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Abstract
Climate change and variability are major threats to crop productivity. Cropmodels are being used worldwide for decision support
system for crop management under changing climatic scenarios. Two-year field experiments were conducted at the Water
Management Research Center (WMRC), University of Agriculture Faisalabad, Pakistan, to evaluate the application of
CERES-Maize model for climate variability assessment under semi-arid environment. Experimental treatments included four
sowing dates (27 January, 16 February, 8 March, and 28 March) with three maize hybrids (Pioneer-1543, Mosanto-DK6103,
Syngenta-NK8711), adopted at farmer fields in the region. Model was calibrated with each hybrid independently using data of
best sowing date (27 January) during the year 2015 and then evaluated with the data of 2016 and remaining sowing dates.
Performance of model was evaluated by statistical indices. Model showed reliable information with phenological stages. Model
predicted days to anthesis and maturity with lower RMSE (< 2 days) during both years. Model prediction for biological yield and
grain yield were reasonably good with RMSE values of 963 and 451 kg ha−1, respectively. Model was further used to assess
climate variability. Historical climate data (1980–2016) were used as input to simulate the yield for each year. Results showed that
days to anthesis and maturity were negatively correlated with increase in temperature and coefficient of regression ranged from
0.63 to 0.85, while its values were 0.76 to 0.89 kg ha−1 for grain yield and biological yield, respectively. Sowing of maize hybrids
(Pioneer-1543 and Mosanto-DK6103) can be recommended for the sowing on 17 January to 6 February at the farmer field for
general cultivation in the region. Early sowing before 17 January should be avoided due to severe reduction in grain yield of all
hybrids. A good calibrated CERES-Maize model can be used in decision-making for different management practices and
assessment of climate variability in the region.

Research highlights
• CSM-CERES-Maize model under DSSAT v 4.6.1 was calibrated and
evaluated with multi-year field experimental data.
• Model has potential to simulate phenology, growth, and yield of maize
hybrids.
• Strategy and sensitivity analyses are helpful to optimize the maize plant-
ing time.
• Based on 36-year climate data, the optimum sowing date for spring
maize hybrids was end of January in semi-arid environment.
• Climate variability results showed that yield would be reduced by 43%
by increasing maximum and minimum temperatures of 4.4 and 2.3 °C,
respectively.
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Introduction

Agricultural system is highly vulnerable to climate variability
that significantly affected the growth and yield of crops.
Changes in climate variability, frequency, and intensity of ex-
treme events are due to climate change (Field 2012). Higher
temperature accelerates the crop growth and development,
which reduces the life cycle of crop that causes the reduction
in yield (ur Rahman et al. 2018). Seasonal and interannual
changes in cool and hot weather influence the crop yield
(Craufurd and Wheeler 2009). It is projected that climate var-
iability would increase due to warming of planet. The intensi-
ties of flood, drought, and heat stress will increase in the
twenty-first century, which would have adverse effect on crop
production (IPCC 2014). Assessment of climate variability
provides insight in decision-making of climate-sensitive sec-
tor, such as agriculture (Abbas et al. 2017).

Maize is an important food crop in the world, feeding the
human and livestock since ages. The prolonged exploit of
maize in industry provide this crop a well-known position in
farming financial system (Anderson et al. 2017). Maize is the
3rd main cereal/grain crop by area and produces raw material
for range of numerous foodstuffs in Pakistan. Its contribution
in value-added agriculture (VAA) and gross domestic product
(GDP) is 2.2 and 0.4%, correspondingly in Pakistan. Total
cultivated area in 2017 was 1.114 million hectares, and total
production was 4.92 million tons in Pakistan (Government of
Pakistan 2017). Cultivated area of maize crop was increased
by 12% from 2015 to 2016. Development and growth of
maize crop is probably be exaggerated by elevated environ-
mental CO2 and air temperature. Increased warming trend
harmfully influences development, economic production,
and quality of maize crop (Msowoya et al. 2016). High tem-
perature during the growing season reduces the photosynthe-
sis and accelerates the development and leaf senescence
(Tubiello et al. 2007). The number of grains and grain weight
is decreased when temperature is higher around anthesis stage
(Ferris et al. 1998).

There are limited studies on the influence of increased CO2

quantity and temperature interaction on this significant cereal
crop under semi-arid conditions (Lobell et al. 2013). Crop
phenological stage and phase processes are also driven by
the joint influence of climatic variability and agronomic fac-
tors such as hybrid selection and management practices
(Gabaldon Leal et al. 2015; Abbas et al., 2017; ur Rahman
et al. 2017). On this basis, there is the need to assess the risks
posed by climate variability on agriculture (Ureta et al., 2016).

Earth land cover of about 15% is semi-arid regions. More
than 80% of Pakistan has an arid and semi-arid climate, where
successful crop production is challenging due to increased

temperatures and variability in rainfall (Naheed and
Mahmood 2006). Change in temperature and minor shift in
rainfall patterns in arid and semi-arid regions cause the huge
reduction in crops yield (Huang et al. 2016). Maize is very
sensitive to environmental stresses mainly temperature and
water over reproductive period in semi-arid conditions. A sig-
nificant reduction in gain yield at flowering stage was reported
due to water shortage and uncertain rainfall patterns
(Bergamaschi et al. 2004). A recent research revealed that
exceeds in temperature from 30 °C decreased grain yield of
maize by 1% under optimum growing circumstances and
1.7% under drought-stressed environment (Lobell et al.
2011). Most of the maize-cultivating regions in Pakistan and
India are extremely susceptible to high temperature as well as
drought stress. Optimum maize growing time is an essential
choice for long-term scenario for intensifying and diversifying
in South Asia, particularly in the higher and central regions of
South Asia, which is prone to harsh heat stress during
flowering/early grain-filling stages (Prasanna 2011; Nasim
2010).

Crop simulation models are essential for crop management
decisions to minimize the risk associated with environment.
Such models have been widely used to determine impact of
climate variability for long-term scenarios (Bassu et al. 2014).
Effect of weather variability on yield of crops can be assessed
by various models because crop simulation models are run
through weather data downscaled from general circulation
models (GCMs). Differences in temporal and spatial scales
of any crop and various climate models may introduce some
uncertainties into assessments of effects of climate variability
(Ngwira et al. 2014; Lin et al. 2015; ur Rahman et al. 2018).

