodology presented here can be extended to provide
near-real time CGSE of other crops.

Keywords: domain-guided machine learning; remotely-sensed FPAR; in-season crop growth estima-
tion; long short-term memory

1. Introduction

The increase in synchrony of global crop production and frequency of climate change-
driven abnormal weather events is leading to higher variance in crop yields [1–3]. Most
staple food crops are more vulnerable to yield loss in specific stages of growth, and as such,
accurate crop growth stage estimation (CGSE) is vital to track crop growth at different spatial
scales—local, regional, and national—and anticipate and mitigate the effects of variable
harvest. High-resolution Remote Sensing (RS) data have been successfully employed to
track crop growth at regional scales; however, current methods for CGSE utilize curve-
fitting and simplistic Machine Learning (ML) models cannot describe the more complex
relationships between crop growth drivers and crop growth stage progress [4–8]. Many of
these methods require full-season data and do not provide in-season CGSE information.

Advanced ML models have found success in applications such as crop-cover map-
ping/classification and yield estimation [9–13], but these models have yet to been applied
for in-season CGSE. Whereas methods such as Neural Networks (NNs) have been used in
crop mapping, for which researchers can utilize crop cover maps [14] to retrieve millions of
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crop cover examples per year, field-level crop growth stage (CGS) data is not publicly avail-
able and producing field scale ground truth data via field studies is prohibitively expensive.
As such, large scale CGSE research relies on local and regional level crop progress data for
ground truth. Even for the longest continually running sub-weekly temporal resolution
remote sensing (RS) sensors (e.g., MODIS), there are only 21 full growing seasons of crop
growth data. Constructing accurate, in-season ML approaches from such limited data is
difficult, particularly with few example seasons of abnormal weather. In addition, many
crop growth studies estimate events such as ‘start of season’, ‘peak of season’, ‘end of
season’, etc. [6,7], even though these events do not really describe phenological progress,
and knowledge of their timing may not be actionable.

Recently, domain knowledge has been used to improve the performance of ML tech-
niques in applied research using techniques collectively known as Theory-guide Machine
Learning (TgML) [15,16]. TgML techniques include the use of physical models outputs [17],
the integration of known domain limits into ML loss functions [18], and the designing of
NN structures that reflect how variables interact within a real physical system [19]. For
example, recent studies in agriculture such as [20] have integrated crop simulation models
into ML methods for yield prediction; however, crop simulation model-based in-season
CGSE is impractical, as calibrated simulation parameters for the latest cultivars and in situ
planting/harvest dates are not readily available, and ML methods have been shown to
outperform un-calibrated crop simulation models in rice CGSE [21].

TgML techniques have been shown to reduce the amount of data required to reach
a given level of performance [15], and Theory-guided Neural Networks have begun to
significantly improve upon current state-of-the-art methods in applications such as [22,23].
NNs have shown great promise in agricultural RS studies (e.g., [11,12]), but TgML methods
have yet to fully utilize significant disciplinary advances in agriculture over the last two to
three decades. The goal of this study is to understand the impact of incorporating domain
knowledge into NN design for in-season CGSE at regional scales. Specifically, the objec-
tive of the study is to develop a Domain-guided NN (DgNN) that separates independent
growth drivers and compare its performance to sequential NN structures of equivalent
complexity. The TgML approach in this study is demonstrated for regional CGSE in field
corn, which is one of the most cultivated crops in the world [24]. The methodology here,
when paired with adequate crop mapping techniques, can be extended to track in-season
growth of other crops.

2. Materials and Methods
2.1. Study Area and Data

This study was conducted in the state of Iowa, US, from 2003 to 2019. The state consists
of nine separate Agricultural Statistical Districts (ASDs) (see Figure 1) and had an average
of 13.4 million acres of corn under cultivation across the study period [25].

Figure 1. Agricultural Statistical Districts in Iowa with average corn acreage planted over the study
period in million acres (MA) [25].

Location of corn fields within the study region were obtained from the Corn-Soy
Data Layer (CSDL) [26] for 2003–2007 and from the USDA Crop Data Layer (CDL) from
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2008–2019 [14]. In Iowa, corn is typically planted in mid April/early May (week of year
(WOY) 15–24), reaches its reproductive stages around late June (WOY 27 onward), and is
harvested from early September through late November (WOY 36–48). Weekly USDA-NASS
Crop Progress Reports (CPRs), generated from grower and crop assessor surveys, were
used as ground truth. CPR progress stages include Planted, Emerged, Silking, Dough, Dent,
Mature, and Harvested. In this study, the Planted stage was replaced with Pre-Emergence,
a placeholder progress stage that represents all crop/field states prior to emergence, and
the Dough and Dent stages were combined as Grainfill. CGSE requires both canopy growth
information and meteorological data. This study used ASD-wide means and standard
deviations of field-level RS and other data shown in Table 1. Fields in each ASD were
selected from the CSDL and CDL based on size and boundary criteria (see Figure 2).
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Figure 2. Field selection and processing of MODIS FPAR images.

