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d Escuela Superior de Ingeniería Mecánica y Eléctrica Ticomán, Instituto Politécnico Nacional, Miguel Othon de Mendizabal S/N, Col. La escalera, Mexico City 07320, 
Mexico 
e Bureau of Economic Geology, Jackson School of Geosciences, Univ. of Texas at Austin, Austin, TX, USA 
f Indigo Ag, Inc., Boston, MA, USA 
g Department of Geoscience and Remote Sensing, Faculty of Civil Engineering and Geosciences, Delft University of Technology, 2628, CN, Delft, the Netherlands 
h Department of Climate and Space Sciences and Engineering, University of Michigan-Ann Arbor, Ann Arbor, MI, USA 
i NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA 
j USDA ARS Hydrology and Remote Sensing Laboratory, Beltsville, MD, USA   

A R T I C L E  I N F O   

Editor: Jing M. Chen  

Keywords: 
SMAP 
Active and passive microwave 
Vegetation water content 
Soil moisture 
SMAPVEX16-IA 
SMAPVEX16-MicroWEX 

A B S T R A C T   

Soil moisture (SM) retrieval in agricultural regions during the growing seasons is particularly challenging due to 
high spatial variability and dynamic vegetation conditions. The retrievals have been problematic even when the 
passive signatures at different spatial scales match well since they depend upon the accuracy of vegetation in-
formation such as the vegetation water content (VWC). The VWC used in the Soil Moisture Active Passive (SMAP) 
single channel retrieval algorithm (SCA) is derived from remotely sensed, climatologically-based Normalized 
Difference Vegetation Index (NDVI), which does not respond to real-time vegetation dynamics and is prone to 
saturation. This study explored the differences and seasonal trend in passive signatures and SM at satellite- and 
field-scales and investigated uncertainties in retrievals arising from different approaches used to estimate VWC 
from optical and radar indices. It used high temporal resolution, ground-based data collected during the SMAP 
Validation-Microwave Water, Energy Balance Experiment in 2016 (SMAPVEX16-MicroWEX) during a growing 
season of corn and soybean. Overall, the brightness temperatures (TB) from SMAP matched well with the 
upscaled, ground-based TB, with a root mean square differences (RMSDs) of about 5 K. In contrast, the SMAP SM 
retrievals were worse during rapid vegetation growth in the mid-season, with higher RMSDs compared to the 
upscaled in situ SM, than those in the late-season. In addition, the ground-based TB from corn and soybean were 
similar in the early and the late seasons, while their emission differences were > 40 K in the mid season. This 
indicates the importance of accurate VWC information, particularly during the early and late growing seasons, to 
account for sub-pixel heterogeneities in agricultural regions. VWC obtained from five optical and radar indices 
were used in the SMAP SCA for soil moisture retrieval for the entire growing season of corn. The NDVI-based 
VWC provided SM retrievals that were consistently lower compared to those using in situ VWC, with a higher 
RMSD of 0.030 m3/m3 and a negative bias of 0.020 m3/m3 for VWC > 4 kg/m2. The Normalized Difference 
Water Index (NDWI)-derived VWC resulted in lower SM retrieval RMSD of 0.022 m3/m3 when compared with in 
situ SM. Among the three radar indices, vertically polarized cross-pol ratio (CRvv)-derived VWC provided similar 
RMSDs in retrieved SM as the NDWI-derived VWC during the growing season. The radar vegetation index (RVI)- 
derived VWC improved in the late season compared to the in situ VWC and resulted in SM retrievals with RMSDs 
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similar to the CRvv-derived retrievals. Results presented here suggest that SMAP SCA SM retrievals could be 
improved through the use of near-real time NDWI and CRvv-derived vegetation information. Microwave data are 
available regardless of cloud cover, so the guaranteed availability of CRvv to capture seasonal and interannual 
variability is advantageous.   

1. Introduction 

Accurate knowledge of soil moisture (SM) is crucial for various 
hydro-meteorological and agricultural applications. Microwave remote 
sensing, particularly at frequencies < 10 GHz, is highly sensitive to 
moisture in the upper few centimeters of the soil (near-surface SM) 
(McNairn and Brisco, 2004; Steele-Dunne et al., 2017). For SM studies, 
observations at L-band frequencies of 1.2–1.4 GHz are desirable due to 
larger penetration depths (Ulaby and Elachi, 1990; Liu et al., 2013, 
2016a; Steele-Dunne et al., 2017). Currently, the European Space 
Agency (ESA) - Soil Moisture and Ocean Salinity (SMOS) and National 
Aeronautics and Space Administration (NASA) Soil Moisture Active 
Passive (SMAP) missions (Kerr et al., 2001; Entekhabi et al., 2010) 
provide brightness temperatures (TB) at L-band and SM products every 
2–3 days at 25 km and 36 km (or 9 km enhanced), respectively. In 
addition, the active space-borne L-band sensor onboard the Advanced 
Land Observing Satellite 2 (ALOS-2) by Japanese Aerospace eXploration 
Agency (Kankaku et al., 2015, 2016; Motohka et al., 2017) provides 
backscattering coefficients (σ0) at spatial resolutions from 3 to 10 m, 
which could be used to estimate SM at high spatial resolution about 
every 30 days. Several upcoming satellite missions ensure the continuity 
of L-band observations for SM estimates for the coming decades. For 
example, the NASA and the Indian Space Research Organization syn-
thetic aperture radar (SAR) (NISAR) mission will provide L- and S-band 
observations every 12 days starting in 2022 (Rosen et al., 2015, 2016, 
2017). The ESA Copernicus Imaging Microwave Radiometer (CIMR) 
(Donlon, 2019) will provide passive data in several microwave bands, 
and Radar Observing system for Europe (ROSE-L) (Pierdicca et al., 

