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In this study,we investigate dominant backscatteringmechanisms under different soilmoisture (SM) and rough-
ness conditions for bare sandy soils, and discuss potential impacts on active microwave algorithms for soil mois-
ture estimation. This study used ground-based observations of backscattering coefficient (σ0) over three
drydown periods. Under rough soil conditions, surface scattering was the dominant mechanism during both
dry and wet periods, and the σ0 followed a power-law relationship with SM, with R2 values N 0.86. However,
under smooth soil conditions, the relationship was negative for SM b 0.07 m3/m3. A simple volume scattering
model was used to provide plausible explanation for such a behavior due to volume scattering. Sensitivities
of σ0 to SM using both observed andmodeled σ0 were analyzed. The observed sensitivity was higher for smooth
soil than that for rough soil, when surface scattering was the dominant mechanism, while the sensitivity esti-
mated by the AIEMmodel was largely unaffected by surface roughness. Observations at VV-pol were more sen-
sitive to SM than at other polarizations by up to 1 dB/0.01m3/m3 for rough soil, while the AIEMmodel estimated
similar sensitivities at both VV and HH-pol, with the maximum difference between the modeled and observed
sensitivities of 3 dB/0.01m3/m3. This study demonstrates that volume scattering under dry, smooth conditions
and a non-linear relationship between σ0 and SMunder rough conditions in sandy soils may have significant im-
pacts on estimate of SM using active algorithms.

© 2016 Elsevier Inc. All rights reserved.
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1. Introduction

Soil moisture (SM) is one of the critical factors for predicting mois-
ture fluxes such as evapotranspiration, surface runoff, infiltration, and
recharge, as well as crop growth and yield (Judge, 2007). Remotely
sensed observations at microwave frequencies are sensitive to changes
in water content for the top few centimeters of soil. Observations at
L-band (1–2 GHz) are preferred due to their minimal extinction in
the atmosphere and better penetration through vegetation. Satellite-
based radar systems allow frequent observations for SM studies with
global coverage. For example, the Japan Aerospace Exploration Agency
(JAXA) Advanced LandObserving Satellite-2 (ALOS-2) provides fully po-
larimetric (full-pol) observations at a frequency of 1.26 GHz at a spatial
resolution of 6.5–100 m, with a repeat coverage of 14 days (Balenzano
et al., 2013; Suzuki, Osawa, Hatooka, Kankaku, & Watanabe, 2009). The
National Aeronautics and Space Administration (NASA) and Indian
Space Research Organization (ISRO) SAR (NISAR) mission (Rosen et al.,
2015), scheduled for launch in 2020, will provide full-pol observations
every 12 days at a frequency of 1.26 GHz, with a spatial resolution of
10 m.

Compared to the passive techniques, less progress has beenmade in
utilizing activemicrowave signatures for SM (Barrett, Dwyer, &Whelan,
2009), primarily because they are highly sensitive to the surface rough-
ness and vegetation structure in addition to SM. In the past decades, ef-
forts have been made to understand the relationship between L-band
backscattering coefficient (σ0) to the SM and backscattering mecha-
nisms using either airborne (Kim & van Zyl, 2009; Narayan, Lakshmi,
& Jackson, 2006; Oh, Sarabandi, & Ulaby, 2002), or ground-based ob-
servations (Dobson & Ulaby, 1986; Oh, Sarabandi, & Ulaby, 1992) for
development of active algorithms. These studies were conducted for
VSM N 10% and have found different relationships between σ0 and SM,
andhence sensitivity, due to variations in surface roughness, vegetation,
and soil textures. Findings from these studies may not be applicable to
sandy soils, one of the predominant soil types in Florida, USA, because
of their high drainage rates. In addition, because the radar at L-band is
capable of penetrating through the soil surface (Paillou et al., 2003;
Schaber, McCauley, Breed, & Olhoeft, 1986), the volume scattering,
that could complicate the modeling of σ0 for SM, may be considered,
particularly for co-pol observations of σ0 in smooth, dry soils (Shi, van
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Fig. 1. Sensor layout in the field for the bare soil experiment during MicroWEX-11.
Row structure was in the east-west direction during rough periods, and 0° azimuth for
radar observation is due south. Dashed lines represent the limits of the observation
between ±9° used in this study.

Table 1
Soil surface roughness measurements of root mean square height (s) and correlation
length (l) using 2 m-long mesh board during MicroWEX-11, and their corrected values
using (Nishimoto, 2010).

