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Abstract. Accurate and timely regional estimates of agricultural production are key for decision
makers. This study aims to understand how different machine learning techniques impact
soybean yield estimation in extracting maximum information from remotely sensed MODIS
enhanced vegetation index (EVI) that is constrained by phenology. Specifically, a methodology
is developed for incorporating phenological information aligned with EVI acquisition for each
pixel and selecting the most significant predictors out of 36 predictors using feature selection.
These predictors were then used in four machine learning algorithms (MLA) to obtain soybean
yield estimates for observed farms in the Paraná State, Brazil. The optimal MLAwas then imple-
mented for the whole state to obtain regional soybean yield. The gradient boosting model (GBM)
with all 36 predictors performed well with a mean difference of 3.5 kg ha−1, an RMSD of
373 kg ha−1, and Willmott’s d of 0.85, however, the random forest (RF) algorithm using
five optimal EVI predictors presented similar results, but with considerably less computational
time. Both GBM and RF provided higher regional yields compared to the officially reported
yields by 1775 × 103 and 2059 × 103 metric tons, respectively. The RF with five EVI predictors
provided the best results for regional soybean estimations, considering the accuracy and com-
putational performances. © 2018 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10
.1117/1.JRS.12.026029]
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1 Introduction

Reliable and timely information on agricultural production is essential for ensuring world food
security.1 Generally, census and surveys are the main tools for agricultural statistics. The census
of agriculture is one of the key pillars of a national statistical system, and in many developing
countries, it is often the only means of producing statistical information on the structure and
other relevant aspects of the agriculture sector.2 However, the time and cost of ground surveys
and census are directly proportional to the size of the area being surveyed. Satellite remote
sensing data can provide timely, accurate, and objective information on a cultivated area by

*Address all correspondence to: Jonathan Richetti, E-mail: j_richetti@hotmail.com; jonathan.richetti@unioeste.br

1931-3195/2018/$25.00 © 2018 SPIE

Journal of Applied Remote Sensing 026029-1 Apr–Jun 2018 • Vol. 12(2)



crop type and, in turn, facilitate accurate estimates of agricultural production.3 Also, satellite
observations, owing to their synoptic and repetitive nature, have the unique advantage of
providing spatially contiguous information on crop growth at local, regional, and global scales.1

Remote sensing data have been used for estimating agricultural productivity, either as inputs,
integration, and assimilation data, or in data driven models, such as traditional statistical models
and machine learning. For example, Gusso et al.4 used the enhanced vegetation index (EVI) from
the moderate resolution imaging spectroradiometer (MODIS) as inputs to a coupled model to
estimate soybean yield. The soybean yields in southern Brazil from the model obtained
differences of less than 15% when compared to official statistics.5 El Hajj et al.6 used leaf
area index (LAI) from MODIS, weather from ground stations, and soil data from as inputs
to the Boreal Ecosystem Productivity Simulator for rice yield estimation within the middle
and lower reaches of the Yangtze River with errors lower than 10% compared to official
data. Li et al.7 integrated remote-sensing-derived parameters (LAI, harvest and irrigation
dates) with in situ data in a crop model that simulates vegetation growth for hay crops in different
scenarios, concluding that incorporating remote-sensing-derived estimates of the initial and
maximal LAI values may spare costly in situ measurements while still ensuring correct
model execution with root mean square error of 410 kg ha−1 and mean absolute percentage
error of 22%. Chakrabarti et al.8 assimilated LAI information into the wheat CERES-model
by employing particle filters and the proper orthogonal decomposition-based ensemble four-
dimensional variational strategies in Hengshui city, China, obtaining relative errors lower
than 8%. They assimilated downscaled remote sensing soil moisture from the soil moisture
and ocean salinity mission in the DSSAT-CROPGRO model using an ensemble Kalman filter-
based augmented state-vector technique that estimates states and parameters simultaneously.
The framework was implemented in La Plata basin in Brazil for 2 years and the root mean square
differences (RMSD) between the assimilated and observed crop yields were 16.8% during the
first growing season and 4.37% during the second season.

