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Abstract—An ensemble Kalman Filter-based data assimilation
framework that links a crop growth model with active and pas-
sive (AP) microwave models was developed to improve estimates of
soil moisture (SM) and vegetation biomass over a growing season
of soybean. Complementarities in AP observations were incorpo-
rated to the framework, where the active observations were used to
optimize surface roughness and update vegetation biomass, while
passive observations were used to update SM. The framework
was implemented in a rain-fed agricultural region of the south-
ern La-Plata Basin during the 2011–2012 growing season, through
a synthetic experiment and AP observations from the Aquarius
mission. The synthetic experiment was conducted at a temporal
resolution of 3 and 7 days to match the current AP missions. The
assimilated estimates of SM in the root zone and dry biomass
were improved compared to those from the cases without assimila-
tion, during both 3- and 7-day assimilation scenarios. Particularly,
the 3-day assimilation provided the best estimates of SM in the
near surface and dry biomass with reductions in RMSEs of 41%
and 42%, respectively. The absolute differences of assimilated LAI
from Aquarius were < 0.29 compared to the MODIS LAI indi-
cating that the performance of assimilation was similar to the
MODIS product at a regional scale. This study demonstrates the
potential of assimilation using AP observations at high temporal
resolution such as those from soil moisture active passive (SMAP)
for improved estimates of SM and vegetation parameters.

Index Terms—Active microwave remote sensing, aquarius,
data assimilation, passive microwave remote sensing, soil
moisture (SM), soil moisture active passive (SMAP).
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I. INTRODUCTION

A CCURATE estimates of crop development over a grow-
ing season are important for managing agricultural

production and assessing food security. Dynamic crop simu-
lation models, such as decision support system for agrotech-
nology transfer (DSSAT) model, can be used to estimate crop
growth as well as soil moisture (SM) [1], [2]. However, these
estimates may diverge from reality over time due to errors in
computation, initial conditions, forcing data, and model param-
eters. Auxiliary information may be incorporated into these
dynamic models to improve estimations through data assimi-
lation. Soil moisture is a critical factor governing the energy
and water fluxes, and is one of the most dominant variables
for crop growth processes [3]. Assimilating SM or remotely
sensed observations that are sensitive to SM in the dynamic
crop growth model improves the estimation of crop growth
parameters, such as biomass accumulation, over the growing
season, and thus the prediction of crop yield [4], [5].

Microwave observations have been widely used for estimates
of water contained in the soil because the relaxation frequency
of water lies in the microwave region (0.3–300 GHz), result-
ing in a significant difference in dielectric constant between dry
and wet soils. Observations at L-band (1–2 GHz) are prefer-
able due to lower attenuation by clouds and vegetation [6],
[7]. Current satellite-based microwave missions provide global
scale microwave observations at L-band that can be used for
data assimilation. For instance, the soil moisture ocean salin-
ity (SMOS) mission, operated by the European Space Agency
(ESA), provides passive observations at 1.41 GHz (L-band) at
25–50 km every 2–3 days [8]. The National Aeronautics and
Space Administration and Comisión Nacional de Actividades
Espaciales (NASA/CONAE)-Aquarius mission provides syn-
chronous L-band active and passive (AP) observations at 1.26
and 1.41 GHz, respectively, at a spatial resolution of 100 km
with repeat coverage of 7 days [9], [10]. The recently launched
NASA soil moisture active passive (SMAP) mission will pro-
vide AP observations at 1.26 and 1.41 GHz at the spatial
resolutions of 3 and 36 km, respectively, with a repeat coverage
of 2–3 days [7].

Over the last two decades, studies have been done for retriev-
ing near-surface SM from microwave observations either using
inversion of physically based model (e.g., [11], [12]) or more
recently, using data driven techniques such as Bayesian, neu-
ral network, or support vector regression (e.g., [13]–[15]). This
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Fig. 1. (a) Geographical location of the LPB, delineated as red line, in South America. (b) Land cover map with four Aquarius pixels in the study region. The
green dots indicate agricultural fields at spatial resolution of 1 km.

retrieved SM can be propagated through the root zone by
incorporating biophysically based models with assimilation.
Significant progress has been made to improve estimates of root
zone SM (RZSM) and crop development from the hydrologic
(e.g., [16]–[18]) and crop growth models (e.g., [4], [19], [20])
by assimilating near-surface SM. However, errors may be intro-
duced in retrieved SM products due to parameter uncertainties
in retrieval algorithms that may affect the performance of
assimilation algorithm. Instead, assimilating microwave obser-
vations directly by using a crop model linked with forward
microwave models may avoid such errors [5].