DoY (2012) Perpendicular Parallel

s (cm) l (cm) s ̂ (cm) l ̂ (cm) s (cm) l (cm) s ̂ (cm) l ̂ (cm)

132 0.68 9.80 0.80 11.26 0.32 6.76 0.34 7.46
138 0.70 9.33 0.82 10.66 0.35 11.60 0.40 13.65
146 1.71 9.45 1.90 10.81 0.45 1.78 0.46 1.83
163 1.30 12.22 1.51 14.47 0.32 10.68 0.36 12.42
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Zyl, Soares, & Engman, 1992; Ulaby, Moore, & Fung, 1982). Theoretical
analyses and derivations have been used to understand surface and
volume scattering mechanisms (Fung, 1994; Nashashibi, Ulaby, &
Sarabandi, 1996; Onier et al., 2011). These studies attributed the differ-
ences between the observed and modeled σ0 to the impacts of volume
scattering. However, a gap still remains in identifying the transition
of dominant scattering mechanisms at lower frequencies, such as at
L-band, primarily due to lack of frequent observations of the dry soil to
capture its dynamics. Current ground-based systems (Kim, Jackson,
Bindlish, Lee, & Hong, 2012; Kurum et al., 2011; Nagarajan et al., 2014)
offer unprecedented capabilities to obtain frequent, long-term observa-
tions during dynamic conditions. Such studies can provide insights into
the conditions of applicability for the current SM retrieval algorithms
(Das, Entekhabi, & Njoku, 2011).

The University of Florida L-bandAutomated Radar System (UF-LARS)
provides continuous quad-polarized measurements every 15 min, day
and night, and even during hydrologic events such as precipitation and
irrigation. Thus, the UF-LARS observations are applicable for identifica-
tion of scatteringmechanisms over a wide range of SM values. The goal
of this study is to understand dominant backscatteringmechanisms and
their transitions, and the sensitivity of σ0 to SM under dynamic condi-
tions for sandy agricultural soils using high temporal density observa-
tions from UF-LARS. The objectives of this study are to 1) investigate
observed backscattering mechanisms and relationship between σ0

and SM for smooth and rough sandy soils under differentmoisture con-
ditions, 2) provide a plausible explanation for the observed behavior
using a physically-based scatteringmodel, and 3) evaluate the sensitiv-
ity of the observed andmodeledσ0 to SM. Findings of this study provide
insights into development of active algorithms for SM estimates and
data assimilation for sandy soils.

2. Experimental observations

2.1. MicroWEX-11

The Microwave, Water, and Energy Balance Experiments
(MicroWEXs) are a series of season-long experiments conducted at
the Plant Science Research and Education Unit (PSREU), Institute of
Food and Agricultural Sciences (IFAS), in north central Florida, to mon-
itor the microwave signatures of soil and vegetation during different
stages of growth. Soil texture at the field site is sandy, consisting
of 89.4% by vol. of sand, 7.1% by vol. of clay, and 3.5% by vol. of silt. A
bare soil experiment was conducted in 2012 during the eleventh
MicroWEX (MicroWEX-11) from May 9 (Day of year (DoY) 130) to
June 8 (DoY 160). Concurrent observations of active and passive obser-
vationswere conducted at L-band. In this paper, we report observations
of microwave backscatter from soil in an unvegetated agricultural field
using UF-LARS. The UF-LARS operated at the frequency of 1.25 GHz
(λ= 24.0 cm), and observed backscatter at four polarization combina-
tions, VV, HH, HV, and VH every 15min.Measurementswere conducted
at a height of 16.2 m above the ground with an incidence angle of 40°.
Details of electro-mechanical and control systems in UF-LARS are pub-
lished in Nagarajan et al. (2014).

