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Abstract— A novel algorithm is developed to downscale soil
moisture (SM), obtained at satellite scales of 10–40 km to 1 km
by utilizing its temporal correlations to historical auxiliary data
at finer scales. Including such correlations drastically minimizes
the size of the training set needed, accounts for time-lagged
relationships, and enables downscaling even in the presence of
short gaps in the auxiliary data. The algorithm is based upon
bagged regression trees (BRT) and uses correlations between
high-resolution remote sensing products and SM observations.
The algorithm trains multiple RTs and automatically chooses the
trees that generate the best downscaled estimates. The algorithm
was evaluated using a multiscale synthetic data set in north
central Florida for two years, including two growing seasons
of corn and one growing season of cotton per year. The time-
averaged error across the region was found to be 0.01 m3/m3,
with a standard deviation of 0.012 m3/m3 when 0.02% of the
data were used for training in addition to temporal correlations
from the past seven days, and all available data from the past
year. The maximum spatially averaged errors obtained using
this algorithm in downscaled SM were 0.005 m3/m3, for pixels
with cotton land cover. When land surface temperature (LST)
on the day of downscaling was not included in the algorithm
to simulate “data gaps,” the spatially averaged error increased
minimally by 0.015 m3/m3 when LST is unavailable on the
day of downscaling. The results indicate that the BRT-based
algorithm provides high accuracy for downscaling SM using com-
plex nonlinear spatiotemporal correlations, under heterogeneous
micrometeorological conditions.

Index Terms— Machine learning, remote sensing, soil moisture.

I. INTRODUCTION

SPATIO-TEMPORAL distribution of soil moisture (SM) is
highly variable and significantly influences atmospheric

and hydrological processes. Accurate SM information at spa-
tial scales of <1 km is critical for applications such as
agricultural drought monitoring [1], [2], risk management [3],
and productivity predictions [4], with major implications

Manuscript received January 5, 2017; revised May 18, 2017; accepted
June 7, 2017. Date of publication January 4, 2018; date of current version
February 27, 2018. This work was supported by the NASA-Terrestrial
Hydrology Program under Grant NNX13AD04G. (Corresponding author:
Subit Chakrabarti.)

S. Chakrabarti, J. Judge, and T. Bongiovanni are with the Center for
Remote Sensing, Agricultural and Biological Engineering Department, Insti-
tute of Food and Agricultural Sciences, University of Florida, Gainesville,
FL 32611 USA (e-mail: subitc@ufl.edu).

A. Rangarajan and S. Ranka are with the Department of Computer and
Information Science and Engineering, University of Florida, Gainesville,
FL 32611 USA.

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TGRS.2017.2722236

for food security and sustainability. Microwave observa-
tions such as those from the European Space Agency’s
SM and Ocean Salinity mission [5] and the NASA-SM Active
Passive (SMAP) mission [6], provide global observations of
SM at spatial resolutions of 10–40 km every 2–3 days.
These satellite-based SM obtained at coarse spatial resolutions
need to be downscaled to about 1 km for applications in
heterogeneous agricultural regions.

Most current downscaling algorithms [7] are based upon
linear unmixing algorithms, potentially leading to significant
loss of structural information in the data [8], especially under
highly nonlinear heterogeneous and dynamic conditions such
as those in agricultural lands. Hierarchical models [9]–[14] or
empirical models based upon statistical [15]–[26] relationships
among SM and other remotely sensed (RS) spatially cross-
correlated data have been used for downscaling, assuming lin-
ear or quadratic relationships. The use of Bayesian descriptors
of probability density functions allows downscaling even in
the presence of complex nonlinear relationships between the
coarse pixel and the multiple fine pixels. Recently, algorithms
using higher order relationships have been developed to down-
scale SM using auxiliary high-resolution RS products—for
example, methods based upon principle of relevant informa-
tion (PRI) [2], [8], support vector regression [27], and cop-
ulas [28]. However, these methods require extensive training
for obtaining low downscaling errors.

Current downscaling algorithms assume that all the aug-
mented observations are available at the same time coarse SM
is available and cannot be applied in the presence of temporal
data gaps during cloud-cover, sensor recalibration exercises,
solar flares, etc. In addition, the relationship of some high-
resolution observations, such as precipitation (PPT), to SM
is discernible only over extended periods of time. Historical
SM and its temporal correlations to other variables can be
utilized to downscale SM in the presence of data gaps, as
well as to minimize errors in downscaled SM due to time-
lagged relationships. These temporal correlations can also
be leveraged for downscaling SM in regions where accurate
characterization of the relationships between fine-resolution
SM and auxiliary fine scale data inside a coarse pixel requires
extensive training data of in situ SM. While implementation
of downscaling algorithms using comprehensive training sets
is realistic in data-rich agricultural regions in developed coun-
tries, the number of in situ stations sharply decreases in devel-
oping and underdeveloped countries. Augmenting the training
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Fig. 1. (a) 2-D vector space with three generative models, shown by shaded spaces, corresponding to three regression models. (b) Associated RT that takes
x1 and x2 as input and assigns the correct regression model corresponding to the vector space divisions. The parallelograms enclose partitioning rules and
the rectangles enclose regression functions assigned to each partition.

set using historical observed data can increase the efficacy
of downscaling algorithms. Significant gaps exist in utilizing
historical RS and in situ data to implement downscaling
algorithms involving implicit or explicit temporal prediction
components.