A few studies assimilated either active or passive observa-
tion in the crop growth or land surface process (LSP) models
[5], [21]. For example, Prévot et al. [5] coupled the STICS crop
model with the radiative transfer (RT) equation to assimilate
radar observations (σ0) at C-band to improve the prediction of
biomass accumulation of wheat. Nagarajan et al. [21] assimi-
lated brightness temperature (TB) at L-band in the linked LSP
with DSSAT model to improve estimates of RZSM during a
growing season of sweet corn. Even though both AP microwave
observations are sensitive to the SM in the near surface [22],
the passive observation of TB is more sensitive to SM but less
sensitive to surface roughness and vegetation compared to the
active observation of radar backscattering (σ0). Utilizing com-
plementarities of the two observations could improve estimates
of SM and vegetation water content (VWC) [23]. Studies using
AP observations for data assimilation in hydrologic models are
rare [18], [24]. Typically, these studies have been conducted for
a short time period and the vegetation properties were assumed
constant. A gap remains in the development of physically based
methodologies that integrate the complementary information
from AP observations of σ0 and TB, into a data assimilation
framework to improve the estimation of SM and vegetation
growth over a growing season.

The goal of this study is to improve the estimation of SM
and crop growth utilizing the complementarities of AP observa-
tions. The objectives of this study are to 1) develop and evaluate
an ensemble Kalman filter (EnKF)-based assimilation frame-
work that integrates AP observations with a linked DSSAT-
microwave model, using a synthetic experiment; and 2) imple-
ment the framework to assimilate the real satellite-based AP

observations from the Aquarius in an agricultural region.
This study provides insights into data assimilation using syn-
chronous AP observation such as those from the Aquarius and
SMAP missions.

II. STUDY AREA AND DATA PRODUCTS

A. Study Region

The La Plata Basin (LPB) is one of the largest basins on the
earth, covering parts of Argentina, Bolivia, Brazil, Paraguay,
and Uruguay, and is considered as the most economically
important agricultural region for these countries. This study was
conducted in a region with an area of about 200 km × 200 km
in the lower LPB in Brazil, as shown in Fig. 1(a). The soils
in the region are oxisols with clayey texture of 30%–60% clay
[25], and the predominant crop in this region is soybean with
a rain-fed agricultural system. This rain-fed region is vulner-
able to high losses in crop yields due to agricultural drought
which is predicted to continue under warmer and drier climate.
Therefore, it is essential to accurately predict the crop yield in
this region to manage food production and security.

B. Weather Forcing Data for DSSAT Model

This study was conducted during a growing season of soy-
bean from November 15 [day of year (DOY) 319] 2011 to
March 30 (DOY 90) 2012. The weather forcing data used in this
study, including precipitation (PPT), solar radiation (R-Solar),
maximum and minimum air temperature, dew point, and wind
speed, were obtained from satellite-based products and models,
as listed in the Table I. Both the PPT and R-Solar were spatially
averaged to 100 km × 100 km corresponding to the spatial res-
olution of the AP observations used in this study. The R-Solar
was temporally averaged, while the PPT was accumulated over
the 24-h period to daily forcing data for DSSAT model.

C. AP Observations From Aquarius for Assimilation

Gridded observations of σ0 and TB at the spatial resolu-
tion of 100 km × 100 km from Aquarius version 2.0 [10], [26]
were assimilated into the data assimilation framework. The
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TABLE I
WEATHER FORCING FROM SATELLITE-BASED PRODUCTS AND MODELS FOR DSSAT MODEL

1Tropical Rainfall Measuring Mission.
2Geostationary Operational Environmental Satellite (GOES Surface and Insolation Product).
3NASA-Prediction of Worldwide Energy Resource.

observations from the second beam of Aquarius, at an incidence
angle of 38.5◦, at 6 A.M. local time (descending orbit), were
used to avoid varying scattering mechanisms due to different
incidence angles. In addition, such an incidence angle is close
to the SMAP mission, so the performances of the assimilation
algorithm may provide insights into the SMAP mission. The
study region consisted of four Aquarius pixels, and the two pix-
els in the north were primarily agricultural (>92%), as shown
in Fig. 1(b). In this study, the two pixels in the north were used
to test the assimilation framework.

D. LAI Product for Evaluation of Assimilation Performance

Leaf area index (LAI) from MODIS was used to com-
pare with that from assimilation using Aquarius observations.
Only MODIS pixels classified as agricultural land use within
the region were considered and averaged, so errors from the
nonagricultural pixels were minimized.

