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Abstract—Observations from spaceborne radar contain con-
siderable information about vegetation dynamics. The ability to
extract this information could lead to improved soil moisture
retrievals and the increased capacity to monitor vegetation phenol-
ogy and water stress using radar data. The purpose of this review
paper is to provide an overview of the current state of knowledge
with respect to backscatter from vegetated (agricultural) land-
scapes and to identify opportunities and challenges in this domain.
Much of our understanding of vegetation backscatter from agri-
cultural canopies stems from SAR studies to perform field-scale
classification and monitoring. Hence, SAR applications, theory,
and applications are considered here too. An overview will be pro-
vided of the knowledge generated from ground-based and airborne
experimental campaigns that contributed to the development of
crop classification, crop monitoring, and soil moisture monitoring
applications. A description of the current vegetation modeling
approaches will be given. A review of current applications of space-
borne radar will be used to illustrate the current state of the art
in terms of data utilization. Finally, emerging applications, oppor-
tunities and challenges will be identified and discussed. Improved
representation of vegetation phenology and water dynamics will be
identified as essential to improve soil moisture retrievals, crop mon-
itoring, and for the development of emerging drought/water stress
applications.

Index Terms—Agriculture, airborne radar, scattering, space-
borne radar, synthetic aperture radar, vegetation.
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I. INTRODUCTION

S EVERAL recent studies suggest that backscatter data, at
C-band and higher frequencies, contains a lot more infor-

mation on vegetation dynamics than that currently used (e.g.,
[1]–[3]), with potential implications for agricultural monitoring.
Radar backscatter from a vegetated surfaces comprises contribu-
tions of direct backscatter from the vegetation itself, backscatter
from the soil that is attenuated by the canopy and backscatter due
to interactions between the vegetation and the underlying soil
[4]–[6]. The interactions between microwaves and the canopy
are influenced by the properties of the radar system itself, namely
the frequency and polarization of the microwaves, and the in-
cident and azimuth angles at which the canopy is viewed (e.g.,
[7]–[10]). Interactions between microwaves and the canopy are
governed by the dielectric properties, size, shape, orientation,
and roughness of individual scatterers (i.e., the leaves, stems,
fruits, etc.) [11]–[13], [14] and their distribution throughout the
canopy [15]–[17]. The dielectric properties of vegetation mate-
rials depend primarily on their water content and to a lesser de-
gree on temperature and salinity [18], [19]. These crop-specific
canopy characteristics vary during the growing season, and are
influenced by environmental conditions and stress [20]–[28].
Scattering from the underlying soil is influenced by its rough-
ness and dielectric properties (e.g., [29] and [30]), which depend
primarily on its moisture content (e.g., [31] and [32]). Conse-
quently, there is significant potential for the use of radar remote
sensing in agricultural applications, particularly classification,
crop monitoring, and soil/vegetation moisture monitoring. Fur-
thermore, the ability of low-frequency microwaves (1–10 GHz)
to penetrate cloud cover, and to allow day and night imaging,
ensures timely and reliable observations [33].

Currently, most crop classification and crop monitoring
activities rely on spaceborne SAR data due to their finer spatial
resolution [34]–[37]. The difficulty in using scatterometry
for crop classification is the mismatch between the resolution
requirements for agricultural applications (from meters in pre-
cision agriculture to kilometers for large-scale monitoring) and
the spatial resolution attainable with spaceborne scatterometers.
These typically have resolutions of tens of kilometers and are,
therefore, better suited to large-scale vegetation classification
and monitoring [38]–[43]. For soil moisture, on the other hand,
both SAR and scatterometry have been used successfully. High
(spatial) resolution SAR observations from Advanced Land
Observing Satellite (ALOS)-PALSAR proved sensitive to soil
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moisture (e.g., [44]), however the limited revisit time means
that they are not suitable for many applications. NASA’s Soil
Moisture Active Passive (SMAP) mission [45] planned to
combine passive radiometry with SAR measurements, but the
radar instrument failed six months after launch in 2015. Soil
moisture observations from advanced scatterometer (ASCAT)
have been used in a wide range of climate and hydrological
applications [46]–[49]. The archive of ERS1/2 data and the
future operational availability of ASCAT data from MetOp
constitutes a soil moisture data cornerstone for climate studies.

The goal of this manuscript is to review microwave inter-
actions with vegetation and present a vision to facilitate the
increased exploitation of the past, current and future radar data
records for agricultural applications. A review will be provided
of ground-based scatterometer experiments and airborne radar
experiments focussed on crop classification, crop monitoring,
and soil moisture retrieval. We will highlight the commonality
in how vegetation is modeled for both scatterometry and SAR
applications. It will be shown how this shared heritage con-
tributed to the operational exploitation of current spaceborne
scatterometer and SAR data for crop classification, monitoring
and soil moisture monitoring. We will review recent research
indicating that spaceborne radar observations are sensitive to
vegetation dynamics at finer temporal scales than those consid-
ered in current applications. Finally, we will conclude with a
vision of how the synergy between SAR and scatterometry, as
well as new ground-based sensors could be utilized to facilitate
the increased exploitation of spaceborne radar observations for
agricultural monitoring.

II. EXPERIMENTAL CAMPAIGNS

This section will review the ground-based and aircraft cam-
paigns that contributed to our current understanding of mi-
crowave interactions with vegetation in agricultural landscapes.
Tower- and truck-based scatterometers are used for ground cam-
paigns, while SAR instruments are more commonly used in
airborne campaigns. Both technologies are used to investigate
the sensitivity of backscatter to soil moisture, and vegetation
structure and moisture content as a function of frequency, polar-
ization, and incidence angle. This knowledge has been utilized
in the design and exploitation of spaceborne scatterometry and
SAR systems.

A. Ground-Based Scatterometers

Ground-based scatterometers are suitable for the collection
of multitemporal datasets with high temporal resolution (diur-
nally, daily, or over the entire growth cycle). Data are typically
collected at plot scales. Operating a tower-based instrument is a
lot less expensive than flying an airborne instrument, so the data
record can be a lot denser in time than that from an airborne cam-
paign. It is also much easier to vary the observation parameters
such as incidence and azimuth angle, so it is easy to compare
different observation strategies. Detailed and repeated ground
data can be collected at plot scales over time, and plots can be
manipulated by imposing specific soil or crop treatments or by
modifying moisture conditions using irrigation. Consequently,

ground-based scatterometer experiments are ideal for collect-
ing the detailed data necessary for theoretical developments and
validation activities and have played a critical component of
radar studies for over 40 years.

Early field experiments using ground-based scatterometers
from the University of Kansas yielded important preliminary
evidence of the sensitivity of radar backscatter to soil moisture
and vegetation cover. The University of Kansas microwave ac-
tive and passive spectrometer (MAPS) from 4 to 8 GHz was
used by Ulaby and Moore to demonstrate that sensitivity to
soil moisture is greatest at lower frequencies and in horizon-
tally polarized backscatter and that rain on the soil makes the
surface appear smoother [50]. MAPS was used in one of the
first studies to show that the radar response to soil moisture
depends on surface roughness, microwave frequency, and look
angle [51]. In a subsequent study in corn, milo, soybeans, and
alfalfa fields, MAPS was used to demonstrate that soil moisture
could be detected through vegetation cover. They demonstrated
that small incidence angles (5–15° from nadir) and horizon-
tal polarization were best suited for monitoring soil moisture,
while higher frequencies and larger incidence angles were more
sensitive to vegetation, and therefore, more suited to crop iden-
tification/classification [7]. Similar results were also found with
the University of Kansas MAS 8–18 GHz scatterometer [8].
Measurements using this system were used for the develop-
ment and first validation of the water cloud model (WCM) [52],
discussed in Section III-A. A lower frequency scatterometer,
the MAS 1–8 GHz, was used to show that frequencies below
6 GHz and incidence angles less than 20◦ from nadir are best
suited to minimize the influence of vegetation attenuation on
the relationship between soil moisture and backscatter. They
also showed that row direction has no impact on cross-polarized
backscatter from 1 to 8 GHz, but it does influence copolar-
ized backscatter below 4 GHz. Finally, they showed that a linear
relationship could be established between soil moisture and hor-
izontally copolarized backscatter at 4.25 GHz and an incidence
angle of 10°. Even without fitting the data for individual vege-
tation types, a correlation coefficient as high as 0.80 has been
reported. Ulaby et al. [53] showed that for extremely dry soils,
the contribution of the vegetation was very significant but that
for the dynamic range of soil moisture of interest in hydrolog-
ical and agricultural applications, the influence of vegetation
was “secondary” to that of soil moisture. Data from the MAS
1–8 GHz and the MAS 8–18 GHz were combined to produce
a clutter model for agricultural crops [54]. Later experiments
explored the complexity of the canopy. Ulaby and Wilson [55]
used a truck mounted L-, C- and X-band FMCW scatterometer
to show that agricultural canopies are highly nonuniform and
anisotropic at microwave frequencies resulting in polarization-
dependent attenuation and soil contribution to backscatter. The
relative contribution of leaves and stalks to total backscatter was
also shown to depend on frequency with leaves accounting for
50% of the canopy loss factor at L-band and 70% at X-band.
Tavokoli et al. used an L-band radar to measure the attenuation
and phase shift patterns of horizontally and vertically polarized
waves transmitted through a fully grown corn canopy in or-
der to develop and evaluate a model for radar interaction with
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agricultural canopies, explicitly accounting for the regular plant
spacing and row geometry [56].

Meanwhile, the radar observation of vegetation (ROVE) ex-
periments in the Netherlands [57] were focused on the potential
of using radar observations in agricultural mapping, monitoring,
and yield forecasting. An X-band FMCW scatterometer was
mounted on a carriage that could be moved along fields with a
rail system and used to measure at a range of incidence angles
from 15 to 80°. This system was used to measure multiple crops,
each growing season from 1974 to 1980. Limited airborne ob-
servations were also made using a side-looking airborne radar
(SLAR). One of the primary aims was the identification and
classification of crops from SLAR images. Krul [58] used the
ROVE data to show that during the growing season, the dynamic
range of X-band backscatter of several crops varied between 3
and 15 dB, underscoring the importance of accurate calibration.
In particular, combining incidence angles was mooted as one
solution to separate the influences of soil moisture and vege-
tation. Bouman and Kasteren [59] highlighted the importance
of geometry, showing that changes in canopy architecture due
to strong winds could lead to differences of 1–2 dB. In sugar
beets, the architectural changes in the plants in the transition
from saplings to fully grown plants made it possible to mon-
itor their growth up to a fractional cover of about 80% and a
biomass of 2–3 ton/ha. A thinning experiment, in which some
of the plants were removed, suggested that changes in cover due
to pest/disease during the season would be difficult to detect. In
barley, wheat, and oats, Bouman and Kasteren [60] showed that
the interannual variability in backscatter could be as much as the
range due to growth. Nonetheless, X-band backscatter could be
useful for the classification and detection of some, though not
all, developmental phases. In particular, soil moisture variations
confounded the detection of emergence and harvest. Bouman
[61] suggested that multifrequency observations might be useful
to separate the backscatter contributions from potato, barley, and
wheat thereby improving the estimation of dry canopy biomass,
canopy water content, fractional cover, and crop height.

Ground-based scatterometer experiments have been used ex-
tensively, especially in early SAR research, to gain an under-
standing of responses as targets change and SAR configura-
tions are modified. They allowed scientists to develop and test
methodologies prior to the engineering of SAR satellite systems,
and before space-based data became available. In addition to col-
lecting data for model development and testing, scatterometers
can also be used in novel ways to study phenomenon not easily
implemented using air- or space-borne systems. Inoue et al. [62]
used a multifrequency polarimetric scatterometer to measure
backscatter over a rice field once per day for an entire growing
season in order to relate the microwave backscatter signature to
rice canopy growth variables. They investigated the influence
of rice growth cycle on backscatter at L-, C-, X-, Ku-, and Ka-
bands for a range of incident and azimuth angles and their rela-
tionship to leaf area index (LAI), stem density, crop height, and
fresh biomass. The Canada Centre for Remote Sensing (CCRS)
acquired a ground-based scatterometer in 1985, which was ded-
icated primarily to agriculture research. This was a three-band
system mounted on a hydraulic boom supported on the flat bed

of a 5-ton truck. The scatterometer acquired data at L, C, and Ku
bands (1.5, 5.2, and 12.8 GHz) and at four polarizations: HH,
VV, HV, VH. The boom allowed a change in incident angle,
with operations typically at 20°–50◦.