Data driven models, including statistical and machine learning algorithms, can be used to
attain yield estimates based upon remote sensing information. For example, Bolton and Friedl9

used the MODIS nadir bidirectional reflectance distribution function adjusted surface reflectance
(NBAR) data to calculate normalized difference vegetation index (NDVI), EVI, and normalized
difference water index as inputs in a linear model to forecast soybean and maize yields in central
United States and concluded that including information related to crop phenology, e.g., the emer-
gence date, improved yield estimations. Aligning MODIS EVI acquisition dates closely with
phenology at each pixel may further improve yield predictions.10 Jeong et al.11 used multiple
linear regression, M5-Prime regression trees, perceptron multilayer neural networks, support
vector regression, and k-nearest neighbor methods using climate data as inputs for yield pre-
diction. Kim and Lee12 tested random forest (RF) and multiple linear regression for global
and regional estimates of maize (grain and silage), potato, and wheat based in climate and man-
agement information. Bose et al.13 tested support vector machine, RF, extremely randomized
trees, and deep learning for corn estimation in Iowa based on remote sensing and climate infor-
mation as inputs. Fieuzal et al.14 used spiking neural networks for remote sensing spatiotemporal
analysis of image time series of NDVI for winter wheat yield estimation in China obtaining a
mean error of 235 kg∕ha and an overall accuracy of 95%. They presented two methods to esti-
mate yields using artificial neural networks in southwestern France. A diagnostic approach based
on all the satellite data acquired throughout the agricultural season and a real-time approach,
where estimates are updated after each image was acquired in the microwave and optical
domains (Formosat-2, Spot-4/5, TerraSAR-X, and Radarsat-2) throughout the crop cycle
with a relative error of 6%. In spite of recent data driven algorithms used in various studies,
the impact of different data driven algorithms on yield estimation is still not well understood.

This study aims to understand how different machine learning techniques impact soybean
yield estimation in extracting maximum information from EVI that is constrained by phenology.
Specific objectives of this study are to (1) develop a methodology for incorporating phenological
information aligned with MODIS EVI acquisition for each pixel, (2) compare the performance of
four widely used machine learning algorithms, viz., stochastic gradient boosting model (GBM),
generalized linear model (GLM), RF, and Gaussian process (GP), for soybean yields in one of
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the primary soybean producing regions in Brazil—Paraná State, and (3) implement the optimal
algorithm from objective (2) to obtain regional soybean yield for the whole state of Paraná.

2 Material and Methods

2.1 Study Area

The study was conducted in Paraná State in southern Brazil, located between parallels 22°29′S
and 26°43′S and the meridians 48°2′Wand 54°38′W (Fig. 1) with an area of 199;307.945 km2.
The climatic regions in Paraná include tropical wet and dry, monsoon-influenced humid sub-
tropical climate, humid subtropical climate, and temperate oceanic climate.15 The soils in the
state are predominantly Oxisols, clay, and neo soils.16 Paraná State is responsible for almost 18%
of the Brazilian production and the state produces more soybeans than China, the fourth great
world producer.17 Typically, soybean is sown from September to November and harvested from
January to April. The 2013/2104 growing season was affected by low rainfall and high temper-
atures, resulting in lower yields compared to previous years.18

2.2 Dataset

In this study, observations of yield (kg ha−1), and sowing and harvest dates were collected from
86 commercial rainfed farms during the crop-season in 2013/2014 (Fig. 1). In addition, 37 EVI
images from September 1 to April 15 from MODIS Terra and Aqua products, MOD13Q1 and
MYD13Q1, were used. These products have a spatial resolution of 250 m and, combined, a
temporal resolution of 8-day. The study area encompassed 1253 MODIS pixels and with an
average farm size of 102 ha, each farm covered about 16 MODIS pixels. The sowing and harvest
dates for the region were estimated based on MODIS EVI time-series following. Johann et al.21

determined the sowing and the harvest dates based upon the temporal changes in EVI for each
MODIS pixel. The peak of the vegetation coincided with maximum EVI value. The time at
which EVI was minimum, prior to the peak of vegetation, was considered as the sowing
date and the minimum EVI after the peak was considered as the harvest date. The mid develop-
ment was at the mid point of sowing and harvest dates. For this study, the mean differences
(MDs) between the estimated and the observed values were 4 and 24 days for sowing and harvest
dates, respectively. These differences were reasonable because farmers usually either report the
period for the activity (sowing or harvest) or the activity start date.