Five SM profiles were observed near the UF-LARS footprint using
Campbell Scientific CS616 Time Domain Reflectometry (TDR) sensors
at depths of 2, 4, 8, 16, 32, and 64 cm, as shown in Fig. 1. A site specific
calibration for sandy soils was applied to obtain VWC from the sensor
measurements, and the calibration error of a TDR sensor was found to
be 0.011m3/m3. For this study, observations at 2 cm from thesefive pro-
files were averaged to represent near-surface SM in the radar footprint.
The averaged standard deviation of SM observations at 2 cm from five
profiles over the period of the experiment is 0.010 m3/m3 indicating
that the variability between the five locations was very small, so the
soil in the footprint is considered homogeneous. As a result, the total av-
eraged uncertainty in the VSM observations was ~0.012 m3/m3 based
upon the Student's t-test with a confidence interval of 95%.
Four rain gauges were used to record the amount of water input
during the irrigation/precipitation events. A linear move irrigation sys-
tem was used to maintain uniform water application to the field. In
the beginning of the experiment on DoY 122, the field was disced to
achieve a smooth soil surface, as typically prepared prior to planting. Ob-
servations for smooth soilswere used 8 days later, onDoY 130,when the
soil had settled down and was naturally smoothed. After 23 days, on
DoY 145, a seedless planting was conducted in east–west direction
(see Fig. 1), providing a typical soil roughness during the planting and
germination stages. Soil roughness measurements, including root
mean square height (s) and correlation length (l), were conducted
across and along the rows during the smooth period on DoY 132 and
138, and during the rough period on DoY 146 and 163. This study used
observations from six 2D surface profiles, in the direction perpendicular
and parallel to the row structure of thefieldwith a 2m-longmesh board
for each roughness measurement. The surface profile from each mesh
board was digitized to calculate s and l (Yang, Tien, Casanova, & Judge,
2005), individually. Each soil roughness measurement was acquired by
averaging six s and l values, listed in Table 1. Because the surface rough-
ness may be underestimated using a 2-m soil profile (Baghdadi, Paillou,
Grandjean, & Davidson, 2000), the roughnessmeasurementsweremod-
ified using a correction equation, given as (Nishimoto, 2010):

l ̂ ¼ lþ l2 e−1ð Þ ffiffiffi
π

p
L

ð1aÞ

s ̂ ¼ 1−
2l ̂

ffiffiffi
π

p
L

" #−1

s2 ð1bÞ

where, L is the length of soil profile in cm, and s ̂ and l ̂ are corrected root
mean square height and correlation length in cm, respectively, listed in
Table 1.



Table 2
The specifications of the UF-LARS.

Parameter Qualifier UF-LARS

Frequency (GHz) Center 1.25
Bandwidth (GHz) 0.3
Beamwidth (deg) 3 dB 14.7 & 19.7 in E- & H-Planes
Polarization isolation (dB) Center/edge N37/23
Polarization HH, VV, VH, and VH
NEσ0 (dB) HH/VV/VH/HV −23.42/−25.58/−48.12/−38.84
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2.2. UF-LARS data processing and calibration

The UF-LARS is a Network Analyzer (NWA) based system to provide
magnitude and phase of the power ratio measurements at the four po-
larization combinations from 1100–1400 MHz with a 1.5 MHz incre-
ment. Table 2 lists specifications of the UF-LARS. Signal processing and
calibration procedure, consisting of internal calibration, time gating
Fig. 2. Plots show σHH
0 , σVV

0 , σVH
0 , and σHV

0 and the VSM at 2 cm, which were observed concurren
drydown of periods 1 and 2 were under smooth condition while period 3 was under rough co
processing, and external calibration using a trihedral corner-reflector
were conducted to obtain σ0 from the received signal as described in
(Nagarajan et al., 2014).

Averaging independent samples in space and/or frequency to obtain
amean amplitude of radar return is necessary to reduce the uncertainty
of a radarmeasurement caused by fading. Observations ofσ0were aver-
aged overmeasurements obtained spatially along three azimuthal scans
at−9°, 0°, and+9°with respect to due South (see Fig. 1), and nine fre-
quency measurements at 30 MHz increments from 1130–1370 MHz
at each azimuth angle. The agricultural row effect to σ0 variation was
minimal within these angles (Ulaby, Kouyate, Fung, & Sieber, 1982).
The frequency measurements met the spectral independence criterion
ofΔ f ≥ c

2Δr, whereΔ f is the difference between two adjacent frequencies,
c is the speed of light, and the Δr is the difference between the maxi-
mum andminimum ranges from the antenna to the effective illuminat-
ed area of the target (Ulaby & Dobson, 1989). In all, 27 samples were
averaged for a backscatteringmeasurement and the standard deviation
of fading was decreased from 5.57 to 0.85 dB (Hoekman, 1991). The
tly during the bare soil experiment. (a) σ 0 at Co-pol, (b) σ 0 at Cross-pol, and (c) VSM. The
ndition of sandy soil. They are described in detail in Section 4.1.

Image of Fig. 2
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errors from various calibration sources were obtained from (Nagarajan
et al., 2014), and the overall uncertainty of radar measurements can be
quantified to be 1.71 dB.