Micro-meteorological observations obtained from DayMet were used to compute
field-level accumulated growing degree days (AGDD), which is a measure of accumulated
temperature required for crop growth. AGDD is used to model progression through differ-
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ent corn growth stages, both in remote sensing studies and in mechanistic models [4,8,27].
The total number of growing degree days (GDD) for a single 24 h period is calculated using
the function:

GDD =

 Tmax + Tmin

2
− Tbase Tmin ≥ Tbase

0 Tmax < Tbase

where Tmax is lower value of daily maximum temperature and 34 ◦C, Tmin is the minimum
recorded daily temperature, and Tbase is the minimum temperature above which GDD
is accumulated, set to 8 ◦C [28]. AGDD is a running total of daily GDD values, and in
this study it is calculated from April 8th of a given year, which is the date prior to first
planting during the study period. Solar radiation inputs were converted from W/m2 to
MJ/m2/week using day length taken from DayMet to incorporate photoperiod information.
Saturated hydraulic conductivities and bulk densities at field centroids from the CSDL and
CDL were combined to obtain ASD-wide means and standard deviations.

Table 1. Remote sensing, meteorological, and soil inputs used in this study.

Parameter Source Wavelength Spat. Res. Temp. Res. Orig. Units Input Units Reference

Solar Radiation ORNL DayMet - 1 km Daily W/m2 MJ/m2/week [29]
Temperature ORNL DayMet - 1 km Daily degrees C AGDD [29]
Rainfall ORNL DayMet - 1 km Daily mm/day mm/week [29]
FPAR NASA MODIS Aqua/Terra VIS/NIR 250 m+ 4-day - - [30]
Soil Hydrologic Conductivity USDA-NRSC gSSURGO - 30 m Constant µm/s µm/s [31]
Soil Bulk Density USDA-NRSC gSSURGO - 30 m Constant g/cm3 g/cm3 [31]

To measure canopy growth, 4-day MODIS Fraction of absorbed Photosynthetically
Activate Radiation (FPAR) values for each field within an ASD were filtered to produce
daily time series data following the Savitsky-Golay (SG) filter method for NDVI used
in [32]. In this study, the SG filter parameters were m = 40, d = 1 for long-term change trend
fitting and m = 4, d = 1 for the main FPAR time series, where 2m + 1 is the moving filter
size and d is the degree of the smoothing polynomial. To simulate in-season availability of
FPAR data, the values were filtered independently up to each in-season cut-off week. FPAR
values for a given week vary slightly as the season progresses and more data is included
within the long-term filtering window. Noise filter adaptions to the existing SG method
included rejecting points prior to September with an absolute gradient of >0.3 from the
previous value, the earliest harvest over the study period. These adaptions prevented noisy,
phenologically unrealistic data from being included in the moving filter window. It should
be noted that while this filtering system is effective for a uni-modal crop such as corn, it
may not be effective for crops with more complex seasonal FPAR patterns such as winter
wheat, where higher polynomial filter parameters may be required.

2.2. Data Standardization

Since CPRs are released every Monday from data collected during the prior week,
weekly meteorological data were obtained by aggregating field-scale daily data from
Monday–Sunday. The dataset spanned 38 weeks, WOY 13–51, encompassing the earli-
est planting and latest harvest reported during the study period. To simulate in-season
monitoring, one time series was produced from pre-emergence to the ‘current’ week per
field, totaling 39 time series. Field-level time series for each input were then aggregated
to ASD-level by calculating the mean and standard deviation of the values across each
district (median was used for rainfall), with 12 total inputs (Table 1). These ASD-wide means
and standard deviations formed the un-scaled data for in the study. Solar radiation and
rainfall were standardized using Z-score scaling and AGDD and FPAR were standardized
using MinMax scaling. To standardize the length of each time series to 39 weekly values,
all Z-scored in-season time series were zero padded, while MinMax-scaled inputs were
padded with 0.5. ASD location within Iowa was represented using a one-hot location vector
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of length 9, with each bit representing an ASD. The complete 17-year dataset consisted of
5967 time series, each of dimension (39 × 12) with accompanying location vector.

2.3. Neural Network Design

The NNs in this study were based upon Long Short-Term Memory (LSTM) layers [33],
which are widely used in sequence identification/classification problems, such as speech
recognition, translation, and time series prediction [34]. LSTM has also found success in
RS studies, including crop classification [11] and yield prediction [35]. In this study, LSTM
was used because of its ability to handle time series data with variable length gaps between
key events [36], such as variable in-season crop growth data. Three NN implementations
were investigated, two reference structures and a third NN that incorporated domain
knowledge. The two reference structures included a dense NN, with traditional dense
layers of decreasing size (Figure 3a) and a sequential NN in which LSTM layers were
linearly chained (Figure 3b).