Adding historical data to algorithms such as the PRI is
impractical due to computational burden arising from nonsta-
tionarity, quick-switching physical regimes, and fitting large
number of hyperparameters. Nonlinear regression techniques
can be used as they have higher order prediction capabilities
and can be parallelized for computational efficiency. However,
these techniques tend to overfit [29] and need to be regular-
ized to provide reliable results. Implicit regression methods
are more suited to this problem as they are more efficient
than explicit regression methods, such as PRI or nonlinear
regression, and they can be easily regularized. In this paper,
the most widely used implicit regression method, tree-based
regression [30], is used to downscale SM using historical
information of correlated auxiliary features. It is regularized
using ensemble learning techniques [31] that combine results
of multiple models to reduce overfitting.

The goal of this paper is to understand the impact of
incorporating historical information of SM in improving down-
scaled SM estimates in the presence of temporal data gaps or
in data sparse regions. The primary objectives of this paper
are to: 1) develop an algorithm to downscale coarse scale SM
using historical information of auxiliary variables and SM; 2)
implement this algorithm to downscale SM to 1 km using land
surface temperature (LST), land cover (LC), leaf area index
(LAI), and PPT; and 3) quantify the algorithm performance
for application in data-sparse regions and in the presence of
temporal data gaps. In this paper, a synthetic data set [32]
will be used for the above objectives. Operationally, satellite
products such as LST, LAI, and LC from the moderate resolu-
tion imaging spectroradiometer (MODIS) instrument onboard
National Aeronautics and Space Administration Aqua/Terra,
and PPT from the National Aeronautics and Space Administra-
tion/Japan Aerospace Exploration Agency Global Precipitation
Measurement mission could be used.

Section II describes the theoretical details of the down-
scaling framework. Section III discusses the details of the
data set used in this paper. Section IV illustrates the steps
for the implementation of the algorithm, presents the down-
scaling results for SM at 1 km, and discusses the impact of
both temporal training and temporal data gaps on the down-
scaled SM. Section V summarizes the results and concludes
this paper.

II. THEORY

Downscaling, in general, is an ill-posed problem that results
in a multiplicity of solutions after regression, requiring reg-
ularization. In this paper, the downscaled SM is obtained
using regression trees (RTs) [30]. To regularize the fine-
scale SM estimates using RTs, a powerful nonlinear and
nonparametric ensemble learning technique called bootstrap
aggregation (bagging) [31] is used.

A. Regression Trees

Linear or kernel regressions are global methods, with a
single predictive model used over the full range of the input
data. However, heterogeneous and dynamic input variables,
such has PPT and LC, interact with each other and exhibit
highly nonlinear correlations with SM making a single model
suboptimal. RTs [30] subdivide or partition the space of
the inputs, such as auxiliary variables and coarse scale SM,
recursively and map each partition to the required output, such
as downscaled SM. Fig. 1(a) shows the partitioned domain for
a simple function f (x1, x2), {x1, x2} ∈ R

2. The function being
modeled is defined piecewise using constants A, B, and δ as

f (x1, x2) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

5.2, if Ax1 + Bx2 > C for {x1, x2} ∈ R
2

0.7, if Ax1 + Bx2 < C, x1 < 0, x2 > 0

for {x1, x2} ∈ R
2

δx2
1 , otherwise.

(1)

The model is nonlinear and cannot be represented by any
continuous parametric model. But a simple RT model can be
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Fig. 2. Flowchart of showing the boosted regression trees (BRT) downscaling method. In the algorithm, PPT, LST, LC, LAI, and SM are used for the
prior D days.

created for this function, as shown in Fig. 1(b). Because both
the partitions within the input data space and the regression
models can be nonlinear, the RT method can approximately
learn any mapping function between the input and output data
sets. If the number of partitions is too few, the regression
models would be complex and fail to capture the structure of
the data, while if the number of partitions is too many, the
models would overfit and perform poorly in the presence of
noise in the input data.