III. MODELS

A. DSSAT Model

The DSSAT is a crop growth model that simulates biomass
accumulation and phenological development at a daily time
step for a variety of crops in different hydro-climate regions
[1], [27]–[35]. The model consists of modules for crop devel-
opment and growth, weather, soil, and soil–plant–atmosphere
[1]. In this study, the DSSAT-CROPGRO soybean module [2]
was used to simulate the phenological development and growth
of soybean. Vegetation parameters were obtained from exist-
ing cultivars in the DSSAT V4.5 database. The soil module
uses a one-dimensional (1-D) tipping bucket model to simu-
late soil water transport [36], and models the soil temperature
as an empirical function of air temperature and depth. In this
study, the soil was divided into two layers, 0–5 and 5–120 cm.
The hydraulic parameters of the soil, such as wilting point,
drainage rate, field capacity, porosity, and hydraulic conduc-
tivity, were estimated from soil-water characteristic models
[37] using published soil textures obtained from field measure-
ments [38]–[42]. Other soil parameters, such as albedo and
organic mater content, were obtained from the DSSAT V4.5
soils database for the region [1]. The soil–plant–atmosphere
module estimates evapotranspiration, and the weather module
simulates and reads the meteorological forcing data. The soil
moisture, temperature, and vegetation characteristics provided
by the DSSAT model were used in the AP forward models to
estimate σ0 and TB.

B. Backscatter Model

The backscatter from a vegetated terrain (σ0
terrain) is mod-

eled as

σ0
terrain = γ2σ0

soil + σ0
veg + σ0

int (1)

where σ0
soil represents the direct backscatter contribution of the

underlying soil surface, γ2 is the two-way transmissivity of the
canopy, σ0

veg is the direct backscatter from the soybean canopy,
and σ0

int is the interaction between canopy and soil.
During the bare soil, a physically based model, the advanced

integral equation model (AIEM) [43], was used to estimate the
radar backscattering coefficient from the soil, due to its applica-
bility for a wide range of roughness and frequencies. The AIEM
provides backscattering of the soil as a function of incidence
angle (θ0), frequency (f ), dielectric constant of wet soil (ε),
and surface roughness. In this study, the σ0

soil was estimated
at a θ0 of 38.5◦ and a frequency of 1.26 GHz to match the
active observations of the Aquarius mission. The ε was esti-
mated using soil moisture from the DSSAT model through a
mineralogically based model [44].

During the growing season, the Michigan microwave canopy
scattering (MIMICS) model [45] was used to estimate the
canopy extinction σ0

veg and σ0
int in soybean. The model was

linked with the AIEM for the backscattering contribution from
the soil. The MIMICS model is based on the RT theory and
calculates radar backscattering from vegetation by balancing
the amplitudes of incoming and outgoing energies across an
elemental volume. The MIMICS model, originally developed
for forest, was adapted to soybean, where the soybean was
modeled as a single-layer vegetation medium with one class
of cylindrical stems and one class of disc leaves [46]–[49].
Vegetation parameters in the MIMICS model include moisture
content, number density, and geometrical description of stems
and leaves. Because the DSSAT model estimates dry biomass
of leaves (BD,leaf ) and stems (BD,stem), an empirical function
[50], as shown in (2), was used to estimate their fresh biomass,
i.e., BW,leaf and BW,stem

BW,leaf/stem

=
BD,leaf/stem

0.5G2[−0.084 + 0.032ln(G)] + 0.099G+ 0.0196
(2)

where G is the phenological growth stage obtained from the
DSSAT model. The values of G are from 0 to 8, from vegetative
to full maturity, as detailed in [51]. The VWC of leaf and stem
VWCleaf and VWCstem were directly obtained by subtracting
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TABLE II
VEGETATION PARAMETERS USED IN THE MIMICS MODEL

their dry biomass from fresh biomass. Other input parameters
were obtained either from DSSAT model or through empir-
ical relationships between different parameters [47]. Details
of stem and leaf parameters used in this study are listed in
the Table II.

C. Microwave Emission Model (MB)

Brightness temperature from a vegetated terrain (TBterrain)
is modeled as the sum of contributions from soil (TBsoil) and
vegetation (TBveg) as follows:

TBterrain = TBsoil + TBveg (3a)

TBsoil = e · Teff · e(−τsecθ0) (3b)

TBveg = Tc ·
[
1− e(−τsecθ0)

]
(1− ω)

[
1 + r · e(−τsecθ0)

]
(3c)

where Teff is the effective temperature of bare soil estimated
using first-order approximation [52], e refers to soil emissivity
estimated using the integral form of AIEM [43], r is the soil
reflectivity equivalent to (1− e), τ is the vegetation opacity as
a function of frequency, VWC, and BW of vegetation medium
using the cloud density model [53], ω is the single-scattering
albedo that is typically considered to be low at L-band and was
ignored in this study [54], and Tc is the physical temperature
of the canopy, which is assumed isothermal and equal to air
temperature [55].

