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Abstract: Floods are one of the most wide-spread, frequent, and devastating natural disasters that
continue to increase in frequency and intensity. Remote sensing, specifically synthetic aperture radar
(SAR), has been widely used to detect surface water inundation to provide retrospective and near-real
time (NRT) information due to its high-spatial resolution, self-illumination, and low atmospheric
attenuation. However, the efficacy of flood inundation mapping with SAR is susceptible to reflections
and scattering from a variety of factors including dense vegetation and urban areas. In this study,
the topographic dataset Height Above Nearest Drainage (HAND) was investigated as a potential
supplement to Sentinel-1A C-Band SAR along with supervised machine learning to improve the
detection of inundation in heterogeneous areas. Three machine learning classifiers were trained
on two sets of features dual-polarized SAR only and dual-polarized SAR along with HAND to
map inundated areas. Three study sites along the Neuse River in North Carolina, USA during the
record flood of Hurricane Matthew in October 2016 were selected. The binary classification analysis
(inundated as positive vs. non-inundated as negative) revealed significant improvements when
incorporating HAND in several metrics including classification accuracy (ACC) (+36.0%), critical
success index (CSI) (+39.95%), true positive rate (TPR) (+42.02%), and negative predictive value
(NPV) (+17.26%). A marginal change of +0.15% was seen for positive predictive value (PPV), but true
negative rate (TNR) fell −14.4%. By incorporating HAND, a significant number of areas with high
SAR backscatter but low HAND values were detected as inundated which increased true positives.
This in turn also increased the false positives detected but to a lesser extent as evident in the metrics.
This study demonstrates that HAND could be considered a valuable feature to enhance SAR flood
inundation mapping especially in areas with heterogeneous land covers with dense vegetation that
interfere with SAR.

Keywords: supervised machine learning; flood inundation mapping; high-resolution; synthetic
aperture radar; height above nearest drainage; Sentinel-1; inundated vegetation

1. Introduction

According to the World Disasters Report, flooding has affected over 830 million people, caused
over 342 billion US dollars in damages, and led to over 57 thousand fatalities globally from 2006
to 2015 [1]. Moreover, flooding is expected to play a growing role in the future as the number of
flood prone people, impacted cropland, and overall flood risk is expected to increase by the year 2050
according to a study that used 21 different climate models to simulate conditions [2].

Having more accurate and reliable flood inundation information on both retrospective and
near real-time (NRT) (within 24 h) flood events could be a major asset to flood forecasters, public
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officials, first responders, and the general public. These stakeholders could leverage this information
for a variety of applications including model validation, insurance underwriting, risk management,
NRT evacuation mapping, and emergency response routing. Flood modelers use retrospective data
to calibrate and validate their models while insurance and risk managers could use historical flood
inundation data to estimate future risk and trends. Therefore, having more information on the spatial
extents of inundation would be of great value to a breadth of stakeholders.

Remote sensing has been utilized to provide flood inundation observations on a NRT, global
scale basis. The Dartmouth Flood Observatory in cooperation with the National Aeronautics and
Space Administration (NASA) delivers a daily flood product at a 250m spatial resolution derived
from Moderate Resolution Imaging Spectroradiometer (MODIS) bands 1, 2, and 7 but is affected
by a variety of factors including direct cloud cover, cloud, and terrain shadows, and volcanic
material [3]. Another prominent platform includes the Global Flood Detection System (GFDS) that
uses microwave instruments (36.5–37.0 GHz) from a variety of satellites including the NASA Earth
Observing Satellite (EOS) Aqua (AMSR-E instrument), Global Change Observation Mission–Water
(AMSR-2 instrument), and Global Precipitation Mission (GPM) [4]. GFDS provides fractional water
coverage observations derived from brightness temperatures on daily time steps or less at low spatial
resolutions of approximately 10km. This approach is much more resilient to cloud cover and shadow,
but does incur the penalty of lower spatial resolution as well as the uncertainty associated with the
calculated fractional water coverage value.

An alternative sensor is synthetic aperture radar (SAR) which has been widely used to detect surface
water inundation [5–8]. SAR provides advantage over multi-spectral or passive microwave systems
due to high-spatial resolution, self-illumination, and low atmospheric attenuation. The Sentinel-1
constellation from the European Space Agency (ESA) is one of the active, freely-available sources of SAR
data currently available with high spatial resolutions and latencies of less than 1 h [9]. The temporal
resolution of Sentinel-1 is 6 to 12 days which is comparable to other SAR sensors such as TerraSAR-X
(11 days) and Radarsat-2 (24 days) [7]. The Sentinel-1 instruments operate at a C-Band (5.405 GHz)
frequency with bandwidth of 100 MHz. The instruments operate in various modes but over land
are typically limited to the Interferometric Wide (IW) mode capture with two polarizations, vertical
transmit and vertical receive (VV) and vertical transmit and horizontal receive (VH) [9].