2.3 Methodology Overview

For this study, phenology-based EVI predictors were created by incorporating phenology dates
into the MODIS EVI data. These predictors were normalized using Eq. (1) and used as inputs for

Fig. 1 Study area of the Paraná State in Brazil. The red circles represent the 86 farms that were
observed and the green regions are the soybean growing areas in the state during the 2013 to
2014 season.19,20
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the four machine learning algorithms. In addition, feature selection based on recursive feature
selection was used to determine the optimal predictors related to yield:

EQ-TARGET;temp:intralink-;e001;116;321z ¼ x −minðxÞ
maxðxÞ −minðxÞ ; (1)

where z is the normalized value and x is the predictor value. The selected phenology-based EVI
predictors were used in the machine learning algorithms to estimate yield. The estimated yields
were spatially averaged and compared with observed yields and official governmental data,
as shown in the flow chart of the methodology in Fig. 2.

To demonstrate the added value of using phenology-based EVI, the yield estimates were
compared those obtained using MODIS EVI (nonphenology-based), as shown in Fig. 3.

2.4 Phenology-Based EVI

Rather than using MODIS products directly as inputs, EVI predictors were created from MODIS
time series data considering the phenological information, such as sowing, peak vegetative, mid-
development, and harvest. As shown in Fig. 4, for each pixel, the EVI information was extracted
at a specified phenological date making the information strongly correlated to phenology. For
example, if adjacent farms, each consisting of multiple MODIS pixels, have different sowing
dates, e.g., October 8, 9, 16, 17, 18, and 24, as shown in Fig. 4, then the “EVI-sowing” for all the
pixels in one farm will be obtained from the MODIS product acquired closest to the planting
dates, such as image acquired on October 8 for the fields planted on Oct 8 and 9, image on Oct 16
for fields planted on Oct 16, 17, and 18, and image on Oct 24 for the field planted on Oct 24.

Machine Learning
Algorithms

Phenology-based 
EVI predictors

Optimal EVI-
predictors

Crop yield Crop yield
Compare

Official regional 
crop yield

CompareRegional crop 
yield

Machine 
Learning
Algorithms

Feature Selection

Fig. 2 Yield estimation from the Phenology-based EVI used in this study from four MLAs (GBM,
GLM, RF, and GP).

MODIS 
EVI

Optimal EVI-
predictors

Crop yield

MLA

Feature Selection

MLA

Fig. 3 Yield estimation based upon nonphenology-based MODIS-EVI as inputs to the MLA.
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Therefore, each pixel has a closer relation to phenological date in that area instead of the EVI
image for a given calendar date. Using this methodology, 36 phenology-based EVI variables
(Table 1), viz., 5 around sowing, 10 around peak vegetative, 12 around mid-development,
5 around harvest, and 4 for the season length, were created from the EVI profile. These 36
variables served as inputs to the feature selection and to the machine learning algorithms,
as shown in Fig. 2.

2.5 Recursive Feature Elimination

Feature selection facilitates data visualization and data understanding and improves prediction
performance.22 The recursive feature elimination (RFE) implements a backward selection of
predictors based on predictor importance ranking. The predictors are ranked and the less impor-
tant ones are sequentially eliminated prior to modeling. The goal is to find a subset of predictors
that can be used to produce an accurate model.23 In this study, the RFE with five repetitions, each
using 10-fold cross-validation were applied on the 36 phenology-based EVI variables to obtain
the optimal ranked predictors. The algorithm used RF to estimate yield. The RMSD shown in
between estimated and observed yields [Eq. (4)] was used to rank the predictors for the RFE.
The normalized RMSD [Eq. (5)] is a dimensionless number between 0 and 1, the normalized
RMSD with a threshold of 0.3, or 30% was used as a metric for selecting the predictors.