Fig. 2 shows theobservedσ0 at the four polarization combinations at
an incidence angle of 40° and VSM observed at 2 cmduring the bare soil
experiment. The theoretical amplitudes of backscatter from same target
at VH- and HV-pol are identical, i.e. σVH

0 =σHV
0 . After removing the post-

calibration residual bias between the two signal paths, the RMSD be-
tween σVH

0 and σHV
0 was found to be 0.99 dB. This value is similar to

the random noise of 0.85 dB due to fading. In this study, σVH
0 were

used as the cross-pol measurements, σcr
0.

3. Scattering models

3.1. Surface scattering model

In this study, the physically-based, Advanced Integral Equation
Model (AIEM), was used to compute the surface backscattering of soil
(σsoil

0 ), given as (Chen et al., 2003):

σ0
soil;pq θi;ϕi; θs;ϕsð Þ ¼ k2

2
exp −s2 k2z þ k2sz

� �h i
�
X∞
n¼1

s2n

n!
Inpq
��� ���2W nð Þ ksx−kx; ksy−ky

� �
ð2aÞ

kx ¼ k sin θi cosϕi ; ksx ¼ k sin θs cos ϕs
ky ¼ k sin θi sinϕi ; ksy ¼ k sin θs sin ϕs
kz ¼ k cos θi ; ksz ¼ k cos θs

ð2bÞ

where k is the wavenumber in the air (2πλ ), s is the rms height of the ter-
rain surface, (θi, ϕi) and (θs, ϕs) are elevation and azimuth angles for the
incident and the scattered radiation, respectively, Ipqn is a function
consisting of Kirchhoff and complementary field coefficients defined
in (Chen et al., 2003), and W(n) is the Fourier transform of the nth

power of the normalized surface correlation function. In this study,
the transition model was used for Fresnel reflection coefficient (Wu,
Chen, Shi, Lee, & Fung, 2008) and the exponential correlation function
was used for the W(n) because it is more representative of the natural
terrain than the Gaussian function (Fung & Kuo, 2006; Oh et al., 1992).
Validity ranges of normalized root mean square height (ks) and corre-
lation length (kl) for the AIEM are 0.20–2.58 and 1.07–8.36, respec-
tively (Chen et al., 2003), and the surface roughness conditions in
the field were within these ranges. The dielectric constant of soil
(ϵsoil) was obtained from a mineralogically-based model (Mironov,
Kosolapova, & Fomin, 2009). Fig. 3 shows the relationship between
the real and imaginary parts of ϵsoil to VSM for sandy soils. The real
Fig. 3. Real and imaginary parts of ϵsoil, ϵ' and ϵ", to VSMusingmineralogically-basedmodel
(Mironov et al., 2009), with sand and clay fractions of 89.4% and 3.5% by volume,
respectively.
part increases from 3 to 12 as the moisture increases from 0.02 to
0.2 m3/m3.

3.2. Volume scattering model

To provide a plausible explanation for the negative slope observed
in the co-pol backscattering due to volume scattering, a zero-order
approximation model for volume scattering (σpp ,vol

0 ) was used in this
study, given as (Fung, 1994):

σ0
pp;vol ¼ 1−Γp

� �2Z δp

0
σ s zð ÞNs zð Þe −2κez secθið Þdz ð3Þ

where, p is the polarization, Γ is the Fresnel reflectivity, and δp is the
theoretical penetration depth of soil, given as (Ulaby, Moore, et al.,
1982):

δp ¼ 1
2k Im

ffiffiffiffiffiffiffiffiϵsoil
p� 	�� �� ð4Þ

The soil medium consisted of moist soil particles and air, where σs

represents radar cross sections (RCS) of a soil particle, Ns represents
numbers of soil particles per unit area, and κe is the extinction coeffi-
cient of the soil medium. In this study, the σs was estimated using the
Rayleigh approximation as its particle size was small compared to the
wavelength of L-band (Ulaby, Moore, & Fung, 1981).

Using the Rayleigh approximation, the RCS of a soil particle is the
function of its dielectric constant (ϵs) and radius (rs), and wavelength
of radar signal (λ), given as (Ulaby et al., 1981):

σ s ¼ 4πr2s χ
4 Kj j2 ð5aÞ

χ ¼ 2πrs
λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Re ϵbg

� 	q
ð5bÞ

K ¼ n2−1
n2 þ 2

ð5cÞ

where, the ϵbg is the dielectric constant of the background, which is air
in this study (ie. ϵbg=1), the λ of UF-LARS is 24 cm, and n is the ratio

of refraction indices of the soil particle and background as
ffiffiffiffiffi
ϵs
ϵbg

q
.