In designing the third NN, interactions between the 12 different inputs (see Table 1)
and their effect on crop growth were considered. Domain knowledge was incorporated
into the NN by separating inputs into a branched structure based on their relationship to
crop growth. TgML studies suggest that organizing NN inputs to reflect their real world
interactions may improve performance [15]. For example, Khandelwal et al. [16] were able
to improve overall streamflow prediction by 17% versus traditional LSTM architecture
by training dedicated LSTM layers to predict intermediate variables, such as snow pack
and soil water content. Although the dataset used in this study does not include target
intermediate variables, it is possible to construct a NN structure that encourages LSTM
hidden states to learn and track intermediate variables by separating the relevant inputs
through a branched structure. For example, excess photoperiod during vegetative stages
has been shown to delay crop progress, but increase leaf initiation rate [37,38], and excess
solar radiation or photoperiod is used in mechanistic crop models to determine growth
stage timing (e.g., [27]). In addition, soil moisture stress, due to low rainfall, in juvenile
corn has been found to delay growth progression and reduce final plant size [39,40].
Typically, the effects of these two drivers on canopy growth and crop progress are modeled
separately [27,41,42]. In this study, solar radiation and soil moisture-related inputs were
separated from FPAR and AGDD using a LSTM-based branched structure, similar to their
treatment within agronomic models, to encourage LSTM branches to learn and track these
intermediate variables (Figure 3c).

Domain knowledge regarding timing and impact of different crop growth drivers
during the growing season was incorporated using an attention mechanism. Attention in
NNs allows a network to learn the importance of different inputs. Many natural language
processing tasks involving LSTM utilize attention mechanisms to calculate the importance
of different words in a sentence, e.g., [43,44]. In this study, self-attention based on Multi-
Head Attention [45] is employed to allow the NN to learn importance weightings for
different meteorological inputs. Agronomic literature suggests that surplus or deficit of
solar radiation and rainfall during particular weeks in the growth cycle are what impact
crop growth [37,40]. Attention mechanisms were added to both the solar radiation and soil
moisture branches to exploit the time-dependent effects of solar radiation and rainfall as
growth drivers in corn. The final branched structure with attention mechanisms is shown
in Figure 3c. This NN is hereafter referred to as the Domain-guided NN (DgNN).
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(a)

(b)

(c)

Figure 3. Structures of the three NNs implemented in this study. (a) Dense NN, with 1,170,054 trainable parameters.
Numbers in parenthesis represent layer node count. (b) Sequential NN, with 1,046,278 trainable parameters. (c) DgNN,
with 1,018,094 trainable parameters.

2.4. NN Loss, Validation and Evaluation

In this study, Kullback–Leibler Divergence (DKL) was used as the loss function for
all NNs. DKL is a measure of the difference between two probability distributions. DKL
is often used in NN regression problems with targets that are distributions. Given two
distributions P(x) and Q(x), DKL is calculated as:

DKL(P||Q) = ∑
x∈X

P(x) log
(

P(x)
Q(x)

)
(1)
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Here DKL is used as it provides a measure of the difference between the predicted and
actual distributions of crop progress for a given week.

The 17-year CGSE dataset was split into 13 training years and 4 test years, and NN
hyperparameters were selected using five-fold cross-validation on the training data. An
initial 300 epochs were used in conjunction with early stopping, with a patience of 30 (i.e.,
1/10th of the total) epochs and best weights restoration. Early stopping was determined
based on NN loss on a single randomly selected year from the training data of each fold,
kept separate and assessed at the end of each epoch. NNs were trained using the Adam
optimizer with default parameters and a learning rate of 1 × 10−5. All NNs stopped early
during training. In this study, the Dense NN followed a traditional funnel structure with
layer widths ranging from 1024 to 128 nodes. Both the Sequential NN and DgNN used
LSTM units with 64 hidden nodes and a 128 node dense layer. Dense and LSTM nodes
used ReLU activation functions and layer weights were initialized using the GlorotUniform
initializer. Dropout was used between hidden layers with a rate of 0.2. Each NN used a six
head softmax output layer, with each head corresponding to one of the six growth stages
defined in Section 2.1. For self-attention, a two-headed attention layer with a key dimension
of 40 was used. All NNs were implemented using Python 3.9 and the Tensorflow-Keras
python library [46].

As shown in Tables 2 and 3, the four test years, 2009, 2012, 2014, and 2019 were chosen
based upon deviation from the mean of the dataset in terms of rainfall, planting and harvest
dates. All test years remained unseen by NNs during the design phase, and were only used
for NN evaluation after selection of the final NN parameters. Initially during evaluation
we trained the NNs using the average number of epochs required from early stopping
during model validation, but reverted to the same early stopping technique used during
NN validation, with the loss on a single randomly selected year (2004) monitored for all
NNs. One instance of each NN structure was trained with time series inputs from all WOY
in the training years, then produced estimates for every WOY in the test years.

Table 2. State-wide deviations of precipitation and solar radiation during test years from 2003 to
2019 study period mean. Standard deviations are given in parenthesis.