The TBterrain was estimated at 1.41 GHz matching the
passive observations of the Aquarius mission. The θ0 and ε
used in the MB model were the same as those used in the
backscatter model described in Section III-B. The total VWC
and BW of soybean for the MB model were obtained by com-
bining VWCstem and VWCleaf , and BW,stem and BW,leaf ,
respectively, as mentioned in the Section III-B.

D. Ensemble Kalman Filter

In this study, we utilized an EnKF-based assimilation frame-
work that uses a Monte Carlo approach to obtain optimized
means and covariances of states over time and to merge them

with the observations when available. In the framework, a set of
ensemble members representing state vectors is propagated in
parallel, such that each state vector represents one realization of
all model simulations. The state equation in the EnKF for each
ensemble member is [56]

xi−
t = f

(
xi+
t−1, u

i
t−1, θ

+
t−1, t− 1

)
+ ηit−1 (4)

where f(·) is the nonlinear model, xi−
t is the state of the ith

ensemble prior to the update at time t, xi+
t−1 is the posterior state

of the ith ensemble at time t− 1, ui
t−1 represents the meteoro-

logical forcing data, θ+t−1 represents the model parameters, and
ηit−1 is the model error. In this study, the model physics were
assumed to be perfect, i.e., ηit−1 = 0, and the uncertainties in
meteorological forcings and model parameters are described in
the Section IV-C.

The observation equation given in (5) relates the prior state
(xi−) to the observations (di) through the measurement opera-
tor M [24], with additive Gaussian errors (ω) at time t

dit = M(xi−
t ) + ωi

t (5)

In this study, the measurement operators were the radar
backscatter and MB models, that relate the SM and vegetation
characteristics from DSSAT model to the AP observations.

The ensemble of state vectors xi and perturbed observations
di can be represented in matrix forms as

A = {x1, x2, . . . , xN} (6)

D = {d1, d2, . . . , dN} (7)

where N is the number of ensemble members.
The posterior matrix of the state vectors, A+

t is computed
as a linear combination of the estimates from the measurement
operator using the prior estimate M(A−

t ) and the observation
vector Dt weighed by the Kalman gain Kt given as [57]

A+
t = A−

t +Kt(Dt −M(A−
t )) (8a)

Kt = A′
tM(A−

t )
T
(
M(A−

t )M(A−
t )

T +Re

)−1
(8b)

where A′
t is the matrix of A−

t − Ā−
t , and Re is the covariance

matrix of the observation errors, defined as Re = γγT , where
γ is the ensemble of observation error.
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TABLE III
SOIL PARAMETERS FOR DSSAT AND AP MODELS

TABLE IV
ERRORS IN WEATHER FORCING DATA

IV. METHODOLOGY

In this section, we describe the simulation using DSSAT cou-
pled with the forward backscatter and MB models (DSSAT-AP)
and implementation of the assimilation framework that incorpo-
rates complementarities of AP observations using the EnKF.

A. DSSAT-AP Simulation

The simulations using the uncalibrated DSSAT-AP model
started on DOY 245, 2011, 2.5 months before planting. The
soybean was planted on DOY 319, 2011 and harvested on DOY
90, 2012. Fifty realizations of DSSAT-AP model without assim-
ilation, i.e., an ensemble open loop, were conducted at a daily
time step for the 212 days including bare soil and the soybean
growing season. The initial SM and temperatures were the same
for both the soil layers and for all the ensemble members. The
initial SM was the seasonal mean of the maximum and min-
imum SM from Aquarius, and the initial soil temperature was
estimated from the DSSAT soil module using the maximum and
minimum air temperatures at the start of the simulation. The
soybean growing season in 2011–2012 was relatively dry with
a total PPT of 389 mm in this region. The soybean plant den-
sity was 40 plants per m2 with a row spacing of 0.45 m [58].
The soil consists of 0.3–0.6 by volume of clay and 0.03–0.45 by
volume of sand in this region, and constitutive properties were
obtained from [37], as shown in Table III. The daily meteoro-
logical forcing data were obtained from satellite-based products
and models as mentioned in Section II, and Gaussian errors
were introduced in all weather forcing data as listed in the
Table IV.