Sandy soils range from fine sand to cluster (or clod) with particle
radii from 0.03 to 15 mm (Onier et al., 2011; USDA, 1987). In this
study, we used a soil particle radius (rs) of 3 mm, within the range,
given our field conditions of sandy soilwith small clusters. The dielectric
constant of the soil particle (ϵs) was modeled by consisting of solid soil
(ϵss), bound water (ϵbw), and free water (ϵfw) given as:

ϵs ¼ ϵ1=2ss
f ss

f ss þ VSM
þ ϵ1=2bw

f bw
f ss þ VSM

þ ϵ1=2fw
VSM− f bw
f ss þ VSM


 �2

ð6Þ

where, ϵss and ϵbw were estimated by using mineralogically-based
equations (Mironov et al., 2009), and ϵfw was estimated from Debye
relaxation (Ulaby, Moore, & Fung, 1986). The fss is the fraction of solid
soil defined as ρb

ρs
, in which ρb = 1.51 g/cm3 is the bulk density and

ρs = 2.40 g/cm3 is the specific density of soil particle, measured from
a soil texture analysis (Bongiovanni et al., 2015). The fbw is the fraction
of bound water in the soil medium, which is the same as VSM when
the VSM b maximum bound water (Wvt) of soil, but equals to Wvt

when VSM ≥ Wvt. The Wvt was set at 0.02 m3/m3 for sandy soil
(Mironov & Bobrov, 2009). The free water occurs when VSM N Wvt;
otherwise the last term in Eq. (6) is neglected.

Image of Fig. 3


Fig. 4. The scatter plots and regression curves of (a) σHH
0 , (b) σVV

0 , and (c) σcr
0 to

VSM observed at 2 cm during period 1 (DoY 130.5–134.5), 2 (DoY 139.7–142.7), and 3
(DoY 148.8–157).
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Nswas obtained from Eq. (7) with the soil particle uniformly distrib-
uted in the soil medium (Fung, 1994).

Ns ¼ 3 f ss
4πr3s

ð7Þ

The κe includes the scattering coefficient of particles (κs) and the ab-
sorption coefficient of moist soil medium (κa) defined as (Fung, 1994;
Ulaby et al., 1986):

κs ¼ 8
3
Nsπr2χ4jKj2 ð8aÞ

κa ¼ 2k Im
ffiffiffiffiffiffiffiffi
ϵsoil

p½ ��� ��: ð8bÞ

4. Methodology

4.1. Scattering mechanisms

In this study, three drydown periods were selected to investigate
backscattering mechanisms of bare soil under different moisture and
roughness conditions. Two periods were during the smooth period
from DoY 130.5 to 134.5 and DoY 139.7 to 142.7, and one was during
the rough period from DoY 148.8 to 157, after the seedless planting
was conducted, as shown in Fig. 2. Table 3 provides information re-
garding water input and the moisture range during these drydown pe-
riods. Due to the high drainage rate of sandy soils, the observed SMwas
b0.20m3/m3 during the entire experiment. A total of 380, 285, and 690
radar observations were conducted during drydown periods 1, 2, and
3, respectively, providing detailed information regarding change of
VSM, particularly during dry conditions. Transition regions of the dom-
inant backscattering mechanisms at three polarization-combinations,
HH-, VV-, and VH-pol, were investigated using σ0 and VSM at 2 cm
because the current models estimate SM within 0–2 cm (Liu, DeRoo,
England, & Judge, 2013). The volume scattering model in Eq. (3) was
used to demonstrate the plausibility of volume scattering observed
from field measurements. Regression analyses, using linear or higher
order functions, were conducted to understand the relationship be-
tween the σ0 and VSM for different surface roughness conditions, and
R2 and uncertainties of coefficients obtained using the t-distribution
with 95% confidence interval were used to assess the regression.

4.2. Sensitivity analysis

A differential analysis was used to compute the ratio of change in σ0

to change of the VSM, providing a measure of the sensitivity of σ0 to
VSM, as shown in Eq. (9).

ΔSpq ¼
∂σ 0

pq

∂V
ð9Þ

where, p and q represent the polarizations of the received and transmit-
ted signal, σ0 is the backscattering coefficient in dB, and V is the VSM at
2 cm in units of 0.01 m3/m3. Student's t-test was conducted to estimate
uncertainties in the sensitivity.
Table 3
Measurements of water input during the drydowns.

