
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 54, NO. 8, AUGUST 2016 4629

Disaggregation of Remotely Sensed Soil Moisture in
Heterogeneous Landscapes Using Holistic

Structure-Based Models
Subit Chakrabarti, Student Member, IEEE, Jasmeet Judge, Senior Member, IEEE, Tara Bongiovanni,

Anand Rangarajan, Member, IEEE, and Sanjay Ranka, Fellow, IEEE

Abstract—In this paper, a novel machine learning algorithm
is presented for disaggregation of satellite soil moisture (SM)
based on self-regularized regressive models (SRRMs) using high-
resolution correlated information from auxiliary sources. It in-
cludes regularized clustering that assigns soft memberships to
each pixel at a fine scale followed by a kernel regression that com-
putes the value of the desired variable at all pixels. Coarse-scale
remotely sensed SM was disaggregated from 10 to 1 km using land
cover (LC), precipitation, land surface temperature, leaf area in-
dex, and in situ observations of SM. This algorithm was evaluated
using multiscale synthetic observations in NC Florida for hetero-
geneous agricultural LCs. It was found that the rmse for 96% of
the pixels was less than 0.02 m3/m3. The clusters generated rep-
resented the data well and reduced the rmse by up to 40% during
periods of high heterogeneity in LC and meteorological conditions.
The Kullback–Leibler divergence (KLD) between the true SM and
the disaggregated estimates is close to zero, for both vegetated and
bare-soil LCs. The disaggregated estimates were compared with
those generated by the principle of relevant information (PRI)
method. The rmse for the PRI disaggregated estimates is higher
than the rmse for the SRRM on each day of the season. The KLD of
the disaggregated estimates generated by the SRRM is at least four
orders of magnitude lower than those for the PRI disaggregated
estimates, whereas the computational time needed was reduced by
three times. The results indicate that the SRRM can be used for
disaggregating SM with complex nonlinear correlations on a grid
with high accuracy.

Index Terms—Clustering, disaggregation, kernel regression,
microwave remote sensing, multispectral remote sensing, soil
moisture (SM).
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I. INTRODUCTION

SOIL moisture (SM) is a key governing factor in surface
and subsurface hydrological and agricultural models as it

regulates land–atmosphere interactions. It has also been recog-
nized as an essential climate variable by the Global Climate
Observing System [1]. Representational models of weather
[2]–[4], crop growth[5], ecosystem and carbon cycle processes
[6], [7], dust generation [8], trace gas fluxes [9], and agricultural
drought [10], [11] require SM data at a fine spatial resolu-
tion. Recent satellite missions, including the European Space
Agency Soil Moisture and Ocean Salinity (SMOS) and the Na-
tional Aeronautics and Space Administration Soil Moisture Ac-
tive Passive (SMAP) missions [12], provide for SM retrievals
at unprecedented spatial resolutions of tens of kilometers every
2–3 days, with worldwide coverage. However, models simu-
lating physical processes for agricultural regions need SM at
even finer scales of 1 km [11]. Disaggregation addresses this
discrepancy in scales by generating local fine-resolution data
from coarse-resolution data obtained from satellites.