2.6 Machine Learning Algorithms

Four machine learning algorithms, stochastic GBM, GLM, RF, and GP were used to estimate
soybean yield.

(1) GBM constructs additive regression models by sequentially fitting a simple parameter-
ized function (base learner) to current “pseudo”-residuals by least squares at each
iteration. The pseudo-residuals are the gradient of the loss functional being minimized,
with respect to the model values at each training data point evaluated at the current step.24

The tuning parameters that need adjustment are the number of boosting iterations
(N trees), the maximum tree depth (interaction depth), the shrinkage, and the minimum
terminal node size (nminobsinnode).

(2) GLM is a technique of iterative weighted linear regression can be used to obtain maxi-
mum likelihood estimates of the parameters with observations distributed according to
some exponential family and systematic effects that can be made linear by a suitable
transformation. A generalization of the analysis of variance is given for these models
using log-likelihoods. These GLMs can be used in different distributions.25 There is
no tuning parameter for this method.

(3) RF is a regression tree technique, where a number of randomly constructed bags and
trees are generated in parallel. As in bagging, a number of decision trees on bootstrapped
training samples are built. When building these trees, each time a split in a tree is
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Fig. 4 Illustrational example for incorporating phenology in EVI to create a phenology-based
variable: EVI on sowing date.
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Table 1 Description of the 36 predictors used as input in the machine learn-
ing regression models.

Variable description

1 Cycle length (# of days from sowing to harvest)

2 EVI on sowing

3 EVI one scene before sowing

4 EVI two scene before sowing

5 EVI three scene before sowing

6 Total EVI on sowing

7 EVI from sowing to peak

8 EVI one scene before the middle date

9 EVI two scene before the middle date

10 EVI three scene before the middle date

11 EVI one scene after the middle date

12 EVI two scene after the middle date

13 EVI three scene after the middle date

14 Total EVI on middle

15 Partially total EVI on middle

16 Partially total EVI on middle

17 EVI at peak

18 EVI one scene after peak

19 EVI two scene after peak

20 EVI three scene after peak

21 EVI one scene before peak

22 EVI two scene before peak

23 EVI three scene before peak

24 Total EVI on peak

25 Center peak Total EVI around peak 1

26 Center peak Total EVI around peak 2

27 EVI from peak to harvest

28 EVI on harvest

29 EVI one scene before harvest

30 EVI two scene before harvest

31 EVI three scene before harvest

32 Total EVI on harvest

33 EVI on harvest

34 EVI total (sum of all EVI’s)

35 EVI total without the total EVI from middle

36 EVI total without the total EVI from peak

Richetti et al.: Using phenology-based enhanced vegetation index. . .

Journal of Applied Remote Sensing 026029-6 Apr–Jun 2018 • Vol. 12(2)



considered, a random sample of predictors is chosen as split candidates from the full set
of predictors.26 Each predicted class is voted and the forest prediction is the class that
gets the most votes, for classification or the average for regression.27 The tuning param-
eter used was the number of randomly selected predictors (mtry) and the number of trees
(ntrees).

(4) GP is a generalization of the Gaussian probability distribution, whereas a probability
distribution describes random variables, which are scalars or vectors (for multivariate
distributions), a stochastic process governs the properties of functions. Leaving math-
ematical sophistication aside, one can loosely think of a function as a very long vector,
each entry in the vector specifying the function value fðxÞ at a particular input x.28

There is no tuning parameter for this method.

A training set, consisting of 70% of the data (878 pixels), was used for parameter adjustment/
tuning of each of the four MLA with 10 repetitions, each repetition using a 10-fold cross-val-
idation. The optimal combination of parameters for each model was chosen based on the lowest
RMSD and higher R2 between estimated and observed yield. The models were tested using the
remaining 30% of the data (375 pixels) that were not used for training, and the accuracy analysis
was performed. The R version 3.3.429 with the package CARET23 was used, and the seed was set
to 153 to ensure reproducible results.