Some of the earliest research using the CCRS scatterome-
ter looked at crop separability. Brisco et al. [63] reported the
best configurations for this purpose, i.e., higher frequencies
(Ku-band as opposed to C- or L-bands), the cross polariza-
tion, shallower incident angles, and observations during crop
seed development. These conclusions have been reinforced by
many subsequent studies, whether using airborne- or satellite-
based SAR observations. The diurnal effects of backscatter were
tracked by Brisco et al. [64]. Backscatter was sensitive to daily
movement of water, mostly due to the diurnal pattern of water
in plants during active growth, and due to the diurnal pattern
of soil moisture during periods of crop senescence. Toure et al.
[65] modified the MIMICS model to accommodate agricultural
parameters and used the scatterometer to validate the accuracy
of this modified model to estimate soil moisture as well as stem
heights and leaf diameters.

Investigations into the sensitivity of backscatter to soil
moisture, crop residue, and tillage were a focus of a number
of scatterometer investigations. Major et al. [66] found that
backscatter was sensitive to soil moisture even in the presence
of short-grass prairie conditions. Meanwhile Boisvert et al.
[67] modeled the effective penetration depth for L-, C-, and
Ku-bands, an important consideration in validation of soil
moisture retrievals even with current satellite systems. Data
from the scatterometer allowed Boisvert et al. [67] to forward
model soil moisture for various models [Oh, Dubois, and the
integral equation model (IEM)] and to evaluate the performance
of these models against field data. Assessment of model
approaches was also a focus of scatterometer research, with
McNairn et al. [68] using a dual incident angle approach to
estimate both soil moisture and roughness.

Canadian researchers also imposed tillage and residue treat-
ments on field plots, irrigating these plots to simulate various
wetness conditions. These studies confirmed that residue is not
transparent to microwaves when sufficiently wet, and that in
fact cross polarizations can be very sensitive to the amount of
residue present [69], [70]. Airborne and satellite data often de-
tect “bow-tie” effects on agricultural fields due to tillage, plant-
ing, and harvesting direction. This was also reported by Brisco
et al. [71] but this study was one of the first to reveal that the
cross polarization is much less affected by look direction. This
is an important consideration for agriculture given that signifi-
cant errors in soil moisture retrievals can be introduced by this
effect [67].

The development of a retrieval algorithm for NASA’s SMAP
mission spurred several ground-based radar experiments [72].
NASA’s ComRAD system is a truck-based SMAP simulator
that includes a dual-pol 1.4-GHz radiometer and a 1.24–1.34-
GHz radar [73]. The instrument is mounted on a 19-m hydraulic
boom and is typically configured to measure at a 40◦ incidence
angle similar to that of SMAP, though it can sweep in both
azimuth and incidence angle. Early deployments focussed on
forest attenuation of the soil moisture signal (see [74] and [75]).
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O’Neill et al. [76] collected active and passive L-band observa-
tions over a full growing season in adjacent corn and soybean
fields to refine the SMAP retrieval algorithms. In particular,
these data yield insight into the influence of changing vege-
tation conditions and the relationship between contemporane-
ous active and passive observations. Srivastava et al. [77] used
this data to compare different approaches to estimate vegetation
water content (VWC). The combined active/passive ComRAD
system meant that they could compare backscatter in different
polarizations, polarization ratios, radar vegetation index (RVI),
and microwave polarization difference index. They found that
at L-band, an HV backscatter was the best estimator for VWC.
This is a valuable result as it obviates the need for ancillary
data, like NDVI and a parameterization to provide VWC for the
retrieval algorithm.

The University of Florida L-band Automated Radar System
(UF-LARS) [78] operates at 1.25 GHz and can be used to ob-
serve VV, HH, HV, and VH backscatter every 15 min for sev-
eral weeks. Measurements are typically made from a height of
about 16 m above the ground with an incidence angle of 40◦.
The ability of UF-LARS to measure with such high temporal
resolution and over long periods offers a unique insight into the
backscatter signature of near-surface soil moisture dynamics
in response to precipitation, irrigation, and other environmental
conditions. The density and accuracy of data also renders it ideal
for developing and validating backscattering models. The UF-
LARS has been used to investigate the dominant backscattering
mechanisms from bare sandy soils, to evaluate the sensitivity
of backscatter to volumetric soil moisture [79] and growing
vegetation [78], to investigate the benefit of combining active
and passive microwave observations for soil moisture estima-
tion [80] and to evaluate uncertainty in the SMAP downscaling
algorithm for sweet corn [81]. Data from theUF-LARS were
used by Monsivais-Huertero et al. to compare bias correction
approaches used in the assimilation of active/passive microwave
observations to estimate soil moisture [82].

Finally, the Hongik polarimetric scatterometer (HPS) is a
quad-pol L-, C-, and X-band scatterometer that operates on a
tower [83]. It has been used for model development and cross
comparisons with satellite data over a number of crops [84]–
[86], and to develop a modified form of the WCM in which
the leaf size distribution is parameterized [87]. Inclusion of an
additional antenna and modifications to the mechanical system
also allow it to be configured as a rotational SAR system [88].

B. Airborne Radar Instruments

One drawback of ground-based investigations is the rapid
change of the imaging geometry in range and cross range across
a relatively small scene. Near-field effects (i.e., the curved wave-
front interacting with tall crops) also need to be taken into ac-
count. The main limitation of using ground-based scatterom-
eters is that they measure a single field or, at best, can be
moved with a mechanical system to observe multiple fields.
This greatly limits the diversity of fields and conditions that can
be observed in a single campaign. Aircraft-mounted sensors
allow measurements along flight lines spanning many fields,

which may include different crops, roughness characteristics,
growth stages, and moisture content. However, an aircraft cam-
paign is typically limited to a few flights. Airborne radar in-
struments, therefore, offer a complementary perspective to that
from tower-based instruments. In Europe, the 1–18-GHz DUT
SCATterometer (DUTSCAT) [89] and the C-/X-band ERASME
helicopter-borne scatterometer [90] were deployed over five test
sites during the AGRISCATT88 campaigns that built on the
knowledge and expertise gained from the ROVE experiments
[91]. Bouman et al. [92] used the DUTSCAT data to investigate
the potential of multifrequency radar for crop monitoring and
soil moisture. Their analysis confirmed findings from their ear-
lier ground-based study [61] that the sensitivity of backscatter to
canopy structure complicates the retrieval of biomass, soil cover,
LAI, and crop height. They also confirmed that higher frequen-
cies (X- to K-band) were best suited to crop separability, while
L-band yielded the most information on soil moisture in bare
soils. Similar conclusions were drawn by Ferrazzoli et al. [93]
from an analysis of the DUTSCAT and ERASME datasets. They
used the same datasets to demonstrate that leaf dimensions had a
significant influence on backscatter from agricultural canopies,
particularly at S- and C-band [94]. Schoups et al. [95] used
the DUTSCAT data to investigate the sensitivity of backscatter
from a sugar beet field to soil moisture and roughness, leaf angle
distribution and moisture content, canopy height, and incidence
angle and frequency. Prevot et al. [96] used the ERASME data
to develop a modified version of the WCM in which multiangle
data are used to account for roughness effects, and presented
an inversion approach capable of retrieving VWC where LAI
is less than 3. Benallegue et al. [97] analyzed the ERASME
data collected over the Orgeval basin (France) to evaluate the
use of multifrequency, multiincidence angle radar observations
for soil moisture retrieval. Their results were consistent with
early results of Ulaby et al. in that low frequency (C-band in
this case) observations 20◦ from nadir contained most infor-
mation on soil moisture while the higher frequency (X-band)
observations at larger incidence angles were used to quantify
the vegetation attenuation. Benellegue et al. [98] subsequently
used the ERASME data to argue that variability in soil dielectric
constant (moisture content) and roughness precludes the use of
SAR (e.g., ERS-1 SAR) to estimate soil moisture at a single
field level, but that larger scale trends in the basin could be de-
tected if the measurements were on a scale of about 1 km. These
early airborne experiments demonstrated the robustness of the
theories and models developed from ground-based scatterom-
etry over larger areas and for a wider range of land cover and
crop types. The international community involved in collecting
both airborne data and ground data is indicative of the growing
interest in using radar for crop classification and crop and soil
monitoring at that time.

In the 1980s, the Canadian CV-580 SAR was developed as
a multifrequency (L-, C-, and X-band) airborne system. The
CV-580 was flown in support of many early agricultural exper-
iments, demonstrating the value of SAR for crop classification,
whether by integrating SAR with optical data [99] or simply us-
ing its multiple frequency capability [100]. Later the system was
modified to incorporate full polarimetry on C-band [101]. This
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mode was instrumental for the scientific community, providing
data to develop polarimetric applications in advance of access
to such data from satellites systems. These airborne data led to
many early discoveries regarding the value of polarimetry. Mc-
Nairn et al. [102] used these data to investigate polarization for
crop classification, discovering that three C-band polarizations
(whether linear or circular) were sufficient to accurately classify
crops. In fact the best three-polarization combination included
the LL circular polarization (HH-HV-LL). Data collected by
the airborne CV-580 also assessed the value of polarimetry for
crop condition assessment. McNairn et al. [103] used several
linear polarizations at orientation angles of 45◦ and 135◦ and
circular (RR and RL) polarizations to classify fields of wheat,
canola, and peas into productivity zones, indicative of variations
in crop height and density. C-band polarimetric data from the
CV-580 also demonstrated that linear and circular polarizations
could classify wheat fields into zones of productivity weeks be-
fore harvest [104]. These zones were well correlated with zones
defined by yield monitor data.

The CV-580 was instrumental in efforts to ready the inter-
national community to exploit data from Canada’s first satel-
lite, RADARSAT-1. The GlobeSAR-1 program was initiated in
1993, two years prior to the launch of RADARSAT-1, with ob-
jectives to acquaint users with the application of this new data
source and to facilitate use of imagery from the ERS-1 satel-
lite [105]. The CV-580 travelled approximately 100 000 km,
acquiring more than 125 000 km2 of multimode SAR data over
30 sites in 12 countries including France, the U.K., Taiwan,
China, Vietnam, Thailand, Malaysia, Kenya, Uganda, Jordan,
Tunisia, and Morocco [106]. C- and X-band multiple polar-
ization as well as fully polarimetric data from this campaign
fuelled early research into a diversity of applications including
rice identification and monitoring, soil moisture estimation, and
land cover mapping [107]. In China, these data were used to
develop multipolarization and multifrequency-based land cover
maps with accuracies close to 90%; in Thailand CV-580 data
were combined with TM and SPOT data to improve land cover
discrimination. The data collected by this airborne platform
and the SAR training delivered during the GlobeSAR-1 pro-
gram had a lasting impact for RADARSAT applications in these
regions.