The main goal of this research was to explore the impacts
of climate variability on maize crop for the support of policy
makers in decision making. The objectives of this study were
as follows: (1) calibration and evaluation of CERES-Maize
model with experimental dataset to develop robust genetic
coefficient of maize hybrids, (2) optimization of sowing date
by seasonal strategy analysis using CERE-Maize model, and
(3) impact of climate variability on maize crop in semi-arid
region of Pakistan.

Materials and methods

Description of the field experiment

A field experiment was conducted under arid to semi-arid cli-
matic conditions of Punjab, Pakistan (31° 22′ N, 73°01 ′ E),
during the two spring seasons for the years 2015 and 2016. An
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experiment was comprised of four sowing dates (S1 = 27
January, S2 = 16 February, S3 = 08 March, S4 = 28 March) and
three maize hybrids (H1 = pioneer-1543, H2 = Mosanto-
DK6103, H3 = Syngenta-NK8711). An experiment was laid
out in randomized complete block design with split plot arrange-
ment. Four sowing dates were kept in main plot and three maize
hybrids in subplot. Seed rate of 25 kg ha−1 was applied. Plant to
plant distance of 20 cm and row to row distance of 75 cm were
maintained. Each treatment was replicated three times. Based on
soil analysis, recommended dose of 200 kg ha−1 of nitrogen in
the form of urea, 125 kg ha−1 phosphorus in the form of ammo-
nium phosphate, and 125 kg ha−1 potassium in the form of
sulfate of potash were used. All phosphorus (P), potassium
(K), and one third dose of nitrogen (N) fertilizers was applied
before planting, while the remaining doses were applied in two
splits, one at six-leaf (V6) stage and second at tasseling (VT).
Other agronomic practices like weeds, pest, and disease control
were kept constant for all treatments.

Data collection from the field experiment as input
dataset for the model

Crop phenological data were recorded at different growth
stages. Ten plants were tagged in the middle row of experi-
mental unit to record the days to 50% tasseling, silking, and
days to maturity. Vegetative samplings were taken fortnightly
to record the data of leaf area index (LAI) and total dry matter
(TDM). For LAI, three plants were harvested, fresh leaf and
stemweight were recorded, and then 10 g subsample was used
to record the LAI. However, for TDM of leaf, stem tassel and
cob were oven-dried at 70 °C for 48 h, and then, dried weight
was recorded. At maturity, half of plots were harvested to
record grain yield and biological yield. Cropmanagement data
were used as input to create crop management file of the
model. Days to anthesis, days to maturity, biological, grain

yield, time series of TDM, and LAI were used to create ex-
perimental data files of a model.

Soil and weather dataset as input for model

The soil data was collected from the Soil Survey of Pakistan.
Lyallpur soil series was found in the study region. Soil physical,
chemical, and hydraulic properties are given in Table 1.
According to USDA classification, the soil was coarse silty,
mixed, hyperthermic, and typic calciargids. The soil was well
drained with brown color. It was divided into nine profiles due
to heterogeneity. It was alkaline; pH increases as depth is in-
creased and had low total nitrogen of 0.04 which decreased to
0.01. The missing data of organic carbon was calculated from
the organic matter divided by 1.7 (Bowman 1997). The data of
soil layer, soil horizon, silt%, clay%, organic carbon%, pH in
water, cation exchange capacity (cmol/kg), and total nitrogen in
percentage were used as input dataset for soil file of model. The
other parameters like drainage upper limit, lower limit, satura-
tion%, bulk density (gcm−3), saturated hydraulic conductance
(cm h−1), and root growth factor were estimated by methods
provided by Rawls et al. (1982) and Baumer and Rice (1988).

Weather data such as maximum and minimum temperatures
(°C), rainfall (mm), wind speed (km/h), and sunshine (h) for
experiment were recorded from the observatory atWMRC dur-
ing the years 2015 and 2016 as shown in Fig. 1. Daily weather
data were used to create weather data input file in DSSAT.

Model calibration and evaluation

This study used CERES-Maize model (Jones et al. 1986).
CERES-Maize is under the shell of DSSAT (Decision
Support System for Agro-Technology Transfer). DSSAT is a
software program which comprised of dynamic crop growth
models (Hoogenboom et al. 2016). Model simulates the

Table 1 Soil physical and chemical compositions and hydrological properties of experimental site used as soil input dataset in crop model

Depth Clay (%) Silt (%) Organic
carbon

pH in
water

CEC
(cmol/kg)

Total
nitrogen
(%)

Lower
limit

Drained
upper limit

Saturation Bulk density
(g cm−3)

Root
growth
factor

0–11 10 56 0.53 8.3 9.7 0.045 0.09 0.253 0.505 1.23 1.00

11–25 13 53 0.2 8.4 8.9 0.031 0.096 0.247 0.483 1.30 1.00

25–45 17 53 0.13 8.2 8.9 0.025 0.115 0.266 0.479 1.31 0.497

45–65 17 53 0.13 8.2 8.7 0.020 0.116 0.267 0.480 1.32 0.333

65–90 16 54 0.12 8.3 9.1 0.015 0.109 0.261 0.483 1.30 0.212

90–105 12 58 0.12 8.4 9.1 0.012 0.089 0.247 0.497 1.26 0.142

105–128 8 58 0.12 8.4 9.3 0.010 0.069 0.225 0.505 1.24 0.097

128–167 5 59 0.06 8.5 9.7 0.010 0.053 0.161 0.462 1.36 0.052

167–190 8 58 0.02 8.8 9.7 0.010 0.067 0.171 0.434 1.44 0.028

SLOC soil organic carbon, SLHW soil pH in water, SLNI soil total nitrogen concentration, LL lower limit, DUL drained upper limit, SSAT saturation,
SBDM soil bulk density, SBDM soil bulk density, SRGF soil root growth factor
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combined effect of plant genotype, soil type, management
practices, and weather conditions on phenology, growth, and
yield of maize (Jones et al. 2003). Genetic coefficients of
CERES-Maize were adjusted by using generalized likelihood
uncertainty estimation (GLUE) and sensitivity analysis tools
built in DSSAT V4.6.1. CERES-Maize was calibrated with
best sowing date of 27 January 2015 from field experiment
for three maize hybrids. The GLUEwas run with non-stressed
treatment. It takes initial coefficients from the genotype file
and at the end gives best combinations of phenology, growth,
and yield parameters, which were then evaluated by different
statistical indices (Hunt and Boote 1998). Similar approach
for estimation of genetic coefficients using GLUE was also
used by He et al. (2010).