Most of the disaggregation techniques broadly fall into three
approaches. The first approach is based on the assumption
that spatial disaggregation follows a known hierarchical model
such as fractal interpolation, power law, or temporal persistence
across scales. Methods using this approach usually assume
static vegetation and micrometeorology for a given area, due
to the difficulties associated with parametrizing weather and
land cover (LC) data across temporal and spatial scales in
such models. However, the static assumption in this approach
introduces large errors in realistic applications. The second
approach uses empirical models based on statistical and geo-
statistical methods, such as regression, cokriging and block
kriging, and fractal interpolation. The third approach employs
statistical models based on the triangle method [13]–[15] to
extrapolate the dependent data within the hypothetical triangle
formed by the observed data. The robustness of the statistical
methods over heterogeneous vegetation and weather conditions
remain mostly untested. Treating each pixel as a sample instead
of using spatial information to regularize the disaggregation
results in salt-and-pepper noise due to spatial autocorrelation
[16]. Moreover, these approaches use second-order metrics,
which do not leverage all the information in the data that is
necessary in a highly nonlinear regression problem such as
disaggregation [17].
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A recently implemented disaggregation algorithm [18] based
on the principle of relevant information (PRI) addresses the
given inadequacies by utilizing the full probability density
function (pdf) of a set of training observations, rather than
second-order moments, to approximate a transformation func-
tion that relates micrometeorological data recorded in a region
to in situ SM. It uses the transformation function to generate
an initial set of SM values for the rest of the data set. The
disaggregated SM is obtained by iterating between the coarse-
scale SM values and the initial SM values using an information-
theoretic (IT) cost function. The PRI method was compared
with the widely used disaggregation algorithm based on a
second-order regression using the triangle method [14]. It was
found to have lower disaggregation errors, particularly for com-
plex noise models added to the coarse-resolution SM. Notably,
the Kullback–Leibler distance between the true and disaggre-
gated SM was 50% lower for the PRI method, compared with
the triangle method. This is because methods based on the
second-order triangular or quadrilateral regressions do not have
separate steps for error-bias and error-variance controls and rely
on the data being well posed to achieve a balance between error
bias and error variance. Although the PRI method results in
low disaggregation errors, training a fully Bayesian transfor-
mation function is computationally intensive. Additionally, it
requires a comprehensive training set for the initial estimate
of the multidimensional pdf to converge. In this paper, a self-
regularized regressive model (SRRM) is used to disaggregate
SM. It is expected to be less computationally intensive as it
uses auxiliary features correlated to SM to perform clustering of
pixels and subsequently trains a single model for each cluster.
Furthermore, it requires fewer samples for training.

The goal of this paper is to develop and implement a novel
machine learning algorithm to disaggregate coarse-scale re-
motely sensed SM using auxiliary fine-scale data. The primary
objectives of this paper are to: 1) develop an algorithm to
identify contiguous regions of similarity in gridded images and,
subsequently, for each region, use kernel regression to estimate
a disaggregation model for each region; 2) implement this
algorithm to estimate SM at 1 km using SM at 10 km and other
spatially correlated variables in the region such as land surface
temperature (LST), leaf area index (LAI), LC, and precipitation
(PPT); and 3) evaluate the SRRM-based methodology and
compare it with the PRI method using a synthetic data set.

Section II describes the theoretical details of the disag-
gregation framework based on SRRMs and provides a brief
description of the PRI algorithm for disaggregation. Section III
illustrates the steps for the implementation of the SRRM
and presents the disaggregation results for SM at 1 km, and
Section IV summarizes the important results, concludes this
paper, and outlines the scope for future studies.

II. DISAGGREGATION FRAMEWORK

Disaggregation is an ill-conditioned problem that is limited
physically by the convolution of the point-spread function of
the imaging system. This constrains the generation of fine-scale
data from coarse-scale data. Additional spatially correlated in-
formation is needed to regularize the fine-scale estimates. Meth-

Fig. 1. Flowchart of the SRRM-based algorithm.

Fig. 2. Flow diagram of the self-regularized kernel regression models.

ods that use regression to bridge the difference in scales have to
use regularization to address the multiplicity of solutions. The
SRRM addresses this problem by using a clustering algorithm
to create a number of regions of similarity, which, subsequently,
are used in a kernel regression framework. This is described in
more detail in the following. Using spatial regions or dynamic
conglomerations of pixels to generate models instead of treating
each pixel in a sample-based method also reduces the effect of
spatial autocorrelation on the disaggregated estimates.

A. Disaggregation Framework Based on SRRMs

In this paper, contiguous regions are identified in multidi-
mensional correlated data using clustering, and subsequently, a
regression model is trained for each cluster for disaggregation.
The membership vector of every pixel to a region, and thus
to a model, is soft and constrained to sum to one across the
space of models. The models themselves are trained using a
kernel-regression-based method. It is a novel way to account for
correlated features using algorithms that require an independent
and identical distribution assumption [16]. Fig. 1 shows a
flow diagram of the algorithm for generating disaggregated
estimates. The overall organization and the data sets involved
is shown in Fig. 2. The two steps of the algorithm include
clustering and kernel regression, as follows.

