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Abstract—A novel algorithm is developed to downscale mi-
crowave brightness temperatures (TB ), obtained at satellite scales
of 10–40 to ≤1 km, meaningful for agricultural applications. Down-
scaling TB directly bypasses the errors induced by inverse mod-
eling encountered while downscaling satellite-based soil moisture
products. This algorithm is based upon self-regularized regres-
sive models (SRRM) and uses higher order correlations between
auxiliary variables, such as precipitation (PPT), land cover, leaf
area index, and land surface temperature, and horizontally polar-
ized TB observations. It includes information-theoretic clustering
based on auxiliary variables to identify areas of similarity, followed
by kernel regression that produces downscaled TB . The algorithm
was evaluated using a multiscale synthetic dataset over North Cen-
tral Florida for one year, including two growing seasons of corn
and one growing season of cotton. Compared to the true TB , the
downscaled TB had a root-mean-square error (RMSE) of 5.76 K
with standard deviation (SD) of 2.8 K during the growing seasons
and an RMSE of 1.2 K with an SD of 0.9 K during nonvegetated.
The SRRM algorithm effectively captured the variability in TB at
1 km through the auxiliary variables. This algorithm was imple-
mented to downscale SMOS observations available for five days
during the SMAPVEX-12 experiment. Spatially averaged root-
mean-square difference (RMSD) between the downscaled TB and
the airborne TB observations from the airborne passive-active L-
band sensor was 6.2 K, with Kullback–Leibler divergences of up to
0.91. For the SMAPVEX-12 dataset, better downscaling results are
obtained for days when there was no PPT due to regional biases
in the remotely sensed PPT from the NASA Tropical Measure-
ment Mission. The RMSDs were lower when in-situ PPT data were
used.

Index Terms—Microwave radiometry, remote sensing, soil
moisture.
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I. INTRODUCTION

LOCAL and regional distribution of soil moisture (SM)
heavily influences the global water cycle. Accurate knowl-

edge of SM at spatial scales of 1–5 km is critical for characteriz-
ing evapotranspiration and estimating infiltration and run-off in
agricultural and hydrological models. Microwave observations
at frequencies <10 GHz are very sensitive to SM in the top
5–10 cm, due to large differences in dielectric constants of dry
and wet soils, and have been widely used to retrieve SM [1],
[2]. Current satellite-based microwave missions provide global-
scale microwave observations. For instance, the European Space
Agency’s Soil Moisture Ocean Salinity (SMOS) mission pro-
vides passive observations at 25–50 km every two to three days.
The NASA Soil Moisture Active Passive (SMAP) mission pro-
vides passive observations at 1.41 GHz at the spatial resolution
of 36 km with a repeat coverage of two to three days [3]. How-
ever, the observations at these resolutions are still too coarse to
integrate with crop models [2], reducing their effectiveness for
agricultural applications, especially in areas that have heteroge-
neous land cover (LC) and meteorological conditions [4].

Most studies have downscaled SM derived from microwave
observations (TB ) [1], [5]–[8], while very few studies [9] have
downscaled satellite TB observations directly to match model
scales. The errors in downscaled SM due to subfootprint vari-
ability in LC, were found to be multimodal and, in some sce-
narios, had an root-mean-square error (RMSE) of 0.09 m3/m3 ,
even for simple SM scenarios with limited variability, and ig-
noring errors due to model inadequacies, input parameter uncer-
tainties, and sensor calibration errors [10]. Downscaling such
a biased product will only increase the final error, even if the
downscaling method corrects for physical and meteorological
heterogeneity. Thus, downscaling TB directly and then assim-
ilating the downscaled product into hydrology models or crop
growth models may significantly improve root zone SM and
crop yield estimates [11]. Piles et al. [12] downscaled TB directly
into SM by applying the Universal Triangle (UT) method and
used a second-degree regression-based linking model to relate
coarse resolution SM to TB from the SMOS mission, and other
high-resolution products, aggregated to the resolution of SMOS
observations. The fine-scale SM was then estimated using the
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assumption that the linking model at the coarse resolution also
holds at finer resolutions. The assumption of scale invariance
has been found to result in high downscaling errors, particularly
during heterogeneous LC conditions [1]. Das et al. [13] used
the correlations between changes in passive radiometer observa-
tions and active radar backscatter using a time-series approach
to obtain a merged SM product at 9 km. Some studies have used
statistical inversion techniques such as linear inversion with
regularization [14], singular value decomposition [15], and gra-
dient descent in Banach spaces [9]. A major drawback of these
approaches is the assumption of static vegetation conditions and
the recalibration of empirical constant needed for different LCs.
In addition, spatial scaling algorithms based upon second-order
statistics can lead to significant loss of structural information
in the data [2], especially under highly heterogeneous and dy-
namic conditions when the relationships between auxiliary data
and SM are nonlinear. Studies involving heterogeneous and dy-
namic LC conditions are necessary to understand the validity of
downscaling algorithms in agricultural regions.