After calibration, CERES-Maize was evaluated with other
sowing dates in 2015 and 2016maize-growing year. Accuracy
of model and reliability of genetic coefficients were assessed
by calculating the different statistical indices. Statistical
indices described by Willmott (1981) were used to determine
the differences between observed and simulated values.

MAE ¼ 1

n
∑n

i¼1 YSim:−YObs:j j ð1Þ

Mean absolute error (MAE) measures the magnitude of the
errors in a set of estimates.

ME ¼ 1

n
∑n

i¼1 YSim:−YObs:ð Þ ð2Þ

Mean error (ME) is an observational error that refers to the
average of all the errors in observed and simulated values.

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n
∑n

i¼1 YSim:−YObs:ð Þ2
� �

s

ð3Þ

Root mean square error (RMSE) indicated the size of the
error produced by the model, a model performance assessment
criterion.

MAPE ¼ 1

n
∑n

i¼1

YSim−YObs:j j
YObs:

*100 ð4Þ

The mean absolute percentage error (MAPE) shows that in
relative terms the mistakes made by the estimates
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Enhanced Willmott concordance index (dr) shows the de-
viation between the observed and simulated values. The value
of dr ranged between 0 and 1. Value closer to 1 indicates the
better simulation of model (Willmott et al. 2012). From all
equations, n shows the number of variables, i shows the ith
quantity of observed (obs.) and simulated (sim.).

Strategy analysis for the determination of optimum
sowing date

Optimum planting date of spring maize was determined by
CERES-Maize model using seasonal analysis in which multi-
ple years are run with same initial conditions (Boote et al.
2016). Daily weather data of 36 years (1980–2016) were used
to consider the temporal variation in strategy development of
optimum sowing date. Nine treatments of sowing date were
assessed with 10-day interval from the calibrated treatment
(27 January). But, sudden decline in maize grain yield was
observed for sowing on 7 January and earlier. Same is the case
revealed for later sowing on 27 February and on ward sowing
in the month of March. Six sowing dates result has been

Fig. 1 Daily weather data at the experimental site during the growing seasons in 2015 and 2016
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demonstrated in box and whisker plot instead of nine sowing
dates. The model results were demonstrated in box and whis-
ker plot of 25% quantile, median value of 50% quantiles, and
75% quantile. Results of three maize hybrids were presented
in box and whisker plot at each sowing date, the mean percent
difference (MPD) of each sowing date was calculated from the
calibrated treatment.

Climate variability assessment

Seasonal analysis was done in CERES-Maize model to assess
the climate variability. Observed daily climate data of maxi-
mum and minimum temperatures, solar radiations, rainfall,
and wind speed for 36 years (1980–2016) was collected from
the PakistanMeteorological Department (PMD) and was used
as input datasets. Crop management practices of best treat-
ment (27 January 2015 with maize hybrid Poineer-1543) were
used to create seasonal file in the model. The simulation of
model started from 1 January 1980. The output from the sea-
sonal analysis was used to make relationship with observed
climate data. Average maximum and minimum temperatures
of 36 years of climate data are shown in Fig. 2. Relationship of
maximum and minimum temperatures were drawn with sim-
ulated phenology and yield through linear regression.
Coefficient of determinant was calculated to show the strength
of relationship between two variables. Confidence and predic-
tion interval at 95% were also calculated to show the uncer-
tainty between variables.

Results

Weather input data and climate variability

Daily values of maximum and minimum temperatures, solar
radiation, precipitation, wind speed, and humidity were

obtained from PMD weather observatory in Faisalabad
Punjab, Pakistan. Weather variable data of maize-growing
years of 2015 and 2016 were used as input data in the model.
The climate of study area is arid/semi-arid with an average
annual rainfall of 200 mm with uneven distribution.
Seasonal daily weather data from Fig. 1 shows that year
2015 was warmer than 2016 with less rainfall. Mean maxi-
mum temperature of 31.3 and 33.1 °C and mean minimum
temperature of 19.22 and 19.74 °C were recorded in 2015 and
2016, respectively. Total rainfall of 117.1 mm in 2015 and
91.8 mm in 2016 was recorded.

Historical climate data (1980–2016)

Climate variability revealed by 36-year historic data
showed that variability and uncertainty were found in
maximum and minimum temperature (Fig. 2). Mean max-
imum temperature ranged from 28 to 33.4 °C while mean
minimum temperature ranged from 16 to 19.2 °C in his-
toric climatic data. Highest peaks in mean maximum tem-
perature were found in 1987, 1988, 1999, 2002, 2004, and
2009 maize crop-growing seasons. Mean maximum tem-
perature was found lower in 2011, 2012, 2013, and 2015
while lowest (28 °C) was observed in 2015 maize-
growing year. Lowest maximum temperature range was
found among 36 years. Similar variation can be seen in
mean minimum temperature of 36-year historic data.
Highest mean minimum temperature (19 °C) was recorded
in 2016 maize-growing year while lowest was recorded in
2015. Data clearly showed that there is variation and un-
certain behavior of day and night temperature during
maize-growing seasons which ultimately lead to varia-
tions in yield. Maize crop is sensitive to temperature
changes, and bigger changes in both minimum and max-
imum temperature would lead to negative impact on
maize yield.

Fig. 2 Seasonal climate
variability data 1980 to 2016.
Average maximum and minimum
temperature (yearly mean) data;
circles represent the higher
increase (changes) in maximum
and minimum temperature while
green downward arrow shows the
decrease in maximum
temperature in historic years
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Soil input dataset and characteristics

Nine horizons (0–11, 11–25, 25–45, 45–65, 65–90, 90–105,
105–128, 128–167, and 167–190 cm) were recorded in soil
due to heterogeneity in properties. The soil is brown in color,
silty loam, well-drained, and strongly calcareous. Soil had 5 to
17% clay content in different soil horizons while silt percentage
ranged 53 to 59 in the soil depths. Soil had low organic carbon
in different horizons (0.53–0.02) due to oxidation promoted by
high temperature in the studied region as high temperature is
climate characteristics of the region. Soil is alkaline, and pH
increases with depth reached up to 8.8 and soil is organic ni-
trogen deficient (0.045%) which is decreased in subsoil
(0.01%). Soil samples to a depth of 190 cm were collected
before maize sowing, and these samples were analyzed for
physical, chemical, and hydrological properties. Soil samples
were evaluated for all abovementioned parameters in Table 1.