An algorithm to construct an RT consists of a heuristic, used
to recursively select which input variable to use to partition
the input space for each level of the tree, henceforth called the
partitioned variable, and the stopping criterion that specifies
when each partition reaches the optimal size. In this paper,
the partitioned variable for each level of the tree is decided
based upon the sum of squared errors on the validation set
after regression. For each tree t , the prediction error E(t) is
defined as

E(t) =
∑

∀l∈Leaf{t}

∑
∀i∈l

(
1

nl

∑
∀i∈l

yi − yi

)

=
∑

∀l∈Leaf{t}
nl

(∑
∀i∈l

(
1

n2
l

∑
∀i∈l

yi − yi

))

=
∑

∀l∈Leaf{t}
nl · Var(l) (2)

where y = f̂ (x) is the predicted variable and Var(l) is the
variance in the set of possible predictions for leaf l. The
optimal partition results in minimization of the prediction
error E on the validation set. In this paper, the stopping
criterion is achieved when additional splits decrease E(t)
by <0.01 m3/m3 SM.

B. Bootstrap Aggregation and Ensemble Pruning

A single RT, as described above, is prone to overfitting
the data. Bootstrap aggregation or bagging [31] is an ensemble
learning technique that resamples the original training set
uniformly to create multiple new data sets of the same size as
the original data set. Each bootstrapped sample is fit using
a single RT, resulting in the same number of RTs as the

number of data sets and the mean of the outputs as the final
output. This procedure has been shown to improve the stability
of individual trees that might overfit the data due to their
nonparametric nature [31].

For computational efficiency, ensemble pruning [33] is
employed. This technique uses the ensemble of models gen-
erated by bagging and reduces the number of models by
weeding models that perform poorly on a validation set, while
maintaining the diversity of models. The L1-constrained fitting
for statistics and data mining least absolute shrinkage and
selection operator (LASSO) [34] algorithm has been widely
used for this purpose. For K RTs, the mean square loss [35]
Eoverall for a validation set {x1 . . . xN } is

Eoverall =
N∑

n=1

wn

(
f (xn) −

K∑
k=1

αk f̂k(xn)

)2

+ β

K∑
k=1

αk (3)

where f (xn) is the true value of the function, f̂k(xn) is
the estimated value of the function by the kth RT, β is the
regularization parameter, wn are the weights to be learned,
and αk is the learner coefficients. Learning the weights is then
equivalent to solving the following:

minα

N∑
n=1

wn

(
f (xn) −

K∑
k=1

αk f̂k(xn)

)2

s.t.
K∑

k=1

αk ≤ 1

λ

(4)

where λ is a constant that regularizes the weights αk . The
higher λ is, the more trees are selected after ensemble pruning.
The solution provides the optimum weights for each weak
learner. The l learners with the highest weights are then
selected. This technique naturally avoids overfitting and allows
for extremely powerful generalization.

C. Algorithm Summary

The overall method of bagged regression trees (BRT) is
shown in Fig. 2. For incorporating historical information into
the algorithm, a spatiotemporal training data set is created by
augmenting current in situ SM and auxillary data with data
from the prior days. Our hypothesis is that using such an
algorithm will significantly reduce the in situ data required
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Fig. 3. Study region in North Central Florida. LSP-DSSAT-MB simulations
were performed over the shaded 50 × 50 km2 region.

for training and can be implemented in data poor regions. For
each LC, separate replicates of the spatiotemporal data set are
created using the bootstrapping method. An equal number of
RTs as the replicates are grown for each bootstrapped [31]
version of the data, and LASSO-pruning is used to separate
out trees that best describe the data, as described in Section II.
Finally, the coarse SM is bootstrapped and regressed using
the selected trees and the averaged output of these is the
downscaled SM.

III. EXPERIMENTAL DATA SET

The downscaling algorithm in this paper used a data set
from the simulation framework consisting of a soil-vegetation-
atmosphere transfer model, the land surface process (LSP)
model, coupled with a crop growth model, the decision support
system for agrotechnology transfer (DSSAT) model, detailed
in [32]. A 50 × 50 km2 region, equivalent to approximately
25 SMAP pixels with a spatial resolution of 9 km/pixel, was
chosen in North Central Florida (see Fig. 3) for the simu-
lations. The region encompassed the UF/IFAS Plant Science
Research and Education Unit, Citra, FL, where a series of
season-long field experiments, called the microwave, water and
energy balance experiments, have been conducted for various
agricultural LCs over the last decade [36]–[38]. Simulated
observations of SM, LST, and LAI were generated at 200 m
for two years, from January 1, 2007 to December 31, 2008.
Topographic features, such as slope, constant as the region
is typically characterized by flat and smooth terrains with no
runoff due to soils with high sand content. The soil properties
were assumed constant over the study region.

For the LSP-DSSAT model simulations, 15-min observa-
tions of PPT, relative humidity, air temperature, downwelling
solar radiation, and wind speed were obtained from eight
Florida Automated Weather Network stations located within

Fig. 4. LC at 200 m during cotton and corn seasons. Blue regions represent
sweet-corn, green region represents cotton, and brown regions represent
bare-soil LC. Homogeneous crop fields along with centers are shown for
sweet-corn and cotton.