2.7 Accuracy Assessment

The accuracy metrics of mean absolute difference (MAD), MD, RMSD, the enhanced Willmott
concordance index (Willmott’s d),30 as shown in Eqs. (2)–(6), respectively, and the Pearson’s
correlation were calculated for assessing the differences between the MLA and the observed
yields in kg ha−1 from the farms:

EQ-TARGET;temp:intralink-;e002;116;429MAD ¼ 1

n

Xn
i¼1

jYest − Yobsj; (2)

EQ-TARGET;temp:intralink-;e003;116;380MD ¼ 1

n

Xn
i¼1

ðYest − YobsÞ; (3)

EQ-TARGET;temp:intralink-;e004;116;337RMSD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1

n

Xn
i¼1

ðYest − YobsÞ2
�s
; (4)

EQ-TARGET;temp:intralink-;e005;116;290Normalized RMSD ¼ RMSD − RMSDmin

RMSDmax − RMSDmin

; (5)

EQ-TARGET;temp:intralink-;e006;116;252d ¼ 1 −
P

n
i¼1 jYest − Yobsj

2 �Pn
i¼1 jYobs − Yobsj

; (6)

where Yest is estimated yield; Yobs is observed yield; and n is the total number of pixels.
To determine total regional production (kg) in the state, the estimated yield (kg ha−1) in
each MODIS pixel was multiplied by the area of the pixel (6.25 ha) to obtain production
for each pixel. These per pixel production values were combined to obtain the total regional
production. In addition, the computational time using one core of an Intel i5-2500 processor
for each MLA was recorded.
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3 Results and Discussions

3.1 Feature Selection

Figure 5 shows the normalized RMSD between estimated and observed yields with increasing
number of predictors from 1 to 36. From the normalized RMSD and threshold of 30% (Fig. 5),
the five optimal ranked predictors provided sufficient information to obtain acceptable estimates
and were used in the MLA. In addition, a further increase in the number of predictors
to 10 increased the computational time of the MLA. These five optimal predictors were EVI
16 days prior the middle of the cycle, EVI 24 days after the vegetative peak, the cycle length
(the cycle length varied from 98 to 229 days), EVI 24 days prior the middle of the cycle, and EVI
16 days after the vegetative peak.

3.2 Machine Learning Algorithms

For each MLA, the respective parameters were adjusted (Table 2) based on the 10-fold cross-
validation with five repetitions and these parameters were used for the implementation of
the models.

Table 3 shows the performance metrics MD, MAD, RMSD, Willmott’s d, Pearson’s r, and
the processing times for the MLA used in this study. In general, all MLAs presented satisfactory
performance withMD < 20 kg ha−1. The GBM, on average, presented a small overestimation by

Table 2 Adjusted parameters for each model using the five optimal predictors and all 36
predictors.

MLA
Parameters with five
selected predictors

Parameters with
all 36 predictors

GBM Interaction depth 3 Interaction depth 10

N trees 100 N trees 400

Shrinkage 0.1 Shrinkage 0.1

Nminobsinnode 10 Nminobsinnode 10

GLM — — — —

RF Mtry 3 Mtry 17

Ntrees 550 ntrees 550

GP — — — —

Note: No parameters to be adjusted. N trees: number of boosting iterations; interaction depth: the maximum
tree depth; nminobsinnode: the minimum terminal node size; mtry: number of randomly selected predictors;
ntrees: number of trees.

Fig. 5 Normalized RMSD between estimated and observed soybean yields as a function of num-
ber of predictors used. The horizontal line shows the threshold values of RMSD at 30%.
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Table 3 Accuracy analysis of all MLAs with the five optimal predictors and with all 36 predictors.
Bold values represent the optimal result.