Soil hydrological properties such as field capacity (drained
upper limit (DUL)), permanent wilting point (lower limit
(LL)), saturated hydraulic conductivity (SSKS), and soil bulk
density (SBDM) were computed while details of all these
studied parameters can be seen in Table 1. Soil root growth
factor (SRGF) was assessed in the model, and it ranged 1 to
0.028 to adjust the maize root growth in deeper soil layers. No
runoff was observed due to better irrigation practices, and
environmental conditions were not in the favor of runoff dur-
ing growing seasons; therefore, runoff curve number (SLRO)
was adjusted to 25 to simulate zero runoff. Although soils are
deficit in nitrogen due to high decay of soil organic carbon
because of high temperature in the region, proper nitrogen is
being used for maize growth and yield; a soil fertility factor
(SLPF) of 0.92 was used. It is an important model input pa-
rameter which directly affects the crop growth rate by altering
the canopy photosynthesis rate.

Maize genetic coefficients

Maize crop phenology and growth-related parameters were cal-
ibrated first in ecotype file. Thermal time or days taken for the
completion of different phenological events like thermal time
from seedling emergence to end of juvenile phase and silking to
physiological maturity are crucial in phenology module of
CERES-Maize (Table 2). Monsanto-DK6103 is a long-day hy-
brid that took more number of degree days (274) from seedling
emergence to the end of juvenile phase (P1) above a base tem-
perature of 8 °C than other two hybrids. Syngenta-NK8711
took lower thermal time (219) from seedling emergence to the
end of juvenile phase (P5); it seemed to be a short-duration
hybrid. The same case was found for thermal time from silking
to physiological maturity of hybrids; Monsanto-DK6103 took
more number of degree days (766) to reach physiological ma-
turity while Syngenta-NK8711 took minimum degree days
(702). Comparison of phenological parameters P1 and P5

showed that more number of degree days was taken by hybrid
Monsanto-DK6103 while minimum number of degree days
was achieved by Syngenta-NK8711 than others. More maxi-
mum possible number of kernels per plant (770.7) was recorded
in hybrid Pioneer-1543 than others while kernel filling rate
during grain filling stage under optimum conditions was found
non-significant among hybrids. Phylochron interval between
successive leaf tip appearances in degree days (°C days) was
found lower (18.90) in Pioneer-1543 than other two hybrids
(22). Details of genetic coefficients can be seen in Table 2. A
lower RMSE and linear regression between measured and sim-
ulated parameters, a slope close to 1, and close to unity values
of Bd^ mean a good fitted model.

Calibration of CERES-Maize model

Monsanto-DK6102 and Poineer-1543 accumulated more
number of photothermal days (75 and 76; 115 and 114) from
sowing to anthesis and maturity, respectively. These hybrids
finally contributed higher growth and grain yield and other
related parameters than Syngenta-NK8711 (Table 3). Close
fit between observed and simulated phenology parameters
was found with highest error percent of 2.63 and 2.80 for
anthesis and maturity, respectively, among all studied hybrids
(Table 3). Model generally undersimulated the peak LAI for
all hybrids, and percent difference ranged − 3.14 to − 6.75%.
Close fit was recorded between observed and simulated time
series LAI with higher values of d-index (0.97 to 0.99) and
lower RMSE (0.44 to 0.50) among all hybrids for calibrated
treatment (27 January 2015) (Fig. 3a, b). Comparison of ob-
served and simulated aboveground biomass (kg ha−1) of hy-
brid revealed the closer fit while percent error ranged 0.075 to
0.89 (Table 3). Simulated and observed time course of tops
weight comparison of three hybrids during model calibration
revealed the best fit with reasonably high values of d-index
(0.99) while RMSE was 449 to 1172 kg ha−1 (Fig. 7).
Comparison of simulated and observed grain yield hybrids
duringmodel calibration showed the best fit with percent error
of − 1.08 to 4.94 only. Monsanto-DK6102 and Poineer-1543
are long-duration hybrids producing higher grain yields (9380

Table 2 Genetic coefficients of hybrids adjusted during CERES-Maize
model calibration

Cultivar P1 P2 P5 G2 G3 PHINT

Pioneer-1543 265 0.683 736 770.7 24 18.90

Monsanto-DK6103 274 0.751 766 751.0 23 22.00

Syngenta-NK8711 219 0.490 702 611.0 25 22.00

P1 thermal time from emergence to end of juvenile phase (days), P2
photoperiod sensitivity (0–1), P5 thermal time from silking to physiolog-
ical maturity (days), G2 potential kernel per plant, G3 kernel growth rate
under optimum condition (mg/day), PHINT thermal time from leaf tip to
emerge (°C/day)
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and 9036 kg ha−1) than Syngenta-NK8711 (7990 kg ha−1).
Performance of CERES-Maize model revealed the best fit
between observed and all simulated studied parameters.