Year
AGDD
(Full Season)
(◦C)

Precipitation
(April–June)
(mm)

Precipitation
(Full Season)
(mm)

Solar Radiation
(April–June)
(W/m2/day)

Solar Radiation
(Full Season)
(W/m2/day)

2009 −277.1 (−2.285) −52.7 (−0.825) +43.7 (+0.388) +19.81 (+0.476) +5.94 (+0.115)
2012 +135.4 (+1.116) −65.8 (−1.029) −193.4 (−1.718) +24.00 (+0.576) +84.54 (+1.635)
2014 −127.0 (−1.047) +101.2 (+1.584) +104.5 (+0.928) −20.81 (−0.500) −11.94 (−0.231)
2019 −80.6 (−0.664) +15.9 (+0.249) +99.9 (+0.887) −23.50 (−0.565) −87.77 (−1.697)

Table 3. State-wide deviations of crop progress during test years from the 2003–2019 study period
mean. Values indicate time to cumulative progress into growth stage at 50%. Standard deviations are
given in parenthesis.

Year Emerged (days) Silking (days) Grainfill (days) Mature (days) Harvested (days)

2009 −2 (−0.397) +4 (+0.774) +11 (+1.58) +9 (+1.00) +20 (+1.98)
2012 −6 (−1.19) −10 (−1.93) −10 (−1.42) −16 (−2.01) −25 (−2.48)
2014 +3 (+0.60) −1 (−0.19) −4 (−0.57) +6 (+0.75) +6 (+0.60)
2019 +11 (+2.18) +2 (+0.39) +2 (+0.29) +16 (+2.01) +13 (+1.29)

For comparison to existing CGSE approaches, a Hidden Markov Model-based (HMM)
CGSE method presented by Shen et al. was implemented [4]. This method uses a standard
Expectation Maximization (EM) algorithm along with USDA CPRs to supply priors and
transition matrices to the model. Following the method from [4], the HMM was run for
100 runs on the 13 training years, with a 4-year random subset from within the training years
selected each run to act as validation data. Average performance over 100 runs was used to
reduce EM sensitivity to initialization and local minima. During testing, the HMM was run
10 times on each of the four test years and the mean of these runs is the final performance
reported.
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ASD-level CGS estimates for the NNs and HMM were aggregated to state-level esti-
mates for comparison via weighted sum, with ASD weights calculated based on the number
of corn fields in each ASD that passed the processing criteria, explained in Section 2.1 and
shown in Figure 2. Performance of the three NN structures and the HMM were evaluated
against state-wide USDA CPRs using two metrics. The first, Nash–Sutcliffe efficiency (NSE),
is a measure commonly used in hydrology and crop modeling to quantify how well a
model describes an observed time series versus the mean value of that time series, and is
defined as:

NSE = 1− ∑T
t=1(Q

t
m −Qt

o)
2

∑T
t=1(Qt

o − Q̄o)2
(2)

where Qt
m is the model estimate at time t, Qt

o is the observed value at time t, and Q̄o is the
mean value of the observed time series. NSE ranges from −∞ to a maximum of 1, where 1
means the model perfectly describes the observed time series. An NSE of below 0 means
the model is worse at describing the observed time series than the observed time series
mean. In this study, NSE is used as a metric for how well each NN estimates the percentage
of corn in a given growth stage over time.

The second metric, cosine similarity (CS), is a measure of the angle between two
vectors in a multi-dimension space. CS between two vectors A and B is calculated as:

CS = cos(θ) =
A · B
||A|| ||B|| (3)

In this study, CS is used as a metric for the accuracy of each NN in describing crop
progress across all stages for a single week. CS ranges from −1 to +1, representing vectors
that are exactly opposite in direction to exactly the same in direction. Orthogonal vectors
have a CS of 0. A CS value of 1 means that the CGSE method produces perfect estimates of
the amount of corn in each growth stage for that week. Lower CS values indicate higher
discrepancies between estimated and real crop progress across all stages for that week.

2.5. Visualization of NN Operation

Uniformed Manifold Approximation and Projection (UMAP) [47] was used to visual-
ize layer activations and gain insight into the differences in behavior among NN structures.
UMAP is a dimension reduction technique that is often used for visualizing high-dimension
data, e.g., [48]. For UMAP embedding, local neighborhoods of size 15 were used and hid-
den layer activations were embedded to 2 dimensions. Layer activations for training and
test data were visualized for the layers in each NN feeding into the 128 node dense and
softmax layers, these being common to all three NNs (see Figure 3). Color representations
of crop progress were formed by reducing the six crop stages to three RGB channels using
a UMAP reduction to 3 dimensions, with 15 neighbors.