Detecting inundated areas with SAR is made possible by the properties of the SAR system.
Sentinel-1 is a right side-looking system that transmits at incident angles of 20 to 46 degrees [9].
The backscatter or the portion of the reflected signal that is directed back towards the satellite is
quantified to an accuracy of 1dB [9]. Smooth open surfaces, such as calm surface water, act as reflective
planes that reduce backscatter. In contrast, land covers such as agricultural fields, forests, prairies,
and anthropogenic developments can exhibit various types of scattering including surface, volume,
double-bounce, and diffuse scattering due to the surface roughness of the targets. Scattering decreases
specular reflectance and increases observed backscatter. This difference in backscatter can be leveraged
by supervised machine learning methods to decide upon an optimal decision boundary that reduces
misclassification errors for inundated mapping.

Detecting inundation for densely vegetated and urban areas with SAR remains a challenge due
to corner reflection and diffuse scattering [4,5,7,10–12]. Additionally, flat urban surfaces such as
roads exhibit similar reflection properties as urban surface water [6]. Differences between inundated
and non-inundated backscatter over vegetated land covers of static spatial domains have been
demonstrated in previous studies [10,11]. However, these backscatter differences are sensitive to
changes in water depth, soil moisture, SAR sensor parameters, wavelengths, terrain, and vegetation
properties. These factors tend to make accurate inundation mapping of heterogeneous regions difficult
with exclusive use of SAR.

An assortment of methodologies has been developed to counter these aforementioned limitations
in SAR based inundation mapping. Multi-temporal approaches are common since they establish
temporal statistics particularly coherence that can be leveraged to detect newly flooded areas when
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compared to dry areas in previous imagery [12–20]. Other techniques take different approaches that
seek to exploit the local spatial dependencies of flooded areas by utilizing texture-based or object-based
approaches such as mathematical morphological operations to name an example [17,20–22]. A variety
of flood indices have also been developed and used with remote sensing data to better generate
thresholds for flood classification, including the normalized difference flood index and normalized
difference flood in vegetated areas index [15,23]. The actual classification task explored by many
studies involves single band thresholding [13–15,18] as opposed to a machine learning approach that is
proposed in this study. Several techniques are proposed in the literature that target vegetated or urban
areas specifically including one that identifies flooded buildings [14,19,20]. Ancillary data and bi-static
approaches are also explored by some researchers including the use of land cover information and
multi-sensor data sources [23–25]. The literature is rich with a collection of valid procedures that seek
to add value to Earth observation datasets by producing higher skill flood inundation maps. For this
purpose, this study investigates the utility of auxiliary data, specifically high-resolution (10 m) terrain
information normalized to fluvial features, in conjunction with SAR and pixel-based, supervised
machine learning for detecting inundated areas in heterogeneous regions that include high vegetation
and anthropogenic development.

Data fusion is a technique that has been commonly used in remote sensing to merge a variety of
datasets for the purpose of enhancing the consistency, accuracy, or utility of the stand-alone datasets.
Available terrain information on global scale could be used to enhance inundation mapping. In this
study, the application of a hydrologically relevant terrain index, the Height Above Nearest Drainage
(HAND), that normalizes topography to the elevation of the nearest channel bottom along the relevant
drainage line [26,27], is tested. HAND has been generated for the entire Continental United States
(CONUS) at a 10 m spatial resolution (1/3 arc second) by using the existing United States Geological
Survey (USGS) National Elevation Dataset (NED) as a DEM and the National Hydrography Dataset
(NHD), and for flowlines and catchments [28]. HAND has been used for assisting remote sensing
inundation mapping as a post-processing mask that eliminates areas of low inundation risk which was
shown to be useful for reduction of commission errors [7,29]. HAND has also been used to assist the
single band thresholding but further work is needed utilizing more advanced detection algorithms [30].

The study seeks to investigate the benefits of fusing HAND as a feature to Sentinel-1 SAR VV
and VH dual pol observations to reduce both errors in commission and omission for the mapping of
riverine flooding within regions with heterogeneous land covers. Three machine learning classification
algorithms, Quadratic Discriminant Analysis (QDA), Support Vector Machine (SVM), and k-nearest
neighbors (KNN), were compared for their abilities to derive complex decision boundaries between
inundated and non-inundated dated. The two feature sets, VV and VH, and VV, VH, and HAND,
and three classifiers were validated by five different classification metrics and examined for their
performance across multiple land cover groups.

2. Materials and Methods

2.1. Study Areas

Three study areas were selected in eastern North Carolina (NC), United States that coincide with
the communities of Smithfield, Goldsboro, and Kinston. All three sites lie along the Neuse River
which stretches 443km from the Piedmont north of Durham, NC, to Pamlico Sound downstream of
New Bern, NC, draining the Neuse River Basin (Accounting Unit: 030202) as seen in Figure 1 [31].
These study areas were selected not only for their temporal alignment with a Sentinel-1A observation
but also for the availability of independent inundation data for a severe flood of record caused by
Hurricane Matthew in October 2016. The Hurricane brought upon cumulative rainfall totals of 10.4
to 37.3 cm (4.1 to 14.7 in) from October 7 to the 9th across the Neuse River Basin [32]. The gentle
and rolling terrain of the region, along with pine woodlands, floodplain forests, agricultural fields,
and developed land covers, provide difficulties for SAR surface water detection that we sought to
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improve upon using the proposed methods. The study areas also contain a variety of other smaller
water bodies and creeks that feed the Neuse River which provide additional hydrologic factors to
consider. The independent validation dataset was furnished by a USGS report concerning flooding
in North Carolina after Hurricane Matthew [32]. The flood inundation maps were developed using
several tools including high water marks (HWM), USGS stream gages, and DEMs. The HWM were
collected by documenting the location and elevation of high-water indicators shortly after the storm
event. For each study area, a water surface raster was developed by interpolating these HWM along
with the peak stage elevation recorded at the site’s USGS station. This flood inundation surface was
then intersected with a DEM. The light detection and ranging (lidar) DEM was collected by the North
Carolina Floodplain Mapping Program in 2016 with a spatial resolution of 0.9525 m, a vertical root
mean square error of 18.2 cm, and a nominal point spacing of 0.07 m or better [32]. Areas that had
a higher water surface elevation according to the water surface raster than the ground elevation
according to the DEM were labeled as inundated and vice versa. Since the validation dataset was
developed by an independent agency with in-situ measurements and intersected with a high-resolution
DEM independent of the NED, this provides an excellent independent benchmark to compare the
proposed methodology to.