2019) will provide active L-band observations. 
Recent studies have demonstrated the agreement between passive 

signatures at satellite and airborne scales (McNairn et al., 2015; Col-
liander et al., 2015, 2019). However the retrieval of SM is complicated 
by the sensitivity of brightness temperature to land surface conditions 
such as soil temperature, surface roughness, vegetation geometry, and 
vegetation water content (VWC). Thus, SM retrieval from microwave 
observations has been particularly challenging in agricultural regions 
due to its high spatial variability and dynamic vegetation conditions [e. 
g.(Jackson et al., 2004; Chen et al., 2005; Yilmaz et al., 2008; Cosh et al., 
2010; Monsivais-Huertero et al., 2010; Nagarajan and Judge, 2013)]. 
Vegetation information in SM retrieval algorithms from passive obser-
vations are obtained using different approaches. For example, in the 
current SMOS operational model, optical vegetation indices are used to 
simultaneously retrieve SM and vegetation opacity information 
(Wigneron et al., 2017). More recently, Li et al. (2020) has used multi-
angular observations of SMOS for SM retrieval that is independent of 
optical indices. In the current SMAP baseline retrieval algorithm, the 
Single Channel Algorithm (SCA), vegetation opacity is estimated using 
VWC from climatology-based normalized difference vegetation index 
(NDVI) from MODIS (O’Neill et al., 2018). However, the climatology- 
based indices do not capture real-time vegetation dynamics (Zwieback 
et al., 2018; Fan et al., 2020) and are prone to saturation, resulting in 
errors in SM retrievals (e.g. (Konings et al., 2017)). 

Among many optical indices available (Roberto et al., 2016), NDVI 
and normalized difference water index (NDWI) have been most widely 
used for estimating VWC (Jackson et al., 2004; Yilmaz et al., 2008; Cosh 
et al., 2010; Hunt et al., 2011; Gao et al., 2015; Cosh et al., 2019). 

Fig. 1. (a) Location of the South Fork Watershed, Iowa; (b) Layout of sensors during SMAPVEX16-MicroWEX at the corn and soybean sites; (c) Active (UFLARS) and 
passive (UMLMR) microwave sensors at the corn field, and (d) Passive (UFLMR) sensor at the soybean field. 
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However, optical data are unavailable during cloudy conditions. In 
addition, though these indices may be stable under low vegetation 
conditions, particularly for VWC < 4 kg/m2 (Cosh et al., 2019), they are 
largely insensitive to water under the canopy surface such as in stem and 
ears and exhibit varying degrees of saturation with increasing canopy 
coverage in high-biomass crops such as corn. The SMAP retrieval 

algorithm uses a stem factor to address this insensitivity with NDVI 
(Hunt et al., 2011; Chan et al., 2016). Radar-based indices such as radar 
vegetation index (RVI) and cross-pol ratios (CRs) have been proposed as 
an alternative to optical data [e.g. (Kim et al., 2012, 2014; Huang et al., 
2015; Liu et al., 2016a; Vreugdenhil et al., 2018)]. However, RVI and 
CRs are affected by soil under low vegetation conditions, and are 

Fig. 2. Acquisition times for various observations during SMAPVEX16-MicroWEX. For ground-based active observations, the blue line represents corn and cyan line 
represents soybean observation dates. For in situ vegetation observations, dark green and light green squares represent corn and soybean sampling dates, respectively. 
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 3. Microwave observations during SMAPVEX16-MicroWEX. (a) Backscattering coefficients and (b) Brightness temperatures. ‘A’ represents airborne measure-
ments from PALS and ‘G’ represents ground-based observations from UF and UM sensors. 
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sensitive to vegetation structure and geometry, in addition to VWC, as 
the season progresses. A significant challenge still exists in under-
standing how these different approaches to estimate VWC impact SM 
retrievals at various phenological stages during the growing season, 
largely due to the scarcity of season-long concurrent active and passive 
(AP) microwave and optical datasets in agricultural regions. 

The goal of the study is to address this challenge in SMAP SM re-
trievals for agricultural regions. Specifically, we investigate differences 
and seasonal trend in TB and SM from satellite to field-scale during the 
entire growing season of corn and soybean from an intensive field 
experiment, Microwave Water and Energy Balance Experiment 
(SMAPVEX16-MicroWEX), conducted as part of the Soil Moisture Active 
Passive Validation Experiment in 2016 in the US Corn Belt in Iowa 
(SMAPVEX16-IA). In addition, we provide insights into the uncertainties 
in retrievals arising from VWC formulations through a field-scale study. 
For VWC formulations, we use radar indices from ground-based active 
microwave observations and satellite optical indices. These VWC values 
were then used in a SM retrieval algorithm based upon the SMAP SCA 
(O’Neill et al., 2018) to understand their impacts on retrieved SM at 
field-scale. 

2. SMAPVEX16-MicroWEX dataset and study sites 

SMAPVEX16-IA was conducted in the South Fork watershed near 
Ames, Iowa, (see Fig. 1(a)) to improve early season negative bias (drier 
retrievals) in the Level-2 SMAP soil moisture algorithm for agricultural 
regions (Chan et al., 2016) and erroneous sensitivity to precipitation 
when SMOS soil moisture was compared with in situ measurements 
(Rondinelli et al., 2015). The experiment was conducted in this rainfed, 
agricultural watershed (Coopersmith et al., 2015) consisting primarily 
of corn and soybean, for two intensive observation periods (IOP) in 
2016; IOP-1, from May 28 (Day of year (DOY) 149) through June 5 (DOY 
157) and IOP-2, from August 3 (DOY 216) through August 16 (DOY 

229). SMAPVEX16-MicroWEX was a field-scale experiment as part of 
SMAPVEX16-IA and was conducted at the a commercial farm, Sweeney 
Farms, Alden, Iowa, (42.39 N, 93.39 W) within the same watershed. The 
experiment spanned 3.5 months during the whole growing season of 
corn and soybean, from May 23 (144) to September 2 (DOY 246). It 
provided field-level, season-long, concurrent AP microwave observa-
tions for further investigating SMAP retrieval algorithms. In addition, in 
situ soil and vegetation conditions were measured at the two 3750 m2 

fields. Fig. 1(b) shows the sensor layouts for the two fields and Figs. 1(c) 
and (d) show the ground-based microwave sensors. Crop classification at 
30 m resolution covering the SMAP pixel in the South Fork watershed 
was obtained from the US Department of Agriculture (USDA) Crop Data 
Layer (CDL)(USDA, 2016). The soil texture in the fields is silt loam with 
29% clay, 11% sand, and 60% silt, based upon the USDA Soil Survey. 
Fig. 2 shows the time line of remote sensing and in situ observations 
during SMAPEVEX16-MicroWEX. 