TABLE I

PLANTING AND HARVEST DATES FOR SWEET CORN AND

COTTON DURING THE 2007 GROWING SEASON

the study region. The observations were spatially interpo-
lated using splines to generate the meteorological forcings
at 200 m. Long-wave radiation was estimated following [39].
The model simulations were performed over each contiguous
homogeneous region of sweet-corn, bare soil, and cotton,
as shown in Fig. 4, rather than all the pixels, to reduce
computation time. A realization of the LSP-DSSAT model was
used to simulate SM, LST, and LAI at the centroid of each
homogeneous region, using the corresponding crop module
within DSSAT. The model simulations were performed using
the 200-m forcings at the centroid, as shown in Fig. 4.

The model simulations at 200 m were spatially averaged to
obtain PPT, LST, LAI, and SM at 1 and 10 km. Linear averag-
ing is typically sufficient to illustrate the effects of resolution
degradation [40]. To simulate rain-fed systems, all the water
inputs from both PPT and irrigation were combined together,
and the “PPT” in this paper represents these combined values.

The simulation period in both the years consisted of two
growing seasons of sweet corn and one season of cotton,
as shown in Table I. The LST, PPT, and LAI observations
at 1 km and the SM observations at 10 km were obtained by
adding white Gaussian noise to the model simulations account
for satellite observation errors, instrument measurement errors,
and micrometeorological variability, following [9], [41], [42].
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The errors added had zero mean and standard deviations
of 5 K, 1 mm/h, 0.1 and 0.02 m3/m3 for LST, PPT,
LAI at 1 km, and SM at 10 km, respectively, similar
to [43] and [44] algorithms.

IV. METHODOLOGY AND RESULTS

The inputs to the BRT method are LST, PPT, LAI, and
LC at 1 km. The downscaled SM estimates in this paper
are instantaneous and indicate the SM values at the time
of acquisition of the coarse scale SM. The first part of this
paper, described in Section IV-A, used only spatial correla-
tions to downscale SM, similar to the current downscaling
studies [25], [43]. Two scenarios are implemented and com-
pared. The first in which randomly selected 33% of the
data set, or 750 out of 2500 pixels, are used for train-
ing (BRT750), similar to other training-set-based downscaling
algorithms [43]–[45]. And second, in which 0.02% of the data
set, or 30 pixels, are used for training (BRT30). The second
scenario represents realistic situations for data poor regions
such as developing countries and the minimum training data
needed to meet the mission requirement of 0.04 m3/m3 error
in SM. An equal number of points are chosen from each LC
for training. Within each LC points are chosen via random
sampling. However, it is not expected that every geographic
region will need exactly 30 points to ensure a maximum root
mean square error (RMSE) of 0.04 m3/m3 in downscaled
SM. In general, more training data set samples are needed
to downscale with increasing heterogeneity in the region in
terms of the region’s LC, soil texture, micrometeorological
conditions, and slope/elevation in the coarse pixel. To accu-
rately characterize the performance of the algorithms over
changing LC and micrometeorology, both the BRT750 and
BRT30 algorithms are implemented using the SM and auxiliary
variables from January 1 to December 31, 2008.

In the second component of this paper, described in
Section IV-B, the BRT-based downscaling is modified and
extended to utilize temporal correlations, in addition to the
spatial correlations (BRTst). This method is nonparametric and
thus, can be easily extended to include temporal training The
BRTst algorithm is trained using 0.02% of the data set in
space, and all the prior data available for those training pixels,
to provide temporal correlations. In this paper, the prior data
consist of all the data available from one year prior to the day
of downscaling in 2008.

In addition to handling spatial data sparsity, the BRTst
algorithm can be used to downscale SM in the presence of data
gaps. In the third component of this paper, the effects of data
gaps in LST are investigated. Remotely sensed LST, which is
usually retrieved from the MODIS instrument onboard NASA
Aqua and Terra satellites, is the most likely to be unavailable
due to presence of clouds [46]. The near real-time LST
products, which we envision will be used for this downscaling
algorithm, are additionally affected by gaps caused due to solar
gaps and imperfect satellite transmissions. In this paper, the
effect of data gaps in LST is simulated by withholding LST
data for the entire region on the day of downscaling, and on
prior days, from the input data set.