In this study, a novel algorithm is presented that downscales
TB directly using higher order relationships between auxiliary
data including satellite derived LST, leaf area index (LAI), pre-
cipitation (PPT), and LC at finer spatial resolutions. The algo-
rithm, based on self-regularized regressive models (SRRMs),
uses a combined clustering and regression approach to improve
downscaling accuracies with smaller training sets. The goal of
this study is to develop and implement the SRRM-based down-
scaling algorithm that directly disaggregates coarse-scale TB
using auxiliary fine-scale remotely sensed data. The primary ob-
jectives are to develop an algorithm that downscaled TB to 1 km
using coarse-scale TB and other spatially correlated variables,
validate the downscaling algorithm using a year-long multi-
scale synthetic dataset [16] based in North Central Florida, and
implement the algorithm to downscale H-Pol TB from SMOS
to 1 km for four days in the agricultural regions of the SMAP
Validation Experiment-2012 (SMAPVEX-12).

The rest of this paper is structured as follows. Section II de-
scribes the theoretical details of the disaggregation framework
based on SRRMs. Section III describes the synthetic dataset
and the SMAPVEX-12 observations for the algorithm and the
SMAPVEX-12 experiment. Section IV discusses the steps for
the SRRM-based algorithm, and Section V presents the disag-
gregation results for TB at 1 km. Finally, Section VI summarizes
the important results and concludes this paper.

II. DOWNSCALING FRAMEWORK

Downscaling is an ill-conditioned problem that is limited
by the convolution of the point spread function of the imag-
ing system. This constrains the generation of fine-scale data
from coarse-scale data. Additional spatially correlated informa-
tion is needed to regularize the fine-scale estimates. Methods
that use regression to bridge the difference in scales have to
use regularization to address the multiplicity of solutions. The
SRRM-based algorithm addresses this problem by employing a
clustering algorithm to create a number of regions of similarity,
which subsequently are used in a kernel regression framework.

Fig. 1. Flowchart of the SRRM method.

Fig. 2. Study region in North Central Florida. LSP-DSSAT-MB simulations
were performed over the shaded 50 × 50 km2 region.

Fig. 1 shows the overall organization and datasets used in the
algorithm.

A. Self-Regularized Regressive Models

The first step of the algorithm clusters the study area into
proximity regions using the auxiliary features. In this study,
the clustering algorithm uses information-theoretic measures of
inter- and intracluster similarity [17]. Fractional membership
vectors are used to decrease downscaling errors along clus-
ter boundaries. For example, if X = {x1 ,x2 ,x3 , . . . ,xN } is a
matrix containing auxiliary features for N pixels, the Cauchy–
Schwarz cost function, ĴCS, estimates optimal memberships of
the pixels to clusters, m, in an unsupervised manner. The cost
function is regularized using the weighted Shannon entropy of
the membership vector, such that the membership vectors are
sufficiently sparse, as shown in the following equation:
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Fig. 3. (a) Land cover at 200 m during cotton and corn seasons. White, gray, and black shades represent bare soil, cotton, and sweet corn regions, respectively.
Homogeneous crop fields along with centers for (b) sweet corn and (c) cotton.