3. Results
3.1. Model Validation

Table 4 shows the state-wide means and standard deviations of NSE for each of the
five CGS for five-fold cross-validation on the training data. Overall, the three NN structures
performed better than the HMM. The HMM had particularly low NSE during Silking and
Mature stages, meaning those stages were difficult to estimate. Figure 4 shows five-fold
cross-validated CS performance on the training data, with box plots representing the
minimum, maximum, and inter-quartile range of the CS. Week-to-week CS for the HMM
was also significantly worse than for the NNs. It should be noted that the CS scale for the
HMM plot is larger (0.2 to 1) than those used for the NNs in Figure 4. Among the three NN
structures, the Dense NN performed the worst, with the lowest NSE for all stages except
Grainfill. In addition, the range of CS values is larger for the Dense NN during transition
between Silking and Grainfill (WOY 32-33) and Mature to Harvest (WOY 42-43).
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(a)

(b)

(c)

(d)

(e)

Figure 4. Week-to-week state-wide CS between real and estimated crop progress of (a) HMM (b) Dense NN (c) Sequential
NN (d) DgNN for five-fold cross validation on the 13-year training data. Box plots are mean (red) and inter-quartile range
(IQR) and whiskers are 1.5 × IQR. Outliers are plotted as single points. (e) Average crop progress from USDA crop progress
reports during the training years. Scales for HMM (1 to 0.2) and the NNs (1 to 0.6) are different to allow inclusion of all
HMM points.

The Sequential NN improved upon the Dense NN cross-validated NSEs, particularly
for the Mature stage. NSE for both the Emerged and Harvested stages for the Sequential
NN were also very similar to the DgNN model during validation. Mean CS was only
slightly lower for the Sequential NN than for the DgNN, and the range of CS values over
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the training data is actually higher during the start of Grainfill (WOY 31). During cross-
validation, CGSE proved more challenging for the Silking, Grainfill, and Mature stages.
Cross-validated CS performance was high for all methods for weeks 22–27, during the
height of the Emerged stage. This is because the Emerged stage is the longest in-season
stage, and as such, at certain weeks, such as WOY 25, the crop is 100% emerged for all years
during the study period. Similarly, CS performance was high for all methods after WOY 45,
after which nearly 100% of the crop had reached the Harvested stage in all training years.

Table 4. Mean state-wide NSEs and their standard deviations for five-fold cross validation on the
13-year training data. Standard deviations are given in parenthesis. Bold numbers represent highest
NSE and lowest standard deviation.

Model NS-Emerged NS-Silking NS-Grainfill NS-Mature NS-Harvested

HMM 0.874 (0.041) 0.624 (0.166) 0.785 (0.060) 0.688 (0.160) 0.931 (0.062)
Dense NN 0.949 (0.041) 0.863 (0.123) 0.890 (0.062) 0.869 (0.087) 0.966 (0.034)
Sequential NN 0.979 (0.024) 0.890 (0.108) 0.884 (0.132) 0.906 (0.075) 0.982 (0.028)
DgNN 0.984 (0.013) 0.914 (0.077) 0.923 (0.063) 0.935 (0.043) 0.988 (0.014)

3.2. Model Evaluation

The four test years used for evaluation were 2009, 2012, 2014, and 2019. In 2009,
planting was delayed by heavy rains in May and a cool July (6 ◦C below normal) delayed
crop progress. Rain at the end of September and through much of October delayed harvest
significantly [49]. For 2012, corn planting began quickly, but was slowed by rain in May.
Low rainfall and hot temperatures in June and July caused both soil moisture deficit and
fast crop progress. A dry and warm late August and early September brought about early
crop maturity and harvesting began early [50]. Crops progression in 2014 was similar to
the 17-year study period average. Planting was slightly behind average during April, but
by mid-July corn progression had surpassed the study period average. Wet fields and
high grain moisture slowed harvest progress in October [51]. In 2019, rain in April and
May delayed corn planting progress, and by the end of a drier June corn emergence was
over a week behind average. Cooler temperatures in September also slowed crop progress,
leading to delayed crop maturity and harvesting [52].

Table 5 shows state-wide means and standard deviations of NSE performance for the
four test years. The HMM showed lower NSEs during test years for all stages except the
Emerged stage. The HMM Mature NSE was significantly lower than in cross-validation,
with an average less than 0.3 and standard deviation greater than 0.4. The Dense NN
had higher NSEs than the HMM for the four test years, but also a lower mean and higher
standard deviation than its cross-validated performance. The Sequential NN produced
higher mean and lower standard deviation NSEs than the Dense NN in each stage, and also
produced the best NSE for the Silking stage of any method. The DgNN produced the best
mean NSE results on the test data for all stages except Silking, with significantly higher
performance for the Mature stage. Like all methods, it produced lower mean NSEs than
its cross-validated performance on the training data; however, it also produced a lower
standard deviation for Grainfill performance on the test years.

Table 5. Mean state-wide NSEs and their standard deviations for the four test years. Standard deviations
are given in parenthesis. Bold numbers represent highest NSE and lowest standard deviation.