2.1. Microwave and optical observations 

Ground-based σ0 observations at quad-polarization were obtained at 
1.26 GHz every 30–60 min using the University of Florida L-band 
automated radar system (UFLARS) (Nagarajan et al., 2014; Liu et al., 
2016b) mounted on a genie-lift (see Fig. 3 (a)). The system was located 
at the corn site for the whole growing season providing 3300 observa-
tions, except for two 1-week periods, DOY 189–194 and DOY 245–250, 
during which it monitored backscatter at the soybean site, providing 523 
observations (see Fig. 2). Weekly calibrations were conducted using a 
single-target calibration technique with a trihedral corner-reflector. 
Mean amplitude of backscatter was obtained by averaging indepen-
dent samples spatially, from − 9 to +9 azimuth and spectrally, from 
1130 to 1370 MHz to reduce the standard deviation of fading (Hoekman, 
1991; Liu et al., 2016a, 2016b; Vermunt et al., 2020). The overall un-
certainty of UFLARS measurements is 1.71 dB (Liu et al., 2016b). 

Fig. 4. In situ observations of (a) VWC, (b) plant height at the corn and soybean fields during SMAPVEX16-MicroWEX, (c) mean and standard deviations of 0–5 cm 
SM at the corn site, and (d) mean and standard deviations of 0–5 cm SM at the soybean site. 
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Over 8000 V- and H-pol ground-based TB observations for corn were 
obtained using a dual-channel L-band radiometer from the University of 
Michigan (UMLMR) and similar number of H-pol observations for soy-
bean were obtained from the single channel L-band radiometer from the 
University of Florida (UFLMR) (see Fig. 3(b)). Both the radiometer 
systems, built by the University of Michigan, share the same design and 
operate at the central frequency of 1.41 GHz. Microwave emissions from 
growing corn and soybean footprints of about 50 m2 were observed 
every 15 min at an incidence angle of 40. The radiometers were cali-
brated weekly using the internal calibration technique (Tien et al., 
2007). The overall uncertainty of measurements were 2 K (Tien et al., 
2007; Liu et al., 2016a). 

In addition to the ground-based microwave data, twelve airborne AP 
L-band observations at a spatial resolution of 600 m were obtained 
concurrent with the SMAP overpasses during IOP-1 and IOP-2 from the 
Passive Active L-band System (PALS) (Colliander et al., 2019), as shown 
in Fig. 2. Satellite observations include 109 dual-pol observations of 
SMAP L1CTB (v.6,R16010–001) at 36 km with an incidence angle of 40 
and corresponding retrieved SM products from SMAP L2 SM P (v.6, 
R16010–001) at 36 km were obtained during SMAPVEX16-MicroWEX. 
Satellite-based optical indices, NDVI and NDWI, were obtained at 30 
m from Landsat 8 products, LC8NDVI and LC8NDMI, respectively, for 
the corn site. The indices from four Landsat pixels covering the corn site 
were averaged to represent overall vegetation condition at the site. In 
this study, we compare these multiscale observations using root mean 
square differences (RMSDs) and unbiased RMSDs (ubRMSD) defined in 
the eq. 1 below. 

RMSD =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
Σn

i=1(xi − yi)
2

√

; ubRMSD =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
RMSD2 − bias2

√
(1)  

where xi and yi represent the corresponding values of the two datasets, 
and n represents the total number of points. 

2.2. Vegetation and soil observations 

Corn of cultivar Pioneer 1365 and ecotype IB001 was planted on 
DOY 125 and soybean of cultivar Pfizer 20R23 and ecotype SB0301 was 
planted on DOY 128. Both crops were planted at a row spacing of 0.76 
m. Weekly vegetation observations were conducted for plant density, 
phenology, structure, geometry, leaf area index (LAI), biomass by 
components, and vegetation water content (VWC) from three sampling 
areas, shown in Fig. 1(b). The average plant density for corn was 13 
plants/m2 and that of soybean was 24 plants/m2 during the growing 
season. To obtain structure, geometry, and wet above ground biomass of 
leaves, stems and ears/pods, four plants were sampled at random in each 
of the three vegetation sampling areas. The plants were dried at 48∘C for 
3–7 days, depending upon the amount of vegetation material, to obtain 
dry biomass of the components. The sampling protocols were the same 
as those used in our previous MicroWEXs conducted in Florida and are 
detailed in (Yang et al., 2005; Casanova et al., 2006; Bongiovanni et al., 
2015a, 2015b). Figs. 4(a) and (b) show the in situ VWC and plant heights 
along with the phenological stages, respectively. 

In situ SM and soil temperatures were observed at three locations (see 
Fig. 1(b)) in both corn and soybean fields every 15 min using time 
domain reflectometry (TDR) probes (CS-616 from Campbell Scientific) 
and thermistors, respectively, at depths of 2, 5, 10, 15, 30, 60, and 120 
cm. Three TDRs were installed at 2 and 5 cm for each station to provide a 
better estimate of variability in the near surface. The probes were cali-
brated using gravimetric measurements during a two week period, 
following established protocols, e.g. (Bhuiyan et al., 2018). The cali-
bration error was 0.02 m3/m3, which was 0.05 m3/m3 lower than that 
obtained using the manufacturer’s calibration coefficients. In this study, 
the SM values observed close to the radiometer and radar footprints 
were averaged to obtain SM at 0–5 cm. Figs. 4 (c) and (d) show the mean 

and the standard deviations (SD) (defined as 
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
nΣn

i=1(xi − x)2
√

, where xi 

and x represent the ith value and the mean of the dataset, respectively, 
and n represents the total number of points in the dataset) of the near- 
surface SM in the top 5 cm at the corn and the soybean sites, respec-
tively. In these figures, the in situ SM at the two field sites are also 
compared with the mean and the SD of the SM from 20 permanent in situ 
network stations that were operated by the USDA-Agricultural Research 
Service, located within the SMAP pixel (Colliander et al., 2019). The SM 
within the SMAP pixel was very heterogeneous with differences at 5 cm 
of up to 20% by volume. The near-surface SM observed at the corn and 
the soybean sites during SMAPVEX16-MicroWEX were within the vari-
ability of the SM observed by the permanent stations, indicating their 
representativeness of SM conditions within the SMAP pixel. 