The vegetation parameters were obtained from four culti-
vars in DSSAT V4.5 within maturity groups 5 and 6 to pre-
serve an interrelationship between cultivars. The dry biomass
obtained from DSSAT was converted to wet biomass, VWC,
and dimensions of leaf and stem for the backscatter and MB
models, as mentioned in Sections III-B and III-C, and shown
in Fig. 2(a)–(d). Overall, the estimates of VWC, VWCleaf,
VWCstem, and LAI increase along with the growing season but
vary over time because of the dynamic weather conditions. On

day after planting (DAP) 110, the soybean seeds have reached
their full size, dry biomass accumulation has ceased as leaf
senescence continues, and the plant continues to dry down until
harvest maturity is reached. The leaf diameter follows similar
variation to the LAI because it was estimated by using an empir-
ical equation from LAI. The stem height and diameter become
stable on DAP 78, when the VWC reaches its highest value.
The number density of stem is inversely proportional to the
canopy height and becomes stable since DAP 40 when increase
in the canopy height becomes moderate. The number density of
leaf tends to stabilize since DAP 20 when the leaf number from
DSSAT model becomes stable.

The surface roughness parameters, root mean square height
(s), and correlation length (cl), shown in Table III, were
obtained from long-term experimental measurements con-
ducted during MicroWEX-5 through MicroWEX-11 [59] to
represent a natural agricultural field for backscatter and MB
models.

B. AP Assimilation Framework

The flow diagram of the AP assimilation framework is shown
in Fig. 3. The assimilation algorithm uses an EnKF-based
framework, with the nonlinear propagator f(·) in (4) repre-
senting the DSSAT model; x is the state vector consisting of
either SM or SM and vegetation characteristics estimated by
the DSSAT model during the bare soil period before emer-
gence and the vegetated period after emergence, respectively;
ut is the vector of meteorological forcing data at time t and
θ are the model parameters in the DSSAT model. During
the period before vegetation emergence, SM estimated from
DSSAT model were used to generate σ0 from AIEM. The
observed σ0 values were used to obtain the optimal value
of s using the objective function as defined in (9). The VV-
polarized (VV-pol) observations were used in this study due
to their greater sensitivity to SM and vegetation characteristics
compared to HH-pol observations [60]

Dσ0(s) = ‖σ0
terrain − σ̂0

terrain‖ (9)

where σ0
terrain and σ̂0

terrain represent the observed and esti-
mated σ0

terrain, and Dσ0 is the absolute difference between
σ0
terrain and σ̂0

terrain.
During this process, only s was estimated for each ensemble

member until the Dσ0 reached the tolerance (< 0.01 dB). The
optimized s from (9) was used in the MB model and TB was
assimilated to update SM in the two soil layers using EnKF. The
H-pol observations were used due to its higher sensitivity to SM
than V-pol. The state vector for assimilating TB is composed of

x =

[
V SM 0-5 cm

V SM5−120 cm

]
. (10)

The posterior SM was used to optimize the s iteratively, as
shown in Fig. 3. Such process was conducted until the posterior
SM converged, with the difference of SM between j + 1th and
jth iteration was less than 0.005 m3/m3. The converged SM
was used to re-initialize DSSAT model during the propagation
phase.
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Fig. 2. Vegetation parameters from DSSAT model for backscatter and MB models during a growing season of soybean. (a) Total VWC and VWC of stem and
leaf. (b) LAI. (c) Crop height and diameters of stem and leaf. (d) Vegetation number densities of stem and leaf. The bounded area represents one standard deviation
of the parameters.

During the period after vegetation emergence, the σ0
V V was

assimilated to update the total dry biomass (BD) and the TB,H

was assimilated to update SM, as shown in Fig. 3. Although the
σ0
V V is more sensitive to the wet biomass, the BD is a prog-

nostic state in DSSAT model and the two wet biomass values
are related by (2). The posterior BD is provided to DSSAT
model and the leaf, stem, and pod are obtained by preserv-
ing the prior ratio of biomass of each component. The state
vector of an ensemble member for assimilating TB,H is the
same as (10), while the state vector when assimilating σ0

V V is
expressed as

x =
[
BD

]
. (11)

The optimized value of s obtained during the period before veg-
etation was used for the entire vegetated period. Similarly, an
iteration process was employed until the estimated SM con-
verged, with the difference of SM between the j + 1th and jth
iteration is less than 0.005 m3/m3, and the optimized posterior
dry biomass and SM were used to initialize DSSAT model for
the next propagation phase.