By the late 1990s, its high resolution capabilities meant
that SAR had been identified as the way forward in terms of
crop classification and monitoring. Several airborne campaigns
using experimental-SAR (E-SAR) system from the German
Aerospace Center (DLR) were conducted in Europe to prepare
for the availability of spaceborne radar data from Sentinel-1
and TerraSAR-X. During the TerraSAR-SIM campaign (Bar-
rax, Spain, in 2003), DLR’s airborne E-SAR system was used
during five flights to quantify the impact of time lag between
satellite acquisitions at different wavelengths on agricultural ap-
plications, particularly, classification and crop monitoring [108].
The data collected were used again recently to test retrievals of
above ground biomass in a wheat canopy using CosmoSky-
Med and Sentinel-1 SAR data [109]. The Bacchus campaign
and follow-up activities also employed DLR’s E-SAR sys-
tem to evaluate the potential for using C- and L-band SAR in

viticulture [110]. In addition to gaining insight into the scattering
mechanisms in vineyards [111], the synergy of combining radar
and optical imagery for classification purposes was considered
[112]. E-SAR was also combined with spectral data during the
AQUIFEREx campaign to produce high-resolution land maps
for water resources management in Tunisia [113]. During the
Eagle2006 campaign (see [114]), L-, C- and X-band data were
acquired over three sites in the Netherlands. C-band images were
used to simulate Sentinel-1 data, to facilitate the development
and testing of retrieval algorithms. Optical and thermal imagery,
as well as extensive ground measurements were also collected
over grass and forest sites. E-SAR was also flown during the
AgriSAR2006 campaign during which in situ data and satellite
imagery were combined with airborne SAR and optical imagery
to support decisions regarding the instrument configurations for
the first Sentinel Missions [115], [116]. The data were used
to investigate the impact of polarization on crop classification
[37], to develop algorithms for soil moisture retrieval from SAR
[10], [117], [118].

In preparation for NASA’s Soil Moisture Active Passive
(SMAP) mission, NASA’s Jet Propulsion Laboratory developed
the Passive Active L- and S-band system (PALS) instrument to
investigate the benefit of combining passive and active observa-
tions. It has been deployed during several experiments in the last
two decades [119], [120]. Earlier experiments such as measure-
ments conducted in the Little Washita Watershed, OK, USA,
during Southern Great Plaints experiment 1999 (SGP99), and
in the Walnut Creek, IA, USA, during Soil Moisture Experiment
2002 (SMEX02) were primarily to understand the sensitivities
of the multifrequency and -polarized active and passive obser-
vations. Although the studies found great sensitivities of both
active and passive observations to the soil moisture, the active
observations were more sensitive to the variation of vegetation
conditions [121], [122]. In agreement with the earliest ground-
based experiments, the L-band observations were more sensitive
to the soil moisture changes due to better penetration in the agri-
cultural region, while those from the S-band were more sensitive
to the VWC.

PALS still plays a significant role in NASA-SMAP pre- and
postlaunch calibration and validation activities through the so-
called SMAP validation experiments (SMAPVEX) [123], [124].
Airborne PALS data been used to test and modify soil moisture
retrieval algorithms in agricultural regions [120], [124], and
to develop downscaling algorithms for high spatial resolution
soil moisture under different levels of VWC by integrating the
active and passive observations for SMAP [125], [126]. Sim-
ilar to PALS, an airborne polarimetric L-band imaging SAR
(PLIS) was designed and combined with the polarimetric L-
band multibeam radiometer (PLMR) to support the develop-
ment of soil moisture algorithms for the SMAP mission in
Australia [127]–[129]. Five field campaigns, called SMAP Ex-
periments (SMAPExs), have been conducted using PLIS from
2010 to 2015 in agricultural and forest regions in south-eastern
Australia. Wu et al. [130], [131] used the observations from
SMAPEx1-3 to validate and calibrate the SMAP simulator and
to evaluate the feasibility and uncertainty of the SMAP baseline
downscaling algorithms.
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III. ACCOUNTING FOR BACKSCATTER FROM VEGETATION

Data collected in the experimental campaigns discussed in
the previous section have been used to develop, test, and vali-
date models to simulate the influence of the soil and vegetation
on backscatter. In this section, the most common ways in which
backscatter from a vegetated surface is simulated/interpreted are
reviewed. The WCM, and energy and wave approaches are used
for both forward modeling and inversion to obtain soil moisture,
VWC or biomass and/or LAI. SAR decompositions quantify the
contributions of surface, volume, and double-bounce backscat-
ter to the total power and are particularly useful for classification
and growth stage identification.

For vegetated terrain, the effects of canopy constituents, ge-
ometry, and moisture distribution are typically modeled as a
scattering phase function, extinction coefficient, and scattering
albedo, as described by Ulaby et al. [132]. The canopy can
be modeled either as a continuous media with statistical di-
electric variations within the canopy or as a discrete layered
medium [133].

A. WCM

In 1978, Attema and Ulaby published the WCM, an approach
to characterize a vegetation canopy as a collection of uniformly
distributed water droplets [132]. The WCM is a zeroth-order
radiative transfer solution in which the power backscattered by
the entire canopy is modeled as the incoherent sum of the contri-
butions from the canopy (as a whole) as well as the underlying
soil. In this model, multiple scattering (between soil canopy and
within the canopy) is ignored [52], [96]. The canopy can be rep-
resented with one or two vegetation parameters. The WCM has
been adapted to model scattering from a range of crop canopies.
Prevot et al. [96] reviewed these approaches, which have con-
sidered canopy (or leaf) water content and LAI as descriptors
of the vegetation canopy. In the WCM, total backscatter σ0

is modeled according to incoherent scattering from vegetation
σ0

veg and σ0
soil . Two-way transmission-backscatter through the

canopy attenuates the signal and is modeled using an attenuation
factor τ 2 as

σ0 = σ0
veg + τ 2σ0

soil (1)

σ0
veg = AV1 cos θ(1 − exp(−2BV2/ cos θ)) (2)

τ 2 = exp(−2BV2/ cos θ) (3)

where A and B are the parameters of the model and θ is the inci-
dence angle. V1 and V2 are canopy descriptors. One vegetation
parameter can be used for both V1 and V2 , or alternatively dif-
ferent parameters can be assigned to each of V1 and V2 . Direct
scattering from the soil must be modeled within the WCM. Typ-
ically, a simple linear model has been used as Ulaby et al. (1978)
demonstrated that scattering from the soil can be expressed as
a simple linear function between backscatter and soil moisture,
Mv , as

σ0
soil = CMv + D (4)

where C and D are the slope and intercept of the relationship
between backscatter and soil moisture. Some attempt has been

made to use more physically based approaches to model scatter-
ing from the soil, including integration of the physically based
IEM with the WCM [134].

The attraction of the WCM is that this is a relatively simple
model whereby given a sufficient number of radar measure-
ments (in multiple angles, polarizations, and/or frequencies),
both the vegetation canopy parameters and soil moisture can be
simultaneously estimated. However, the WCM is a semiempir-
ical mode, whereby parameterization of the vegetation and soil
variables is accomplished using experimental data. As such, per-
formance of the model is affected by the quality and robustness
of these data. The WCM has typically been parameterized on
a crop-specific basis given that the vegetation structure varies
significantly among different species. If multiple radar mea-
surements are used, inversion of the WCM allows estimates of
vegetation parameter(s), for example, LAI and/or VWC, as well
as underlying soil moisture [96], [135], [136]. Alternatively, soil
moisture data can be supplied to estimate the vegetation param-
eters [137], or vegetation data can be provided to estimate the
soil moisture [138].

The simplicity of the WCM means that it is easy to parame-
terize and use for forward modeling and retrieval. However, its
assumption regarding the uniform distribution of moisture in the
canopy is a huge simplification of reality. Fig. 1 illustrates the
dynamics of the vertical moisture content distribution in corn
during a growing season from destructive data collected in the
Netherlands in 2013. Fig. 1(a) shows the vegetation leaf water
content in kg·m−2 . Each dot corresponds to the total VWC of
leaves at a certain height (indicated on the y-axis), in one square
meter. Fig. 1(b) shows the water content of the stems in kg·m−2 .
Each dot corresponds to the total water content in all stems in
the 10-cm stems centered at that height (indicated on the y-axis),
in one square meter. Fig. 1(a) and (b) demonstrates that, in con-
trast to the assumption of the WCM, the moisture in the canopy
is far from evenly distributed. Most of the water stored as leaf
water is concentrated in the midsection where the largest leaves
occur. During the vegetative stages (up to 27 July), the moisture
distribution in the stem is relatively uniform, decreasing only
slightly with height. When the ears start to form and separate
from the stem, the stem VWC at and above the ears becomes
relatively dry. The gradient in stem VWC as a function of height
becomes clearer and it changes as the season progresses. The
contributions of leaf, stem, and ear moisture to the total is shown
in Fig. 1(c). This illustrates that the distribution of canopy wa-
ter content among the different scatterers also varies during the
growing season. The influence this has on backscatter depends
on frequency and polarization. It is clear that the assumptions
of the WCM are very simplistic compared to the actual dis-
tribution and dynamics of water content during the growing
season.

B. Energy and Wave Approaches

Equation (1) can be formulated as

σ0 = σ0
soil + σ0

veg + σ0
sv (5)
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Fig. 1. Vertical distribution of (a) leaf and (b) stem moisture content, and the contributions of leaf, stems, and ears to total VWC (kg·m2 ) (c) in an unstressed
corn canopy.

so that the total backscatter from the vegetated surface σ0 in-
cludes scattering contributions from the soil surface (σ0

soil), di-
rect scattering from the vegetation (σ0

veg ), and from interactions
between soil and vegetation (σ0

sv) [4]. The σ0
soil is a function

of the reflectivity of the soil and is highly sensitive to surface
roughness. The σ0

veg is a function of canopy opacity and geome-
try. For a mature crop, σ0

veg could comprise a significant portion
of σ0 [139].

Scatterers within the layered medium are characterized by
canonical geometric shapes such as ellipsoids or disks for leaves
and cylinders for trunks, branches, and stems [17]. Typically, the
vegetation consists of a canopy layer within which these objects
are randomly arranged, a stem layer with randomly located
nearly vertical cylinders that may or may not extend into the
branch layer, if present, and an underlying rough ground. Several
backscattering models exist for vegetated terrain, e.g., [140]–
[143]. The σ0 for the vegetated terrain can be estimated either
through the energy or intensity approach or the wave approach
[144].

Both the energy and the wave approaches are based on physi-
cal interactions of electromagnetic waves with vegetation. In the
energy approach, only amplitudes of the electromagnetic fields
are estimated. The backscattering is described either through
radiative transfer (RT) equations [145], matrix doubling the-
ory [146], or Monte Carlo simulations [147]. The RT models
(e.g., Michigan microwave canopy scattering (MIMICS), [143]
and the Tor-Vergata model [148]) are energy-based equations
that govern the transmission of energy through the scattering
medium. According to the radiative transfer theory, the prop-
agating energy interacts with the medium through extinction
and emission. Extinction causes a decrease in energy, while
emission accounts for the scattering by the medium along the
propagation path. For a medium with random particles, the RT
theory assumes that the waves scattered from the particles are
random in phase and the total scattering can be estimated by in-
coherent summation over all particles. Thus, the extinction and
emission processes can be represented by the average extinction
and source matrices within each layer. The RT models represent
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Fig. 2. Scattering mechanisms considered in the first-order models for both
energy and wave based approaches: (1) direct ground (2) direct vegetation (3)
ground–vegetation (4) vegetation–ground (5) ground–vegetation–ground.

a first-order solution and use Foldy’s approximation to esti-
mate a mean field as a function of height within the vegetation.
This mean field is then scattered from each of the vegetation
constituents. Soil surface scattering and specular reflection are
denoted by scattering and reflectivity matrices. The intensities
across interfaces are continuous under the assumption of a dif-
fuse boundary condition.