3. Methodology 

3.1. SM retrieval algorithm 

To gain insights into the impact of VWC estimates on SM retrieval, 
field-scale in situ observations were used in this study to avoid scaling 
errors inherent with satellite-scale analyses. The SM retrieval was con-
ducted only for the corn site using ground-based TB observations since 
the soybean field site was surrounded by corn fields and the NDVI and 
NDWI products may be contaminated due to mixed-pixels.1 The emis-
sion model for SM retrieval followed the SCA algorithm for SMAP pas-
sive retrievals (O’Neill et al., 2018) with the primary equation as: 

TBp=Tsepexp
(
− τpsecθ

)
+Tc

(
1− ωp

)[
1− exp

(
− τpsecθ

)][
1+rpexp

(
− τpsecθ

)]

(2)  

where the subscript p is H or V polarization, ep is the soil emissivity = 1 - 
rp, Ts and Tc are the soil and vegetation temperatures, τp is the nadir 
vegetation opacity, ωp is the vegetation single scattering albedo, and rp is 
the rough soil reflectivity. Typically, ωp is assumed zero at L-band, and 
Ts = Tc = effective temperature, Teff, which is estimated as (O’Neill et al., 
2018): 

Tef f = K[Tsoil2 +C(Tsoil1 − Tsoil2) ] (3)  

where Tsoil1 and Tsoil2 are the soil temperatures at 0–10 cm and 10–20 cm 
soil layers, respectively, K is a constant = 1.007 for agricultural terrain 
and C = 0.246 for morning and = 1 for afternoon acquisitions. In this 
study, the Tsoil1 and Tsoil2 were obtained from in situ observations. 

The rp is estimated as a function of specular refelectivity, r0p, and 
three empirical parameters, Q, related to polarization-mixing, and h and 
n, related to soil roughness (Wang and Choudhury, 1981; Wigneron 
et al., 2017): 

rp =
[
(1 − Q)r0p +Qr0q

]
ehpcosnp (θ) (4) 

For this study, soil dielectric constant, ϵ, for estimating specular 
reflectivity was obtained using mineralogically-based model from Liu 
et al. (2013) and Mironov et al. (2009) and Q = 0.35 (Mialon et al., 
2012; Lawrenmce et al., 2013). The parameters h and n were obtained 
through optimization with respect to ground-based observations of TBv 
(for hv and nv) and TBh (for hh and nh), using in situ SM. The optimization 
was conducted during the early season, in the first 40 days after planting 
(DOY 125–165), when LAI < 0.3 and plant height < 20 cm. The 
convergence was reached when the difference between the estimated TB 
and ground-based TB was ≤ 0.4 K, corresponding to the precision of 
ground-based observations. 

The τp is a linear function of VWC scaled by an empirical parameter, 
b, that is dependent on many factors such as vegetation type, polariza-
tion (Van de and Wigneron, 2004; O’Neill et al., 2014), and phenology 

1 Originally, the farmer had planned to plant only corn at Sweeney Farms. 
However, a 3750 m2 field was dedicated to soybean to allow concurrent 
ground-based observations during SMAPVEX16-MicroWEX. 
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(Dugwon et al., 2010). For this study, the b parameters at H- (bh) and V- 
pol (bv) were obtained through optimization of τH and τV with respect to 
TBh and TBv, respectively. The optimization was conducted during the 
mid and late seasons, from DOY 180 onward, when LAI >3.3 and used in 
situ observations of SM and VWC. The in situ VWC were interpolated to 
obtain a continuous time series. The convergence criterion for the esti-
mated TB at both polarizations was the same as that for h and n pa-
rameters described above. The optimized τH and τV were fitted to a 2nd 

degree polynomial function, resulting in smooth time series of bh and bv 
parameters. 

The SM retrieval was conducted for corn starting from DOY 180, with 
the optimized h, n, and b parameters using TBh and TBv, resulting in SMh 
and SMv, respectively. Retrieval scenarios with six sources of VWC 
included, in situ VWC and VWC obtained from NDVI, NDWI, RVI, and 
hh- and vv-pol cross-polarization ratios (CRhh and CRvv, respectively). 
Comparisons of SMh and SMv retrieved in these six scenarios provided 
insights into the impact of different VWC formulations on retrievals at 
different phenological stages during the corn growing season. 

3.2. VWC from optical and radar indices 

In this study, five indices from remotely sensed observations for VWC 
estimates were explored. The two optical indices, NDVI and NDWI, were 
obtained from Landsat, as described in section 2.1, and the three radar 
indices (see eq. 5), RVI (Huang et al., 2015), CRvv, and CRhh (Prakash 
et al., 2012; Vreugdenhil et al., 2018), were obtained from the ground- 
based observations from UFLARS during SMAPVEX16-MicroWEX. 

RVI =
8σ0

hv

σ0
hh + σ0

vv + 2σ0
hv
; CRvv = σ0

vh

/

σ0
vv; CRhh = σ0

vh

/

σ0
hh

(5) 

As in the SMAP retrieval algorithm, the VWC from Landsat NDVI in 
this study was estimated using eq. (19) in (O’Neill et al., 2018) as below: 

VWC = 1.9134 NDVI2 − 0.3215 NDVI+ stem factor
NDVImax − NDVImin

1 − NDVImin

(6)  

where, NDVImax and NDVImin are the annual maximum and minimum 
NDVI values for the location, respectively. In the SMAP algorithm, the 
NDVImax for croplands is set to the observed NDVI (O’Neill et al., 2018), 
the same as the NDVI in the first two terms. In this study, the NDVI (and 
hence, NDVImax), was obtained from Landsat. The default value for the 
NDVImin in the SMAP algorithm for croplands is 0.1 (O’Neill et al., 
2018). In our field-scale implementation of the SMAP algorithm with 
best available data, the NDVImin was set to 0.24, which was the mini-
mum value observed during the SMAVPEX16-MicroWEX season, on 
DOY 140. The stem factor is the maximum amount of water in the stems 
and is 3.5 for crops in the SMAP algorithm (O’Neill et al., 2018). In this 
study, we found that the stem factor of 3.9 provided the best regression 
of in situ VWC with Landsat NDVI. 

The VWC from NDWI was estimated using regression of Landsat 
NDWI and in situ VWC. This NDWI-derived VWC was also compared 
with that obtained using the regression equation by (Cosh et al., 2019): 

VWC = 10.184*NDWI+ 1.0026 (7) 

In (Cosh et al., 2019), the above coefficients were obtained using 
VWC observations from four days during IOP-1 and IOP-2 for 5 corn 
fields in the SMAP pixel during SMAPVEX16-IA, while in this study the 
coefficients were obtained using observations from the whole 
SMAPVEX16-MicroWEX season. The VWC from the two radar indices, 
RVI and CR, were estimated using regression with the in situ VWC. 