Uncertainties in this dataset can be attributed to a number of factors including the collection of the
HWM, the DEM, interpolation techniques, anthropogenic structures, the number of HWMs collected,
regions with low density of HWM, extrapolation of HWM elevations, and hydrodynamic effects not
considered [33]. Temporal alignment with SAR is also an issue since the three sites peaked at different
times [34]. For the case of the Goldsboro study area, Quaker Neck Lake in the western portion of the
site was not included in the USGS inundated area despite there being evidence from the SAR and from
stock aerial imagery that the lake is perennially inundated. To counter this limitation, the Quaker
Neck Lake was added to the inundation validation dataset, as seen in Figure 1c. Nevertheless, the
availability of this information along with the challenges associated with the sites make this a good case
study for examining how HAND and machine learning methods could be leveraged for improving
SAR based inundation mapping. Additional information for each site is listed in Table 1.
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Figure 1. Neuse River Basin located within North Carolina (a) containing the three study sites 
Smithfield (b), Goldsboro (c), and Kinston (d). Each study site illustrates the high-water marks 
(HWM) collected by the United States geological survey (USGS), as well as the location of the USGS 
station. These data points were used to create the inundated areas within the study area boundaries. 
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learning classifiers. The tuned models generated flood inundation map predictions for the three 
study sites which were then compared to the validation dataset using primary and secondary binary 
classification metrics. Land cover data was used for the analysis portion to better understand and 
interpret the results.  

 

Figure 1. Neuse River Basin located within North Carolina (a) containing the three study sites Smithfield
(b), Goldsboro (c), and Kinston (d). Each study site illustrates the high-water marks (HWM) collected
by the United States geological survey (USGS), as well as the location of the USGS station. These data
points were used to create the inundated areas within the study area boundaries.

Table 1. Summary statistics and information for the three study areas with validation data furnished
by the United States geological survey (USGS). Synthetic aperture radar (SAR). Observation occurred
October 12th, 2016 at 11:15 UTC1 (06:15 EDT2).

Site Name. Area
(km2)

USGS Station
Number

Peak Date
(MM/DD/YY)

Peak Gage
Height (m)

SAR Observation
Gage Height (m) Prevalence3

Smithfield 21.8 02087570 10/09/16 8.87 5.83 0.798
Goldsboro 89.2 02089000 10/12/16 9.06 9.06 0.877

Kinston 28.8 02089500 10/14/16 8.63 6.98 0.620
Total 139.8 Overall 0.787

1 Coordinated Universal Time. 2 Eastern Daylight Time. 3 inundated fraction of study area.

2.2. Overview

Figure 2 provides a graphical overview of the methodology employed to test how HAND affects
SAR based flood inundation mapping using machine learning. Input data were preprocessed and
split into two feature sets (VV and VH, and VV, VH, and HAND) for three different study areas.
Sample points were sampled from independently collected validation data to train three machine
learning classifiers. The tuned models generated flood inundation map predictions for the three
study sites which were then compared to the validation dataset using primary and secondary binary
classification metrics. Land cover data was used for the analysis portion to better understand and
interpret the results.
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Figure 2. Methodology overview for study.

2.3. Features and Training Samples

A variety of geospatial datasets were used for this study including landcover, SAR observation,
NHD Plus flowlines and watersheds, USGS flood inundation maps, and HAND. Open-source spatial
data tools, including Geospatial Data Abstraction Library (GDAL) and Quantum Geographical
Information System (QGIS), were used for projecting, merging, clipping, and plotting spatial
data [35–38]. The projection used for this study on all geographic data was the Albers Conic Equal Area
with the Geodetic Reference System 1980 (GRS80) spheroid in order to preserve areas [39]. All scripts
employed are available online (see Appendix A).

The Sentinel-1A satellite provided a useful observation of the study areas during the Hurricane
Matthew storm event that was acquired on 12 October, 2016 at 11:15 Coordinated Universal Time
(UTC) (see Appendix A for product details). The Sentinel-1A product, dual polarized (VV and VH)
observations were used and processed by European Space Agency (ESA) to the Level-1 ground
range detected (GRD) product level, as well as georeferenced by projecting the slanted data onto
the WGS84 Earth ellipsoid model [40]. The products are detected and multi-looked for reduced
speckling that results in a HR image of approximately 10m for both range and azimuth directions [40].
This Sentinel-1A Level-1 GRD-HR observation of interest is presented as a Digital Numbers (DN)
file with Ground Control Points (GCP) that requires additional preprocessing prior to classification.
The ESA provides the Sentinel Application (SNAP) Toolbox that was used to calibrate into backscatter
values, as well as speckle filter using the Refined Lee filter [41,42].