TABLE I
PLANTING AND HARVEST DATES FOR SWEET CORN AND COTTON DURING THE

2007 GROWING SEASON

Crop Planting DoY Harvest DoY

Sweet Corn 61 139
183 261

Cotton 153 332

where K is the number of clusters, Gσ
√

2 is the Gaussian ker-
nel with standard deviation (SD) σ, and ν is the regularization
weight. The regularization weight ν in (1) counterbalances the
first term of the equation that increases the separation between
the clusters discovered against the second term of the equation
that promotes sparsity in the membership vector. The optimal
value of the membership vector can be obtained from the fol-
lowing constrained optimization problem:

minm 1 ,...,mN ĴREG
CS (m1 , . . . ,mN )

subject to mT
j 1 − 1 = 0, j = 1, . . . , N. (2)

To compute optimum values of m, and thus the membership
of each pixel to the K clusters, a Lagrange multiplier formula-
tion can be used along with a stochastic gradient descent scheme,
the details of which are shown in [18].

In the second step, ridge regression [19], a kernel-based para-
metric regression technique, is used to generate the downscaled
estimates. A training set of pixels is used in the regression to
fit a nonlinear function from the set of the auxiliary data and
coarse-scale TB to fine-scale TB . The cost function of ridge
regression is

E (w,x) =
1
2

∑

i

(yi − wTxi)2 +
1
2
μ‖w‖2 (3)

where yi is the true TB , wTxi is the downscaled TB , w is
the weight vector, and μ is the regularization constant. The
cost function includes an L2-norm regularizing term, which
improves the stability of the regression by inducing smaller
eigenvalues. The weights can be calculated by differentiating the
error cost function with respect to the weights and setting it to
zero. The inner products can be replaced with a kernel evaluation
if this computation is conducted in a reproducing kernel Hilbert
space (RKHS). Let H be a Hilbert space with an inner-product

metric < ·, · >H. Then, according to the representer theorem, a
kernel function κ(x,y) exists on RN × RN such that < x,y >H
= κ(x,y). Now, if Φ : RN → RN is a mapping that transforms
the feature vector in the original vector space to H, then the
weights can be redefined as

w = (μID + ΦΦT)−1Φy. (4)

Here, D is the dimension of the transformed feature space,
and Φ maps the points from the original feature space to the
RKHS. The estimated value of the downscaled TB , ŷ , for a data
point not in the training set x′ is

ŷ = wTΦ(x′) = y(μIN + K)−1κ(x,x′) (5)

where K is the Gram matrix of inner products of all the train-
ing data points. The feature vector is augmented by adding a
constant feature 1 to all samples to address the regression bias.
More details about the algorithm can be found in [18] and [19].

III. DATASETS

A. Multiscale Synthetic Dataset

The downscaling algorithm in the study used dataset from
the simulation framework consisting of a soil–vegetation–
atmosphere transfer model, the land surface process (LSP)
model, coupled with a crop growth model, and the decision
support system for agrotechnology transfer (DSSAT) model,
described in [16]. A 50 × 50 km2 region, equivalent to approx-
imately 25 SMAP pixels with a spatial resolution 9 km/pixel,
was chosen in North Central Florida (see Fig. 2) for the sim-
ulations. The region encompassed the UF/IFAS Plant Science
Research and Education Unit, Citra, FL, USA, where a series of
season-long field experiments, called the microwave, water and
energy balance experiments, have been conducted for various
agricultural LCs over the past decade [20]–[22]. Simulated ob-
servations of LST and LAI were generated at 200 m for one year,
from January 1, 2007 through December 31, 2007. Topographic
features, such as slope, are constant as the region is typically
characterized by flat and smooth terrains with no run-off due to
soils with high sand content. The soil properties were assumed
constant over the study region.

For the LSP-DSSAT model simulations, 15-min observations
of PPT, relative humidity, air temperature, downwelling solar
radiation, and wind speed were obtained from eight Florida
Automated Weather Network stations [23] located within the
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Fig. 4. (a) Land Cover Map for SMAPVEX-12. (b) In-situ stations used during the SMAPVEX-12. The black lines denote the boundaries of the agricultural site.