4. Results and discussion 

4.1. Microwave observations during SMAPVEX16-MicroWEX 

Fig. 3(a) shows the ground and airborne active microwave obser-
vations. The ground-based active observations for corn match well with 
the airborne data at VV and cross-pol, with mean differences of 2.5 dB 
during IOP-1 and 3 dB during IOP-2. However, the differences were 
higher at HH-pol, with PALS observations lower than the ground-based 
values by about 8 dB. The ground-based HH and VV observations in corn 
converge around tasseling (around DOY 180), with increasing contri-
bution of direct vegetation scattering, and the cross-pol backscatter was 
consistently 8–9 dB lower than co-pol observations, similar to the 
behavior observed during our previous experiments with sweet corn in 
Florida (Liu et al., 2016a). Diurnal variations, particularly during non- 
rainy periods, were observed during a fully-grown corn canopy, with 
morning backscatter at 6 a.m. local time, about 0.45 dB higher than that 
in the evening, at 6 p.m., with larger differences at HH than VV. This 
phenomenon has also been studied in detail by prior studies (Steele- 
Dunne et al., 2012; Konings et al., 2017; van Emmerik et al., 2017; 
Vermunt et al., 2020). Vermunt et al. (2020) conducted an extensive 
ground validation with destructive sampling and sap flow measure-
ments to show that the subdaily variations in VWC are significant. Some 
of the variations, particularly backscatter maxima around sunrise were 
attributed to dew accumulation. Diurnal cycles in backscatter were also 
observed for soybean in the late season, similar to those in corn. 

In the early season, the average sensitivity of corn backscatter to SM 
is 0.5 dB/%vol of SM, primarily corresponding to rainfall events. 
However, in mid and late season, the sensitivity of the backscatter de-
creases to 0.25 dB/%vol. Even though the corn canopy was fully mature, 
after DOY 210, the sensitivity is still considerable, as seen in Figs. 3(b) 
and 4(c), since the backscatter is increasingly dominated by double 
scattering that accounts for the soil-vegetation interactions (Monsivais- 
Huertero et al., 2018; Monsivais-Huertero et al., 2010). This phenome-
non observed from field measurements confirms findings from previous 
studies using forward modeling to investigate scattering mechanisms of 
backscatter in vegetated surfaces (Tavakoli et al., 1991; Stiles et al., 
2000; Monsivais-Huertero and Judge, 2011; Monsivais-Huertero et al., 
2018; Sharma et al., 2020). In addition, the HH and cross-pols were 
found to be the most sensitive to SM during rain events, with changes of 
about 3 dB. 

For soybean, the average σ0 values were − 8.7, − 9.13, and − 17.23 
dB at HH, VV, and HV pols, with HH > VV in late season, similar to those 
observed by (Kim et al., 2012). However, the differences between cross- 
and co-pol values were about 8 dB during SMAPVEX16-MicroWEX, 
which were lower than those reported in (Kim et al., 2012). The ob-
servations during a week in the mid season show rapid changes in 
response to frequent precipitation (see Fig. 4(d)), compared to those 
during the late season. 

Figs. 3(b) show the ground-based and airborne passive microwave 
observations. As expected, H-pol TB for corn and soybean are similar 
during the early season, as shown in Fig. 6, as both are largely deter-
mined by the soil moisture and soil properties. Around DOY 180, corn 
reaches the tasseling stage and its VWC exceeds 2 kg/m2 (see Fig. 4(a)), 
so the TB becomes increasingly influenced by the vegetation rather than 
the soil (Ulaby et al., 2014). Meanwhile, the in situ VWC in soybean is 
still much lower, and the TB of the soybean is still primarily influenced 
by the soil. The two converge again around DOY 210, when the soybean 
reaches maximum biomass of 2 kg/m2, pods start to form, and the 
sensitivity to soil moisture in both fields is similar. The divergence in TBs 
by > 50 K between the two crop types between DOY 180 and DOY 210 
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Fig. 5. Comparison of TB from satellite (SMAP - 36 km), airborne (PALS - 600 m), and ground-based for corn and soybean fields.  

Fig. 6. H-pol TB from SMAP, PALS, UMLMR, and UFLMR for corn and soybean fields. The satellite observations from SMAP are generally enveloped by ground-based 
corn and soybean signatures from UMLMR and UFLMR, respectively. ‘G’ represents ground-based measurements from UF and UM sensors. 
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underscores the need to account for sub-footprint spatial heterogeneity 
in agricultural areas. It is particularly important as this divergence oc-
curs in a period between tasseling and ear formation for corn, during 
which soil moisture availability has a significant impact on yield 
(Claassen and Shaw, 1970; Denmead and Shaw, 1960) and soil moisture 
information is essential at this time. 

Overall, the differences between the ground-based TB at the two 
polarizations in corn were higher in the early season, with a mean dif-
ference of 23 K. As the corn grew and emission was increasingly domi-
nated by the vegetation, the differences decreased to 3 K when VWC was 
> 4.5 kg/m2 and the corn height was 2.5 m, as shown in Figs. 4(a and b). 
In both corn and soybean, the sensitivities of TB to SM was higher during 

Table 1 
Comparison of H-pol TB observed from SMAP, PALS, and ground-based radi-
ometers at their native resolutions. RMSD and ubRMSD are also presented for 
the SMAP and the upscaled ground-based TB at 36 km.  

Overall RMSD (K) ubRMSD (K) 

SMAP & Corn site 6.67 6.28 
SMAP & Soybean site 14.14 14.14 
SMAP & Site-upscaled 5.90 5.08 
SMAP & PALS (IOP1 & IOP2) 14.94 14.85 
PALS & Corn site (IOP1 & IOP2) 24.72 22.31 
PALS & Site-upscaled (IOP1 & IOP2) 23.73 16.72 

Mean Air Temperature 
291.26 K 

Fig. 7. (a) Land cover fraction in the 36 km SMAP pixel from the US Department of Agriculture (USDA) Crop Data Layer (CDL) (USDA, 2016) and (b) Upscaled 
ground-based H-pol TB compared with the SMAP and the PALS observations at 36 km. 
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early season with an average of 5.25 and 4.33 K/% vol at H-pol, 
respectively. In the late season, the average sensitivities decreased to 
1.54 and 0.69 K/%vol for corn and soybean, respectively. The sensi-
tivities at H-pol in corn were higher than V-pol which were 1.6 and 0.7 
K/%vol during the early and late seasons, respectively. 