The MIMICS model represents the vegetation as divided in
three regions: the crown region, the trunk region, and the un-
derlying ground region [133]. The radiative transfer equations
are solved iteratively in a two-equation system; one represents
the intensity vector into upward direction and the second equa-
tion represents the intensity into the downward direction. The
Tor-Vergata model divides the vegetation into N layers over a
dielectric rough surface. Each layer is described by the upper
half-space intensity scattering matrix and the lower half space
intensity scattering matrix. To compute the total scattered field
from the scene, the matrix doubling algorithm is used, under
the assumption of azimuthal symmetry. The first-order solution
of both RT models accounts for five scattering mechanisms,
as shown in Fig. 2 (1) direct scattering from soil (σ0

soil); (2)
direct scattering from vegetation (σ0

veg ); (3) ground reflection
followed by vegetation specular scattering; (4) vegetation spec-
ular followed by ground reflection; and (5) double bounce by
ground reflection and/or vegetation backscattering and ground
reflection. The addition of the scattering mechanisms 3–5 are
represented by σ0

sv in (5).
Though MIMICS was originally developed for forest

canopies [65], [143] modified it for use in agricultural (wheat
and canola) canopies by removing the distinct trunk layer, ex-
pressing the constituents of canola and wheat in terms of cylin-
ders, discs and rectangles, and parameterizing leaf density as
a function of input LAI. A similar approach was employed by
Monsivais–Huertero and Judge [139] to model a maize canopy.
DeRoo et al. [149] adapted the MIMICS to model the soy-
bean crop and Liu et al. [150] used MIMICS to assimilate the
backscattering coefficient into a soybean growth model. The
Tor-Vergata model has been used to test classification schemes
[151], to evaluate the potential of radar configurations for appli-
cations [152], [153] and to yield insight into radar sensitivity to
crop growth [154]–[156].

In the wave approach, both the phase and amplitude of the
electromagnetic fields are computed and Maxwell’s equations

are used to derive the bistatic scattering coefficient. The mean
field in the medium can be calculated using the Born approxi-
mation (neglects multiple scattering effects) and the renormal-
ization bilocal approximation (accounts for both absorption and
scattering). Similar to the energy approach, the models based
upon the wave approach (e.g., [157]–[161]) consider horizon-
tally layered random vegetation and the five scattering mech-
anisms represented in Fig. 2. Unlike the energy approach, the
wave approach adds, in amplitude and phase, the scattered field
by each vegetation constituent (branches, stems, leaves, etc.),
accounting for the orientation and relative position of the con-
stituents. The attenuation and phase shifts within the vegetation
are calculated using Foldy’s approximation. The total σ0 is ob-
tained by averaging several realizations of randomly generated
vegetation.

Several studies have compared the two approaches. Chauhan
et al. [162] found σ0 higher by 3 dB when ground–vegetation–
ground interaction was considered for estimating backscatter
from corn in mid season at L-band compared to the case when
the interaction was ignored. Including the coherent effects pro-
duced σ0 estimates that were closer to observations. Recently,
Monsivais-Huertero and Judge [139] founded similar differ-
ences between the two approaches during the entire growing
season of corn, from bare soil to maturity, at L-band. The coher-
ent effects had a particularly high impact during the reproductive
stage of the corn, due to the ears. When each term in (1) was
examined closely, it was found that the RT approach predicted
σ0

veg as the primary contribution, while the wave approach pre-
dicted σ0

sv as the dominant contribution. The HH polarization
showed higher differences between the two approaches than the
VV polarization, suggesting that the HH polarization is more
sensitive to the coherent effects for a corn canopy. The study
also indicated that ears were the main contributors during the
reproductive stage. Coherent effects were also found to be sig-
nificant when Stiles and Sarabandi [159], [160] found that the
row periodicity of agricultural fields had an impact in the az-
imuth look angle, particularly at low frequencies such as the
L-band.

Energy and wave approaches require moisture content or di-
electric properties of the soil and vegetation as well as a descrip-
tion of the size, shape, orientation, and distribution of scatterers
in the canopy. This limits their usefulness to the wider, non-
expert community. Despite their complexity, it is important to
note that the representing vegetation as a collection of ellipsoids,
disks etc., is still a crude simplification of reality. It remains un-
clear whether such a description is better than more simple,
physical models. Nonetheless, they are very useful for relating
ground measurements of the parameters during field campaigns
to ground-based, airborne, or satellite-based observations and
interpreting their respective contributions to backscatter.

C. Polarimetric Decompositions

Polarimetric radar decomposition methods separate total scat-
tering from a target into elementary scattering contributions.
This technique can be helpful for establishing vegetation health
and for classifying land cover as the dominance and strength of
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surface (single bounce), multiple (volume), and double-bounce
scattering is largely driven by the roughness and/or structure of
the target. More specifically the structure of vegetation varies
by type, condition, and phenology state, and as these vegetation
states vary so does the mixture and strength of scattering mech-
anisms. Different polarimetric decomposition approaches allow
the polarimetric covariance matrix to be decomposed into con-
tributions assigned to single or odd bounce scattering (indicative
of a direct scattering event with the vegetation or ground), dou-
ble or even bounce scattering (indicative of a scattering event
between, for example, a vegetation stalk and the ground) and
volume scattering (indicative of multiple scattering events be-
tween the ground and vegetation, or among vegetation compo-
nents) [163], [164]. Yamaguchi [165] introduced a fourth scat-
tering component (helix scattering) to account for copolariza-
tion and cross-polarization correlations, as some contributions
from double bounce and surface scattering were thought to be
contributing to volume scattering [166], [167].

Fig. 3 shows the Freeman–Durden decomposition of
three RADARSAT-2 quad-polarization images obtained during
SMAPVEX 2012 in Manitoba, Canada. The cropping mix in
this region is dominated by spring wheat, canola, corn, and soy-
beans. In April, producers have yet to plant their crops for the
season, so surface and volume scattering from bare soil dom-
inate. In the July image, volume scattering dominates canola
(bright green), while wheat fields show considerable double
bounce (red).

Cloude and Pottier [168] approached characterization of tar-
get scattering by decomposing SAR response into a set of
eigenvectors (which characterize the scattering mechanism) and
eigenvalues (which estimate the intensity of each mechanism)
[169]. Two parameters, the entropy (H) and the anisotropy (A),
can be calculated from the eigenvalues . The entropy measures
the degree of randomness of the scattering (from 0 to 1); values
near zero are typical of single scattering (consider smooth bare
soils) while entropy increases in the presence of multiple scat-
tering events (consider a developing crop canopy). Anisotropy
estimates the relative importance of the secondary scattering
mechanisms. Most natural targets will produce a mixture of
mechanisms although typically, one source of scattering domi-
nates. Zero anisotropy indicates two secondary mechanisms of
approximately equal proportions; as values approach 1 the sec-
ond mechanism dominates the third [170]. The Cloude–Pottier
decomposition also produces the alpha (α) angle to indicate
the dominant scattering source [169]. Single bounce scatters
(smooth soils) have alpha angles close to 0◦; as crop canopies
develop the angle approaches to 45◦ (volume scattering) al-
though some secondary or tertiary double bounce (nearing 90◦)
can be observed when canopies include well developed stalks.
The Cloud–Pottier decomposition has been employed to retrieve
the phenological stage of rice [171] and to identify harvested
fields [172].

IV. APPLICATIONS

The models described in the previous section provide insight
into scattering mechanisms, and in particular, into the separation

of the contributions from soil and vegetation. The ambiguity be-
tween these contributions is one of the main challenges to be
addressed in applications of radar observations to agricultural
landscapes. The WCM is popular in crop monitoring. Energy
and wave approaches have proved very valuable for forward
modelling the backscatter from vegetation for soil moisture re-
trievals, and SAR decomposition methods are most popular in
crop classification and monitoring approaches.

A. Regional Vegetation Monitoring Using Spaceborne
Scatterometry

Several studies have used the ERS wind scatterometer to de-
termine the fractional cover and seasonal cycles of vegetation.
Woodhouse and Hoekman [173] used a mixed target model-
ing approach to retrieve percentage vegetation cover over the
Sahel region and the Hapex Sahel test area from ERS-1 WS
data. A subsequent study in the Iberian Peninsula [174] yielded
promising results for soil moisture retrieval but revealed that
the performance in terms of vegetation cover parameters was
site-specific. Frison et al. [175] showed that ERS WS data was
more effective for monitoring the seasonal variation of herba-
ceous vegetation in the Sahel compared to SSM/I. The temporal
signatures of SSM/I observations were found to depend primar-
ily on air and surface temperature, and integrated water vapor
content. Biomass retrievals from SSM/I data were also poor due
to the sensitivity of the employed semiempirical model to soil
moisture variations. Jarlan et al. [176] discussed the difficulty of
estimating surface soil moisture and above-ground herbaceous
biomass simultaneously without independent in situ or remote
sensing data to constrain one of the variables. In a subsequent
study, soil moisture was estimated using MeteoSat data and a
water balance model [177]. This allowed them to map VWC and
the herbaceous mass in the Sahelian through the nonlinear in-
version of a radiative backscattering model yielding results that
were consistent with NDVI observations. Grippa and Wood-
house [178] demonstrated that the inclusion of SAR data and
ground measurements to estimate fractional cover in each of
four cover classes allowed monthly vegetation properties to be
retrieved from ERS WS backscatter at four test sites.

Higher frequency scatterometer data have also been used
to monitor vegetation. Frolking et al. [40] showed that Ku-
band backscatter from the SeaWinds-on-QuikSCAT scatterom-
eter (QSCAT) could be used to monitor canopy phenology and
growing season vegetation dynamics at 27 sites across North
America. They found good agreement with MODIS LAI, but
noted that the onset of growth was often detected earlier in the
SeaWinds data than in the MODIS data. Similar results were
observed by Lu et al. [179] in a comparable study conducted at
sites across China. Ringelmann et al. [180] identified increases
in filtered QSCAT backscatter, associated with improved grow-
ing conditions, to estimate the planting dates in a semiarid area
in Mali. Hardin and Jackson [181] found seasonal change in
backscatter from a savanna area in South America could be at-
tributed due to variations in the dielectric constant of the grass
itself accompanied by a strong contribution from soil mois-
ture. Backscatter was found to decrease in the latter part of the
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Fig. 3. Freeman–Durden decomposition of RADARSAT-2 quad-polarization data from the 2012 SMAPVEX experiment in Manitoba, Canada. The left image
is from April 26, middle from June 13, and right from July 7. Surface scattering is displayed in blue, volume scattering in green, and double bounce in red.

season due to decreasing soil moisture and increased canopy
attenuation.

It is important to note that the coarse resolution (typically
around 25 km) of the data used in these studies means that
they are more suited to regional monitoring than field-scale
monitoring. Nonetheless, they demonstrate that scatterometer
data are suited for interannual monitoring of the timing and
evolution of the growing season, which is useful for regional
water resources management, food security monitoring, crop
yield forecasting, etc.

B. Crop Classification

The fine resolution of SAR observations make them better
suited to field-scale crop classification. The primary advantage
cited for integrating SARs with optical data in crop classifica-
tion strategies is because microwave sensors are unaffected by
cloud cover, making SARs a reliable source of data for scientific
and operational needs. While this statement is correct, research
has proven that optical data are not needed as input to a crop
classifier as long as SAR configurations are optimized. As with
optical approaches, if a SAR-only solution is to be success-
ful multiple acquisitions through the growing season are needed
[37]. At any single point in time two crops (e.g., wheat and oats)
can have very similar backscatter. However, as the structure of
the crop changes (especially during seed and fruit development),
the backscatter changes. Classification can be performed based
on these changes, using the variation in backscatter over time to
distinguish one crop type from another. The number of images
required depends upon the crops present and the complexity of
the cropping system (for example, number of crops, consistency
of planting practices, presence of intercropping, and number of
cropping seasons per year). Le Toan et al. [182] showed that
the distinctive backscatter changes between two ERS-1 SAR
images during a rice growth cycle were enough to identify rice
fields. By relating the backscatter to canopy height and biomass,

they were also able to map rice fields at different growth stages.
A subsequent study by Ribbes [183] found a lower dynamic
range in RADARSAT images over rice compared to ERS-1,
possibly due to polarization but found that RADARSAT was
also potentially useful for rice-mapping. More recently, Bouvet
et al. [184] used a series of ten X-band images from Cosmo
SkyMed to map rice fields in the Mekong Delta, Vietnam. Mc-
Nairn et al. [185] used multiple acquisitions of X-band and/or
C-band data to deliver classification results with an overall ac-
curacy of well over 90%, but in a simple corn-soybean-forage
cropping system. In fact for this simple system, X-band imagery
accurately (90–95%) identified corn only 6 weeks after seeding.
However, cropping systems can be much more complex, and in
these circumstances, it is important to include later images that
capture periods of reproduction and seed development in the
classifier, when crop structure changes are most apparent [186],
[187].