The HAND dataset required minimal preprocessing other than projecting, resampling, and aligning
to the SAR dataset. While the HAND dataset was already at approximately the same spatial resolution
of the SAR data, it was nevertheless resampled using bilinear interpolation for enhanced pixel alignment.
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This is illustrated as false color images in Figure 3 and as two-dimensional scatter plots in Figure 4.
The three-dimensional scatter plots represent a random two percent sample of the data to reduce
over-crowding and better convey the geometry. All SAR and HAND data presented in this paper are
in decibels (dB) and meters, respectively.
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Figure 3. False color red, blue, and green (RGB) images representing vertical transmit (VV), vertical
receive (VH), and height above nearest drainage (HAND), respectively, for the three study areas in (a),
(b), and (c).

For each study area, a random sample of 40 points were selected from the validation datasets for
training the three machine learning classifiers (see Appendix A for DOI). The samples were balanced,
meaning half were non-inundated and the other half were inundated.

2.4. Classification

In order to discriminate between inundated and non-inundated areas, supervised machine learning
algorithms provide a means of classifying the study area given the available features and training
data. There are a multitude of machine learning classifiers to choose from but three were selected for
this study, QDA, SVM, and KNN, due to their previous usage in remote sensing applications [43–47].
Training sets sampled from the validation data were used to train all three models for both sets of
features (VV and VH and VV, VH, and HAND) on each study site. Generalizing the models was
completed with parallel computing to ensure fast and scalable predictions that could be applied to
larger areas if needed. The training and classification times were benchmarked and averaged by
algorithm across ten trials per feature set and study area combination. All trials were completed on
a 64-bit machine with 4 cores each with 0.90 GHz and a total of 8 GB of available memory. Further
details on each algorithm, metric, parameter tuning, and training samples are subsequently presented.
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Figure 4. Three-dimensional scatter plots representing a 2% random sample of the feature set data
for the three study areas Smithfield (top row), Goldsboro (middle row), and Kinston (bottom row).
Plotting limits were set to −25 to 0 dB for VV and VH while HAND plotting limits were 0 to 25 m.
Labels were set using the class from the validation dataset.

2.4.1. Quadratic Discriminant Analysis (QDA)

Of the available machine learning algorithms, QDA provides the benefits of simplicity due to
the multivariate Gaussian assumptions. QDA utilizes training or sample data to determine the mean
and covariance matrix of each class directly. Generalizing class membership is done by assuming the
features for each class are of a multivariate Gaussian distribution (Yc ~ N(µc,Σc), where c represents
the class). A likelihood ratio test, as seen in Equation (1), is utilized to find the most probable class for
the given test point. For out of sample values, t values above 1 were assigned to the numerator’s class
membership while the denominator’s class was assigned for values below 1. QDA differs from linear
discriminant analysis (LDA) by assuming a separate covariance matrix for all the classes involved



Remote Sens. 2020, 12, 900 11 of 25

which adds to the number of parameters to be estimated thus potential favoring a reduced bias for
increased variance [48]. By assuming a separate covariance matrix for each class, the decision boundary
(or hypersurface) can be shown to be quadratic in nature [48].

t =

∣∣∣2πΣy=1
∣∣∣−1/2

exp
[
−

1
2

(
x− µy=1

)
Σ−1

y=1

(
x− µy=1

)]
∣∣∣2πΣy=0

∣∣∣−1/2
exp

[
−

1
2

(
x− µy=0

)
Σ−1

y=0

(
x− µy=0

)] (1)

2.4.2. Support Vector Machine (SVM)

Support Vector Machines (SVM) are supervised learning models that are used for two-class
classification problems. Training a model is known as a learning problem because it seeks to minimize
an objective function by tuning model parameters until the optimal values are obtained. SVMs seek
to devise a hyper-plane that separates the two classes by maximizing the functional margin between
the decision plane and the neighboring training data points. In the general case, maximizing this
margin yields a lower misclassification rate when generalized to out of sample data. The SVM is
mathematically described in the primal form as seen in Equation (2) [49].

minw,b,ξ
1
2 wTw + C

l∑
i=1

ξi

subject to yi
(
wTφ(xi) + b

)
≥ 1− ξi

ξi ≥ 0, i = 1, . . . , l,

(2)

where xi ∈ Rn, in two classes with a response vector y ∈ Rt such that yi ∈ {-1,1}. Φ(xi) maps xi into a
higher dimensional space and C > 0 is the penalty parameter on the error term of the objective function.
Solving for the Lagrangian dual of the primal problem in equation 2 yields a streamlined optimization
problem illustrated in Equation (3) [49].

minα 1
2α

TQα− 1Tα

0 ≤ αi ≤ C, i = 1, . . . , l,
subject to yTα = 0,

(3)

where C > 0 is the upper bound and Q is an l x l positive semidefinite matrix such that Qij = yiyjK(xi,xj)
= yiyjφ(xi)Tφ(xj). The K(xi,xj) = φ(xi)Tφ(xj) function represents the kernel function which maps the
data into higher dimensional space. In the case of this experiment, a radial basis function (RBF)
meaning K(xi,xj) = exp(γ||xi-xj||

2), γ >0 was used as the kernel function. While the gamma parameter
in the RBF kernel does require tuning, it has the added benefit of allowing the SVM to form non-linear
decision boundaries that may better represent the optimal decision boundary especially if the data is
non-linear in nature.