The PALS airborne observations at 600 m encompassed the corn field 
and the footprint of the ground-based radiometer at the corn site. Both 
the airborne and the ground-based TBs showed similar responses to SM 
changes during IOP-1 and IOP-2 (Fig. 3(b)). Overall, the PALS TB were 
lower than ground-based at both pols, with a bias of around 6–7 K. The 
differences in the early season (IOP-1) were higher at around 25–30 K, 
largely due to scene heterogeneities within the PALS footprint compared 
to the field-site from variable soil moisture conditions (see Fig. 4(c)). 
The differences reduced to 3–5 K as the scene became increasingly ho-
mogeneous with mature vegetation. 

Figs. 5(a, b, and c) show the time series of the satellite, airborne, and 
ground-based TB observations at their native spatial resolutions, and 
Fig. 6 provides a close-up of the comparison at H-pol. Even with large 
differences in their spatial scales, the SMAP and ground-based obser-
vations matched well and captured dynamic moisture conditions during 
the growing season. Table 1 shows the RMSDs and ubRMSDs between 
the TBh from SMAP, PALS, and from the ground-based radiometers at the 
corn and soybean sites. The RMSDs and ubRMSDs between SMAP and 
the corn site TBh were lower than those between SMAP and the soybean 
site, due to a higher fraction of corn and spatial variability in soil 
moisture within the satellite footprint. This can also be seen in Fig. 6 
where, as the season progressed, the SMAP TBh were between ground- 
based TBh observations from corn and soybean, with values closer to 
corn than soybean. Overall, the RMSDs and ubRMSDs of TB between 
PALS and SMAP were about 15 K, similar to the high differences be-
tween PALS and the ground-based observations. Since, PALS acquisition 
was limited to two IOPs, the sample size of 12 observations was limited. 

We used CDL at 30 m (Fig. 7 (a)) to upscale ground-based TB ob-
servations based upon fractions of corn and soybean pixels at the SMAP 

and PALS scales. The SMAP pixel consisted of 60% corn and 23% soy-
bean, and the PALS pixel consisted of 72% corn and 10% soybean. The 
ground based TBh signatures from corn and soybean were combined, 
with weights based upon their land cover fractions using linear spectral 
mixing (Clevers and Zurita-Milla, 2008) to obtain effective, upscaled TBh 
for the mixed satellite and airborne pixels. The differences between the 
upscaled TB and the satellite/airborne pixels were reduced (see Table 1). 
For example, the RMSD and ubRMSD between SMAP and the upscaled- 
ground based TB were reduced to 5.9 and 5 K, respectively, indicating 
that the corn and soybean signatures at the SMAPVEX16-MicroWEX 
sites were representative of those in the region (see Fig. 7b and Table 1). 

4.2. SM observations during SMAPVEX16-MicroWEX 

Even though the upscaled ground and satellite TBh observations in 
Fig. 7 (b) matched well throughout the season, the retrieved SM from 
SMAP shows significant differences from the upscaled SM, as shown in 
Fig. 8 (a). The upscaled SM was obtained from 20 permanent SM sta-
tions, using the SMAP default approach with the Voronoi diagram 
technique that partitions a plane into Thiessen Polygons (Dingman, 
2015) based upon the distance of a group of points to each other within 
the polygon (Colliander et al., 2017b; Bhuiyan et al., 2018; Colliander 
et al., 2019). The RMSD and bias between SMAP-derived and the 
upscaled SM during the growing season were 0.064 and − 0.024 m3/m3, 
respectively. These differences are similar to those found by (Colliander 
et al., 2017b,a; Walker et al., 2019). The RMSD and bias during the 
nearly-bare conditions, within 20 days of planting at the field site, was 
0.1 and 0.03 m3/m3, respectively. Since the emission during this time is 
primarily controlled by soil properties, the heterogeneity in the SMAP 
pixel could result in these differences. The RMSD and bias decreased 
during the early vegetative period prior to tasseling, such as DOY 
170–180, at 0.05 and − 0.05 m3/m3, respectively, when both corn and 
soybean VWC < 2 kg/m2 (Fig. 4(a)) and their TB values were still similar 
(Fig. 6). After this period, the emission transitions from soil to 

Fig. 8. (a) Upscaled in situ SM from 20 permanent stations in the SMAP pixel compared with the retrieved SM from SMAP at 36 km. (b) VWC estimated in the SMAP 
retrieval algorithm at 36 km compared to the in situ VWC at the corn and soybean sites during SMAPVEX16-MicroWEX. 
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Fig. 9. Optimized vertical and horizontally polarized vegetation opacities, τH and τV, respectively, obtained from the microwave emission model at the corn site 
during SMAPVEX16-MicroWEX. 

Table 2 
Retrieval equations for VWC using optical and microwave indices in corn. The metrics, Pearson correlation coefficient (R), RMSD, and bias and P-values, are given with 
respect to in situ VWC. The RMSDs and biases are in kg/m2. The NDWI relationships are obtained for before and after ear formation (see Fig. 4(a)).  

Index Validity Regression Equations R RMSD Bias p-value 

NDVI growing season Eq. 6 0.89 1.09 0.25 1.35E-06  
growing season VWC = 1.50NDWI2+8.85NDWI + 0.90 0.97 0.52 0.05 1.04E-07 

NDWI VWCtotal ≤ 4 (kg/m2) VWC = 16.21NDWI2+6.99NDWI + 0.67 0.98 0.21 0.16 7.79E-08  
VWCtotal > 4 (kg/m2) VWC = 2.50NDWI2+8.41NDWI + 0.85 0.77 0.73 0.17 0.07 

RVI growing season w/ θ=50 VWC = -110.53RVI2-50.03RVI + 5.35 0.94 0.76 − 0.18 0.002 
CRvv growing season w/ θ=50 VWC = -311.57CRvv

2-15.16CRvv-0.04 0.98 0.47 − 0.004 2.62E-07 
CRhh growing season w/ θ=50 VWC = -63.41CRhh

2+47.48CRhh-1.46 0.67 1.76 − 0.40 0.16  

Fig. 10. Comparisons of (a) optical indices, with red circles and blue diamonds showing the indices on the dates of Landsat acquisitions, and (b) VWC estimated from 
NDVI using Eq. 6; from NDWI using the regression equation for the growing season in Table 2 and from NDWI using (Cosh et al., 2019) at the corn site during 
SMAPVEX16-MicroWEX. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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increasingly dominated by vegetation. Hence, in the late season (e.g. 
DOY 225–235) when the plant height was maximum, the RMSD and the 
bias increased to 0.07 and − 0.06 m3/m3, respectively. 