As stated, successful classification requires multitemporal
SAR acquisitions to capture changes in crop phenology. When
considering the SAR configuration, choice of frequency is very
important. This choice is not straightforward and the canopy
(in terms of crop type and development) must be considered.
Enough penetration is needed for microwaves to scatter into the
canopy but when frequencies are too low, too much interaction
occurs with the soil.

Inoue et al. [62] showed that, for rice, X- and K-band
backscatter were sensitive to thin rice seedlings but poorly cor-
related with biomass and LAI, which were better correlated
with L- and C- band, respectively. Data from several spaceborne
SARs including ERS 1/2 SAR, Envisat ASAR, Radarsat and Ad-
vanced Land Observing Sate (ALOS) PALSAR have been used
to map rice growth [182], [183], [188]–[190]. Jia et al. [191] fa-
vored longer wavelengths at C-Band over X-Band for separating
winter wheat from cotton. McNairn et al. [186] found that longer
L-Band data were needed to accurately identify higher biomass
crops (corn, soybean), although C-Band data were most suit-
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able for separating lower biomass crops (wheat, hay pasture).
Because cropping systems include wide ranges of crops with
varying volumes of biomass, researchers have consistently ad-
vocated for an integration of data at multiple frequencies to
ensure high accuracy crop maps. Increases in accuracies have
been reported when X- and C-Band data were integrated [191],
C- and L-Band [186], [192], [193], X-, C-, and L-Band [35]
as well as C-, L-, and P-Band [194]–[198]. The largest gains
in accuracy are often observed for individual crop classes. In
McNairn et al. [185], accuracies for individual crops increased
up to 5% (end of season maps) and 37% (early season maps)
when both X- and C-band were used together.

By and large, radar parameters that are responding to mul-
tiple or volume scattering within the crop canopy are the best
choice for crop identification. Many studies have confirmed that
the cross polarization (HV or VH) is the single most impor-
tant polarization to identify the majority of crops [63], [102],
[186], [199]–[201]. The greatest incremental increase in accu-
racy is then observed when a second polarization is added to
the classifier [102], [199], [200]. Agriculture and Agri-Food
Canada, for example, integrates C-Band dual-polarization SAR
(VV and VH from RADARSAT-2) with available optical data
for their annual crop inventory [202]. This inventory is national
in scale and is run operationally, delivering annual crop maps
with overall accuracies consistently at or about 85%. Although
the greatest improvements are observed when adding a second
polarization when available, a third (such as HH) can increase
accuracies for some crops [102], [186], [203].

Limited research has been published on the use of scattering
decompositions within the context of crop classification. What
has been presented has indicated small yet important incremen-
tal increases in accuracies. At L-Band, McNairn et al. [186]
demonstrated that overall accuracies improved up to 7% when
decomposition parameters (Cloude-Pottier, Freeman-Durden)
were used instead of the four linear intensity channels (HH, VV,
VH, HV). Differences in the relative contributions of scattering
mechanisms among the crops were observed leading to im-
proved classification. Liu et al. [163] used RADARSAT-2 data
and the three Pauli components in a maximum likelihood clas-
sifier, applying this to a relatively simple cropping mix (corn,
wheat, soybeans, hay pasture). Two test years established an
overall accuracy of 84–85%, using only these C-band data.
Compact polarimetric (CP) data (in circular transmit-linear re-
ceive configuration) has been simulated from RADARSAT-2
C-band data and also assessed for crop classification. Using the
Stokes vector parameters from synthesized CP data (four im-
ages through the season) classification accuracies of 91% were
reported with individual crop classification accuracies ranging
from 81–96% (corn, soybeans, wheat, and hay pasture) [204].

C. Crop Monitoring

Global, national, and regional monitoring of crop produc-
tion is critical for a host of clients. These clients include
those concerned with food security where foresight into pro-
duction estimates are needed to address potential food short-
ages, commodity brokers looking for information to facilitate

financial decision making and agri-businesses, which can more
effectively deploy harvesting and transportation resources if pro-
duction estimates are known in advance. Forecasting production
is not a trivial task and as described in Chipanshi et al. [205]
methods can be categorized as statistical, mechanistic, or func-
tional, with Earth observation data increasingly being used as
data input into crop condition, production and yield forecasting.
Agronomists are often interested in exploiting LAI or biomass
as surrogates, since both are good indicators of potential crop
yield [206]. The structure of a crop canopy significantly im-
pacts the intensity of scattering, type of scattering and phase
characteristics. This structure is crop specific and varies as crop
phenology changes. As such, research as far back as 1984 [207]
and 1986 [208] has demonstrated a strong correlation between
backscatter intensity and LAI. These researchers focused on
higher frequency K- and Ku-band and noted strong correlations
with the LAI of corn; weaker correlations being reported for
wheat. This early research encouraged additional study into the
sensitivity of SAR to LAI, leading to findings of strong corre-
lations between C-band backscatter and LAI for wheat [209],
corn and soybeans [210], and cotton [211]. Prasad [212] re-
ported strong correlations between X-band backscatter and soy-
beans; Kim et al. [213] using L-, C-, and X-band backscatter
for soybeans. Liu et al. [163] examined RADARSAT-2 data to
track LAI development of corn and soybeans using Pauli de-
composition parameters. Wiseman et al. [214] observed strong
correlations between C-band responses and the dry biomass of
corn, soybeans, wheat, and canola. Much of the earliest research
focused on linear like-polarized responses (for example, Ulaby
et al. [207] and Paris [208] examined HH and VV polariza-
tions). Scattering from crop canopies is a result of multiple
scattering from within the crop canopy, and between the canopy
and soil. As such, repeatedly the highest correlations with LAI
and biomass have been found for SAR parameters indicative of
these multiple scattering events. These parameters include HV
or VH backscatter, pedestal height, and volume scattering com-
ponents from decompositions and entropy ([195], [196], [209],
[210], [214]–[216] all using C-band). Although SAR parame-
ters responsive to volume scattering have proven most sensitive
to crop condition indicators such as LAI and biomass, a few
researchers have reported success in combining polarizations in
the form of ratios. This has included a C-band HH/VV ratio
for wheat biomass [21], wheat LAI [217], and rice LAI [218].
C-HV/HH proved sensitive to the LAI of sugarcane [219].

In 2009, Kim and van Zyl [220] introduced the RVI, whereby
RVI is expected to increase (from 0 to 1) as volume scattering
increases due to canopy development. RVI is defined as

RVI =
8σ0

hv

σ0
hh + 2σ0

hv + σ0
vv

(6)

where σ0 is SAR intensity for each transmit (h or v) and receive
(h or v) polarization.

Fig. 4 shows a time series of RVI calculated from data col-
lected during Microwex 10 with the UF-LARS. Though HV
is typically lower than copolarized backscatter, it is clearly
most sensitive to the increasing biomass, indicated by increas-
ing LAI. RVI is less than 0.2 up to 30 days from planting be-
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Fig. 4. Data collected in a corn canopy during Microwex10. Top: Surface (2.5 cm) soil moisture, and LAI. Middle: Co- and cross-polarized backscatter σ0 .
Bottom: RVI and VWC.

cause the magnitude of HV is much lower than the copolarized
backscatter. After this date, RVI increases steadily until the plant
reaches full growth. Fluctuations in RVI reflect changes in soil
moisture (influencing co-pol backscatter), and VWC (influenc-
ing cross-pol backscatter). RVI has been statistically correlated
with the plant area and biomass of some crops [214], [221],
[222]. It has also been used to estimate VWC for soil moisture
studies, e.g., [223] and [224].

Radar response from crop canopies can saturate at higher LAI
or biomass. This means that as the crop continues to accumulate
plant matter, the radar backscatter is no longer responsive to
these increases. The exact point of saturation is crop and fre-
quency specific. For corn, McNairn et al. [102] founded that
C-HH saturated at a height of one meter. When considering
LAI, saturation has been reported at LAI of 2-3 (Ulaby et al.,
[207], using K-band), LAI of 3 for corn and soybeans [210], and
LAI of 3 for rice [135]. Not all research has reported saturation;
For winter wheat, backscatter continued to be sensitive to crop
development throughout the season [96]. Although saturation
is problematic when monitoring some crops during the entire
season, a critical window for crop yield forecasting is during the
period of rapid crop development up until peak biomass accu-
mulation. Wiseman et al. [214] reported exponential increases
in C-band responses in the early season when biomass accu-
mulation accelerated, especially for parameters such as entropy
(corn and canola) and HV backscatter (soybeans). Thus, SAR-
based estimates of LAI, even if restricted to periods prior to peak

biomass accumulation, will be useful in monitoring crop pro-
ductivity. These studies which reported a sensitivity of SAR to
LAI and biomass gave rise to efforts to model and eventually es-
timate biophysical parameters indicative of crop condition. The
WCM has been a choice approach to estimate crop parameters
given its relative simplicity to model and invert. The influence
of soil moisture on SAR response dissipates as the canopy de-
velops. Prevot et al. [96] reported that at X-band once the LAI
of wheat reached four, soil contributions were negligible. At
C-band, once the LAI of corn and soybeans reached three, 90%
of scattering originates from the canopy [210]. Nevertheless,
considering the requirement to model the entire growth cycle, it
remains important to consider soil moisture contributions within
the WCM. Ulaby et al. [207] demonstrated that when LAI is
less than 0.5, backscatter is dominated by soil moisture contribu-
tions. One approach to LAI retrieval with the WCM is to provide
ancillary sources of soil moisture. This is particularly effective
when the number of available SAR parameters is not sufficient
to retrieve multiple unknown variables modeled by the WCM.
This approach was demonstrated by Beriaux et al. [137]. Here,
VV backscatter was used to estimate the LAI of corn, using
ancillary sources of soil moisture. LAI errors (RMSE in m2/m2)
were reported as 0.69 (using soil moisture from ground pen-
etrating radar), 0.88 (using field measurements) and 0.9–0.97
(using moisture modeled by SWAP). If multiple SAR param-
eters are available, LAI can be retrieved without provision of
ancillary soil moisture data. Prevot et al. [96] did so using two
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frequencies (X-band and C-band) and reported an RSME for
retrieval of LAI for winter wheat as 0.64 m2/m2. Soil moisture
was also retrieved (RSME of 0.065 cm3/cm3). In a slightly mod-
ified approach, Hosseini et al. [136] used multiple polarizations
from RADARSAT-2 and an airborne L-band sensor to invert the
WCM without the need for ancillary moisture data. In this case,
LAI was accurately estimated using C-VV and C-VH backscat-
ter for corn (RMSE of 0.75 m2/m2) and soybeans (RMSE of
0.63 m2 /m2). Errors using L-band were at or above RMSE of
1, perhaps indicating too much penetration for accurate LAI
retrieval for these canopies. Research continues in this domain,
yet it is evident that SAR can provide estimates on LAI to sup-
port the monitoring of crop condition. In fact, error statistics
for retrieval of LAI for corn and soybeans using RADARSAT-
2 [136] were slightly lower than those achieved using optical
RapidEye data [225], both experiments occuring in Canadian
cropping systems.