Model NS-Emerged NS-Silking NS-Grainfill NS-Mature NS-Harvested

HMM 0.891 (0.049) 0.475 (0.247) 0.732 (0.106) 0.245 (0.468) 0.786 (0.117)
Dense NN 0.932 (0.016) 0.761 (0.094) 0.745 (0.185) 0.635 (0.375) 0.917 (0.062)
Sequential NN 0.947 (0.048) 0.823 (0.048) 0.841 (0.097) 0.758 (0.186) 0.936 (0.031)
DgNN 0.964 (0.015) 0.790 (0.127) 0.877 (0.026) 0.870 (0.126) 0.976 (0.021)
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Figures 5–8 show the CS for the four test years. Dense NN CS values for the test
years, particularly 2009 (Figure 5) and 2012 (Figure 6), were lower than the range produced
during cross-validation. While the Sequential NN was able to produce more accurate
overall estimates of all-stage crop progress (as measured by CS) during some of the most
difficult periods for all models, it also suffered greater CS performance degradation than
the other NNs during some CGS transition periods. The DgNN maintained the highest CS
for some of the most difficult periods, such as the Grainfill–Mature–Harvested transitions,
during the test years for all NNs. The DgNN was also less prone to CS performance drops
during the start and end of the Emergence stage, which were particularly pronounced
for the other models in 2009 (WOY 29–30) and 2014 (WOY 18–19). In addition, as seen in
Table 6, the DgNN produced the best estimates across all growth stages for the greatest
number of weeks in each of the test years, producing the highest CS value for 39% more
weeks than the next best NN.

Figure 5. (a) Week-to-week CS between actual and estimated crop progress for the NNs in 2009; and (b) actual crop progress
for 2009 is shown below.

Figure 6. (a) Week-to-week CS between actual and estimated crop progress for the NNs in 2012; and (b) actual crop progress
for 2012 is shown below.
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Figure 7. (a) Week-to-week CS between actual and estimated crop progress for the NNs in 2014; and (b) actual crop progress
for 2014 is shown below.

Figure 8. (a) Week-to-week CS between actual and estimated crop progress for the NNs in 2019; and (b) actual crop progress
for 2019 is shown below.

Table 6. Total number of weeks during test years that each NN produced the highest CS value that
week. Count includes each NN (one or more) that produced the highest CS value. Bold numbers
represent highest number of weeks.

Test Year 2009 2012 2014 2019 Total

Dense NN 14 9 14 15 44
Sequential NN 18 19 18 15 70
DgNN 19 32 24 22 97

Table 7 shows NSE performance for each of the test years. For the 2009 test year, the
DgNN outperformed all other models, with the highest NSE for all stages except Emerged.
Similar to what was seen during model validation, all NNs had reduced performance
during the stages where corn transitioned into and out of Silking (see Figure 5). The Dense
NN showed greater performance degradation than the LSTM-based NNs during this
period, with significantly lower CS from WOY 29–34. There was a decrease in CS due to a



Remote Sens. 2021, 13, 4605 13 of 20

delayed harvest around WOY 45, a time when close to 100% of the crop had been harvested
for every year represented in the training data. The Sequential NN was the worst affected.
The DgNN, however, suffered very little decrease in CS during that week. Figure 9 shows
cumulative crop progress for each stage for each of the years. During 2009, each of the
three NNs was early in estimating progress for every stage except Emerged.

Table 7. State-wide NSEs for each of the four test years. Bold numbers represent highest NSE.

Model NS-Emerged NS-Silking NS-Grainfill NS-Mature NS-Harvested

2009

HMM 0.855 0.767 0.865 0.454 0.609
Dense NN 0.915 0.610 0.781 0.904 0.933
Sequential NN 0.993 0.896 0.880 0.856 0.898
DgNN 0.987 0.917 0.907 0.952 0.991

2012

HMM 0.868 0.671 0.571 -0.537 0.763
Dense NN 0.930 0.802 0.436 -0.010 0.814
Sequential NN 0.956 0.836 0.677 0.448 0.914
DgNN 0.954 0.908 0.837 0.659 0.942

2014

HMM 0.975 0.258 0.721 0.703 0.921
Dense NN 0.958 0.767 0.848 0.869 0.975
Sequential NN 0.867 0.789 0.933 0.933 0.978
DgNN 0.967 0.706 0.891 0.980 0.994

2019

HMM 0.864 0.203 0.770 0.359 0.851
Dense NN 0.924 0.865 0.915 0.778 0.947
Sequential NN 0.973 0.771 0.873 0.797 0.954
DgNN 0.948 0.627 0.875 0.891 0.978

The year 2012 produced the worst NSE across all models for the Grainfill and Mature
stages. This is expected, given the large deviation in crop progress timing from the study
mean during that year (see Table 3). With the exception of the Emerged stage, the DgNN
best described each of the growth stages, as measured by NSE. The week-to-week CS
performance degraded less for the DgNN than the other NNs during the fast-moving
WOY 33-43 Grainfill-Mature progression, as seen in Figure 6. The pronounced problems
of all NNs during this period may have been caused by the weather-induced fast crop
progression and sustained drought during the 2012 growing season. Significant soil
moisture stress contributed to degradation in corn crop condition [53], which may have
affected canopy appearance and the FPAR signal. In addition, warm temperatures during
the growing season sped up crop progress to rates not seen since 1987 [50]. As shown in
Table 3, growth stage time to 50% was over two standard deviations less the mean for both
Mature and Harvested stages. This is in contrast with 2009, where a delay of comparable
magnitude (+20 days) did not have as significant an effect on later season week-to-week
performance. There were significant delays in NN progress estimation for Mature and
Harvested in 2012, as show in Figure 9.