Fig. 5. RMSE in disaggregated TB at 1 km and number of iterations of the
DCS clustering algorithm.

study region. The observations were spatially interpolated us-
ing splines to generate the meteorological forcings at 200 m.
Long-wave radiation was estimated following [24]. The model
simulations were performed over each contiguous homogeneous
region of sweet corn, bare soil, and cotton, as shown in Fig. 3,
rather than all the pixels, to reduce computation time. A real-
ization of the LSP-DSSAT model was used to simulate LST
and LAI at the centroid of each homogeneous region, using the
corresponding crop module within DSSAT. The model simula-
tions were performed using the 200-m forcings at the centroid,
as shown in Fig. 3.

The TB for this study is simulated using the widely used
τ–ω [25] model. In the model, the vegetated surface is a sin-
gle isothermal layer of vegetation with diffuse boundaries [16].
The soil medium is assumed to be nonisothermal semi-infinite
layered dielectric medium with a rough surface at the upper
boundary. Using a zeroth-order radiative transfer approach, the
total TB of a terrain is the sum of contributions from soil, veg-
etation, and from sky. In this study, similar to [1], the Tsky was
set to 5 K, rp was obtained by integrating the bistatic scattering

coefficients from the IEM model, the RMS height was 0.62 cm,
and the correlation length was 8.72 cm [25]. Other model param-
eters are set similar to [16]. The SM and temperature profiles,
the vegetation biomass, and plant height provided by the LSP-
DSSAT model were used by the MB model to estimate H-Pol
TB at L-band.

The model simulations at 200 m were spatially averaged to
obtain PPT, LST, LAI, and TB at 1 and 10 km. Linear averaging
is typically sufficient to illustrate the effects of resolution degra-
dation [26]. About 33% of the TB obtained at 1 km served as
simulated in-situ measurements and were used for training. The
rest of the values were used as the “truth” to evaluate the down-
scaling methodology. To simulate rain-fed systems, all the water
input from both precipitation and irrigation were combined to-
gether, and the “PPT” in this study represents these combined
values.

The simulation period in 2007 consisted of two growing sea-
sons of sweet corn and one season of cotton, as shown in Table I.
The LST, PPT, and LAI observations at 1 km and the TB ob-
servations at 10 km were obtained by adding white Gaussian
noise to the model simulations account for satellite observation
errors, instrument measurement errors, and micrometeorologi-
cal variability, following [27]–[29]. The errors added had zero
mean and SDs of 5 K, 1 mm/h, 5 K, and 0.1 for LST, PPT, LAI
at 1 km, and TB at 10 km, respectively.

B. SMAPVEX-12

The downscaling methodology is implemented in the
SMAPVEX-12 region. The experiment was conducted from
June 6 to July 17, 2012 in a region south of Winnipeg, MB,
Canada, with a range of LCs including crops such as cere-
als, canola, corn, and soybean; some permanent grassland, wet-
lands, and mixed forest cover. The agricultural region is about
15 km× 70 km within the Red River Watershed, shown in Fig. 4.
During the experiment, spaceborne microwave measurements
from SMOS, AMSR-E, WindSAT, and RADARSAT-2 were
collected along with airborne measurements from the NASA
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Fig. 6. (a)–(f) Membership fractions of five clusters on DoY 222.

TABLE II
DAYS SELECTED FOR EVALUATING SRRM ESTIMATES

DoY PPT LC

39 Dry Bare
135 Dry, Irrigated Sweet Corn
222 Dry, Irrigated Sweet Corn & Cotton
156 Wet Cotton
354 Wet Bare

These days capture variability in precipita-
tion/irrigation (PPT) and land cover (LC).