GBM GLM RF GP

Statistics Five predictors

MD (kg ha−1) 10.73 −13.28 −7.06 −13.38

MAD (kg ha−1) 293.35 336.72 274.02 336.64

RMSD (kg ha−1) 403.38 461.75 390.16 461.73

Willmott’s d 0.79 0.66 0.79 0.66

Pearson’s r 0.68 0.54 0.70 0.54

Computational Time (s) 168.88 1.08 486.50 51.39

All 36 predictors

MD (kg ha−1) 3.52 −18.13 −8.16 −17.50

MAD (kg ha−1) 259.13 353.68 252.41 343.01

RMSD (kg ha−1) 372.56 475.14 395.38 463.55

Willmott’s d 0.85 0.70 0.80 0.71

Pearson’s r 0.74 0.53 0.69 0.55

Computational time (s) 989.68 2.05 4683.89 46.63

Fig. 6 Scatterplot by farm of observed yields compared with yields estimated with the five selected
predictors fromRecursive Feature Elimination using (a) GBM, (b) GLM, (c) rF, and (d) GPalgorithms.
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0.31% of the observed yield (3471 kg ha−1, as shown in Table 5), using five selected predictors,
and only by 0.10% of the observed yield with all 36 predictors. All other MLAs presented under-
estimations, with the RF model underestimating yield by 0.20% of the observed yield with five
selected EVI-predictors and by 0.24% of the observed yield with all 36 predictors. The fastest
MLA (GLM) took little more than 1 s to compute and the slowest (RF) took little more than
8 min when using the five optimal predictors. When using all predictors, the fastest one (GLM)
took little more than 2 s and the slowest (RF) almost 80 min. In general, the use of the five
optimal predictors greatly reduced the computational time, but with some loss in the accuracy.
However, RF showed an improvement in all metrics except MAD and was almost 10 times faster
when using the five optimal predictors.

Figures 6 and 7 show the scatterplots by farm of yields estimated by the MLA and those
observed, when using five predictors and all 36 predictors, respectively. The RF with 5 optimal
predictors (Fig. 6) and the GBM with all 36 predictors (Fig. 7) presented the least dispersion, as
shown by low RMSD, and more accurate, as shown by low MD and MAD, when compared to
the other MLAs. The GLM and GP MLAs presented more variability for low yield and less
variability for high yields, not being able to completely capture the changes from one farm
to the other (Willmott’s d around 0.5 and r < 0.75—Table 3). The RF with 5 selected predictors
and GBM with all 36 predictors better capture the changes as seen in higher r and d values when
compared to other MLAs. Other similar studies, such as Refs. 31 and 32, found similar Pearson’s
r of 0.96 and 0.74, respectively.

Table 4 shows the comparison of yield results from the two best performing MLAs, GBM,
and RF, using phenology-based EVI and nonphenology-based EVI. The MD was reduced by
6.43 kg∕ha and the Willmott’s d index was increased by 0.13 in the GBM algorithm. Similar
improvements were also obtained for the RF algorithm.

Fig. 7 Scatterplot by farm of observed yields compared with yields estimated with all 36 predictors
using (a) GBM, (b) GLM, (c) rF, and (d) GP algorithms.
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3.3 Regional Soybean Yield

Both GBM and RF were applied to the whole Paraná State. The GBM with all 36 predictors
presented higher deviation with a coefficient of variation 5.8% higher than the RF with five
optimal predictors, however, both MLAs have similar descriptive statistics except for the
GBM minimum estimated yield that is almost 10 times lower than the RF minimum estimated
yield (Table 5).

For both GMB (Fig. 8) and RF (Fig. 9), the west of the state provided highest yields follow-
ing the high yield soybean belt from west to northeast, especially for RF. In both figures, there is
predominance of yield from 3000 to 3750 for the two MLAs, with yellow, light, and dark green
pixels, in the whole state. The GBM presented more areas with yields lower than 3000 kg ha−1

concentrated in the extreme northeast area but spread throughout the state while RF had fewer
pixels showing less than 3000 kg ha−1 and also are concentrated in the very northeast region.