Crop growth, development, and grain yield response
of CERES-Maize

Duration of major phenological events

The model simulations for major phenological events sowing to
anthesis and grain maturity revealed the good predictions for all
hybrids over sowing dates. The model slightly underestimated
both days to anthesis and maturity for few sowing dates in hy-
brids while generally simulations revealed the marginally over-
prediction. There is no defined trend of undersimulation and
oversimulations about sowing dates for phenological parameters.
Generally, the model did not typically predict high variations in
maize crop phenological development among sowing dates dur-
ing model evaluation, and precise simulation of phenological
events are crucial in crop models as these influence model per-
formances based on real field data. There was no significant
difference between observed days to anthesis and maturity for

the two growing years (2015 and 2016). Genotypic variations
also existed, and hybrids had different crop growth cycle as
model well predicted the variations in phenological develop-
ment; Syngenta-NK8711 is a short-duration hybrid than others.
Statistical indices were found quite well during both growing
years for phenological events. Percent error (PE) for days to
anthesis ranged − 10.71 to 8.20% and − 4.08 to 5.71% in 2015
and 2016 maize-growing years, respectively, when all hybrids
and sowing dates were evaluated. Similarly, lower PE was re-
corded for days to maturity of different hybrids at different sow-
ing dates. The PE ranged− 3.30 to 2.80% and− 3.09 to 4.55% in
2015 and 2016 growing years, respectively. Inmodel evaluation,
simulated days to anthesis were too good with d-index values
close to unity (0.97) and RMSE of 2.73 days for all treatments
during two growing years (2015 and 2016) (Fig. 3a).
Relationship between observed and simulated days to maturity
of all studied treatments (n = 24) in both growing years (2015
and 2016) revealed the overall good performance [(RMSE=
2.44, d = 0.97) (Fig. 3b). These results confirmed the ability of
CSM-CERES-Maize model for simulating the duration of phe-
nological events of promising hybrids sown at various dates
under semi-arid climatic conditions of Faisalabad.

Table 3 Comparison of observed and simulated variables of maize hybrids related to phenology, growth, and grain yield during model calibration (27
January 2015)

Parameters Poineer-1543 Monsanto-DK6103 Syngenta-NK8711

Obs. Sim. %Error Abs. error Obs. Sim. %Error Abs. error Obs. Sim. %Error Abs. error

Days to anthesis (days) 76 78 2.63 2 74 75 1.35 1 71 69 − 2.81 2

Days to maturity (days) 114 114 0 0 113 115 1.77 2 107 110 2.80 3

Leaf area index 6.081 5.89 − 3.14 0.19 6.265 6.05 − 3.43 0.21 5.748 5.36 − 6.75 0.38

Grain yield (kg ha−1) 9380 9463 0.89 83 9036 9046 0.11 10 7990 7996 0.075 6

Biological yield (kg ha−1) 21,364 22,331 4.53 967 22,850 22,604 − 1.08 246 19,051 19,994 4.94 943

Fig. 3 CERES-Maize performance in phenology. a Days to anthesis. b Days to maturity of hybrids sown at various dates (27 January to 28 March)
during both growing years (2015 and 2016)
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CERES-Maize model response to maize growth (leaf
area index and biomass)

Leaf area index (LAI)

The CERES-Maize model evaluation response for maize hy-
brids regarding time course LAI predicted well with good sta-
tistical indices during growing seasons for different hybrids at
different sowing dates. Generally, model evaluation of peak
LAI was good at all sowing dates during both growing years,
but PE ranged − 8.45 to 4.80% in 2015 while it ranged − 14.34
to 5.96% in 2016 growing years. Overall, model showed
undersimulation of LAI for majority of the sowing dates but
its statistical indices lie in acceptable range (Table 3). Early
season LAI was well predicted up to peak (55 DAS), then
undersimulated during late season especially for 16 February
and 8March sowing dates with all hybrids during both growing

years. But, model slightly oversimulated time series LAI for all
hybrids at sowing dates of 28March (Figs. 4 and 5). The model
evaluation revealed the good prediction for LAI in 2015 grow-
ing year for all hybrids studied. High d-index was computed
(0.96 to 0.98) for all planted dates and maize hybrids in 2015,
while it ranged 0.92 to 0.98 in 2016 maize-growing year for all
hybrids (Figs. 4 and 5). CERES-Maize model simulated time
series of LAI fairly well for all hybrids during evaluation with
reasonable good values of d-index 0.90 and lower RMSE
(0.304) when all studied treatments were considered. It revealed
the potential of CERES-Maize to simulate LAI (Fig. 6).

Biomass (kg ha−1)

A close fit between time series observed total dry matter
(TDM) and simulated was found at all studied sowing
dates and hybrids. Statistical indices showed the best

Fig. 4 CERES-Maize performance in time series LAI of hybrids at
sowing dates of 27 January and 16 February during both growing years
(2015 and 2016). Where, SD = sowing dates, *d = 2015, **d = 2016.

Note: 27 January in 2015 growing year was used for calibration while
other dates of sowings are used for model evaluation
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prediction of models for TDM during both maize-growing
years (2016 and 2016). Close fit was found up to 60 days

after sowing for three hybrids in all sowing dates during
2015 and 2016. Model slightly overpredicted after

Fig. 5 CERES-Maize performance in time series LAI of hybrids at sowing dates of 8 March and 28March during both growing years (2015 and 2016)
during model evaluation (similar observation as in the previous figure). Where SD = sowing dates, *d = 2015, **d = 2016

Fig. 6 CERES-Maize
performance for leaf area index of
hybrids sown at various dates (27
January to 28 March) during both
growing years (2015 and 2016)
(similar observation as in the
previous figure)
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100 days of planting in Poineer-1543 and Syngenta-NK-
8711 at 27 January sowing date during 2015. However,
model slightly undersimulated in all hybrids during 2016
(Figs. 7 and 8). Model evaluation revealed the good pre-
diction for TDM during both growing year for all hybrids
studied. Higher values of d-index (0.99) for time series
TDM was computed in Pioneer-1543 and Monsanto DK-
1630 by considering all sowing dates in both years while
it ranged 0.98 to 0.99 for Syngenta NK-8711 (Figs. 7 and
8). Lower values of RMSE was computed in hybrids for
TDM by considering all sowing dates during both years;
i t ranged 194 to 9241, 449 to 815, and 404 to
1172 kg ha−1 for Pioneer-1543, Monsanto DK-6103, and
Syngenta NK-8711, respectively (Figs. 8 and 9).
Generally, model evaluation of TDM at harvest was good
at all sowing dates during both growing years, but PE
ranged − 5.79 to 5.03% in 2015 while it ranged − 10.46
to 7.48% in 2016 growing years for all hybrids studied.
Overall, the model showed oversimulation for majority of
the sowing dates but undersimulated in few sowing dates,
however, statistical indices lie in acceptable range (Table
3). Hybrid produced biomass in both growing years by
adopting this order Monsanto DK-6103 ˃ Pioneer-1543
˃ Syngenta NK-8711. Denser canopy and biomass were
developed by hybrid Monsanto DK-6103 than others. A
best fit between simulated and observed biological yield

at harvest was found among all treatments (n = 24) tested
in model during both growing seasons (Fig. 9), with lower
RMSE values of 963 kg ha−1 and reasonably good values
of d-index (0.94).