C. Implementation of Assimilation

The synthetic experiment was conducted for the whole-
study region consisting of four pixels. Fifty (N = 50) ensem-
ble members were created for each pixel using perturbed
forcing data and parameters for assimilation, as mentioned in
Section IV-A and listed in Tables III and IV [20]. The syn-
thetic truth was obtained from one of the realizations of the
DSSAT-AP model. The synthetic AP observations were gener-
ated at a temporal resolution of 3 and 7 days, equivalent to 70
and 31 observations, respectively, over the period, matching the

SMAP and Aquarius missions. Observations of TB,H and σ0
V V

in EnKF were obtained by perturbing the truth. The errors in
AP observations were assumed Gaussian with zero mean and
standard deviations of 3 K and 1 dB in TBH and σ0

V V [7], [21],
respectively. The root mean square error (RMSE) between the
mean estimates and the synthetic truth along with the time-
averaged standard deviations of the mean estimates (ASD) were
computed to evaluate the algorithm performance.

This study used Aquarius observations because they are
the only simultaneous AP observations available for season-
ally agricultural study currently. For the implementation of the
assimilation using Aquarius observations, 2 pixels in the north
that were homogeneous, as shown as pixels 1 and 2 in Fig. 1(b),
were used. Thirty-one AP observations from Aquarius at each
pixel over the study period of 212 days were assimilated using
this framework. Significant biases in σ0

V V and TBH, of about
3 dB and 60 K, respectively, exist between the satellite-based
observations and the open-loop simulations, as shown in the
Fig. 4. These biases in observations were corrected prior to
assimilation with respect to the seasonal mean [61], [62]. The
AP observations of TBH and σ0

V V were perturbed by Gaussian
errors, similar to the synthetic experiment. Because LAI largely
correlates with the crop growth [63], the estimates of LAI
from assimilation were compared to those from MODIS prod-
uct, on DAP 30, 75, and 125, representing early-, mid-, and
reproductive stages of soybean.

V. RESULTS AND DISCUSSION

A. Synthetic Experiment

The assimilation results including three prognostic states
SM0−5 cm, SM5−120 cm, and dry biomass, and a diagnostic
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Fig. 3. Integration of DSSAT and AP forward models and assimilation flow diagram, where t represents the propagation phase at time t and j is the j th iteration
at time t.

Fig. 4. Comparisons of AP observations between open loop simulations and Aquarius observations. (a) TBH of pixel 1. (b) TBH of pixel 2. (c) σ0
V V from pixel 1.

(d) σ0
V V from pixel 2.

state LAI estimated from DSSAT model were compared to
simulations from the open-loop and the synthetic truth. Before
emergence, the mean rms slope (s/l) was optimized from 0.128
to 0.105, close to the synthetic truth at 0.106. Such an optimiza-
tion in rms slope resulted in the estimated σ0

V V approaching to

the synthetic truth by as much as 2 dB. Fig. 5 shows scatterplots
of three prognostic states from four pixels when the AP obser-
vations were assimilated. Overall, the EnKF-based framework
significantly improves the estimations of the three prognostic
states comparing to open-loop simulations by >40% in RMSE,
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Fig. 5. Scatterplots of prognostic states when AP observations were assimi-
lated. (a) SM0−5 cm. (b) SM5−120 cm. (c) Dry biomass.

TABLE V
RMSE OF V SM0−5 CM , V SM5−120 CM , AND DRY BIOMASS BETWEEN

SYNTHETIC TRUTH AND OPEN LOOP, AND DATA ASSIMILATION WHEN

THE AP OBSERVATIONS WERE ASSIMILATED

as shown in Table V. Because the states were updated using
the same methodology, as expected, the assimilations every 3
and 7 days performed similarly when the AP observations were
assimilated.

Fig. 6 compares the truth, open-loop estimates, and the daily
assimilated values of SM0−5 cm, SM5−120 cm, biomass, and
LAI to evaluate the performance of assimilation framework
over the growing season. The values were averaged over the
four pixels in the region. The data assimilation either every 3 or
7 days significantly improves the estimations of the three prog-
nostic states and the LAI over the season. Table VI shows the
RMSE and ASD of the three prognostic states and LAI during
periods before and after vegetation emergence, and the overall
results for the whole period. The assimilation conducted every 3
days produced soil moisture estimates with lower RMSE com-
pared to that conducted every 7 days. This indicates that the
high temporal resolution of observations such as future SMAP
mission or incorporating asynchronous observations from dif-
ferent satellite missions may further improve the assimilation
under dynamic vegetation conditions. Particularly, improve-
ments are more significant in SM0−5 cm and vegetation biomass
using AP observations at higher temporal resolutions, because
these are more dynamic states than SM5−120 cm.