Drydown Event description Water input
(mm)

Range of VSM
at 2 cm

Period 1 Irrigation on DoY 130.84 for 30 min 3.8 0.03–0.12
Period 2 Irrigation on DoY 139.84 for 15 min 4.4 0.03–0.12
Period 3 Precipitation on DoY 148.95 for 1.5 days 59.6 0.02–0.19

Precipitation on DoY 151.39 for 45 min 1.6
Precipitation on DoY 153.18 for 4 h 5.0
The VSM at 2 cm was chosen for the sensitivity analyses due to
the high correlation coefficient, of up to 0.90, between VSM observed
at 2 cm to σ0, consistent with the findings in Liu et al. (2013) and
Escorihuela, Chanzy, Wigneron, and Kerr (2010). The theoretical pene-
tration for the L-band could be from 5 cm in wet soils (Zribi, Gorrab,
Baghdadi, Lili-Chabaane, & Bernard, 2014) to as deep as 37 cm when
VSM is 0.02 m3/m3, the lowest SM observed during the experiment.
However, even for dry soils a higher correlation of σ 0 to VSM was
found at 2 cm than to deeper VSM. In addition, the volume scattering
may further decrease the sensitivity of radar backscatter to SMat deeper
layers. Observed sensitivities were compared tomodeled sensitivity ob-
tained from AIEM. In this study, surface roughness measurements per-
pendicular to the row were used for AIEM to match the direction of
backscatter measurements, where the s ̂ and l ̂ were 0.76 and 11.26 cm
for smooth soil, and 1.90 and 10.81 cm for rough soil, respectively.

Image of Fig. 4


Fig. 5. a)Modeled and observedσHH
0 andσVV

0 with their observation errorswhen volume scattering dominates the backscatteringmechanisms, and (b) the theoretical penetration depth δp
in terms of VSM.
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5. Results and discussion

5.1. Dominant mechanisms of σ0 in sandy soils during drydown periods

Observed σHH
0 , σVV

0 , and σcr
0 were compared with the observed VSM

at 2 cm under different surface roughness conditions, as shown in scat-
ter plots in Fig. 4(a), (b), and (c). Periods 1 and 2, under smooth surface
conditions, with ks of 0.21 (k=2π/λ), show that σHH

0 and σVV
0 increase

with decreasing VSM for dry soils, when VSM b 0.07 m3/m3. Such a
negative-sloped linear relationship between σ 0 and VSM was also
found when the zero-order volume scattering was modeled for both
VV- and HH-pol at the central frequency of 1.25 GHz and an incidence
angle of 40° with the particle size of soil of 3 mm, as shown in Fig. 5(a).
When the soil is dry, the radar sees deeper into the soil, up to 37 cm, as
shown in Fig. 5(b) using Eq. (4), and thus sees more backscatter from
soil particles than under wetter soils. As the soil gets wetter, the extinc-
tion coefficient increases and the transmission decreases. Together, these
decrease the magnitude of the volume scattering. The transition of the
slope of σ0 with respect to VSM, as shown in Fig. 4(a) and (b), is unprec-
edented. Such a transition between volume and surface scattering is
rarely observed and identified, particularly for sandy soils with a high
water drainage rate. The high temporal resolution observations provided
added value for monitoring the highly dynamic soil conditions. A pure
surface scattering mechanism cannot produce such a negative slope,
but we have shown in Fig. 5(a) that a volume scattering mechanism
can. This finding is similar to that made in McColl, Entekhabi, and
Piles (2014), where the authors attributed the overestimations of SM
from the Aquarius scatterometer under smooth, dry soils in a desert
to volume scattering. Even though both modeled and observed slopes
of σ0 versus VSM are similar, the modeled σ0 values are ~7 dB lower
than those observed. A scattering model that incorporates higher
order scattering between particles and heterogeneity between soil
layers may provide a more realistic estimation than the model used in
this study. To more fully understand this phenomenon, an intensive
Table 4
Equation coefficients and R2 of regression results at HH, VV, and cross-pol

Smooth

0.03 ≤ VSM b 0.07 0.07 ≤ VSM ≤ 0.12

a Δa b Δb R2 a Δa b

HH −0.83 ±0.10 −15.22 ±0.47 0.42 2.07 ±0.21 −36
VV −0.42 ±0.09 −18.18 ±0.47 0.16 2.08 ±0.18 −36
Cr 0.26 ±0.04 −38.71 ±0.23 0.24 0.26 ±0.04 −38
field campaign with detailed observations of soil layers and property
may also be needed to augment the scattering model.