The tuning of the penalty, C, and gamma, γ, parameters, involved using a grid search 10-fold
cross validation (CV). For the grid search, every combination of values of C and γ from 0.02 to 1 spaced
at intervals of 0.02 were selected. The CV procedure sought to find the optimal setting for the two
parameters by splitting the training data into k equally sized sets. For each fold, 9 out of the 10 folds
were used for training the SVM and a misclassification rate was determined for the remaining fold.
The 10 misclassification error rates were averaged for the given parameter values and the optimal
settings were determined to be the combination that minimized the misclassification rate.

2.4.3. K-Nearest Neighbors (KNN)

KNN represents one of the simplest classification techniques available. For each point, the k-nearest
neighbors based on Euclidean distance are determined, which requires distance calculations between
every point and every other point. Among these k-nearest neighbors, the class label of the majority is
selected to be the class label of the point in question. The proportion of k-nearest neighbors with each
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class label corresponds to the probability of the point belonging to one of those classes, as shown in
Equation (4) [49].

P( Y = i |X = x0) = 1
k

k∑
j∈Ω0

I
(
y j = i

)
where I

(
y j = i

)
=

{
0 when y j , i
1 when y j = i

,
(4)

with Ω0 being the set of k-nearest neighbors. For example, three nearest neighbors of a data point
are determined to have class labels of inundated, inundated, and non-inundated. Since 2 out of 3
points are labeled to be inundated, then the corresponding probability that the point is inundated
is 0.667 and hence classified as inundated. This algorithm develops very complex and scattered
decision boundaries that may or may not work for specific datasets. KNN suffers from the curse of
dimensionality for higher dimensionality datasets but is not of concern for this experiment due to the
low dimensional feature sets tested (2 and 3).

The selection of the k parameter was done by a parameter sweep of k values from 1 to 25 with
10-fold cross validation. As in the tuning of the SVM, CV determined the error rate for each value of k
for each of the ten folds in the data. The optimal selection of k for each feature set and study area was
determined individually by minimizing this out of sample error rate.

2.5. Performance Metrics

Due to the two-class predictions required for flood mapping, binary classification statistics were
calculated for each study area. Inundated (I) was taken as the positive condition and non-inundated
(NI) was regarded as the negative condition. The primary metrics included true positives (TP), true
negatives (TN), false positives (FP), and false negatives (FN). These in turn were used to calculate
the secondary metrics including positive predictive value (PPV), negative predictive value (NPV),
true positive rate (TPR), true negative rate (TNR), critical success index (CSI), and overall accuracy
(ACC). TPR, together with TNR, are specific terms for components of producer’s accuracies which
is the accuracy of the dataset given the producer’s point of view. ACC aggregates TPR and TNR
equally while weighing for the area of observed I and NI. It does not make a distinction between the
relative cost of FN and FP. Alternatively, PPV and NPV are terms for the two components of user’s
accuracy which could also be viewed as the probability of correct labeling given a predicted dataset.
For example, if the producer’s accuracy for inundated (PPV) corresponds to 0.85 then 85% of the
inundated pixels for that dataset are actually inundated in the reference dataset. A summary of these
metrics, their descriptions, and formulas are listed in Table 2.

Table 2. Summary of primary and secondary binary classification metrics used.

Name Formula Definition

True Positive (TP) Predicted I and observed I.
True Negative (TN) Predicted NI and observed NI.
False Positive (FP) Predicted I but observed NI.

False Negative (FN) Predicted NI but observed I.
True Positive Rate (TPR)

TP / (TP + FN) Proportion of observed I areas predicted as I.

True Negative Rate (TNR)
TN / (TN + FP) Proportion of observed NI areas predicted as NI.

Positive Predictive Value (PPV)
TP / (TP + FP) Proportion of areas predicted as I correctly classified as I.

Negative Predictive Value (NPV)
TN / (FN + TN) Proportion of areas predicted as NI correctly classified as NI.

Critical Success Index (CSI)
TP / (TP + FN + FP) Proportion of areas observed I plus FN correctly classified as I.

Overall Accuracy (ACC)
(TP + TN) / (TP + FN + FP + TN) Proportion of all areas classified correctly.
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The previously listed metrics were also determined on a per landcover (LC) group basis to
examine how the results from the proposed methods are affected by different LC types. Landcover
data was obtained for post-classification analysis from the National Land Cover Database (NLCD) at a
spatial resolution of 30m [50,51]. The classification system for the NLCD2011, based on a modified
version of the Anderson Land Cover Classification System, contains 8 level I land cover classes and 20
level II sub-classes [50–52]. Overall, the selected study areas contain 15 of the 20 sub-classes with the
top three prevalent sub-classes being woody wetlands, cultivated-crops, and developed open-space.
The remaining 5 sub-classes are not relevant because 4 of them are unique to Alaska, the fifth being
perennial ice/snow. To simplify the analysis, the level-II sub-classes were aggregated into three land
cover groups of interest including developed, canopy, and agriculture. Developed contained all
the developed level-II land covers, while canopy included all the forest land covers as well as the
shrub/scrub and woody wetlands. Agriculture included both land covers in the planted/cultivated
level I land covers. Lastly, the 30 m dataset was down-sampled and pixel aligned to match the native
SAR spatial resolution of 10m by means of nearest-neighbor interpolation due to the categorical nature
of the landcover dataset. Descriptive statistics including fractional coverage and km2 by LC group and
by study site are detailed in Table 3. Each study site, Smithfield, Goldsboro, and Kinston, contains
approximately 195.7E3, 747.4E3, 278.8E3, and samples (pixels), respectively, for a total of 1221.9E3
samples. The spatial distribution of the land cover groups is illustrated in Figure 5.