The estimates of dry biomass using assimilation every 3 and
7 days were significantly improved by 42% and 25% in RMSE,
respectively, compared to the open loop. Although the RMSEs
improved for estimates of dry biomass over the soybean grow-
ing season, ASDs increased by 76% and 42% from every 3- and
7-day assimilation, respectively, as shown in the Table VI, indi-
cating larger uncertainties in the data assimilation. Similarly,
the LAI estimates are improved by 20% and 18% compared
to those from open loop, but the ASDs are increased by 63%
and 41% from every 3- and 7-day assimilation, respectively.
The higher uncertainties of dry biomass and LAI estimations
from data assimilation resulted from the uncalibrated DSSAT
model used in this study that causes unrealistic low estimates
of dry biomass in some ensemble members. This suppressed
plant growth due to low estimates of posterior SM conditions

and caused the plants to die earlier than “normal” plants in the
DSSAT model. That resulted in an increased uncertainty of veg-
etation estimations, including dry biomass and LAI. Thus, even
though the data assimilation statistically improves the estima-
tion of the vegetation biomass and LAI, the SD of biomass and
LAI are increased.

Table VII shows the RMSEs of three soybean components
from open loop and assimilation every 3 and 7 days. Estimates
of leaves and stems biomass are improved by as much as 32%
and 25%, respectively, but the RMSE of pods increased by as
much as 82%. This suggests that the current backscatter model
for soybean, which considers only leaves and stems, may be
inadequate for the reproductive period when the volume of
pods is significant and its contribution to backscattering may
not be negligible. As a result, the estimate for pod biomass
from data assimilation is underestimated. A more sophisticated
radar backscatter model considering backscattering contribu-
tions from all three components is suggested for future study.

Results from data assimilation using AP observations
showed improvements in updating dry biomass even though the
microwave observations are physically more sensitive to vege-
tation wet properties such as VWC or wet biomass than dry
properties. In this study, an empirical function from [50] was
used to relate dry biomass to VWC for both backscatter and MB
models, and, thus, the correlation between microwave observa-
tions to dry biomass was preserved. However, errors may be
introduced due to uncertainties in the parameters from such an
empirical function. Further modification in the DSSAT model
is recommended in order to propagate wet biomass directly.

B. Assimilation of Aquarius Observations

The assimilation results of SM0−5 cm, SM5−120 cm, dry
biomass, and LAI using AP observations from Aquarius are
compared to their open loop values in Fig. 7. Table VIII shows
the root mean square difference (RMSD) between open loop
and data assimilation using AP observations from Aquarius
and their ASDs. The ASDs of assimilated SM0−5 cm and
SM5−120 cm are significantly reduced by 20% and 40%, respec-
tively, but both ASDs of biomass and LAI are increased by
59%, similar to the synthetic experiment. The LAIs of two
pixels from data assimilation are compared to those from
MODIS on the DAP of 30, 75, and 125, as shown in Table IX.
Overall, the LAIs estimated from data assimilation in this
region are close to those from MODIS, with mean absolute dif-
ference (MAD) of 0.13, 0.29, and 0.25 m2/m2 on the days of
comparison. The uncertainties of LAI products from MODIS
were found to be from 0.4 to 1.0 m2/m2 for broad leaf crops
such as soybean [64], [65]. According to the MAD values, there
is not a significant difference between data assimilation using
Aquarius observations and the LAI from MODIS product at
the regional scale. Therefore, the assimilation using DSSAT-
AP model and Aquarius does provide alternative for vegeta-
tion estimates at a regional scale particularly under cloudy
conditions when remotely sensed observations from optical
systems are not available.

The data assimilation using complementarities of AP obser-
vations improves the estimates of SM and dry biomass during
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Fig. 6. Comparison of regional-averaged synthetic truth, open loop, and assimilated estimations every 3 and 7 days of (a) SM0−5 cm; (b) SM5−120 cm; (c) dry
biomass; and (d) LAI.

TABLE VI
RMSE AND ASD OF V SM0−5 CM , V SM5−120 CM , BIOMASS, AND LAI BETWEEN SYNTHETIC TRUTH

AND OPEN LOOP, AND DATA ASSIMILATION CONDUCTED EVERY 3 AND 7 DAYS

BS and Veg. represent the periods before and after vegetation emergence, respectively.