When the soil got wet and VSM values N 0.07 m3/m3, both σHH
0 and

σVV
0 increase with VSM, as surface scattering becomes the dominant

mechanism. Although return signals at cross-pol under smooth condi-
tions are very low over the smooth periods, theσcr

0 exhibits a very slight
positive slope and surface scattering was dominant even during dry
conditions. This indicates that theσcr

0 is dominated by surface scattering
during dry, smooth soils, and confirms the model simulation using the
first order radiative transfer equation (Stogryn, 1974) in that the
depolarized backscatter from the soil volume is negligible.

During period 3, the soil was rough as a typical agricultural terrain,
with ks of 0.5, and σHH

0 , σVV
0 , and σcr

0 consistently increasing with VSM
over the range of SM. Unlike the observations during the smooth period,
those during the rough period did not exhibit a transition of dominant
mechanisms fromvolume scattering to surface scattering. This indicates
that surface scattering was the dominant mechanism under rough con-
ditions during both dry and wet periods. This result is consistent with
the findings in Onier et al. (2011) using a comprehensive numerical
model to demonstrate that the volume scattering is negligible under
rough soils but cannot be ignored under dry, smooth soils. In addition,
observed σ0 at all polarizations for rough soil are significantly higher
than those for the smooth soil. This is the regimewhere surface scatter-
ing is dominant and provides a more reliable measurement for SM.

The mechanisms causing the backscatter signal are similar during
the two smooth surface drydown periods and were treated together
for the analysis. A linear regression using Eq. (10a) was used for all
the σ0 observations during both drydown periods. The co- and cross-
pol σ0 values during the rough period follow a power law with respect
to VSM, given as Eq. (10b):

σ0
pq ¼ apqV þ bpq ð10aÞ

σ0
pq ¼ cpqV

dpq ð10bÞ
Rough

0.02 ≤ VSM ≤ 0.18

Δb R2 c Δc d Δd R2

.25 ±1.94 0.69 −22.08 ±0.40 −0.36 ±0.01 0.88

.48 ±1.67 0.75 −23.17 ±0.55 −0.49 ±0.01 0.88

.71 ±0.23 0.24 −41.28 ±0.32 −0.14 ±0.01 0.86

Image of Fig. 5


Fig. 6. Sensitivities of observed σHH
0 , σVV

0 , and σcr
0 to VSM at 2 cm VSM during smooth

(S) and rough (R) periods.
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where σ0 is in dB, V is the VSM in 0.01 m3/m3, a and b are coefficients
from the linear regression, and c and d are coefficients from the power
law regression.

Overall, measurements of σHH
0 , σVV

0 , and σcr
0 under rough soil condi-

tions closely follow a power law, with R2 values N 0.86, as shown in
Table 4. These results suggest that SM retrieval algorithms utilizing ac-
tive observations, such as those for the combined active and passive ob-
servations using algorithm in (Das et al., 2011), might yield unrealistic
SM moisture for dry sandy soils regardless of roughness. When the
dry sandy soil is very smooth, surface scattering may no longer be the
dominant scattering mechanism. However, even when the dry sandy
soil is rough and surface scattering appears dominant, the relationship
between σ0 and SM may not be linear like it was observed at higher
SM in previous studies (Dobson & Ulaby, 1986; Kim & van Zyl, 2009;
Narayan et al., 2006; Ulaby, Cihlar, & Moore, 1974). Thus, SM retrieval
algorithms for sandy soils may need to be adjusted for SM and surface
roughness when the SM is b0.10 m3/m3.

5.2. Sensitivity of σ0 to VSM

A differential analysis, as in Eq. (9), is used to obtain the sensitivity of
σ 0 to VSM, shown in Fig. 6. Based upon the t-test, uncertainties
contained in parameters a, b, c, and d in Table 4 result in an uncertainty
of b0.21 dB/0.01m3/m3 for smooth soils, and b0.18 dB/0.01m3/m3

for rough soils. When surface scattering is dominant, σVV
0 and σHH

0 ex-
hibit similar sensitivities to SM for smooth soil, but σVV

0 is more sensi-
tive to SM than σHH

0 by up to 1 dB/0.01m3/m3 for rough soil. When the
soil becomes wetter, these differences decrease to b0.1 dB/0.01m3/m3
Fig. 7. The regression curves of observed and modeled (a) σHH
0 and (b) σVV

0 vs VSM observed at
S and R indicate smooth and rough soils, respectively.
and sensitivities at both polarizations are lower. For the rough soils, the
sensitivity is stronger in the dry than wet conditions because the ob-
served σ 0 to VSM follows a power law relationship, indicating the
stronger change in the dry end of the soil. Such a relationship can
also be described theoretically using physical optics (PO), where the
co-pol backscatter is a function of Fresnel reflection coefficient, the
zeroth order term in PO, following a power law with respect to VSM
(De Roo, 1996).