Grain yield (kg ha−1)

Maize grain yield was well simulated by the model for all
hybrids during temporal variation (sowing dates) assess-
ment in growing seasons (2015 and 2016) with lower
RMSE (451 kg ha−1) and higher d-index values of 0.97
during model evaluation (Fig. 10). Generally, model ca-
pability for maize grain yield simulations was found to be
good with lower PD for hybrid Pioneer-1543 while slight-
ly high undersimulations of 10.42 and 10.56% were re-
corded for Monsanto-DK-6103 and Syngenta-NK-8711,
respectively, in 2016 (Table 4). Higher grain yield was
produced at early sowing of 27 January in all hybrids,
and decreasing trend of grain yield was found for late
sowing while minimum yield was produced by delayed
sowing of 28 March during both growing years
(Fig. 11). Sowing dates adopted the following order in
producing the grain yield during both years, 27 January
˃ 16 February ˃ 8 March ˃ 28 March. Hybrid perfor-
mance in relation with different sowing dates revealed
higher grain yield production at early sowing then decline

Fig. 7 CERES-Maize performance in time series total dry matter (TDM) of hybrids at sowing dates of 27 January and 16 February during both growing
years (2015 and 2016). Note: 27 January in 2015 growing year was used for calibration while other date of sowings is used for model evaluation
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for later sowing. Generally, hybrids Monsanto-DK-6103
and Poineer-1543 performed reasonably good at early
sowing (27 January) while Syngenta-NK-8711 produced

more yield at later sowing (8 March and 28 March). Trend
analysis of hybrids revealed that Syngenta-NK-8711 can
also be recommended for late sowing while Monsanto-

Fig. 8 CERES-Maize performance in time series total dry matter (TDM) of hybrids at sowing dates of 08 March and 28 March during both growing
years (2015 and 2016) during model evaluation (similar observation as in the Fig. 7)

Fig. 9 CERES-Maize
performance for biological yield
at harvest of hybrids sown at
various dates (27 January to 28
March) during both growing
years (2015 and 2016)
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DK-6103 and Poineer-1543 would be adopted for early
sowing under semi-arid climatic conditions in the country
(Fig. 12). Temporal variation analysis revealed that model
fairly well simulated grain yield for early sowing for all
hybrids but model underpredicted grain yield at 8 March
and 28 March sowing dates during both growing years
(Fig. 11). Generally, PD varied − 9.64 to 3.52% in 2015
while − 10.56 to 8.97% in 2016 growing year. Generally,
model simulation was good but slightly undersimulated
with marginal high difference for 8 March and 28 March
sowing dates in both hybrids Monsanto-DK-6103 and
Syngenta-NK-8711 in 2015 while difference was more
pronounced in 2016 growing years for same hybrids and

sowing dates due to differences in climatic conditions
(Table 4).

Model application for maize optimum sowing date
assessment

Optimum sowing dates under semi-arid climatic conditions
was assessed by the model. Delay in sowing than 06
February reduced the grain yield drastically for all hybrids.
Mean grain yield decreased up to 29% when sowing was
delayed 1 month from 27 January while 20 days early sowing
(07 January) also suffered yield loss up to 26% in all hybrids
studied (Fig. 12). Hybrid Poineer-1543 achieved mean

Table 4 Comparison of observed and simulated variables of maize hybrids related to phenology, growth, and grain yield during model evaluation at
different sowing dates in growing years of 2015 and 2016

Hybrids name Sowing dates Days to anthesis Days to maturity LAI Grain yield Biological yield

2015 2016 2015 2016 2015 2016 2015 2016 2015 2016
% Error % Error % Error % Error % Error % Error % Error % Error % Error % Error

Pioneer-1543 27 January 2.63 1.39 0.00 1.80 − 2.99 2.78 0.88 5.06 4.53 2.87

16 February 8.20 5.26 1.87 − 2.88 − 0.12 − 5.63 − 3.87 − 5.34 1.39 5.55

08 March − 5.26 3.77 − 2.00 − 3.09 1.04 − 8.73 − 3.79 − 7.48 − 3.19 − 1.48
28 March − 3.85 − 4.08 − 2.04 − 1.05 3.37 5.96 − 0.50 − 9.50 3.06 − 3.09

Monsanto-Dk6103 27 January 1.35 5.71 1.77 4.55 − 3.43 − 0.65 0.11 4.99 − 1.08 1.68

16 February 4.55 3.23 − 1.90 0.98 − 8.45 − 14.34 − 5.20 − 9.28 − 1.37 − 5.30
08 March − 8.33 1.79 − 2.04 − 2.11 0.32 − 10.87 − 6.30 − 9.61 − 4.40 − 6.43
28 March 6.00 4.26 − 3.13 − 1.08 0.80 3.30 − 8.42 − 10.42 3.96 − 10.46

Syngenta-NK-8711 27 January − 2.82 2.99 2.80 2.88 − 6.75 0.96 0.08 6.10 4.95 6.79

16 February 0.00 − 3.33 − 2.00 − 3.09 3.00 − 4.00 3.52 8.97 5.03 7.48

08 March − 10.71 1.92 − 2.17 − 3.37 2.97 − 1.05 − 9.64 − 10.56 − 5.79 − 9.66
28 March − 2.08 − 2.22 − 3.30 − 2.27 4.80 3.48 − 4.68 − 7.76 − 3.08 − 7.54

Fig. 10 CERES-Maize
performance for grain yield of
hybrids sown at various dates (27
January to 28 March) during both
growing years (2015 and 2016)
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maximum grain yield (9259 kg ha−1) when planted at 27
January. Similar trends were observed for all hybrids at differ-
ent sowing dates, but differences were found due to genotypic
differences in thermal and photothermal time among sowing
dates (Fig. 12). Field experiments also supported the model
results regarding sowing date analysis, late sowing from 27
January revealed decline in grain yield, and significantly re-
duction after 16 February. Hybrid production showed decline
in yield from first sowing (27 January) onward, earlier sowing
trend than 27 January was computed by the model as it is

crucial to know about early sowing of these hybrids in the
region. All hybrids were found to be photoperiod sensitive
as early sowing on 7 January suffered harshly, and yield re-
duced up to 26%. Variation between 10th and 90th percentiles
was observed among maize sowing dates and hybrids as well.
Decrease in median and 10th percentiles values were found
when maize was sown too early on 7 January and too late (27
February). It is obvious from analysis that too early and too
late planting had an increase in risk to getting lower maize
grain yield, as results revealed that there was significant