Beyond LAI, polarimetric SAR (PolSAR) has proved very
valuable for monitoring phenological stages of rice [226]–[231]
and other crops [221], [232]–[234]. Recently, Vicente-Guijalba
et al. [235] presented a dynamic approach for agricultural crop
monitoring. First, a dynamical model for crop phenological
change is extracted from a reference dataset (e.g., a stack of
SAR images). Then, this model is constrained by input data us-
ing an extended Kalman filter to estimate the crop phenological
stage on a continuous scale in real time. They demonstrated us-
ing Radarsat data from AgriSAR2009 that the approach worked
well for wheat and barley. For oats, the sensitivity was only suf-
ficient in the first and last stages. In related studies, data fusion
[236] and data assimilation [237], [238] techniques were also
successfully used to extract key dates or phenological stages
from stacks of SAR images. Mascolo et al. [239] presented a
novel methodology that uses distances among covariance ma-
trices derived from series of PolSAR images to identify both
the phenological intervals to be estimated. It also determines
the training sets for each interval and the intervals are then
classified by the complex Wishart classifier. The advantage is
that this method obviates the need to identify specific PolSAR
features. They demonstrated, using RADARSAT-2 data from
the AgriSAR2009 campaign, that this methodology can be used
to retrieve the phenological stages of four different crop types
namely oat, barley, wheat, and corn. Finally, PolSAR interfer-
ometry, in which the strengths of interferometry are combined
with those of PolSAR, has been put forward to address some of
the shortcomings of PolSAR in agricultural monitoring [240].
PolInSAR yields information about the localization of the scat-
tering centers, and hence the vertical structure of the plant.
Lopez-Sanchez and Ballester-Berman [240] argue that this may
be used to overcome the saturation effects observed in PolSAR
and to monitor plant phenological stage.

D. Soil Moisture

Soil moisture is important in its own right for agricultural
scheduling and water resources management [241] and drought
monitoring [242]. Furthermore, soil moisture observations can
be used to account for the influence of drought conditions on

crop yield forecasts [243]–[245]. The soil moisture dataset de-
rived from the ERS 1/2 wind scatterometers and the ASCAT,
provides one of the longest-duration global records of soil mois-
ture and is the only operational global soil moisture product de-
rived from radar observations [246]. It is based on an empirical
soil moisture retrieval algorithm that accounts for seasonality
in the influence of vegetation on the sensitivity of backscatter
to soil moisture [247]. First, the entire record of backscatter
coefficients from the ERS wind scatterometer is extrapolated
to a reference angle of 40◦, yielding a time series σ0(40, t).
The highest and lowest values of σ0(40, t) for each grid cell,
σ0

wet(40, t) and σ0
dry (40, t), are identified. The first is gener-

ally independent of vegetation status, while σ0
dry (40, t) varies

seasonally with vegetation phenology. Assuming that σ0(40)
and the surface soil moisture are linearly related, the rela-
tive moisture content of the surface (0.5–2-cm thick) layer is
given by

ms(t) =
σ0(40, t) − σ0

dry(40, t)
σ0

wet(40, t) − σ0
dry(40, t)

. (7)

This approach was developed for a study in the Iberian peninsula
[247]. In a subsequent study, the approach was validated using
an extensive in situ dataset from Ukraine [248] and a soil water
index (SWI) was introduced to provide a measure of profile soil
moisture. SWI is obtained as a convolution of the time series
of surface moisture content with an exponential filter function
such that

SWI(t) =
∑

i ms(ti)e−(t−ti )/T

∑
i e−(t−ti )/T

(8)

for ti ≤ t, where ms is the surface soil moisture from the ERS
WS at time ti , T is some characteristic time length between 15
and 30 days. Wagner et al. [249] evaluated both products over
West Africa. They demonstrated that the temporal and spatial
distributions of the estimated ms and SWI captured the influ-
ence of the wet and dry seasons and that the estimated slope
parameters were consistent with the distribution of land cover.
Wagner et al. [250] presented first global, multiannual soil mois-
ture data set (1992–2000) from satellite remote sensing. Due to
the lack of a global network of in situ validation data, the es-
timated soil moisture was compared with observed monthly
precipitation data, and monthly soil moisture obtained from a
dynamic global vegetation model. A comparison of anomalies
in SWI and precipitation anomalies yielded correlations up to
0.9 in tropical and temperature regions. Though spurious ef-
fects were observed in steppe and desert climates, this study
illustrated the potential value of spaceborne scatterometer data
for soil moisture estimation. Following the launch of the first of
three METOP satellites in October 2006, Bartalis et al. [251]
used the parameters derived from eight years of ERS scatterom-
eter data, to produce first global soil moisture maps from the
METOP-A ASCAT commissioning data. Comparison of the
ASCAT-derived surface soil moisture to rainfall and NDVI data
suggested that the approach developed for the ERS scatterom-
eter could be applied to ASCAT data with minimal adaptations
required to the processing chain and configuration.
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Naemi et al. [252] made several improvements to address
shortcomings in the original algorithm to yield the so-called
WARP5 model.

Soil moisture estimates derived from both the ERS WS and
MetOp ASCAT, using a newer WARP5.2 are key components
of the European Space Agency Climate Change Initiative (ESA
CCI) soil moisture product [253]. A recent study by Vreug-
denhil et al. [254] highlighted the need to better account for
the influence of vegetation dynamics on soil moisture retrieval,
particularly in areas where there is significant interannual vari-
ability in vegetation.

NASA’s SMAP mission was launched on January 31, 2015
with an L-band radiometer and L-band SAR on board. The
SMAP baseline algorithm for the radar-only soil moisture prod-
uct was to use a multichannel datacube retrieval approach out-
lined by Kim et al. [255], [256]. Forward backscatter models
for 16 vegetation classes and bare soil are used to simulate
backscatter as a function of the real part of the soil dielectric
constant (εr ), roughness (s), and VWC. Scattering from each of
the vegetation types is simulated using the methods described in
Section III-B, and based on data collected from field campaigns.
For retrieval σHV or ancillary data is used to determine VWC
and a time series of copolarized backscatter is used to deter-
mine a single value for s and a time series of εr by minimizing
the difference between simulated and observed backscatter [6].
In addition to this baseline algorithm, the change detection ap-
proaches of van Zyl and Kim [257] and Wagner et al. [247] are
considered as optional algorithms. Unfortunately, the failure of
the radar in July 2015 means that SMAP products are currently
limited to those from the radiometer alone.

V. CHALLENGES AND OPPORTUNITIES

A. Resolution of Spaceborne Scatterometry Data

The coarse resolution of spaceborne scatterometer observa-
tions remains a challenge. However, resolution enhancement
[258], [259], data assimilation [260]–[262], and downscaling
approaches [263] offer new possibilities in terms of extract-
ing field-scale or, at least, finer-scale information from coarse
scatterometer observations for agricultural applications.

B. Limitations of Operational SAR Applications

Spatial and temporal coverage remains a huge challenge for
operational SAR applications in agriculture. The results dis-
cussed here illustrate that theoretically, radar data are an ex-
cellent option for crop type monitoring to support production
estimates, and to monitor crop condition. The quality of mul-
tifrequency radar data retrievals in these applications is suffi-
ciently high to obviate the need for optical data. The recent
launches of Cosmo Sky-Med (4 day revisit time) and Sentinel
1a and 1b (6 day revisit time) have greatly improved temporal
coverage. Nonetheless, spatial and temporal availability of data
remains a barrier to operational global, regional, or even national
monitoring. For example, the current state-of-the-art operational
monitoring performed by Agriculture and AgriFood Canada still
relies on the integration of radar and optical data.

Furthermore, to transition from scientific applications to op-
erational monitoring, the current model (i.e., WCM) needs to
be adapted so that it can be applied for a wider range of crop-
ping systems. Finally, the extensive history of using optical data
in agriculture means that users are familiar with the process-
ing and interpretation of optical imagery. The complexity of
SAR scattering means that applications specialists in agricul-
tural monitoring generally consider interpretation of radar im-
ages more difficult than optical images. This is a major barrier
to the widespread adoption of radar for operational monitoring,
most of which is carried out by national institutions. User com-
munity participation and capacity-building activities are needed
to ensure that radar products are provided to users in a format
that they can readily use.

C. Water Stress Monitoring Using Spaceborne Radar

An emerging topic of research is the potential use of diurnal
variations in backscatter to identify the onset of water stress.
Friesen [264] identified statistically significant diurnal differ-
ences in backscatter from the ERS 1/2 wind scatterometer over
West Africa. A hydrological model, and a degree-day model
were used to demonstrate that the largest differences coincided
spatially and temporally with the onset of water stress [264].
A sensitivity study using the MIMICS model showed that the
variations may be attributed to variations in the water content
(and hence, relative permittivity) of the leaves and trunks [265].
The challenge remains to disentangle the artifacts of WS pre-
processing from the influence of variations in dielectric prop-
erties and geometric changes in the canopy due to the forest’s
physiological response to water stress. Diurnal variations have
been detected in higher frequency spaceborne observations too
[3], [266]–[268]. Frolking et al. [2] identified a decrease in
backscatter over the southwestern Amazon forest during the
2005 drought. The most significant anomalies, with respect to in-
terannual variability, were in the morning backscatter anomalies.
Strong spatial correlation with water deficit anomalies suggested
that these anomalies were due to drought—hypothesizing,
similarly to Friesen [264], that the changes were due to changes
in water relations within the tree in response to stress.

In the agricultural context, diurnal differences in backscatter
were also observed in agricultural canopies in tower-based mea-
surements as early as the 1970s [64], [269], and were attributed
to loss of canopy moisture during the day due to transpiration. A
more recent study in an agricultural maize canopy found diurnal
changes in bulk VWC up to 30% and leaf VWC up to 40% dur-
ing a period of water stress [28]. WCM simulations were used to
illustrate that the variations in leaf VWC had a significant impact
on total backscatter, particularly at C-band and higher frequen-
cies. Schroeder et al. [270] normalized ASCAT backscatter to
54◦ to maximize sensitivity to the slope factor. Recall from Wag-
ner et al. [247] that the slope factor reflects variations in VWC
or phenology. Schroeder et al. founded that negative anoma-
lies in σ0(54), particularly during the morning overpasses, were
spatially and temporally consistent with the drought patterns
observed in 2011 and 2012 by the U.S. Drought Monitor. Ad-
ditional research is needed to relate the observed backscatter
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variations with the underlying plant response to drought, and
hence to explore the potential of scatterometer and SAR data
at different frequencies to identify water stress at regional and
field scales, respectively.

D. New Opportunities With ASCAT

Twenty five years since the launch of the Active Microwave
Instrument on ERS-1, sensors that were primarily launched for
ocean applications are at the core of operational remote sensing
for land surface monitoring. The continuation of ASCAT on
MetOp will provide essential operational soil moisture data for
the meteorological, hydrological, and land monitoring commu-
nities [271]. Recent research by Vreugdenhil [254] demonstrates
that there is valuable information about vegetation dynamics in
the ASCAT observations. The ability to quantitatively exploit
this information could lead to improved soil moisture retrieval
and vegetation phenology monitoring.

E. Vegetation Dynamics From RapidScat on ISS

Paget and Long [3] recently mapped diurnal variations in Ku-
band backscatter observations from RapidScat. Significant vari-
ations were observed across several vegetation biomes. Though
previous studies have indicated that diurnal variations at sev-
eral frequencies could be due to variations in water dynamics
[264], [272], [273], uncertainty still surrounds the relationship
between plant water relations, variations in dielectric properties,
and the observed backscatter [2], [3], [265], [274]. Understand-
ing what drives these diurnal backscatter variations is the first
step to exploiting RapidScat for agricultural applications. Fur-
thermore, their exploitation would also yield valuable insight
into the potential value of the ISS as a platform for vegetation
monitoring using radar.