A. BRT-Based Downscaling With Spatial Correlations

For downscaling based on only spatial correlations, the RTs
are trained using the auxiliary data set on each day that the
coarse SM is available. In (2)–(4), from Section II

f t (xt
n) = SMt

n,insitu

xt
n = (

LST1 km
n , PPT1 km

n , LAI1 km
n , LC1 km

n , SM10 km
n ,

Xn, Yn
)t

f̂ t (xt
n) = SMt

n,downscaled (5)

where Xn and Yn are the x and y coordinates of the nth
pixel and superscript t denotes the time index (in DoY) and
n ∈ [1, 2500]. The average RMSEs for the BRT750 method
for three LCs are shown in Table III. The errors for both
vegetated and bare-soil pixels are very low, with bare-soil pixel
having a higher mean error due to effects of fractional LC
in the boundary pixels and crop remnants after harvest. The
PRI [43] method also results in errors close to zero under
this conditions, with a similar training set size. The BRT30
algorithm produces errors with a mean of 0.067 m3/m3 and
a standard deviation of 0.051 m3/m3, similar to the other
algorithms that use only spatial correlations. This is expected
since the spatial correlations in such low-volume training sets
are not strong enough to yield definitive relationships that can
be utilized to downscale SM.

B. BRT-Based Downscaling With Spatio-Temporal Training

For the BRTst algorithm, an RT is trained when coarse-scale
SM is available, using historical information of LST, LAI, and
PPT from the previous year for 0.02% of the pixels. Thus

f t (xnt ) = SMnt,insitu

xnt = ([
LST1 km

(t−D1)n, LST1 km
(t−D1+1)n, . . . , LST11 km

tn

]
,[

LAI1 km
(t−D2)n, LAI1 km

(t−D2+1)n, . . . , LAI1 km
tn

]
[
PPT10 km

(t−D3)n, PPT10 km
(t−D3+1)n, . . . , PPT1 km

tn

]
,

SM10 km
tn , X10 km

tn , Y10 km
tn

])
f̂ t (xnt ) = SMnt,downscaled (6)

where n ∈ [1, 2500] is the space-index, t ∈ [1, 365] is the time
index, and D1, D2, and D3 are the number of values of LST,
LAI, and PPT to include in the feature vector from previous
days, respectively. For training purposes, LAI, available every
seven days, is assumed to be constant between consecutive
observations, while LC, PPT, and LST are available every day.
The feature vector for downscaling SM is described in more
detail in Fig. 5(a). The 30 pixels, n in Fig. 5, are randomly
selected to serve as the training set. For each time-index t ,
the D1, D2, and D3 observations of LST, LAI, and PPT,
respectively, are included as the columns of the feature matrix
that enable the algorithm to use temporal correlations and
capture spatial SM variability. The range of the time index t
in the rows of the feature matrix, ranging from t −1 to t −365,
indicates that a moving window of historical auxiliary and in
situ data from the past one year is used to augment the training
data set. For notational simplicity, let us assume that LST was
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Fig. 5. (a) Complete feature vector for the bagged regression trees algorithm with spatiotemporal training. In the algorithm, PPT, LST, LC, LAI, and SM
are used for the prior D1, D2, and D3 days. (b) Downscaling function if SM is just dependant on LST.

the only feature. Then, at time t , SM is estimated using LST
from the previous seven days. Then, the SM is

SM → f (LSTt , . . . , LSTt−7). (7)

Then, the function f that relates in situ SM to the LST for
previous seven days is found using all the available in situ
SM points from the past (one year) and their corresponding
LSTs from previous seven days. This is shown in Fig. 5(b).
So, the LSTs (or features) are always only seven days from
the in situ SM. The 30 locations in the study area that is used
for training spatiotemporally are shown in Fig. 6.

The spatially averaged errors in downscaling were com-
pared for different values of D1, D2, and D3, to understand
the impact of utilizing temporal correlations. These errors
were also averaged for 122 days in the year 2008. These
spatiotemporally averaged errors, while underestimating the
possible errors due to downscaling in areas with highly varying
LC and/or meteorological conditions, provide a reasonable
estimate of the upper bound of how much historical data to
include, beyond which the variables become almost uncorre-
lated to the current values of SM. Fig. 5(a)–(c) shows these
spatiotemporal errors for different values of D1, D2, and D3.
The errors when previous values of LST, PPT, and LAI
are used are shown in Fig. 7. For LST and LAI, the spa-
tially averaged error increases significantly after seven days

Fig. 6. Thirty locations within the study area used to train the bagged
regression trees algorithm with spatiotemporal training are shown in white,
along with the LCs. Blue regions represent sweet-corn, green regions represent
cotton, and brown regions represent bare-soil LC.

and seven weeks, respectively. This indicates that including
additional LST information from earlier than seven days or
including additional LAI information from earlier than six
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Fig. 7. Spatially averaged error in downscaled SM versus time lag of observations for (a) LST, (b) PPT, and (c) LAI.

weeks does not provide any added value to the downscaled
estimates. The spatially averaged errors, for PPT, stabilize
after five days. However, the effect of PPT on SM is highly
nonlinear and is a function of the magnitude of and time-
delay from the last rainfall event. In general, if we do not
consider spurious correlations, such as those on the third day
in Fig. 5(b), PPT does not have a noticeable effect on SM
beyond a week’s lag, even for the rain-fall events, as high as
3.6 mm/hr. For the ease of implementation, seven prior values1

of PPT, LST, and LAI data, an overestimate for D1, D2, and
D3 equal to seven, were added to the feature vector [xnt in (5)].