L-band unmanned aerial vehicle synthetic aperture radar and the
passive/active L-band sensor (PALS). In addition to the existing
Agriculture and Agri-Food Canada (AAFC) permanent stations
in the area, about 50 other temporary stations were used from
the United States Department of Agriculture (USDA), AAFC,
and Manitoba Agriculture, Food and Rural Initiatives (MAFRI).
These stations provided micrometeorological conditions, SM,
soil temperature, and land characteristics such as vegetation,
roughness, and soil density at the times of satellite and air-plane
overpasses.

For the implementation of the SRRM-based algorithm, the
LAI and LST were obtained from the Moderate Resolution
Imaging Spectroradiometer, aboard the NASA Terra and Aqua
satellites, the coarse resolution H-Pol TB was obtained from
SMOS, and PPT was obtained from both the Tropical Rain-
fall Measurement Mission (TRMM) and the measurements at
the USDA, AAFC, and MAFRI stations in the SMAPVEX-12
region.

Fig. 7. Number of clusters for each day of the synthetic experiment.

IV. METHODOLOGY

A. Synthetic Study

The SRRM-based algorithm uses LST, 3-day PPT, LAI, LC at
1 km, and TB at 10 km every three days as inputs. The Cauchy–
Schwarz cost function described in Section II-A is used to clus-
ter the region using the auxiliary inputs at 1 km, with the x
and y coordinates of each pixel scaled from 0 to 1. The cluster-
ing algorithm uses two parameters—the number of clusters K
and a regularization constant μ—that are determined by cross-
validating against the absolute mean error in TB following the
regression for each day.

The optimal number of iterations that produced a suitable
clustering result for downscaling was determined by the mini-
mum RMSE for DoY 222, a day when both the LC and microm-
eteorological conditions were the most heterogeneous, provid-
ing the worst-case scenario for convergence of the clustering
algorithm. Fig. 5 shows the spatially averaged RMSE between
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Fig. 8. DoY 222. (a) LC at 1 km (brown represents bare soil, green represents cotton, and blue represents sweet corn). (b) LAI at 1 km. (c) PPT at 1 km.
(d) LST at 1 km. (e) TB observations at 10 km. (f) Cluster memberships at 1 km. (g) True TB at 1 km. (h) Disaggregated TB using the SRRM method at 1 km.
(i) Difference between the true TB and downscaled TB .

Fig. 9. RMSE and SD of error in downscaled TB at 1 km.

downscaled TB and the observations at 1 km on DoY 222 for
different iterations of the clustering algorithms. All parame-
ters were cross-validated for each individual iteration, except
for the number of clusters, which were cross-validated once,
using 50 iterations of the clustering algorithm. The error oscil-

lated around a value of 5 × 10−4 K with a mean amplitude of
1.2 × 10−4 K after 30 iterations. In this study, 30 iterations of
the clustering algorithm are used. After clustering, each pixel
has a vector of K numbers (m1 ,m2 , . . . ,mK ) that sum to 1
describing its membership to each of the K clusters. The mem-
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Fig. 10. Empirical CDF downscaled TB at 1 km.

berships of the pixels in the study region to each of the five
clusters are shown on DoY 222 in Fig. 6(a)–(f), respectively.
The pixels at the center of the corn field at latitude 29.6 °N
and longitude 82.3 °W belong to cluster 1, while the boundary
pixels belong to clusters 1 and 3 with proportions of 0.6 and
0.4 proportionally. This proportional representation is needed
because the boundary pixels exhibit characteristics of both bare
soil and corn LCs.

During regression, K models, f̂1 , f̂2 , . . . , f̂K , are devel-
oped, one for each cluster, using LST, three-day PPT, LAI,
LC, TB at 1 km, and TB at 10 km as inputs to the regular-
ized kernel regression algorithm using a randomly selected
training set comprised of 33% of all pixels. The hard mem-
bership of each pixel, i, for model development purposes is
determined by the maximum value in its membership vec-
tor, mi = (mi

1 ,m
i
2 , . . . ,m

i
K ). The downscaled value of TB is

computed for each point in the test, represented as a vector
x′

i = (LST1 km
i , PPT1 km

i , LAI1 km
i , LC1 km

i ,TB
10 km
i ) by

TB
1km
i = mT ·

(
f̂1(x′

i), f̂2(x′
i), . . . , f̂K (x′

i)
)