Table 3. Sample size in pixels, fractional coverage, and areas (km2) for the three land cover groups of
interest as well as the national land cover database (NLCD) Level II sub-classes used to define the land
cover groups. The three study sites and the totals are listed for each.

Land Cover Group Level II Classes
Fractional Coverage Area (km2)

S1 G2 K3 T4 S1 G2 K3 T4

Developed 21, 22, 23, 24 0.15 0.22 0.21 0.21 3.4 19.3 6.2 28.9
Canopy 41, 42, 43, 52, 90 0.45 0.34 0.51 0.40 9.7 30.5 14.7 55.0

Agriculture 81, 82 0.18 0.22 0.07 0.18 3.8 20.0 2.1 26.0
Other 11,12,31,51,71,72,73,74,95 0.22 0.22 0.20 0.21 4.8 19.5 5.7 30.0

Totals By Site 0.16 0.61 0.23 1.00 21.8 89.2 28.8 139.8
1 Smithfield, 2 Goldsboro, 3 Kinston, 4 Totals by LC group.Remote Sens. 2019, 11, x FOR PEER REVIEW  14 of 26 
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Figure 5. Illustrate the aggregation of the NLCD into one of three groups of interest including developed,
canopy, and agriculture. All three study sites, Smithfield (a), Goldsboro (b), and Kinston (c), are shown.

3. Results

3.1. Primary Metrics

The results for the primary metrics in number of pixels (in 1000’s) utilized in this experiment are
presented in Table 4 for both feature sets for all three study areas and models aggregated together.
On an overall basis, both feature sets under predict the inundated areas. For VV and VH, and VV, VH,
and HAND, the number of inundated pixels in thousands predicted were 292.2 and 599.3, respectively,
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compared to 702.5 inundated in the validation. This under prediction can be better explained by the
Euclidean geometry of the data and the decision boundaries generated by the classifiers which will
be discussed later but simply introduced here. By integrating HAND into the prediction, a sizeable
improvement was seen in the area of correctly predicted inundation (from 279.9 to 575 thousand
pixels). Inverse to this improvement, an increase in falsely predicted non-inundation (FP) was also
witnessed by integrating HAND into the feature set which increased from 12.3 to 24.3 thousand pixels.
Overall, the increase in FP (12E3 pixels) is significantly less than the decrease in FN (295.1E3 pixels).
This trade-off is also seen in the values for the secondary metrics, as seen later in the results.

Table 4. Confusion matrix comparing primary metrics in pixels (1000’s) for both feature sets.

Validation

Non-Inundated Inundated Totals

Predicted
VV & VH

Non-Inundated 71.1 422.6 493.7
Inundated 12.3 279.9 292.2

VV, VH &
HAND

Non-Inundated 59.1 127.5 186.6
Inundated 24.3 575 599.3

Totals 83.4 702.5 785.9

Figure 6 shows how the primary metrics are spatially distributed across the study areas, classifiers,
and feature sets. Sizeable improvements in true positives are evident by the increase in blue areas for
all three study areas and classifiers. The increase in blue areas came also at the expense of the increase
in a few red areas or false positives. Less variability is seen across the models when compared to the
change that is seen by expanding the feature set with HAND. A rough texture is witnessed for the
KNN results for the three features across the three study areas, which will be further explored later on.

3.2. Secondary Metrics

For most of the five secondary metrics considered, a considerable improvement was seen across
feature sets for the different models and study areas as shown in Figure 7. Overall, ACC, CSI, TPR,
and NPV saw the largest improvements of 44.7% to 80.7%, 39.2% to 79.1%, 39.8% to 81.9%, and 14.4% to
31.7%, respectively. A very marginal improvement of 95.8% to 95.9% was seen for PPV while TNR fell
from 85.3% to 70.8%. The drop is associated with a reduction of TN and the complementary increase
of FP which was seen across classifiers and study areas. On an overall basis for the VV, VH, HAND
feature set, QDA, and SVM outperformed the KNN classifier.

Comparing the change in secondary metrics across LC by adding HAND as a feature in Figure 8
illustrates a large improvement for ACC on canopy, developed, and agriculture LC groups of 59.0%,
21.1%, and 8.7%, respectively. A sizeable improvement in TPR was also seen for canopy, developed,
and agriculture of 71.2%, 41.1%, and 19.6%, respectively. CSI went up for canopy 68.0%, developed
34.7%, and agriculture 13.7%. Improvements for the three LC groups were also seen in the same relative
order for the NPV metric but not for PPV which had little change for canopy and slight decrease
for agriculture. TNR fell for canopy, agriculture, and developed LCs by margins of 26.6%, 15.8%,
8.0%, respectively.
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land cover groups listed by model and the average of the three models.