The sensitivity of the BRTst algorithm to the number of
trees [K in (2)] is investigated by dividing the training set
into ten equal parts randomly and using nine parts for training
and one part for evaluating the algorithm. This methodology,
known as tenfold cross-validation, is repeated with different
randomly selected partitions to approximate the errors that the
BRTst algorithm would incur on an average. Fig. 8 shows the
tenfold cross-validation error as a function of the number of
RTs trained.

Fig. 8 shows the generalization error as a function of the
number of trees. Theoretically, the curve for the generalization
error would require an infinite number of data points. It is
methodologically simpler to conservatively select the number
of trees based on an approximate minimum in the general-
ization error curve. This choice is primarily constrained by
the computational time that can be afforded. Fifty trees is
a conservative estimate of the number of trees needed for
minimum generalization error. For greater than 50 trees, the
estimated error in downscaling decreases by only 0.05 m3/m3,
which is an inconsequential amount compared to the extra
computational time, of about 10 min for each day, incurred for
each additional tree. Thus, in this paper, 50 trees were used
to estimate the downscaling function. To decrease overfitting,
after the number of trees in the model is decreased even further
after training through regularization, as shown in Fig. 9(a).
The lambda value of 2 × 10−2 is used, which reduces the
number of active trees needed to 20 for an average increase in
error of 0.003 m3/m3 as shown in Fig. 9(b). While applying

1Note that the number of days/value is different for each feature. For
example, LST is available every day so seven values represent seven days,
while LAI is available weekly, so seven values represent seven weeks.

Fig. 8. Generalization error versus number of learning cycles for the bagged
regression trees algorithm with spatiotemporal training.

the trained RT ensemble for downscaling, decreasing the
number of trees from 50 to 20 reduces the computational time
marginally by about 5 min per day. This reduction is expected
to be much more significant when downscaling for multiple
years for a higher number of pixels.

The spatially averaged errors in SM during the year
2008 are ≤ 0.01 m3/m3, with the highest errors, of about
0.023 m3/m3 during simultaneous corn and cotton LCs as well
as late season bare soil due to remnant crops. Table III shows
the RMSEs for the BRTst algorithm, for various LCs, as shown
in Fig. 10. The RMSE for the BRTst method is higher than for
the BRT750 algorithm by about 0.018 m3/m3. This is expected
as the training set used by the BRT750 algorithm is 24 times
larger in volume. The expected RMSE increase in the SM
downscaled using the BRTst algorithm is marginal considering
the significant advantages from a reduced training data set.

Five days were selected from the season to understand the
effect of the heterogeneity in inputs on the error in disag-
gregated SM. Variabilities in PPT, ranging from uniformly
wet to uniformly dry, and in LC, ranging from bare soil to
vegetated with both cotton and sweetcorn, were used as criteria
for selecting the days, as shown in Table II and Fig. 11.
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Fig. 9. (a) Resubstitution Error versus Lambda for the bagged regression trees algorithm with spatiotemporal training. (b) Number of learners versus lambda
for the bagged regression trees algorithm with spatiotemporal training.

Fig. 10. Spatially averaged RMSE in disaggregated SM at 1 km for each
day of the year in the validation year when coarse SM is available.

TABLE II

DAYS SELECTED FOR EVALUATING BRT ESTIMATES. THESE DAYS

CAPTURE VARIABILITY IN PPT/IRRIGATION AND LC

For DoY 354, the LST, as shown in Fig. 11(f), shows
field-structures even though the LAI for the region, shown
in Fig. 11(e), is zero because of crop remnants after harvest.
For the five selected days as shown in Table II, the true SM and

TABLE III

RMSE, SD, AND KL DIVERGENCE OVER THE 50×50 km2 REGION FOR
THE DISAGGREGATED ESTIMATES OF SM OBTAINED AT 1 km USING

THE BRT750, BRT30, AND BRTST METHODS. A–BARESOIL

PIXELS WITH VEGETATED SUBPIXELS AT 250 m TILL

DoY 332, B—BARESOIL PIXELS AFTER DoY 332
C–BARESOIL PIXELS WITHOUT ANY VEGETATED

SUBPIXELS AT 250 m TILL DoY 332

TABLE IV

PEARSON’S CORRELATION COEFFICIENT BETWEEN RESIDUAL

ERROR AND FEATURES ON DAY OF YEAR (DoY) 222

the downscaled SM are shown in Figs. 12–16. Figs. 12 and 13
show the downscaled SM for early and late-season bare
soil conditions. For the bare soil pixels, the maximum error
is 0.03 m3/m3, during the early season, and the maximum
errors are in the southwest corner of the field where there are
no in situ training sites. This is also observed during the late
season bare soil conditions in Fig. 13. For the sweet-corn LC,
shown in Fig. 14, and the cotton LC, shown in Fig. 15, the
error in SM is the highest at the boundaries of the field and the
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Fig. 11. LAI, LST, PPT, and LC for (a)–(d) DoY 39, (e)–(h) DoY354, (i)–(l) DoY 135, (m)–(p) DoY 156, and (q)–(t) DoY 222, respectively.