. (6)

The SRRM-based algorithm is evaluated using the RMSE and
SD of the errors over the entire season for each LC. Moreover,
the downscaled TB is compared to the true TB . The Kullback–
Liebler divergence (KLD) between the probability density func-
tion (PDF) of the estimated observations and the true TB is cal-
culated for different LCs over the season. The KLD is a member
of the class of f-divergences that convey distances in the prob-
ability space. In this study, it is used to evaluate the proximity
of the PDF of the downscaled estimates to the PDF of the true
TB . The effect of the heterogeneity in inputs on the error in
downscaled TB is investigated on DOY 222, when the hetero-
geneity in LC and meteorological conditions is maximum. In
addition, four other days were also selected to understand the
effect of the heterogeneity in inputs on the error in downscaled
TB . Variabilities in precipitation, ranging from uniformly wet
to uniformly dry, and in LC, ranging from bare soil to vege-
tated with both cotton and sweet corn, were used as criteria for
selecting the days, as shown in Table II. In this study, we use
quantitative analyses of spatial variations in TB, such as RMSE
and KLD, and heterogeneous LC conditions to provide an index
of expected errors in downscaled TB. Finally, the utility and
effectiveness of multiple regression models are evaluated by
downscaling TB without clustering, thus using a single regres-

sion model similar to UT-based methods [6], and comparing the
result to the downscaled TB with the clustering step.

B. Implementation on the SMAPVEX-12 Dataset

Downscaling was performed for four days during the exper-
iment when coarse SMOS TB was available. The clustering
algorithm groups the LAI, LST, LC, PPT, along with the x and
y coordinates of the pixels in the region using the same method-
ology as that used with the synthetic dataset. Fine-scale in-situ
TB required for training is obtained from the 800-m PALS ob-
servations at the 42 sites where the AAFC SM sampling stations
were located, as shown in Fig. 4(b). Additional 1008 pixels of
PALS TB were used to compare with the downscaled TB . In an
operational scenario, the fine-scale TB estimates can be obtained
from in-situ SM via models such as the MB model. The SMOS
TB is downscaled for all the five days using the SRRM-based
algorithm to 1 km, and the root mean square difference (RMSD)
is calculated between the downscaled TB and the PALS TB as a
measure of the efficacy of the downscaling algorithm. The KLD
of the differences was calculated to understand how the PDF of
the downscaled TB differs from the PDF of the PALS TB .

V. RESULTS

A. Synthetic Dataset

The Cauchy–Schwarz based clustering algorithm clusters the
study region to identify subareas where a single downscaling
regression model may be applied. The number of clusters is
proportional to the complexity and heterogeneity in the auxil-
iary dataset. The optimal number of clusters for each day of
the experiment is shown in Fig. 7. The number of clusters de-
pends upon the spatial heterogeneity of all the features and not
just the LC. For example, while the LC on both DoY 1 and
DoY 364 is bare soil, the PPT on DoY 364 is nonzero unlike
DoY 1 that has no PPT. In addition, the LAI on DoY 1 is zero,
while on DoY 364, the LAI is nonzero due to crop remnants.
Thus, the numbers of clusters on both the days is different.
The number of clusters is consistently higher for the growing
seasons of corn and cotton than during nonvegetated periods.
The highest number of clusters, 14, is for the periods when both
the LCs exist simultaneously. The inputs, clusters, true TB , and
the downscaled TB at 1 km for DoY 222 are shown in Fig. 8. It
should be noted that the coarse TB is not the exact average of
the true fine-scale TB . The 10-km observations were obtained
by averaging all the 1-km pixels inside a 10 × 10 km2 pixel
and adding Gaussian noise with 0 mean and SD of 5 K, as men-
tioned in Section IV. For example, in Fig. 8(e) and (g), values
of coarse-scale TB at latitude 29.4 °N and longitude 81.9 °W
are higher than the average true TB of the 1-km pixels in the
region. The clustering in Fig. 8(e) largely follows the LC pat-
tern, with all the cotton and the corn pixels assigned to different
clusters. The algorithm is also affected by PPT and successfully
demarcates areas with low and high PPT, as shown in Fig. 8(d)
and (e). The differences between the true and downscaled TB
are low, with a median value of 2 K. The discontinuity in the
true TB in the North–West part of the region is also replicated
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Fig. 11. Downscaled TB as a function of true TB at 1 km during the whole season for (a) bare-soil pixels with partially vegetated subpixels (vegetation fraction
<0.5), (b) bare-soil pixels without vegetated subpixels, (c) corn pixels, and (d) cotton pixels. Lines corresponding to errors of 8 K are shown for each plot.