TABLE VII
RMSES OF LEAVES, STEMS, AND PODS BIOMASS FROM OPEN

LOOP AND DATA ASSIMILATION EVERY 3 AND 7 DAYS

the crop growing season in the synthetic experiment. It should
be noted that the implementation of an assimilation frame-
work using observations from Aquarius assumes homogeneity
at this coarse scale. Such an assumption may not be realistic
for the agricultural applications and may introduce errors in
the estimates. In order to further evaluate and assess the crop
growth in this region, the AP observations from the SMAP
mission and/or those derived through downscaling to finer spa-
tial resolution at agricultural scale are recommended. In this
study, the assimilation framework was implemented for syn-
chronous AP observations available at the same spatial scale.
The framework can be used for the SMAP AP observations by
downscaling TB from 36 to 9 km [55] and upscaling the σ0

to the same spatial scale. To utilize the Level 1 AP observa-
tions from SMAP at different spatial resolution and consider the
mixed pixels with different types of crop at the fine-scale active

observations, the framework would need modifications by
redesigning the observation matrix in the EnKF [24]. Besides,
the Aquarius mission provides repeat observations every 7 days,
which may also limit the performance of data assimilation. The
SMAP providing AP observations every 3 days will signifi-
cantly improve the performance of assimilation under highly
dynamic SM and vegetation conditions.

This study also provided insights into the different vegetation
opacity values in the active and the passive microwave models
that may help to improve the performance of the assimilation
algorithms. In this study, the vegetation opacity in the MIMICS
model (τMIMICS) can be obtained using γ=exp(−τ sec θ0),
where the γ was calculated using the Foldy’s approximation
that considers both scattering and absorption losses [45].
However, the vegetation opacity in the MB model (τMB) was
obtained using the cloud density model that considers only
absorption losses. These two opacity values are inconsistent,
as shown in Fig. 8, because of different loss mechanisms in the
two models. The τMIMICS was greater than τMB by as much
as 0.02 over the soybean growing season. Such an inconsistency
would not affect the assimilation results in the synthetic study
because the AP observations were model-generated and fol-
low model biophysics. However, the assimilation results using
actual AP observations may be affected if scattering losses
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Fig. 7. Comparison of regionally-averaged open loop and assimilated estimates using Aquarius of (a) V SM0−5cm; (b) V SM5−120cm; (c) dry biomass; and
(d) LAI.

TABLE VIII
RMSD AND ASD OF V SM0−5 CM , V SM0−120 CM , BIOMASS, AND LAI BETWEEN OPEN

LOOP AND DATA ASSIMILATION USING AP OBSERVATIONS FROM AQUARIUS

TABLE IX
MEAN AND STANDARD DEVIATION OF LAI FROM MODIS PRODUCT IN TWO PIXELS AND

LAI FROM ASSIMILATION OF AQUARIUS AP OBSERVATIONS

Pixels 1 and 2 contain 9167 and 9278 agricultural LAI values, respectively, from MODIS.

Fig. 8. Comparison of τ values in MIMICS and MB models. The bounded area
represents one standard deviation of the two τ values.

are significant for passive signatures, particularly for the more
structural plants such as trees [66]. The τMB would need to
be modified to include scattering losses for realistic brightness
predictions.

VI. SUMMARY AND CONCLUSION

In this study, a data assimilation framework that is capa-
ble of incorporating complementarities of AP observations was

developed and implemented for updating SM at two layers
and vegetation biomass through a growing season of soybean.
Overall, estimates of SM, dry biomass, and LAI using the
data assimilation framework were significantly improved in
the synthetic experiments. Data assimilation conducted every
3 days showed more improvement than that conducted every 7
days in estimates of SM0−5 cm and dry biomass by 12% and
17%, respectively, indicating that the high temporal resolution
observations are needed for such highly dynamic parame-
ters. Although data assimilation every 3 days improved the
estimation of dry biomass and LAI by as much as 42% and
20%, respectively, over the open loop, their ASDs were still
higher. The wider spread of vegetation estimations resulted
from the unrealistic estimate of vegetation development in some
ensemble members using the uncalibrated DSSAT model in
this study. A calibrated DSSAT model is recommended, so
that the plant for each ensemble member is able to adapt
to the meteorological and hydrological conditions in this
region. In addition, further study on developing a backscat-
ter model that involves the contribution from pods is sug-
gested in order to improve estimates during the reproductive
period.
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The LAI estimate based on assimilating Aquarius observa-
tions was compared to the MODIS LAI product averaged to a
100-km scale. Even though the MODIS products may contain
errors, in the absence of ground truth, the comparison showed
that the LAI from data assimilation is of a similar quality as
MODIS products, which have been widely used on monitoring
vegetation growth. However, for agricultural use, observations
with better spatial resolutions are recommended. This study
also showcased the potential ability of the SMAP mission that
provides better temporal and spatial resolutions of synchronous
AP observations for improved estimates of SM and vegetation
parameters during the dynamic agricultural growing season. In
addition, investigation of impacts due to inconsistent vegeta-
tion opacities in backscatter and MB models on performance
of assimilation is recommended for improving the assimilation
algorithm.
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