F. New C-band SAR Missions

Two new C-band SAR constellations offer global high-
resolution imagery at an unprecedented spatial and temporal
resolution, thereby, offering the potential to more accurately pin-
point growth stages and monitor biomass accumulation, VWC,
etc. The two satellites of ESA’s C-band Sentinel-1 Mission were
launched in 2014 and 2015, respectively. These are the first in
a series of operational satellites in the frame of ESA’s Global
Monitoring for Environment and Security Space Component
programme. The two satellites are in the same orbital plane pro-
viding an average revisit time of two days above 45◦ N/S and
global exact repeat coverage every two weeks. It has four imag-
ine modes: the interferometric wide-swath model, wave mode
(WM), strip map mode, or extra-wide swath model. Apart from
the single-polarization WM, all modes have dual polarization
with VV and VH as the default [275]. Canada’s three-satellite
RADARSAT Constellation Mission (RCM) is scheduled for
launch in 2018. It will support the operational requirements
of the Government of Canada and to provide data continuity
for existing users of RADARSAT-1 and RADARSAT-2 [276].
RCM will have a range of modes from wide area surveillance
modes (500-km swath) to spotlight modes (5-km swath). Single

or dual polarization acquisitions (HH + HV or VV + VH or
HH + VV) are possible for each mode. The constellation also
provides access to both quad-polarization and compact polar-
ization (CP) modes. RCM will have a 12-day repeat cycle and
with three satellites, 4-day coherent change detection will be
possible. From Section IV, it is clear that the exploitation of
SAR data, particularly Radarsat1 and Radarsat 2 data, has sig-
nificantly contributed to our understanding of scattering mech-
anisms in vegetation. Similarly, knowledge generated from the
use of Sentinel-1 and RCM can be transferred to improve our un-
derstanding of scatterometry and facilitate increase exploitation
of the data collected by ASCAT on MetOp and other spaceborne
scatterometry missions.

G. Combined SMAP/Sentinel-1 Soil Moisture

One of the objectives of NASA’s SMAP mission was to com-
bine the radiometer and radar observations to produce a merged
soil moisture product at 9-km resolution. Sentinel-1 observa-
tions have been proposed as a potential substitute for SMAP
radar observations in this combined product since the radar fail-
ure in July 2015 [277]. However, there are several differences
between the SMAP radar data and the Sentinel-1 SAR data
that will need to be addressed. In addition to the difference
in frequency between the two radars, and the incidence angle
diversity of Sentinel-1, the main challenge is that the two in-
struments are not in the same orbit. Any downscaling approach
must, therefore, be robust enough to merge acquisitions from
the SMAP radiometer and Sentinel-1 radar that are separated by
hours or even days. Combined multiangle, C- and L-band radar
observations from tower-based scatterometers could play an im-
portant role in developing and validating proposed downscaling
approaches to take these differences into account.

H. Scattering Models for Vegetation

The persistent dilemma in terms of radar applications for veg-
etation is choosing an appropriate model. The WCM remains
widely used despite, if not because, of its simplicity. However,
its key assumptions regarding the distribution of moisture in the
canopy are generally not valid. The more theoretical energy and
wave-based approaches remain primarily in the research domain
due to the large number of input parameters required (e.g., di-
electric properties of soil and vegetation, geometry, etc.). This
data collection requirement may be possible during intensive
field campaigns, but it is too time consuming and expensive
to be performed regularly and for all possible vegetation cover
types. Furthermore, the representations of the canopy in en-
ergy and wave-based models are still simplifications of reality.
For emerging applications, it is significant that the relationship
between these parameters and vegetation (particularly water)
dynamics is currently not well understood. A new approach
to modeling is needed that reflects the known non-uniformity
and dynamic profile in moisture content, and the importance of
multiple-bounce between the soil surface and overlying vegeta-
tion. However, to ensure that the model is universally applicable,
it needs to be as simple to parameterize and use as the WCM.
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I. Radar Tomography

From the discussions in the previous sections, it becomes
clear that the main limitation of conventional single- or quad-
polarimetric acquisitions, arises from the fact that they do not
provide the required dimensionality to resolve unambiguously
the multiple and/or complex scattering processes ongoing at
different polarizations and frequencies. A potential solution to
this are multi-angular acquisitions that allow the reconstruction
of the 3-D reflectivity of volume scatterers by means of tomo-
graphic techniques. In the context of agricultural crops, the first
experiments and demonstrations where performed by means
of ground-based scatterometers in indoor and outdoor set-ups
[278]. More recently, the developments in SAR technology and
data processing allowed first tomographic airborne SAR exper-
iments over agricultural fields even at higher frequencies [279],
[280].

Airborne tomographic SAR experiments are mostly carried
out by displacing the multiple acquisitions on a linear config-
uration such that the variation of the radar look angle amounts
to a small fraction of a degree between consecutive acquisitions
[281]. In conventional linear tomography the 3-D reflectivity
is inverted from the multiacquisition data vector by means of a
Fourier-based approach [281], [282]. In this case, the spatial res-
olution in the elevation direction (also referred to as cross-range
direction, i.e., the direction perpendicular to the radar LoS) is
defined by the length of the formed synthetic aperture LX , that
corresponds to the maximum separation (in elevation) between
the acquisitions as

δ =
λ

2LX
r0 (9)

where λ is the radar wavelength and r0 the distance between
radar and scatterer. For example, in order to achieve, with an
X-band radar, a resolution in elevation of 1 m at a distance
r0 = 5 km, an aperture of 150 m is required. While the
maximum separation between the acquisitions is defined by
the resolution requirement, the number of acquisitions needed
for tomographic imaging is given by the distance between the
acquisitions required to fulfil Nyquist sampling. For a scatterer
(e.g., agricultural field) with height HX in elevation, the
minimum required distance between the acquisitions is given
by [281]

dX =
λ

2HX
r0 . (10)

Equations (9) and (10) make it clear that the lower heights of
agricultural vegetation require high vertical resolutions and
demand a larger number of acquisitions. In the example used
previously for mapping a HX = 3-m tall agriculture field, a
minimum distance of 25 m between the acquisitions is required
so that in total seven acquisitions are at least required assuming
a uniform spacing among them.

For each SAR image pixel, the reflectivity profile can be in-
verted from the related multiacquisition data vector by means
of a Fourier-based approach [281], [282]. However, the recon-
structed profile will in general be affected by the presence of
sidelobes that can lead to misinterpretations of the reflectivity

Fig. 5. Normalized tomographic reflectivity profile across three fields (corn,
wheat, and barley) at X-band with a vertical resolution of δZ = 0.5 m at HH
(top) and VV (bottom).

distribution. On the other hand, a resolution better than the one
provided by the tomographic aperture [see (9)] is desired, es-
pecially for small vegetation volumes like crops. In order to
improve the reconstruction performance and to relax the ac-
quisition requirements, adaptive reconstruction algorithms have
been proposed. One interesting and popular example is the
Capon spectral estimator, a widely employed low-complexity
solution [282]. More recently, compressive sensing reconstruc-
tion techniques that allow a high-performance reconstruction
even with a very low number of acquisitions (that may even
not fulfil the Nyquist sampling condition) have been proposed
[283]. Both algorithms have been demonstrated to greatly im-
prove the reconstruction of the reflectivity profile in terms of
side-lobe cancellation and resolution enhancement, at the cost
of some (generally acceptable) radiometric nonlinearity.

Fig. 5 shows a Capon tomographic reflectivity profile across
three fields (corn with a physical height of 1.8 m at the time
of the acquisition, wheat with a height of 0.8 m, and barley
with a height of 0.8 m) at X-band with a vertical resolution
of 0.5 m formed by nine airborne SAR acquisitions performed
on the 3rd of July 2014 over the Wallerfing test site (South
Germany). Looking at the profile, one can clearly distinguish
the different scattering processes. The corn field, which is still in
its early development stage, is dominated by dihedral scattering
(by HH dominated scattering located on the ground). Over the
wheat field, surface scattering on the top layer is ongoing and
the row spacing is clearly visible. Over the dry barley field, the
vegetation at HH is almost “invisible” and only appears weakly
in VV [280].

Fig. 5 illustrates that tomographic imaging has the potential to
make a critical and unique contribution to our understanding of
scattering from agricultural scenes as it allows us to identify the
dominant scattering processes as well as their change in time at
different polarizations and frequencies. This is essential for un-
derstanding propagation and scattering within agriculture veg-
etation and interpreting correctly conventional back-scattering
signatures. The availability of multitemporal tomographic ac-
quisitions is especially critical when it comes to determine pro-
cesses that effect the dielectric and/or geometric characteristics
of the scatterers.
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However, the large number of acquisitions, combined with the
fast temporal evolution of agricultural plants, limits the applica-
tion of radar tomography to rather small-scale ground-based
and/or airborne experiments. Spaceborne repeat-pass imple-
mentations are limited by temporal decorrelation that has more
of an effect on the higher frequency range preferred for agri-
cultural vegetation applications. An interesting alternative—
proposed and used for forest tomography—are single-pass
spaceborne configurations that are able to provide tomographic
imaging based on (single pass) interferograms acquired at con-
secutive repeat-pass cycles [282]. However the fast development
of agriculture plants requires very short repeat-pass cycles in
order to avoid changes in the 3-D-reflectivity due to the plant
evolution. Accordingly, until the next generation of multistatic
spaceborne SAR configurations becomes operational, the avail-
ability and coverage of tomographic data will be limited but sig-
nificant for the development of simplified inversion approaches
invertible with a “slimmer” in terms acquisitions observation
space [240], [284]–[287] .

J. Innovative Ground Measurements

Several innovative ground measurement techniques offer new
insight into vegetation dynamics, specifically biomass accumu-
lation and VWC variations, i.e., GPS-IR [288]–[290], wireless
networks [291], and COSMOS [292], [293]. These ground-
based sensors yield indirect, though continuous estimates of
VWC and biomass which could fill the gaps between less fre-
quent destructive sampling. Data from these new sensors with
conventional measurements of plant architecture and moisture
profile could be combined with continuous tower-based scat-
terometry to study subdaily variations in backscatter and to
develop new models that account for variations at scales not
considered in the current formulation of the WCM.

VI. CONCLUSION

Ground-based and aircraft-based experiments have been cen-
tral to our understanding of backscatter from vegetation and
how it depends on system parameters (frequency, polarization,
incidence, and azimuth angle) and surface characteristics (soil
moisture and roughness, vegetation moisture, and geometry).
They have also played a crucial role in the development and val-
idation of models and decomposition methods. This has enabled
the development of radar as a tool for agricultural applications,
particularly crop classification, crop growth monitoring, and soil
moisture monitoring.

Though spaceborne scatterometry has been used to monitor
vegetation phenology at regional scales, field scale classification
and crop monitoring has primarily exploited spaceborne SAR
due to its fine resolution. Limited coverage, until now, has hin-
dered widespread operational use. The rather long revisit time
of SAR missions to date has limited their use for soil mois-
ture monitoring. Despite their coarse resolution, soil moisture
products from the ERS 1/2 wind scatterometer and ASCAT on
MetOp have become a data cornerstone in hydrological and cli-
mate studies. Recent advances in both SAR and scatterometry
demand improved representation of vegetation dynamics.

The recent launch of the Sentinel-1 satellites and the upcom-
ing Radarsat Constellation mean that C-band SAR observations
will be available with unprecedented revisit time opening the
possibility of observing vegetation dynamics at a finer temporal
scale than ever before. At the same time, several studies using
spaceborne scatterometry data (C-band and K-band) have re-
vealed that backscatter is sensitive to VWC variations and in
particular to water stress. These developments demand the abil-
ity to understand and simulate scattering from vegetation at finer
temporal scales than ever before.

To ensure that we can exploit both SAR and scatterometry
data to its full potential, we need to develop models that con-
sider vegetation as a dynamic scattering medium rather than a
medium that changes slowly over the growing season. Being
able to quantify the influence of water dynamics on backscat-
ter could lead to improved soil moisture retrievals, and re-
duce uncertainty in crop classification and monitoring appli-
cations. It would also stimulate the development of regional
scale water stress monitoring based on spaceborne scatterom-
etry. Innovative methods like GPS-IR and radar tomography
can play a vital role in characterizing the dynamics of the
moisture distribution. Coupling these with ground-based scat-
terometry experiments would provide a detailed and rich dataset
with which to revisit the modeling of backscatter of vegetation.
Improvements in current applications and the development of
emerging applications will facilitate the exploitation of the new
generation of SAR satellites, and the continued exploitation
of the historic and operational data record from spaceborne
scatterometry.