TABLE III
RMSE, SD, AND KLD ON SELECTED DAYS FOR THE SYNTHETIC DATASET

DoY RMSE (in K) SD (in K) KLD

39 1.7 0.3 0.0245
135 3.1 3 0.0963
222 2.4 4.2 0.0963
156 4 2.2 0.2570
354 2 3.2 0.1458

in the downscaled TB , as shown in Fig. 8(g) and (h). A daily
time series of spatially averaged RMSE and SD in the region
between the downscaled TB and the true TB in the simulation
period is shown in Fig. 9. The RMSEs are, on average, 1.5 K
higher for the vegetated period than during the bare-soil sea-
son. Fig. 10 shows the cumulative density function (CDF) of
the errors in downscaled TB . About 97% of the days have an
RMSE of ≤3 K in the downscaled TB . The SD of the error
is higher during heterogeneous LC and/or PPT conditions than
when they are homogeneous. The highest error SD of almost
10 K is on DoY 262, a day when the study region had both corn
and cotton crops, and received heterogeneous PPT. The sensitiv-
ity of retrieved SM from TB is 0.02–0.04 K · (m3/m3)−1 [30].

Fig. 12. Comparison of (a) coarse TB , (b) true TB , (c) downscaled TB when
the clustering step is not used, and (d) downscaled true TB when the clustering
step is used.
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Fig. 13. RMSD between PALS TB and downscaled TB during
SMAPVEX-12.

Thus, the highest mean errors, on Day 262, correspond to
≤ 0.01 m3/m3 error in retrieved SM, making the downscaled
product suitable for hydrological applications in agricultural
regions.

Fig. 11 shows the downscaled TB as a function of true TB at
1 km for different LCs. The points are scattered around the
ŷ − y = 0 line, with a positive variance, indicating that the
SRRM did not introduce any bias. Interestingly, the bare-soil
pixels during periods of vegetation have the highest RMSE, of
about 7.8 K, resulting in a 0.035-m3/m3 error in retrieved SM.
This is due to the effect of subpixel vegetation at 200 m in a
pixel classified as a bare-soil pixel at 1 km, when the vegetation
fraction is <0.5 at 1 km. If the pixels with fractional vegetation
are omitted, the RMSE reduces drastically to 1.1 K. The RMSE
of the errors for sweet corn and cotton were 3.35 K and 2.7 K,
with SD of 1.65 K and 1.2 K, respectively. The RMSE, SD, and
KLD for the five selected days are shown in Table III. Out of the
five selected days, RMSE and SD are higher for DoY 135 and
156 when the region is vegetated with corn and cotton, respec-
tively. In addition to DoY222, the RMSE is higher for DoY 354
than DoY 39 even when bare soil was the only LC during both
days, due to the remnants of crops and slightly more heteroge-
neous precipitation in the region on DoY 354. The KLD for all
the days is close to zero, showing that the PDF of the down-
scaled TB is close to the PDF of the true TB at 1 km. Fig. 12
shows a comparison of the downscaled TB estimates at 1 km
with and without the clustering step of the SRRM algorithm.
If clustering is not performed, the SRRM algorithm reduces to
a single-model nonlinear regression. While the RMSE for this
single-model regression method is only 1.5 K higher than for the
SRRM-based algorithm, the SD of the error is 8 K higher for
the single-model regression method, which reduces its effec-
tiveness in heterogeneous LCs and meteorological conditions
and suggests that a single regression model cannot effectively
downscale TB over the entire region.