Fig. 8 (b) compares the NDVI-derived VWC at 36 km used by SMAP 
with in situ VWC at the corn and soybean sites. The SMAP VWC is non- 
zero before any corn or soybean were planted in the region, possibly due 
to other vegetation such as alfalfa. However, both the SMAP and the 
field-scale VWC show an increase starting around DOY 160. The SMAP 
VWC is mostly bounded by the corn and the soybean VWC after DOY 
185, with values closer to corn during most of the season, confirming 
with the CDL that corn was the most dominant crop in the study region. 
As vegetation starts playing an important role in the retrieval algorithm, 
the uncertainty in VWC estimates may account for much of the differ-
ence between the SMAP and field-scale VWC. This is particularly true in 
agricultural regions during the growing season, when the VWC varies 
considerably between crops and can result in a very different brightness 
temperature. 

4.3. Model parameters 

As mentioned in Section 3.1, optimization was conducted in the early 
season to obtain the parameters for surface roughness components, h 
and n, to minimize the impacts from these parameters in the retrieval 
algorithm. The optimized values for the empirical parameters hh and hv 
in the roughness model were 0.1 and 0.9, respectively, characterized as a 
medium-rough field by Choudhury et al. (1979). These values were close 
to the range of 0.1–0.8 for agricultural crops as reported by Wigneron 
et al. (2017). The values for nh and nv were 1 and 0 respectively, where 
typical values range from − 1 to 2 (Wigneron et al., 2017). The optimized 
values for h and n were used in the SM retrieval algorithm during the 
growing season. 

Fig. 9 shows the optimized values of τh and τv during the mid and late 
season. The τv increased monotonically from 0.03 to 0.3, implying 
similar sensitivity of τv to crop growth during the mid and late season. It 
results in bv values that are relatively stable between 0.04 and 0.048, 

Fig. 11. Comparisons of (a) radar indices and (b) VWC estimated from RVI, CRvv and CRhh using the regression equations in Table 2, at the corn site during 
SMAPVEX16-MicroWEX. 

Table 3 
RMSD and Bias, both in m3/m3, in retrieved SM estimates after DOY 180 in comparison with the in situ SM observed during at the corn site during SMAPVEX16- 
MicroWEX. N is the total number of TB observations.  

Optimization VWC source Overall (N = 6181) VWC< 4 kg/m2 (N = 1797) VWC> 4 kg/m2 (N = 4383) 

quantity  RMSD bias RMSD bias RMSD bias  

in situ VWC 0.023 0.005 0.023 0.005 0.022 0.008  
NDVI 0.029 − 0.013 0.023 0.005 0.030 − 0.020 

TB, h NDWI 0.024 0.005 0.029 0.013 0.022 0.002  
RVI 0.028 0.016 0.038 0.025 0.023 0.013  
CRvv 0.024 0.009 0.029 0.014 0.022 0.008  
CRhh 0.032 0.018 0.045 0.032 0.025 0.013  
in situ VWC 0.028 − 0.003 0.028 − 0.013 0.028 − 0.004  
NDVI 0.042 − 0.030 0.032 − 0.012 0.046 − 0.035 

TB, v NDWI 0.031 − 0.013 0.029 − 0.008 0.032 − 0.015  
RVI 0.060 − 0.031 0.029 − 0.005 0.067 − 0.040  
CRvv 0.028 − 0.007 0.028 − 0.008 0.029 − 0.007  
CRhh 0.065 − 0.043 0.030 − 0.007 0.073 − 0.055  
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particularly once corn reaches 5 kg/m2 (DOY 200). On the other hand, τh 
increased from 0.06 to about 0.3 till DOY 220 when VWC is 5.9 kg/m2, 
after which it was stable. The resulting bh values follow similar trend as 
the bv values till DOY 205, after which they increase from 0.04 to about 
0.05. Both b values at V- and H-pol for corn are lower than the values of 
0.1–0.26, typically reported in literature (Dugwon et al., 2010). How-
ever, Wigneron et al. (2007) found b value lower than 0.1 for corn and 
more recently, Togliatti et al. (2019) reported similar values in Iowa. 

4.4. VWC from optical and radar indices and impact on SM retrievals 

Table 2 shows the regression equations for the VWC of corn obtained 
using optical and microwave indices, and their related statistics 
compared with the in situ VWC. The NDVI-derived VWC from the rela-
tionship used in the SMAP algorithm (6), had a higher RMSD and bias 
during the growing season. Both optical indices saturate when VWC is 
around 4 kg/m2, since they measure surface reflectances, as seen in the 
time series regression in Figs. 10(a) and (b). Although the NDWI pro-
vides a lower Pearson correlation coefficient (R) value than the NDVI- 
derived VWC during the overall growing season, when comparing the 
two optical indices, it shows better performance during the vegetative 
stage when VWC ≤ 4 kg/m2, with low bias and RMSD of 0.16 kg/m2 and 
0.21 kg/m2, respectively. The p-value for the NDWI-VWC relationship 
was high at 0.07 for VWC > 4 kg/m2, indicating that a strong rela-
tionship between NDWI and VWC is unlikely in mid-late season. Cosh 
et al. (2019) found an RMSD of 1.37 kg/m2 for their regression for VWC 
< 4 kg/m2 including 5 corn sites in the SMAP pixel. When their 
regression coefficients were applied to the SMAPVEX16-MicroWEX site, 
it resulted in similar results, as shown in Fig. 10, with an R of 0.93 and 
RMSD of 0.27 kg/m2, indicating that the regression coefficients from 
SMAPVEX16-MicroWEX site were representative to the study region. 