3.3. Decision Boundaries

Plotting a randomly selection (≤ 0.2%) of the individual points and the resulting primary metric
label for the Goldsboro study area in Figures 9 and 10 illustrates the nature of the decision boundaries
generated by the three classifiers employed and the relationship between HAND and VV or VH
backscatter. Figure 9 illustrates the boundaries for the VV and VH feature set, while Figure 10 shows
the boundaries for the VV, VH, and HAND feature set. Since TP and FP correspond to predicted
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inundation and TN and FN correspond to predicted non-inundation, the boundary between the two
groups aligns with the decision boundary roughly speaking. The SAR only feature sets show decision
boundaries that are near vertical, which is expected since HAND is not considered in the training.
Incorporating HAND changes the nature of the boundaries to vary across the HAND axis as well.
For all three classifiers in the HAND feature set, the decision boundaries tend decrease in HAND
values as the backscatter values increase but the trend levels out or begins to increase again as the
backscatters continue to increase. This creates an upwardly concave decision boundary. The decision
boundaries for QDA and SVM are much more evident and abrupt than the decision boundary for
KNN. This is due to the properties of QDA and SVM as discussed in the methodology where QDA
develops a quadratic boundary and SVM with a radial basis kernel generates a non-linear boundary
that maximizes the margin between classes. KNN creates more local boundaries determined by local
relative densities of points, which results in more irregular boundaries, which is also seen in the spatial
results in Figure 5.Remote Sens. 2019, 11, x FOR PEER REVIEW  19 of 26 
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Figure 9. Primary metrics for all three classifiers on Goldsboro illustrated as scatter points for HAND
vs. VV and HAND vs. VH for the feature set that did not include HAND. Demonstrates the decision
boundaries generated by the classifiers and the relationship between SAR backscatter and HAND.
Points are a random sample of overall study area (≤ 0.2%).
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Figure 10. Primary metrics for all three classifiers on Goldsboro illustrated as scatter points for HAND
vs. VV and HAND vs. VH for the feature set that included HAND. Demonstrates the decision
boundaries generated by the classifiers and the relationship between SAR backscatter and HAND.
Points are a random sample of overall study area (≤ 0.2%).

The predicted inundation and non-inundation follow expected trends for both feature sets.
The predicted non-inundated conditions, TN and FN, represent higher backscatter and HAND values
than the predicted inundated conditions, TP and FP. This relationship while expected is now better
quantified by this study. The higher backscatter values (>−15 VV dB and >−20 dB for VH) have a
larger spread of HAND values than lower backscatter values. By incorporating HAND, the decision
boundary adjusts to capture more of the higher backscatter and low points which reduces FN to a
greater extent than the increase in FP.



Remote Sens. 2020, 12, 900 20 of 25

3.4. Training and Classification Performance Times

All training and classification functionality were clocked and averaged by algorithm across each
study site and feature set combination with ten trials per combination. The mean and standard
deviation of the times in seconds are presented in Table 5.

Table 5. Mean and standard deviation of training and classification times (seconds) for each classification
algorithm across each study site and feature set combination with ten trials per combination.

Classification Algorithm Classification + Training Time (seconds)
Mean Standard Deviation

QDA 3.92 1.59
SVM 3.21 1.22
KNN 1.22 0.54

4. Discussion

The main objective of the study was to explore how incorporating HAND as a feature for flood
inundation mapping can improve the quality of prediction across heterogeneous areas. Machine
learning algorithms were used to explore the decision boundaries and minimize the misclassification
errors that single band or single variable thresholding does not accurately capture. Overall, an increase
in classification accuracies was observed by considering HAND into the feature set. A variety of other
metrics including TPR, PPV, and NPV also improved. HAND data which is vertical elevation relative
to the nearest relevant bottom drainage elevation helps classifiers detect inundated areas with higher
backscatter values that may come from inundated vegetation or urban areas. Areas of dense vegetation
and anthropogenic features saw better performance improvements than areas that associate with lower
SAR backscatter. By including this feature, a penalty is paid by over-predicting on some of the higher
backscatter/low HAND areas resulting in more FP and a lower TNR. The relative decrease in TN is less
than the increase of FP and the increase of TPR which results in higher overall ACC and CSI values
which was evident in Figures 9 and 10. These trends were fairly consistent across the study areas and
classifiers. Weather forecasting typically involves some level of wet bias which historically would
favor FP to FN due to the inherent danger in under predicting impactful phenomena [53].

The three classifiers all responded to the change in feature sets slightly differently due to the nature
of algorithms and how they generate decision boundaries. The relationship between HAND and SAR
for the study areas were as expected with a higher density of inundated areas occurring for low HAND
and backscatter regions. The variability in HAND values is higher for higher backscatter regions which
is influenced by the role of vegetation and anthropogenic land covers. The variability of backscatter
and HAND values associated with inundated and non-inundated areas in high backscatter/lower
HAND areas still present an issue for detecting inundation which is improved upon by integrating
HAND but some false detection still exists.