Fig. 12 Maize sowing date analysis (07 January to 27 February) under seasonal strategy analysis andmodel performance for different hybrids in 36 years
of maize-growing seasons

Fig. 11 Comparison of observed
and simulated maize grain yield
of hybrids, Pioneer-1543,
Monsanto-DK6103, and
Syngenta-NK8711 at multi-
sowing dates (27 January to 28
March) with calendar days during
model evaluation (dotted lines
showed the trend of observed
yield of maize hybrids)
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impact of climatic conditions such as solar radiation, temper-
ature, and precipitation variations and low photothermal units
when planting was too early and too late (Fig. 12). These
hybrids can be recommended to be sown between 17
January and 6 February on the farmer field in the region.
Early sowing than 17 January showed severe reduction of
grain yield in all hybrids due to lower night temperature and
base temperature. Early planting than 17 January should be
avoided for all hybrids while hybrid Syngenta NK-8711 per-
formed better at later sowing up to 16 February; it may be
recommended for late sowing as well.

Impact of climate variability on maize crop

Maize crop cycle and phenology

Climate variability in observed historic data (1980–2016) has
strong negative relationship with all studied attributes of
maize crop. As increasing trend in maximum and minimum
temperatures was observed from 1980 to 2016, maize crop
cycle was being shortened due to that increase and ultimately
has negative impact on biological and grain yields. Maximum
temperature has more pronounced impact on days to anthesis
of maize crop than minimum temperature and reduced days of

anthesis from 87 to 63. Strong negative relationship was ob-
served with higher values of coefficient of regression (R2 =
0.83) with negative intercept values of 0.1525 (Fig. 13a).
Negative relationship was enhanced as maximum temperature
shifts from 29 to 34 °C in different historic years. Similarly,
minimum temperature also has negative relationship to in-
crease in temperature, while coefficient of regression (R2 =
0.65) was found above normal and intercept value was found
− 7.8923. Days to anthesis of maize crop reduced as minimum
temperature shifts from 16.8 to 19.2 °C (Fig. 13b). Increase in
maximum and minimum temperature both exerts negative ef-
fect on maize crop cycle till maturity and shorten the overall
crop cycle by early maturity of grain. Maize crop mature
8 days early (125 to 117) due to increase in maximum tem-
perature of 29 to 34 °C, revealing the strong negative relation-
ship with coefficient of regression values of 0.73 while inter-
cept was found − 0.4203 (Fig. 13c). Negative relationship was
also found between minimum temperature and days to matu-
rity with R2 values of 0.63. Generally, maximum temperature
has more dominant negative impact on phenology and maize
crop cycle than minimum temperature as temperature ex-
tremes cause more drastic effect on phenology and overall
maize productivity in semi-arid region of the country
(Fig. 13d).

Fig. 13 Relationships of seasonal
historic temperature (1980–2016)
with a days to anthesis with Tmax,
b days to anthesis with Tmin, c
days to maturity with Tmax, and d
days to maturity with Tmin
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Maize biological yield and grain yield (kg ha−1)

Crop phenology and short crop cycle have direct impact on
biological yield and ultimately effect final grain yield. As crop
cycle reduced by decreasing the number of days to anthesis
and maturity, it will affect the radiation interception by reduc-
ing crop cycle and crop canopy. Minimum temperature has
more pronounced impact maize biological yield than maxi-
mum temperature and reduced biological yield 25,000 to
22,000 kg ha−1. Strong negative relationship was observed
with high values of coefficient of regression (R2 = 0.72) with
negative intercept values of 0.0008 (Fig. 14b). Negative rela-
tionship was enhanced as minimum temperature shifts from
16.8 to 19.2 °C in different historic years. Similarly, maximum
temperature also has negative relationship to increase in tem-
perature, while coefficient of regression (R2 = 0.67) was found
above normal and intercept value was found − 1381
(Fig. 14b).

Short life cycle of maize crop affect the grain yield of
hybrids studied. Increase in maximum and minimum temper-
ature both exerts negative effect onmaize crop cycle and grain
yield. Maximum temperature has more significant negative
impact on grain yield, as strong negative relationship was

observed between maximum temperature and grain yield with
higher values of coefficient of regression (0.89) with negative
intercept values of 0.0009 (Fig. 14c). Negative relationship
was also found betweenminimum temperature and grain yield
with R2 values of 0.73 (Fig. 14d). Maximum temperature has
more negative effects on growth and yield of maize as com-
pared to minimum temperature.

Discussion

The CERES-Maize model is a comprehensive computer mod-
el in DSSATwhich simulate the phenology, crop growth bio-
mass, and grain yield in response to different environmental
conditions (Chisanga et al. 2015a). The CERES-Maize model
was well parameterized and showed a good performance in
simulations of phenology, growth, and yield attributes of
various maize hybrids. Similar findings were reported by
Liu et al. (2015) andMubeen et al. (2016). Genetic parameters
during calibration were estimated by Bayesian approach using
the GLUE by providing actual field data of phenology, phys-
iology, morphology, growth, yield, and yield components.
The minimum and maximum values of maize hybrid

Fig. 14 Relationships of seasonal
historic temperature (1980–2016)
with a grain yield (kg ha−1) with
Tmax, b grain yield (kg ha−1) with
Tmin, c biological yield (kg ha−1)
with Tmax, and d biological yield
with Tmin
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coefficient in CERES-Maize were P1 (140–365), P2 (0.0–
0.1), P5 (600–990), G2 (500–908), and G3 (5–25) computed.
It is a well-defined approach being used for many crops espe-
cially maize and soybean genetic coefficient estimation (Jones
et al. 2011). Cultivar coefficient estimated in this study is
within the range as it was reported by Jones et al. (2003).
Genetic coefficients of CERES-Maize were estimated by
GLUE program of Abdrabbo et al. (2013), showing a good
accuracy in simulating the days to anthesis and maturity.