The regressions with microwave indices were conducted at an inci-
dence angle of 50, based upon available in situ radar observations. In 
contrast with the optical indices, the microwave indices, RVI and CRvv 

saturate at higher VWC values of 4–6 kg/m2 (see Figs. 11(a) and (b)), 
since microwave signals penetrate the top layers of canopy and sense 
changes within the canopy and upper soil layers. Even though both RVI 
and CRvv regressions had similar R values in Table 2, the bias, RMSD, 
and p-value for RVI were much higher than those for CRvv, indicating 
that CRvv is a better radar index for VWC estimation. In this study, the 
CRvv values at L-band were ≤ 0.18 for VWC ≤ 6.4 kg/m2. Vreugdenhil 
et al. (2018) found C-band CRvv values ranging from 0.18 to 0.42 for 
VWC ≤ 7 kg/m2 in their study. CRhh-derived VWC had the highest 
RMSD, bias, and p-value, and the lowest R among all indices. 

The index-VWC relationship is linear for both optical and microwave 
indices during low VWC, but becomes non-linear for microwave indices 
for high VWC values. For example, the RVI-VWC was non-linear when 
VWC > 4 kg/m2, while the CRvv-VWC became non-linear when VWC > 5 
kg/m2. The VWC estimated from NDVI using the relationship in eq. (6) is 
higher than the in situ VWC in the early season, but is lower in the late 
season. NDWI provides realistic VWC estimates till DOY 210, after which 
they are underestimated compared to the in situ VWC. Fig. 11(b) shows 
that the VWC estimated from CRvv does a remarkable job of tracking the 
variations in in-situ VWC up to 6 kg/m2. Thus, the NDWI and CRvv 
together provide realistic VWC information over larger VWC ranges 
during the growing season. 

Table 3 shows the RMSDs and bias of SM retrieved from H and V-pol 
TB starting at DOY 180 onward compared with the in situ SM. The VWC 
was obtained from in situ observations and the five indices (Table 2). The 
NDWI- and CRvv-derived VWCs provide the best retrievals, with the 
lowest seasonal RMSDs and biases, similar to their VWC comparisons in 
Table 2 and Figs. 10 and 11. In general, the RMSDs of retrieved SM were 
higher for V-pol TB than for H-pol, particularly later in the season, as 
seen in Table 3 and Figs. 12(a) and (b). The SM using H-pol TB had 
similar overall RMSDs and biases for all VWC formulations, while the 
retrievals using V-pol TB had lower RMSDs and biases for NDWI- and 
CRvv-derived VWC. Overall, VWC from all indices provided similar SM to 
that using in situ VWC until ear formation, when the in situ VWC was 

Fig. 12. Impact of different formulations of VWC on retrieved SM for corn. Retrieved SM from optimization of (a) H- and (b) V-pol brightness temperatures, with in 
situ VWC and VWCs derived from NDVI, NDWI, RVI, and CR relationships in Table 2. The black line is the retrieval using in situ VWC. 
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close to 4 kg/m2 (see Fig. 4(a)) and contribution from soil is still sig-
nificant. As the canopy grows and the polarization-dependent corn 
structure plays increasingly dominant role after in situ VWC > 4 kg/m2, 
higher RMSDs are observed with NDVI, RVI, and CRhh (see Table 3), 
particularly for V-pol TB. Since SM retrieval using in situ VWC is expected 
to perform the best and can be used as a reference dataset, as also seen in 
Table 3, the retrievals with index-derived VWCs are compared to the 
retrievals using in situ VWC in Figs. 12(a) and (b). Between the two 
optical indices, the NDVI provided consistently lower SM after DOY 200, 
when in situ VWC was about 4 kg/m2. Among the radar indices, the CRvv 
provided consistently better SM than RVI or CRhh when compared to the 
retrieved SM using the in situ VWC. Thus, VWC derived from NDWI or L- 
band CRvv, such as those from NISAR and ROSE-L, may provide the most 
consistent and realistic SM retrievals during the growing season. 

5. Conclusions 

This study provided insights into the differences and the seasonal 
trend of satellite- and field-scale passive signatures and retrieved soil 
moisture in agricultural regions, and investigated the impact of VWC 
information on SM retrievals at field-scale. It used high temporal reso-
lution active and passive observations at L-band from the SMAPVEX16- 
MicroWEX. The ground-based passive observations matched well with 
those from SMAP at 36 km during the entire growing season, with SMAP 
TB values lower than ground-based TB for corn, but higher than the 
soybean TB. The differences between the ground and SMAP TBs were 
further reduced when the ground-based TBs were upscaled to satellite 
footprint. However, despite the agreement in terms of TBs, the RMSD 
between the retrieved soil moisture from SMAP and upscaled SM was 
high at 0.05 m3/m3. This suggests that sub-footprint heterogeneity and 
VWC may be impacting SM retrievals during the growing season. 

To investigate the impact of VWC on SM retrievals, a field-scale SCA 
SMAP retrieval algorithm was implemented using ground-based TB at 
both polarizations along with VWC values obtained from optical and 
microwave indices. Overall, the NDWI- and CRvv derived indices pro-
vided the lowest RMSDs and biases. While their performances were 
similar, the availability of microwaves during cloudy conditions is ad-
vantageous. The coefficients from this study may be used for similar 
corn cultivars and regions, such as the corn-belt in the United States. 
However, since the coefficients are vegetation-dependent, further 
studies are suggested for other crops. In addition, studies are also needed 
for high biomass crops since the RVI- and CRvv-derived VWC indicated a 
need for higher-order relationships for VWC > 4–5 kg/m2, and there are 
no deterministic VWC-levels for radar due to lack of studies in high 
biomass crops. The relationships may also be different for indices at 
other incidence angles and frequencies. 

The results of this study are particularly relevant to SMAP SM 
retrieval in agricultural areas since the performance of the current SMAP 
baseline algorithm, SCA, is constrained by the degree to which the VWC 
data capture spatial and temporal variability during the growing season 
in these areas. Furthermore, the retrieval of SM from microwave ob-
servations is increasingly performed by combining data from multiple 
missions (e.g. SMAP and Sentinel-1 and/or Sentinel-2). This trend is 
likely to continue with the advent of new sensors such as NISAR, ROSE-L 
and CIMR. In these merged retrievals, optical and/or radar data are 
essential to account for heterogeneity impacts, particularly vegetation 
cover, when used with comparatively coarse passive data. The analysis 
and conclusions of this study are therefore relevant for microwave 
remote sensing of soil moisture in general. 
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