In 2014, Silking NSE for the NNs was low, even though crop progress that year
was relative typical of the study period. All three NN structures were late in estimating
the onset of the Grainfill stage, as shown in Figure 9 and also reflected in the decline in
CS between WOY 30 and 34 (see Figure 7). Cumulative progress estimates, as seen in
Figure 9, exhibit the closest cumulative estimation curves for Silking of any of the test years,
particularly with the DgNN. However, because the NNs were late in predicting the onset
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of Grainfill, NSE performance for Silking degraded. Whereas here the NNs performed
well at estimating crop progress into Silking, they could not accurately describe the rate at
which the crop progressed out of that stage. NNs were also early in estimating emergence,
which degraded CS during WOY 18–21.

Figure 9. State-wide estimated cumulative crop progress of each NN (dashed) for the four test years compared to actual
cumulative crop progress (solid).

NN performance for Silking also suffered in 2019, with low Silking NSE caused by
late DgNN and Sequentiall NN estimates for the start of the Grainfill stage, a problem not
experienced by the Dense NN (see Figure 9). The opposite is true for the Mature stage,
where NSE is higher for the DgNN than the other two NNs. This is reflected in the week-
to-week CS values for WOY 37–46 (see Figure 8), higher for the DgNN, during which time
the crop was transitioning from Grainfill to Mature to Harvested.

A common theme for all CGSE methods across all training and test years is the three
periods of easy estimation that happen at different times during the growing season: WOY
13–17, when crops have yet to emerge, periods around WOY 25 (100% Emerged for all study
years), and WOY 48–51 when the vast majority of the crop has been harvested. Predictably,
the most difficult periods for estimation as measured by CS are those with the crop in two
or more stages, and progress of mid-season stages proved more difficult to estimate than
start- and end-of-season stages. Silking is the shortest yet most critical growth stage in
terms of potential yield loss, but was the most difficult to estimate for all NNs. Compared
to the Emerged and Harvested stages, where significant FPAR gradients help to highlight
timing, canopy appearance and therefore FPAR remain relatively unchanged during the
Silking–Grainfill transition. Estimation of the this transition was a consistent problem. With
the exception of 2009, when the Grainfill stage was delayed by 11 days compared to the
study period average, all NNs were late in their estimations of the cumulative progress into
the Grainfill stage (see Figure 9). In the absence of measurable canopy change, AGDD is a
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useful proxy for estimating progress from Silking to Grainfill. AGDD, however, is cultivar
specific, and cultivars are selected based on different factors, such as planting timing and
drought risk. Cultivar-specific variation in required AGDD for progress through Silking
and the short duration of that stage may reduce the effectiveness of AGDD as a proxy. In
addition, AGDD for this study is accumulated from April 8th of each year and so, due
to variable inter-year planting dates, is not an exact measure of how much AGDD that
year’s crop has accumulated. As the NNs presented here have provided accurate estimates
of the timing of progression into Silking, one possible improvement for future methods
could be to use weekly GDD as an input so that the NN could learn the accumulation
of GDD required relative to the start of Silking. On the other hand, AGDD provides a
measure of accumulated temperature over the growing season that serves as an anchor
for plausible crop progression. There is no guarantee than NNs presented with GDD only
would be able to effectively learn variable accumulation functions that, un-guided, lead to
better estimates.

All NN structures produced NSE and CS results that were worse during model
evaluation. This suggests that each of the methods experienced overfitting. In any NN
implementation for RS, some overfitting is expected because of the limited number of
years of data available for RS-based methods. This leaves CGSE approaches vulnerable
to test years with progress timing that is under-represented in the training data. This
problem is particularly pronounced in 2012, where fast crop progression saw corn begin to
mature in WOY 34, two weeks before any year in the training set. This fast crop progress,
however, degraded the performance of the LSTM-based methods less than the HMM and
the Dense NN, suggesting that the ability of LSTM to handle variable length gaps between
key events make these methods more robust to outlier years such as 2012. Further studies
could investigate the relationship between CGSE NN complexity and overfitting through
an a posteriori ablation study, e.g., [54].