In the current study, days to anthesis decreased due to de-
layed planting from January to the end March. The possible
reason could be the high temperature in late planting, decreas-
ing the growing degree days which lead to early maturity of
crop. Another reasonmight be high temperature in late sowing
affect the pollination and silk viability. In case of maize hy-
brids, results showed that Poineer-1543, Monsanto DK 6103,
and Syngenta NK8711 completed life cycle at 114, 113, and
110 days after planting at the end January sowing. Model
simulated the life cycle of maize hybrids with a difference of
1–2 days. Photoperiodic response of hybrids is associated
with early and late sowing. Phenology, days to anthesis, and
maturity phases of maize hybrids were simulated well by the
model, attaining a reasonable good values of statistical indices
(RMSE = 2.73 and 2.44; d = 0.97) during evaluation with all
treatments during both years (n = 24). Although, 1- to 2-day
differences were exited among hybrids due to genotypic var-
iations. Generally, model performance was found good at all
planting dates with hybrids, showing the model ability to sim-
ulate phenology well. Soler et al. (2007) found the close pre-
diction of days to anthesis and maturity with 0- to 2-day dif-
ference between observed and simulated values. Chisanga et
al. (2015b) reported that CERES-Maize model predicted days
to anthesis (− 2 ± 1) and maturity (− 4 ± 1) very well.

In field experiment, maximum days to LAI and biomass
were recorded in the first sowing date (27 January), while
among maize hybrids, higher biomass and LAI was recorded
in Monsanto-DK 6103. The reason of more biomass in
Monsanto (DEKALB) hybrids could be due to staygreen char-
acter till the end of season which increased the tolerance of
osmotic stress (Popelka 2012). The CERES-Maize model pre-
dicted the peak LAI at flowering stage and decreased at
physiological maturity. The reduction in LAI at maturity was
due to inhabitation of LAI development and acceleration of
leaf senescence. The dry matter accumulation was linearly
increased by model and decline, 15 days after silking to
maturity. Higher dry matter accumulation was due to
increase in solar radiation flux and leaf photosynthetic
activity. Lower dry matter at maturity was due to reduction
in incident radiation. Model slightly undersimulated the LAI
and TDM at latter stages in late sowing dates. Dogan et al.
(2006) reported that the model undersimulate the LAI at re-
productive stages of crop due to rapid senescence of leaves in
the model.

Higher grain yield was recorded in Poineer-1543 for
end January sowing due to favorable climatic conditions
with long growth cycle attaining higher solar radiation.
Grain yield gradually decreased from January to end
March sowing. Similar trend was observed in biological
yield. Higher grain yield in early sowing might be due to
longer growth cycle and favorable temperature especially
at grain filling stage. Model also simulated the less yield
and final biological yield for late sowing maize hybrids.
The reason could be the lowest thermal time and solar
radiation in late sowing limit the photosynthetic activity
in the model, which can reduce the transfer of assimilate
to grains, that limit the yield in late sowing. Another
reason found by Sangoi (2001) is that higher temperature
increases the growth rate and reduces the time for kernel
filling which ultimately reduces the grain yield. Our
results are in conformity with Chisanga et al. (2015b)
who evaluated the CERES-Maize model on different sow-
ing dates and nitrogen at Zambia. Statistical indices
showed a good performance in prediction of days to an-
thesis (≥ − 3 ≤ + 1), days to maturity (≥ − 4 ≤ 3), and grain
yield with nRMSE of 21%. Similar results were reported
by Saseendran et al. (2005), who evaluated the model at
different sowing dates found a close agreement between
observed and simulated phenology and grain yield.

Potentially climate variability is inducing the risk with
yield gap analysis and can be managed by providing decision
support with the aid of crop models (Coumou and Rahmstorf
2012). Simulated days to anthesis and maturity by CERES-
Maize model were negatively correlated with increase in tem-
peratures. The relationship of maximum and minimum tem-
peratures with grain and biological yields showed a negative
relationship with reasonable high values of R2 (Fig. 14a, b).
The reason could be the increase in maximum and minimum
temperatures, which accelerate crop growth and shorten the
grain-filling period. Another reason could be the increase in
temperatures which lead to reduction in photosynthetic activ-
ity, senescence of leaves, pollen viability, seed abortion, and
less seed setting, which ultimately reduce the grain yield. Lin
et al. (2015) also reported that increase in maximum and
minimum temperatures shorten the duration of flowering
and maturity. Asseng et al. (2013) found that high temperature
reduced the chlorophyll content and grain weight of crop,
which lead to decrease in grain yield. Cicchino et al. (2010)
and Bassu et al. (2014) reported similar findings that higher
temperature delayed the anthesis and also increase the number
of male sterile plant. Our results are according to the finding of
Yin et al. (2015), who reported that increase in maximum
temperature above 30 °C negatively affects the grain yield of
maize. However, in cases of this study, maximum temperature
was 32 °C which significantly lead to reduction in grain yield.
Hatfield and Prueger (2015) also found similar results that
grain yield has negative relationship with temperature.
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Conclusion

The CERES-Maize model was well calibrated with observed
field experimental data of phenology, growth, and yield com-
ponent. Model simulated days to anthesis and maturity with
RMSE less than 2 days during both years. Model performance
for biological yield and grain yield was good with RMSE
values of 963 and 451 kg ha−1, respectively. Study results
showed that grain yield gradually decreased by delayed plant-
ing from January to end of March. Strategy analysis showed
that early sowing before 17 January faced the severe reduction
in grain yield of all hybrids. Climate variability results re-
vealed that phenology and grain yield were negatively affect-
ed by fluctuation in temperatures. Days to anthesis and matu-
rity decreased by 5 days with temperatures above 32 °C.
Climate variability results showed that yield would be reduced
by 43% by increase in maximum and minimum temperatures
of 4.4 and 2.3 °C, respectively. To mitigate the negative im-
pacts of climate variability, it is recommended that maize hy-
brid Poineer-1543 should be planted at the end of January on
farmer field under semi-arid to arid climatic conditions of
Punjab, Pakistan.
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