REFERENCES

[1] J. Friesen, S. C. Steele-Dunne, and N. van de Giesen, “Diurnal differences
in global ERS scatterometer backscatter observations of the land sur-
face,” IEEE Trans. Geosci. Remote Sens., vol. 50, no. 7, pp. 2595–2602,
Jul. 2012.

[2] S. Frolking, T. Milliman, M. Palace, D. Wisser, R. Lammers, and M.
Fahnestock, “Tropical forest backscatter anomaly evident in SeaWinds
scatterometer morning overpass data during 2005 drought in Amazonia,”
Remote Sens. Environ., vol. 115, no. 3, pp. 897–907, Mar. 2011.

[3] A. C. Paget, D. G. Long, and N. M. Madsen, “RapidScat diurnal cy-
cles over land,” IEEE Trans. Geosci. Remote Sens., vol. 54, no. 6,
pp. 3336–3344, Jun. 2016.

[4] F. Ulaby, R. More, and A. Fung, Microwave Remote Sensing: Active and
Passive. Vol. I: Microwave Remote Sensing Fundamentals and Radiom-
etry. Boston, MA, USA: Artech House, 1986.

[5] F. Ulaby, P. Dubois, and J. van Zyl, “Radar mapping of surface soil
moisture,” J. Hydrol., vol. 184, no. 1-2, pp. 57–84, Oct. 1996.

[6] S.-B. Kim et al., “SMAP L2 & L3 Radar Soil Moisture (Ac-
tive) Data Products,” 2012. [Online]. Available: https://media.asf.
alaska.edu/uploads/l2%263_sm_a_initrel_v1_5.pdf

[7] F. Ulaby, “Radar response to vegetation,” IEEE Trans. Antennas Propag.,
vol. 23, no. 1, pp. 36–45, Jan. 1975.

[8] F. Ulaby, T. Bush, and P. Batlivala, “Radar response to vegetation II:
8-18 GHz band,” IEEE Trans. Antennas Propag., vol. 23, no. 5, pp.
608–618, Sep. 1975.

[9] A. Joseph, R. van der Velde, P. O’Neill, R. Lang, and T. Gish, “Ef-
fects of corn on C- and L-band radar backscatter: A correction method
for soil moisture retrieval,” Remote Sens. Environ., vol. 114, no. 11,
pp. 2417–2430, Nov. 2010.

[10] A. Balenzano, F. Mattia, G. Satalino, and M. W. J. Davidson, “Dense
temporal series of C- and L-band SAR data for soil moisture retrieval
over agricultural crops,” IEEE J. Sel. Topics Appl. Earth Observ. Remote
Sens., vol. 4, no. 2, pp. 439–450, Jun. 2011.



2266 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 10, NO. 5, MAY 2017

[11] M. A. Karam and A. K. Fung, “Leaf-shape effects in electromagnetic
wave scattering from vegetation,” IEEE Trans. Geosci. Remote Sens.,
vol. 27, no. 6, pp. 687–697, Nov. 1989.

[12] T. Senior, K. Sarabandi, and F. Ulaby, “Measuring and modeling the
backscattering cross section of a leaf,” Radio Sci., vol. 22, no. 6,
pp. 1109–1116, 1987.

[13] K. Sarabandi, T. B. Senior, and F. Ulaby, “Effect of curvature on the
backscattering from a leaf,” J. Electromagn. Waves Appl., vol. 2, no. 7,
pp. 653–670, 1988.

[14] A. McDonald, J. Bennett, G. Cookmartin, S. Crossley, K. Morrison, and
S. Quegan, “The effect of leaf geometry on the microwave backscatter
from leaves,” Int. J. Remote Sens., vol. 21, no. 2, pp. 395–400, 2000.

[15] D. H. Hoekman and B. A. M. Bouman, “Interpretation of C- and X-
band radar images over an agricultural area, the Flevoland test site
in the Agriscatt-87 campaign,” Int. J. Remote Sens., vol. 14, no. 8,
pp. 1577–1594, May 1993.

[16] S. H. Yueh, J. A. Kong, J. K. Jao, R. T. Shin, and T. L. Toan, “Branching
model for vegetation,” IEEE Trans. Geosci. Remote Sens., vol. 30, no. 2,
pp. 390–402, Mar. 1992.

[17] M. A. Karam, A. K. Fung, R. H. Lang, and N. S. Chauhan, “A microwave
scattering model for layered vegetation,” IEEE Trans. Geosci. Remote
Sens., vol. 30, no. 4, pp. 767–784, Jul. 1992.

[18] F. T. Ulaby and M. A. El-rayes, “Microwave dielectric spectrum of
vegetation—Part II: Dual-dispersion model,” IEEE Trans. Geosci. Re-
mote Sens., vol. GE-25, no. 5, pp. 550–557, Sep. 1987.

[19] C. Matzler, “Microwave (1–100 GHz) dielectric model of leaves,” IEEE
Trans. Geosci. Remote Sens., vol. 32, no. 4, pp. 947–949, Jul. 1994.

[20] G. Picard, T. L. Toan, and F. Mattia, “Understanding C-band radar
backscatter from wheat canopy using a multiple-scattering coher-
ent model,” IEEE Trans. Geosci. Remote Sens., vol. 41, no. 7,
pp. 1583–1591, Jul. 2003.

[21] F. Mattia et al., “Multitemporal C-band radar measurements on wheat
fields,” IEEE Trans. Geosci. Remote Sens., vol. 41, no. 7, pp. 1551–1560,
Jul. 2003.

[22] T. L. Toan et al., “Rice crop mapping and monitoring using ERS-1 data
based on experiment and modeling results,” IEEE Trans. Geosci. Remote
Sens., vol. 35, no. 1, pp. 41–56, Jan. 1997.

[23] X. Blaes, P. Defourny, U. Wegmuller, A. D. Vecchia, L. Guerriero, and P.
Ferrazzoli, “C-band polarimetric indexes for maize monitoring based on
a validated radiative transfer model,” IEEE Trans. Geosci. Remote Sens.,
vol. 44, no. 4, pp. 791–800, Apr. 2006.

[24] J. Casanova, J. Judge, and M. Jang, “Modeling transmission of mi-
crowaves through dynamic vegetation,” IEEE Trans. Geosci. Remote
Sens., vol. 45, no. 10, pp. 3145–3149, Oct. 2007.

[25] M. S. Moran, P. J. Pinter, B. E. Clothier, and S. G. Allen, “Ef-
fect of water stress on the canopy architecture and spectral in-
dices of irrigated alfalfa,” Remote Sens. Environ., vol. 29, no. 3,
pp. 251–261, 1989. [Online]. Available: http://www.sciencedirect.
com/science/article/pii/0034425789900047

[26] D. S. Kimes and J. A. Kirchner, “Diurnal variations of vegetation canopy
structure,” Int. J. Remote Sens., vol. 4, no. 2, pp. 257–271, Jan. 1983.

[27] T. van Emmerik, S. Steele-Dunne, J. Judge, and N. van de Giesen, “A
comparison between leaf dielectric properties of stressed and unstressed
tomato plants,” in Proc. 2015 IEEE Int. Geosci. Remote Sens. Symp.,
Jul. 2015, pp. 275–278.

[28] T. van Emmerik, S. C. Steele-Dunne, J. Judge, and N. van de Giesen, “Im-
pact of diurnal variation in vegetation water content on radar backscatter
from maize during water stress,” IEEE Trans. Geosci. Remote Sens.,
vol. 53, no. 7, pp. 3855–3869, Jul. 2015.

[29] T. J. Schmugge, “Remote sensing of soil moisture: Recent advances,”
IEEE Trans. Geosci. Remote Sens., vol. GE-21, no. 3, pp. 336–344,
Jul. 1983.

[30] J. R. Wang, E. T. Engman, T. Mo, T. J. Schmugge, and J. Shiue, “The
effects of soil moisture, surface roughness, and vegetation on l-band
emission and backscatter,” IEEE Trans. Geosci. Remote Sens., vol. GE-
25, no. 6, pp. 825–833, Nov. 1987.

[31] V. Mironov, M. Dobson, V. Kaupp, S. Komarov, and V. Kleshchenko,
“Generalized refractive mixing dielectric model for moist soils,”
IEEE Trans. Geosci. Remote Sens., vol. 42, no. 4, pp. 773–785,
Apr. 2004.

[32] M. C. Dobson, F. T. Ulaby, M. T. Hallikainen, and M. A. El-rayes,
“Microwave dielectric behavior of wet soil—Part II: Dielectric mix-
ing models,” IEEE Trans. Geosci. Remote Sens., vol. GE-23, no. 1,
pp. 35–46, Jan. 1985.

[33] T. F. Bush and F. T. Ulaby, “An evaluation of radar as a crop classifier,”
Remote Sens. Environ., vol. 7, no. 1, pp. 15–36, Jan. 1978.

[34] H. McNairn and B. Brisco, “The application of C-band polarimetric
SAR for agriculture: A review,” Can. J. Remote Sens., vol. 30, no. 3,
pp. 525–542, 2004.

[35] N. Baghdadi, N. Boyer, P. Todoroff, M. El Hajj, and A. Bgu, “Potential
of SAR sensors TerraSAR-X, ASAR/ENVISAT and PALSAR/ALOS for
monitoring sugarcane crops on reunion island,” Remote Sens. Environ.,
vol. 113, no. 8, pp. 1724–1738, Aug. 2009.

[36] T. Le Toan et al., “Rice crop mapping and monitoring using ERS-1 data
based on experiment and modeling results,” IEEE Trans. Geosci. Remote
Sens., vol. 35, no. 1, pp. 41–56, Jan. 1997.

[37] H. Skriver et al., “Crop classification using short-revisit Multitempo-
ral SAR data,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens.,
vol. 4, no. 2, pp. 423–431, Jun. 2011.

[38] G. Macelloni, S. Paloscia, P. Pampaloni, and E. Santi, “Global scale
monitoring of soil and vegetation using SSM/I and ERS wind scat-
terometer,” Int. J. Remote Sens., vol. 24, no. 12, pp. 2409–2425,
Jan. 2003.

[39] L. Jarlan et al., “Mapping of Sahelian vegetation parameters from ERS
scatterometer data with an evolution strategies algorithm,” Remote Sens.
Environ., vol. 87, no. 1, pp. 72–84, Sep. 2003.

[40] S. Frolking, T. Milliman, K. McDonald, J. Kimball, M. Zhao, and M.
Fahnestock, “Evaluation of the SeaWinds scatterometer for regional
monitoring of vegetation phenology,” J. Geophys. Res., Atmospheres,
vol. 111, no. D17, p. D17302, Sep. 2006.

[41] P. Frison and E. Mougin, “Monitoring global vegetation dynamics
with ERS-1 wind scatterometer data,” Remote Sens., vol. 17, no. 16,
pp. 3201–3218, 1996.

[42] M. Abdel-Messeh and S. Quegan, “Variability in ERS scatterometer
measurements over land,” IEEE Trans. Geosci. Remote Sens., vol. 38,
no. 4, pp. 1767–1776, Jul. 2000.

[43] P. J. Hardin and M. W. Jackson, “Investigating SeaWinds terrestrial
backscatter,” Photogrammetric Eng. Remote Sens., vol. 69, no. 11,
pp. 1243–1254, 2003.

[44] L. Guerriero, P. Ferrazzoli, and R. Rahmoune, “A synergyc view of
L-band active and passive remote sensing of vegetated soil,” in Proc.
2012 12th Spec. Meeting Microw. Radiometry Remote Sens. Environ.,
Mar. 2012, pp. 1–3.

[45] D. Entekhabi et al., “The soil moisture active passive (SMAP) mission,”
Proc. IEEE, vol. 98, no. 5, pp. 704–716, May 2010.

[46] R. De Jeu, W. Wagner, T. Holmes, A. Dolman, N. Van De Giesen,
and J. Friesen, “Global soil moisture patterns observed by space borne
microwave radiometers and scatterometers,” Surveys Geophys., vol. 29,
no. 4-5, pp. 399–420, 2008.
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