Comparing the performance of the individual classifiers shows that both QDA and SVM
outperformed KNN for the VV, VH, HAND feature set on a majority of the metrics including
ACC and CSI. This shows evidence that these maybe better suited to make higher skill maps possibly
for their clear concave decision boundaries that are evident in Figure 10. In an operational setting,
one must consider skill and computational costs so considering KNN as a classifier for low impact
inundation maybe a wise choice while utilizing the most accurate classifiers, such as SVM or QDA for
higher impact inundation events.

The proposed methodology has a number of limitations and sources of error. Integrating
HAND into supervised learning algorithms limits to areas with validation data for proper tuning and
application. The study compared three study areas with limited extents in the SAR’s range direction
which limits the incidence angles and the resulting backscatter profiles. The limited extents also affect
how HAND can be used to predict inundation since inundated HAND values will experience greater
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variation across larger scales. HAND is inherently connected to river networks, so its use is limited to
fluvial events with limited to no utility in pluvial or coastal flooding. Additionally, within these local
study areas, each stream reach has its own catchment and associated HAND value that determines
inundation [26,27]. Utilizing one parameterized model across all catchments may have led to the
increase TN in lower HAND and higher backscatter areas, since stream flows and the associated
HAND threshold will vary across stream orders. Sources of error in the HAND dataset that is derived
from the NED may also affect the efficacy of the prediction. Using the most accurate DEM’s available
for HAND raster generation such as those from Lidar could provide an improvement. Lastly, temporal
alignment is also another source of error since the Smithfield and Kinston sites did not align perfectly
with the SAR image capture. This was most evident in the lower metrics for those sites in the SAR
only feature set since HAND weighs significantly in the other feature set. Since this error was not
adequately detected in the results, as seen in Figure 7, it is possible that other sources contributed more.
Additional analysis was completed to see how terrain correction using SNAP affected the study but
the results were largely unchanged for these flood events. Further work should be done to analyze the
sources of variation and error in this methodology.

Future work on improving C-Band SAR for flood inundation mapping in heterogeneous areas
could concentrate on generating unsupervised machine learning approaches to detecting inundation
with HAND in order to automate the procedure for operational applications. HAND values should
be applied in a catchment or near catchment level to avoid over predicting in certain areas. Other
platforms for SAR or multi-spectral systems could also be investigated for integration with HAND
for this application. Land cover information was used exclusively for analysis but could possibly be
used to help cluster data prior to classification to discriminate between inundated and non-inundated
areas of similar scattering properties. Exploiting spatial and temporal patterns should also be explored
within the framework of this study as proposed by others [17,20–22]. Thinking beyond the production
of binary inundation maps, this method could be integrated into the production of flood depth maps
utilizing existing methods that estimate flood depths from remote sensing generated inundation
maps [54,55].

5. Conclusions

This study has demonstrated how incorporating an auxiliary dataset, Height Above Nearest
Drainage (HAND), to Sentinel-1 C-Band synthetic aperture radar (SAR) dual-polarized flood inundation
predictions could significantly improve upon SAR-only flood inundation mapping in heterogeneous
areas with dense vegetation and anthropogenic development. Three study areas in eastern North
Carolina during the record floods of Hurricane Matthew were selected and United States Geological
Survey (USGS) generated inundation maps were used as training and validation labels for three
supervised machine learning classifiers, quadratic discriminant analysis (QDA), support vector
machines (SVM), and k-nearest neighbor (KNN). These classifiers are trained and tuned to select
optimal decision boundaries that can minimize misclassification errors when multiple features are
included for prediction. Taking inundation as the positive condition, a variety of binary classification
metrics including accuracy, critical success index, true positive rate, and negative predictive value
showed improvements by integrating HAND into the feature set of 44.7% to 80.7%, 39.2% to 79.1%,
39.8% to 81.9%, and 14.4% to 31.7%, respectively. Positive predictive value showed a marginal change of
95.8% to 95.9% while true negative rate (TNR) fell from to 85.3% to 70.8% across classifiers, study areas,
and land cover groups. This reduction in TNR is associated with an increase in false positives (FP)
and corresponding decrease in true negatives (TN) due to the modification of the decision boundaries
observed when incorporating HAND with VV and VH. Lower HAND and higher backscatter values
are labeled as inundated where those values are not captured as inundation with prediction using
the SAR only feature set. This causes some of those values to be mis-labeled but the increase in true
positives (TP) more than offsets the drop in TN to increase overall accuracies. Future work should
emphasize unsupervised learning approaches for automated procedures applied to larger areas that
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leverage HAND for enhanced flood inundation mapping using C-band SAR [17,22]. Consideration
should be given to local HAND values to explore how this can improve classification metrics overall.
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Appendix A

Sentinel-1 Product used: “S1A_IW_GRDH_1SDV_20161012T111514_20161012T111543_013456_015
80C_1783.SAFE”. For more information, please see link for an explanation on the naming conventions
(https://sentinel.esa.int/web/sentinel/user-guides/sentinel-1-sar/naming-conventions).

Training Samples and Scripts Used: Aristizabal, F. (2019). Flood Inundation Mapping Utilizing
Synthetic Aperture Radar and Ancillary Data, HydroShare, http://www.hydroshare.org/resource/

b35f259d7e754792ae5c266954fcabec.
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