One notable area of performance degradation were the low NSEs in the DgNN imple-
mentation for Silking during model evaluation. In the DgNN structure, self-attention is
used to take advantage of field studies in agronomy. In this context, there is one caveat to
using attention that may cause overfitting. Since zero-padded, variable length time series
were used, the majority of time series inputs in the training-set have later season values set
to zero. Therefore, there are less examples of non-zero values during later weeks and the
attention layers may tend to reduce the assigned importance of later inputs, introducing a
bias. For example, two thirds of all time series in this study have the last one third of their
input tensor zero-padded. This could affect the ability of the DgNN to identify important
differences later in the season.

Overall, the DgNN showed significant improvement in estimating CGS over the
HMM and the other two NNs, particularly in Mature stage NSE and in CS for weeks with
multiple overlapping stages. However, the DgNN had reduced NSE for Silking during
evaluation due to difficulty in estimating the timing of the Silking–Grainfill transition.
Given the higher Silking NSE of the Sequential NN during evaluation, future studies may
be able to combine the strengths of both NNs through ensemble methods such as boosting
(e.g., [55]) or estimation averaging (e.g., [56]).

3.3. UMAP Visualization of Layer Activations

Figures 10 and 11 show layer activations for the final layers of each NN preceding
their respective 128 node and softmax layers. Layer activations have been reduced using
UMAP and labeled stages in the colorbar represent the height of each new stage. Figure 10
illustrates how the LSTM-based NNs treat the time series differently from the Dense
NN. Each of the separate branches visible in the activation space for both the DgNN and
Sequential NN contain time series from a specific ASD. The Dense NN, however, does not
keep time series from different ASDs as separate, even though it is given the same location
information. This may be a source of performance boost for the LSTM-based models, as
test year data is projected into the activation space closer to other data from the same
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ASD. Regression performed by final layers to estimate crop progress is then more strongly
influenced by training time series from the same region. This is a benefit as farmers in
different ASDs elect to plant cultivars with traits more suited to the local climate. As such,
regression performed in an activation space that keeps different ASDs more separate may
be more robust to inter-season variation.

The UMAP plots also show evidence of NN overfitting, manifest as noisier delin-
eation among clusters in the test data. For the Dense NN, this is most observable in the
Pre-Emergence to Emerged green to purple (Figure 11a,b), and the Mature to Harvested
transitions between blue and maroon (Figure 10a,b). While the above is a simple analysis of
layer activations using UMAP for model evaluation purposes, UMAP visualizations may be
used as a diagnostic tool in future work to assess the impact of including different structures
and mechanisms during CGSE NN design.

Figure 10. UMAP visualizations of combined activations from layers feeding into the 128 node layer for training and test
years for (a,b) Dense NN; (c,d) Sequential NN; (e,f) DgNN.
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Figure 11. UMAP visualizations of 128 node layer activations feeding into the softmax layer for training and test years for
(a,b) Dense NN; (c,d) Sequential NN; (e,f) DgNN.

4. Conclusions

In this study, an agronomy-informed neural network, DgNN, was developed to
provide in-season CGSE estimates. The DgNN separates inputs that can be treated as inde-
pendent crop growth drivers using a branched structure, and uses attention mechanisms to
account for the varying importance of inputs during the growing season. The DgNN was
trained and evaluated on RS and USDA CPR data for Iowa from 2003 to 2019 using NSE
and CS as metrics. The DgNN structure was compared to a HMM and two NN structures
of similar complexity. The DgNN outperformed each of the other methods on all growth
stages for five-fold cross validation on the training data, with an average improvement in
NSE across all stages of 22% versus the HMM and 2.2% versus the next best NN. The four
models were evaluated on four test years that remained unseen during validation. The
mean performance during model evaluation was also higher for the DgNN than the other
NNs and the HMM. Mean evaluation NSE for the DgNN across all stages was 43% versus
the HMM and 4.0% higher versus the next best NN (5.9% when excluding Silking). The
DgNN also had 39% more weeks with the highest CS across all test years than the next best
NN. CS metrics showed that weeks when a region’s crop is in multiple stages concurrently
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are more difficult to estimate. Estimating timing of the short yet critical growth stage of
Silking was the most difficult for all methods, particularly the Silking-to-Grainfill stage
transition. During evaluation, Silking NSE for the DgNN was reduced primarily due to the
DgNN’s inability to correctly estimate the timing of this transition. While performance of
all methods was lower on the test data, LSTM-based methods, the DgNN and Sequential
NN, were found to be more robust when presented with abnormal crop progress during
model evaluation. UMAP analysis of hidden layers indicated that LSTM-based NNs hold
time series from different locations more separate in the activation space.

This study demonstrated that a domain-guided design, such as the DgNN, can im-
prove in-season CGSE compared to NN structures of equivalent complexity. However,
UMAP-based NN structure diagnostics and ablation studies to investigate optimum NN
complexity may be able to further improve upon these results. In addition, ensemble
methods may also address stage-specific shortcomings, such as Silking–Grainfill transition.
The DgNN in this study was specifically tailored to CGSE for corn. The approach can easily
be extended to other crops by integrating agronomic knowledge of their growth drivers
into similar network design.
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