B. Implementation in the SMAPVEX-12 Region

The RMSD, SD, and KLD for downscaled TB at 1 km
compared to the airborne estimates for the four days during

Fig. 14. Precipitation (in mm) received during the SMAPVEX-12 experiment.

which downscaling is performed are shown in Fig. 13. For all
days, the RMSDs are about 6.3 K, except on DoY 188. On
DoY 188, the precipitation event occurred after the time of the
SMOS overpass but before the PALS acquisitions, leading to a
discrepancy between the coarse- and fine-scale TB . The mean
errors during the rest of the study differ by 4 K. The errors
mainly arise from the uncertainty in precipitation, which was
interpolated from weather station observations. The KLD for
the SMAPVEX-12 dataset is about 0.47. This shows that the
PDF of the downscaled TB is considerably dissimilar to the PDF
of the airborne TB , but since the KLD is ≤1, the differences in
nonzero moments between the distributions are low. This is ex-
pected for real datasets, since the coarse- and fine-scale TB are
from different instruments, having different sensor characteris-
tics. Specifically, the cause of the errors in downscaled TBM, in
addition to sensor noise, is that the PPT received is high across
all days, as shown in Fig. 14, except DoY 183, and the TRMM
PPT has high regional bias during the experiment period.
DoY 183 did not have any PPT and, therefore, has the lowest
downscaling error of 4.3 K. Adjusting the TRMM Microwave
Imager rain-rate according to [31] after comparing with ground
PPT estimates is a possible solution, but presents additional
complications. In this study, we also used PPT obtained from an
inverse-distance-based interpolation of the recorded rain-gauge
observations from MAFRI weather stations in the region. The
errors were found to decrease by an average of 2.5 K across
all days.

The LAI, LST, interpolated PPT, TB at 10 km, airborne TB ,
and downscaled TB at 1 km are shown in Fig. 15(a)–(f) for
DoY 183, respectively. The downscaled TB is lower than the
airborne TB by about 5 K in general and especially the cen-
ter of the study region, replicating the trend seen in the SMOS
TB at 10 km, as shown in Fig. 15(e) and (f). However, the
finer trends of the high-resolution TB that are absent in the
SMOS TBM are captured in the downscaled TB . The spa-
tially averaged RMSD is low at 4.3 K, which translates to a
0.023 m3/m3 , that is meaningful in heterogeneous agricultural
regions.
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Fig. 15. DoY 183, 2012. (a) LAI. (b) PPT (in mm). (c) LST (in K). (d) SMOS TB at 10 km. (e) Downscaled TB at 1 km. (f) Airborne TB at 1 km.

VI. SUMMARY AND CONCLUSION

In this study, a novel methodology based upon SRRM
models was used to downscale satellite-based TB to 1 km for
agricultural applications. It was evaluated using a multiscale
synthetic dataset and implemented in the SMAPVEX-12 region.
The SRRM method preserves heterogeneity by utilizing a
clustering algorithm to create a number of regions of similarity,
which, subsequently, are used in a kernel regression framework.
The clusters were computed using RS products, viz., PPT,
LST, LAI, and LC. The kernel regression was implemented on
the clusters using high-resolution TB . For a synthetic dataset
in North Central Florida, the algorithm had RMSE of 5.76 K
with SD of 2.8 K, during the vegetated season, and an RMSE
of 1.2 K with an SD of 0.9 K during nonvegetated periods.
The methodology was further applied to downscale SMOS TB
observations, and the KLD between the airborne observations
and downscaled TB was found to be much higher than the KLD
between true and downscaled TB for the synthetic dataset.
However, the RMSD between the downscaled TB and airborne
observations was still limited to about 6 K, resulting in an
difference of about 0.03 m3/m3 in retrieved SM. Thus, this
algorithm is particularly useful during heterogeneous LC and
micrometeorological conditions.
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