south west corner of the field. On DoY 222, shown in Fig. 16,
even when there was a maximum heterogeneity in LC with
corn, cotton, and bare soil, the errors are minimal, although
the standard deviation of the error is high at 0.027 m3/m3. The
time-averaged error across the region was 0.027 m3/m3, with
a standard deviation of 0.012 m3/m3. The maximum error
of 0.0543 m3/m3 was observed during the vegetated period
for the few bare-soil pixels that had fractional vegetation cover.
Excluding these pixels and the bare-soil pixels at the end of
the season when the LAI and LC contradict each other due to
crop remnants, the error is 0.012 m3/m3. The maximum time-
averaged error is moderately higher at ≤ 0.01 m3/m3 for the
cotton pixels and 0.018 m3/m3 for corn pixels. The algorithm
does tend to undervalue very high SMs and overvalue very low

SMs due to the smoothing nature of regularized regression.
This is needed to ensure that any noise in the correlated
features does not lead to noise in downscaled SM.

The sensitivity of the downscaling algorithm to the auxiliary
features used was investigated through a residual analysis of
the error between downscaled SM and true SM for DoY 222.
For this, the Pearson correlation coefficient was calculated
between the error and each of the features, as shown in
Table IV. A high correlation indicates that the algorithm is not
very sensitive to the feature, while a low correlation indicates
that the effect of the feature is fully accounted for by the
downscaling algorithm. To understand how well the algorithm
extends to obtain SM at even finer resolutions, the LST, LAI,
PPT, and LC at 200 m are used along with SM at 10 km to
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Fig. 12. DoY 39. (a) Coarse SM at 10 km. (b) True SM at 1 km. (c) Down-
scaled SM using the bagged regression trees algorithm with spatiotemporal
training. (d) Absolute difference between true and downscaled SM.

Fig. 13. DoY 354. (a) Coarse SM at 10 km. (b) True SM at 1 km. (c) Down-
scaled SM using the bagged regression trees algorithm with spatiotemporal
training. (d) Absolute difference between true and downscaled SM.

obtain downscaled SM at 200 m. Theoretically, the limit of
downscaling is the resolution at which the fine-scale estimates
are available. However, downscaling algorithms attempt to
estimate an inversion of the point-spread function that relates
the coarse and fine-scale SM. This inverse function becomes
increasingly ill-conditioned as the coarse scale and fine-scale
resolutions get farther apart. Since the model simulations for
this synthetic data set were performed at 200 m, the algorithm
was implemented to obtain SM at that resolution for one
day with the highest heterogeneity in features DoY 222.
This is performed using the BRTst algorithm on DoY 222.
As shown in Fig. 17, the corn fields are visually apparent in
the downscaled SM while the cotton fields are not. This is due
to the higher differences between the corn and baresoil SM
compared to the differences between the cotton and baresoil
SM. The RMSE between the SM downscaled to 200 m and

Fig. 14. DoY 135. (a) Coarse SM at 10 km. (b) True SM at 1 km. (c) Down-
scaled SM using the bagged regression trees algorithm with spatiotemporal
training. (d) Absolute difference between true and downscaled SM.

Fig. 15. DoY 156. (a) Coarse SM at 10 km. (b) True SM at 1 km. (c) Down-
scaled SM using the bagged regression trees algorithm with spatiotemporal
training. (d) Absolute difference between true and downscaled SM.

true SM at 200 m is 0.035 m3/m3, compared to 0.027 m3/m3

when the SM is downscaled to 1 km. Thus, the errors do
increase when SM is disaggregated to finer resolutions, even
when auxiliary data are available at those resolutions.

The computational cost for the BRTst algorithm is O(mn),
for m number for features and n number of pixels. Thus,
in addition to low training data requirements, it can also
be easily extended for regions with different geophysical
attributes by including additional relevant features such as
active observations at L and C band, slope, and soil type.