Comparing the average of 2950 kg ha−1 reported by CONAB18 with the GBM estimated
higher yield than the officially reported yield in 394 kg ha−1, however, the difference between
the average observed yield in 86 farms and the estimated yield by GBM was only 3.52 kg ha−1.
With the GBM model, the total estimated production of the state is 16,579.306 thousands of
metric tons produced by the state in the 2013/2014 season and 1774.7 thousands of metric
tons higher than the official report by CONAB.18 The RF overestimated the average officially
reported yield by 451 kg ha−1, however, the difference between the average actual yield and the
estimated yield by RF was only −7.02 kg ha−1 from the 86 farms. With the RF model, the total

Table 4 Comparison of yield estimations using the phenology-based EVI and the MODIS EVI
(nonphenology-based) with the GBM and RF algorithms.

GBM RF

Nonphenology-
based

Phenology-
based

Nonphenology-
based

Phenology-
based

MD (kg ha−1) 9.95 3.52 −11.97 −7.06

MAD (kg ha−1) 375.35 259.13 350.28 274.02

RMSD (kg ha−1) 553.82 372.56 525.33 390.16

Willmott’s d 0.72 0.85 0.73 0.79

Pearson’s r 0.58 0.74 0.64 0.70

Computational time (s) 2127.75 989.68 566.72 486.50

Table 5 Descriptive statistics of crop yields (kg ha−1) from farms using the GBM and rF
algorithms.

Statistics Actual (kg ha−1) GBM (kg ha−1) RF (kg ha−1)

Minimum 991.7 147.5 1102

First quartile 3223 3156 3223

Median 3471 3432 3383

Third quartile 3917 3672 3596

Maximum 4512 4915 4451

Mean 3471 3344 3401

Standard deviation 579.6 538.5 349.5

Coefficient of variation (%) 16.6 16.1 10.3
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estimated production of the state is 16,864.383 thousands of metric tons produced in the 2013/
2014 season and 2,059.8 thousands of metric tons more than the official report by CONAB.18

Both the MLAs estimated higher yields than the officially reported yields. The RF presented
similar results as the GBM with lower inputs and lower computational time. In addition,
even though both algorithms estimated higher production than officially reported data, the esti-
mated yield matches well with the observed yield at the farms. Interestingly, the average yield of
86 farms was 521 kg ha−1 higher than the regionally reported yield. The RF algorithm with five
EVI predictors is recommended for soybean yield estimation in this region.

4 Conclusions

In this study, a method was developed for incorporating phenological information into the EVI
data for soybean yield estimation using machine learning algorithms. Phenology was incorpo-
rated in MODIS EVI obtaining 36 predictors. A RFE-based feature selection was performed to
obtain five optimal predictors. The five optimal predictors were: EVI 16 days prior the middle of
the cycle, EVI 24 days after the vegetative peak, the cycle length, EVI 24 days prior the middle of
the cycle, and EVI 16 days after the vegetative peak. Four machine learning methods were imple-
mented using all 36 predictors and the five optimal predictors in one of the primary soybean
producing regions in Brazil—Paraná State. The GBM presented optimal performance with all
36 EVI predictors, with low MDs of 3.52 kg ha−1, an RMSD of 373 kg ha−1, and d of 0.85.
However, the RF presented similar results using only the five optimal EVI predictors from
the feature selection but with considerably reduced computational time. Incorporating phenology

Fig. 9 Soybean yield estimation for the whole state for crop season 2013 to 2014 by the rF
algorithm using five optimal predictors.

Fig. 8 Soybean yield estimation for the whole state for crop season 2013 to 2014 by the GBM
algorithm using all predictors.
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in EVI MODIS data provided improved yield estimations compared to the nonphenology-based
remote sensing data to the MLA. Therefore, the phenology-based EVI can be used in MLA
obtaining accurate regional estimates of soybean yields. In addition, the use of feature selection
considerably reduced the computational time without losing accuracy when using the RF
algorithm.
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