1) IT Clustering Based on the Cauchy–Schwarz Distance:
Commonly used clustering methods, such as the K-means [19],
assume hyperspherical or hyperelliptical clusters [20]. With
gridded remotely sensed data, prior assumptions about cluster
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shapes are not advisable and lead to noise in the clustering
result, as shown in Fig. 3(a). Instead, in the IT clustering
method, the generalized proximity regions are identified using a
regularized variant of a clustering method based on information
theory [20]. The clusters are constructed using the pdfs of the
data, resulting in clusters that are representative of the input
data, as shown in Fig. 3(b). For any two vectors x and y, the
Cauchy–Schwarz inequality is

− log

(
|〈x,y〉|√
‖x‖2‖y‖2

)
≥ 0 (1)

where 〈x,y〉 is the inner product of vectors x and y. For
pdfs p(x) and q(x), the inner product is defined as 〈p, q〉 =∫
p(x)q(x)dx over the support for the distributions p and

q. Then, the Cauchy–Schwarz inequality in a metric space
spanned by the pdf is

− log

⎛
⎝ ∣∣∫ p(x)q(x)dx

∣∣√∫
p2(x)dx

∫
q2(x)dx

⎞
⎠ ≥ 0. (2)

If p(x) is calculated using pixels lying in cluster C1 and q(x)
is calculated using pixels lying in cluster C2, the maximum
separation is obtained between clusters when the left-hand
side of (2), the Cauchy–Schwarz distance DCS, is maximized.
Since the logarithm is a monotonically increasing function,
only the argument of the logarithm in DCS = − logJCS(p, q)
can be equivalently minimized using gradient-descent-based
optimization. An estimator ĴCS of JCS(p, q) can be constructed
from data samples and extended to the case of multiple clusters
by using a membership vector, i.e.,

ĴCS(m1, . . . ,mN)

=
1
2

∑N
i=1

∑N
j=1

(
1−mT

i mj

)
Gσ

√
2(xi,xj)√∏K

k=1

∑N
i=1

∑N
j=1 mikmjkGσ

√
2(xi,xj)

(3)

where mi is a soft K-dimensional vector, where the kth ele-
ment expresses the degree of membership to the kth cluster. K
is the total number of clusters that has to be supplied as input.
Gσ

√
2(·, ·) is derived from the convolution of two Gaussian

kernels, which is defined as Gσ
√
2(xi,xj) = exp(−(‖xi −

xj‖22/2σ2)). A regularized version can be used as an objective
function of clustering, as shown in the following:

ĴREG
CS (m1, . . . ,mN)

=
1
2

∑N
i=1

∑N
j=1

(
1−mT

i mj

)
Gσ

√
2(xi,xj)√∏K

k=1

∑N
i=1

∑N
j=1 mikmjkGσ

√
2(xi,xj)

− ψ

N∑
i=1

K∑
k=1

mik log(mik). (4)

The second term of the objective function is an estimate of
the Shannon entropy of the membership vectors and serves
to regularize the membership vectors such that the model
selection is sufficiently sparse. Getting the correct membership

Fig. 3. Clustering result obtained from (a) DCS-based clustering algorithm
and (b) K-means clustering algorithm.

vector then is equivalent to solving this constrained optimizatio
problem, i.e.,

min
m1,...,mN

ĴREG
CS (m1, . . . ,mN )

subject to mT
j 1K×1 − 1 = 0, j = 1, . . . , N (5)

where 1K×1 is a K × 1 vector whose elements are all one.
Consider mik = v2ik, k = 1, . . . ,K , which corresponds to a
form that can be optimized by using Lagrange multipliers. The
Lagrangian can be expressed as

L = ĴREG
CS (v1,v2, . . . ,vN ) +

N∑
i=1

λi

(
vT
i vi − 1

)
. (6)

The optimization problem (6) amounts to adjusting vectors
vi, i = 1, . . . , N such that

∂ĴREG
CS

∂vi
=

(
∂ĴREG

CS

∂mi

T
∂mi

∂vi

)T

= Γ
∂ĴREG

CS

∂mi
→ 0 (7)

where Γ = diag(2
√
mi1, . . . , 2

√
miK) is the magnitude nor-

malizing factor. The memberships are forced to be positive by
adding a constant of small magnitude α ∼ 0.05 to all elements
of Γ. The Lagrange multipliers then, after constructing the
necessary Lagrange function is given by

λi =
1

2

√
∂ĴREG

CS

∂vi

T
∂ĴREG

CS

∂vi
. (8)

The updated vector for the next iteration is

v+
i = − 1

2λi

∂ĴREG
CS

∂vi
. (9)

The square of the membership vectors are initialized as vi =
|N (0; γ2I)|, where N denotes the Gaussian distribution, and γ
is a very small number.