C. BRTst Downscaling in the Presence of Data Gaps in LST

Typically, LST would be required at the time of downscal-
ing. Because the BRTst uses historical data, downscaling can
be performed in spite of short data gaps in LST. To investigate
the robustness of the algorithm during short data gaps in LST,
an RT is trained without including LST information in the
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Fig. 16. DoY 222. (a) Coarse SM at 10 km. (b) True SM at 1 km. (c) Down-
scaled SM using the bagged regression trees algorithm with spatiotemporal
training. (d) Absolute difference between true and downscaled SM.

feature vector. For this, (6) is modified as follows:
f t (xnt ) = SMnt,insitu

xnt = ([
LST1 km

(t−D1)n, LST1 km
(t−D1+1)n, . . . , LST11 km

tn

]×U,[
LAI1 km

(t−D2)n, LAI1 km
(t−D2+1)n, . . . , LAI1 km

tn

]
[
PPT10 km

(t−D3)n, PPT10 km
(t−D3+1)n, . . . , PPT1 km

tn

]
,

SM10 km
tn , X10 km

tn , Y10 km
tn

])

U =

⎛
⎜⎜⎜⎝

u(t−D1)n 0 · · · 0
0 u(t−D1+1)n · · · 0
...

...
. . .

...
0 0 · · · utn

⎞
⎟⎟⎟⎠

f̂ t (xnt ) = SMnt,downscaled (8)

where U is the unavailability matrix whose elements indicate
the days on which LST is withheld from the feature-vector xnt .
For example, if utn is set to 0, LST on the day of downscaling
is not available. The distinct scenarios investigated here are
when utn = 0, utn = u(t−1)n = 0, . . . , utn = u(t−1)n = · · · =
u(t−D1)n = 0.

Fig. 18 shows an increase in the average error in downscaled
SM from the BRTst algorithm when LST is “unavailable”
for on, or upto three consecutive days prior to the day of
downscaling, for DoY 222 in the year 2008. It also shows
an increase in the number of pixels with error >0.04 m3/m3.
The error increases marginally by ≤0.015 m3/m3 when LST
is unavailable on the day of downscaling and one day prior
to the day of downscaling. The error increases substantially
to 0.05 m3/m3 when LST is unavailable for three days and
continues increasing with a slope of almost 0.015 m3/m3

when the unavailability of LST is extended to further days.
A similar trend is shown by the number of pixels with error
in downscaled SM>0.04 m3/m3, with the highest increase
occurring at three days of unavailability. The BRTst algorithm
is robust to LST being unavailable on the day of downscaling
and two days prior with upto 95% of the pixels having an
error in downscaled SM of <0.04 m3/m3.

Fig. 17. (a) Coarse SM at 10 km, (b) true SM at 200 m, (c) downscaled
SM at 200 m, and (d) difference between downscaled SM and true SM at 1
km for DoY 222, 2007.

Fig. 18. Error in downscaled SM as a function of the number of gaps
in LST data for the day of year 222.

V. CONCLUSION

In this paper, we implemented and evaluated a downscaling
methodology based upon the BRT algorithm that utilizes
spatiotemporal correlations in SM and other auxiliary variables
including in situ SM to estimate fine-scale SM at 1 km.
Because the availability of reliable in situ SM is usually
sparse, the algorithm presented in this paper uses temporal
interrelationships to reduce the quantity of high-resolution data
points needed from 33% of the overall data set to just 0.02%,
or 30 points in a 50×50 km2 area. However, in an operational
scenario, measurement noise in in situ SM observations may
necessitate additional training points or cause increase in
average errors. For regions where no in situ is available, the
training step can be performed in a different geographical area
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with similar micrometeorology and soil characteristics. Other
downscaling algorithms that do not use in situ SM are limited
to using low-magnitude cross correlations between SM and
other high-resolution RS data. This results in high errors in
downscaled SM, especially in heterogeneous LCs and dynamic
meteorological conditions.

Multiple RTs were trained using synthetically generated
data that mimic in situ SM and RS products, namely, PPT,
LST, LAI, and LC on the day of downscaling and the prior
year. The best performing RTs were automatically chosen
using ensemble pruning and their outputs were combined using
bootstrap aggregation to generate the downscaled estimates.
The time averaged error across the region was found to
be 0.01 m3/m3, with a standard deviation of 0.012 m3/m3.
The robustness of the BRTst to simulated “data gaps” in LST
was investigated and data gaps of upto three days, 95% of
the pixels were found to have an error in downscaled SM
of <0.04 m3/m3. Although the errors in downscaled SM are
higher for this case than with all data available, this algorithm
provides a reasonably accurate estimate which is within the
error bounds dictated by SMAP mission requirements.

It is envisioned that the BRT algorithm evaluated in this
paper may be applied using satellite-based higher resolution
remote sensing data. For example, PPT data may be obtained
from the Global PPT Measurement missions and the LAI,
LST, and LC products are available from the MODIS sensor
aboard Aqua and Terra satellites. Historical data for PPT
are available from the NASA Tropical Rainfall Measurement
Mission satellite from 1997 to 2015 and data for LAI, LST,
and LC are available since 2002. The BRTst algorithm can
utilize these vast data sets to provide accurate high resolution
SM. The algorithm can be extended to including additional
geophysical features such as slope, soil properties, and active
observations. The computational cost for the BRTst algorithm
is O(mn), for m number for features and n number of pixels.
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