The sensitivity values are significantly higher, by as much as
1.8 dB/0.01m3/m3, for smooth surfaces than for rough surfaces, because
surface roughness tends to mask the sensitivity to SM (Lakshmi, 2013).
Although higher sensitivity is observed for the smooth soil, the low
returns from smooth soils may permit mechanisms other than surface
scattering, such as volume scattering, to become important during dry
conditions. Ambiguity arises because the σ0-VSM curve is not mono-
tonic when the soil is sufficiently smooth, and volume scattering dom-
inates surface scattering for low VSM values. This can complicate a
VSM estimation using a surface scattering model, as is typically done
in current algorithms. For rough surfaces, active microwave observa-
tions are dominated by surface scattering, and are more amenable to
SM estimation. Modeled and observed sensitivities were compared to
understand the potential impacts of VSM and roughness conditions
on estimates of σ0 from the AIEM. Fig. 7(a) and (b) show the σHH

0 and
σVV

0 estimated by AIEM as functions of VSM. Overall, the absolute differ-
ences between the observed and modeled σ0 at both polarizations are
as high as 4 dB and 6 dB under rough and smooth soils, respectively.
The inconsistency between the model simulation and observations
could be from the gradient of the soil moisture in the top surface, errors
in the surface roughness measurements and the correction equations
(Eqs. (1a) and (1b)), and the model itself (Liu et al., 2013; Rondinelli
et al., 2015). However, this study was to provide plausible scenarios to
explain the behaviors of scattering mechanisms and did not intend to
match the model simulation and observations for SM retrieval. The σ0

at both polarizations follow a power law, similar to the observed rela-
tionship for rough soil, but different from that of smooth soil. Because
AIEM is a surface backscattering model, it does not capture the volume
scattering observed from the smooth, dry soils. Sensitivity of σVV

0 is
slightly higher than that of σHH

0 by about 0.18 dB/0.01m3/m3, (see
Fig. 8). Surface roughness does not significantly affect sensitivities of
modeled σ0 to VSM, as the difference between smooth and rough soil
conditions is b 0.08 dB/0.01m3/m3. Although the modeled sensitivity
using AIEM is nearly independent of surface roughness, observations
in the previous studies and this study have shown the sensitivity of σ0

to VSM varies under different roughness conditions (Aubert et al.,
2011; Narvekar, Entekhabi, Kim, & Njoku, 2015; Ulaby, Batlivala, &
Dobson, 1978; Wang, Engman, Mo, Schmugge, & Shiue, 1987). When
surface scattering is thedominantmechanism, the AIEMunderestimates
2 cm during smooth and rough periods, when surface scattering dominates. In the legend,

Image of Fig. 7
Image of Fig. 6


Fig. 8. The sensitivity of modeled and observed (a) σHH
0 and (b) σVV

0 to VSM at 2 cm during smooth and rough periods. In the legend, S and R indicate smooth and rough soils, respectively.
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sensitivities by as much as 1.8 during smooth soils, and by as much
3 dB/0.01m3/m3 when SM b 0.05 m3/m3 during rough soils.

6. Summary and conclusions

This study investigates the dominant mechanisms of backscattering
from bare sandy soils, using high temporal density of observations,
under different moisture for smooth and rough surfaces conditions. Evi-
dence of a dominant scatteringmechanismother than surface scattering,
such as volume scattering, was demonstrated at both HH and VV polar-
izations, under dry, smooth soil conditionwhen VSM b 0.07m3/m3, with
ks of 0.21. Observations at HH-, VV-, and cross-pol for rough surface fol-
low a power law with R2 values of 0.88, 0.88, and 0.86, suggesting that
retrieval algorithms developed based upon a linear relation between
σ0 and VSM may be less than optimal for SM retrieval. Although ob-
served σ0 at co-pol for smooth soil show higher sensitivity to VSM
than those under rough soil by up to 1.8 dB/0.01m3/m3, a certain level
of roughnessmight be important for a dry soil to obtain adequate surface
scattering and to avoid retrieval during times when volume scattering is
the dominant mechanism. When surface scattering is the dominant
mechanism, the AIEM underestimates sensitivity for both smooth and
rough soils, indicating that the real surface might contain different back-
scattering mechanisms. These findings offer insights into retrieval and
assimilation algorithms using active signatures for sandy, agricultural
fields. Further studies of bare soil backscatter mechanisms under ex-
treme and dynamic conditions for other soil types are suggested.
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