Stochastic Approximation of the Gradient and Computa-
tional Complexity: If ĴCS is represented as (U/V ), then the
gradient of ĴREG

CS can be calculated as

∂ĴREG
CS

∂mi
=

V δU
∂mi

− U ∂V
∂mi

V 2
− ψ

K∑
k=1

(1 + log(mik)) (10)
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where U and V are defined as

U=
1

2

N∑
i=1

N∑
j=1

(
1−mT

i mj

)
G√

2σ(xi,xj) and V =

√√√√ K∏
k=1

vk

(11)

and the gradients of U and V are defined as

∂U

∂mj
= −

N∑
j=1

mjGσ
√
2(xi,xj)

∂V

∂mi
=

1

2

K∑
k′=1

√√√√∏K
k=1
k 	=k′

vk

vk′

∂vk′

∂mi
(12)

where vk =
∑N

i=1

∑N
j=1mikmjkG√

2σ(xi,xj) and∂vk′/∂mi =

[0, . . . , 2
∑N

j=1 mj(k
′)G√

2σ(xi,xj), . . . , 0]
T

.
Kernel Annealing: The objective function in (4) has local

minima that can inhibit the performance of this algorithm.
To ensure that the clustering solution is global and not just
local minimum, the kernel width is gradually decreased in this
algorithm over the course of iterations. The initial value of the
kernel is chosen according to the Silverman’s rule of thumb [21]
given by

σSIL = σX

(
4N−1(2d+ 1)−1

) 1
d+4 (13)

where d is the dimensionality of the data, N is the number
of samples, and σ2

X = d−1
∑

i

∑
Xii

, with
∑

Xii
being the

diagonal values of the sample covariance matrix. The lower
value of the kernel size is set to σLOW = (σSIL/4). Thus, the
annealing rate is

r =
σSIL − σLOW

NTOT
=

3σSIL

4NTOT
. (14)

2) Regularized Kernel Regression: A kernel-based regres-
sion technique that uses a training set of pixels and fits a
function to it, by minimizing the representational error, is used
to generate the disaggregated estimates. Ridge regression [22]
is a parametric regression technique that adds a scaled regular-
izing term to the cost function. This improves the stability of
the regression as the added L2-norm term in the cost function
results in smaller eigenvalues. The cost function is

E(w,x) =
1

2

∑
i

(yi − wTxi)
2
+

1

2
μ‖w‖2. (15)

The weights can be calculated by differentiating the error
cost function with respect to the weights and setting it to zero,
i.e.,

∂E
∂w

= 0 =⇒ w=

(∑
i

xix
T
i + μI

)−1 (∑
i

yixj

)
. (16)

For computation in a reproducing kernel Hilbert space, then,
the inner products can be replaced with a kernel evaluation. Let
H be a Hilbert space with an inner product metric 〈·, ·〉H. Then,
according to the representer theorem, a kernel function κ(x,y)

exists on R
N × R

N such that 〈x,y〉H = κ(x,y). Now, if Φ :
R

N → R
N is a mapping that transforms the feature vector in the

original vector space to H, then the weights can de redefined as

w = (μID +ΦΦT )
−1
Φy (17)

where D is the dimension of the feature space. The dimen-
sion of the feature space is not well defined in many cases;
therefore, the weights can be rewritten using the identity
(A−1 + BTC−1B)

−1
BTC−1 = ABT (BABT + C)−1, i.e.,

w = Φ(μIN +ΦTΦ)
−1
y. (18)

The weight vector w can be calculated using a training set
of observations, where y is known. This can then be used to
calculate the estimated value for a new data point x′, i.e.,

ŷ =wTΦ(x′)

=y(μIN +ΦTΦ)
−1
ΦTΦ ((x′))

= y(μIN +K)−1︸ ︷︷ ︸
w

κ(x,x′) (19)

where K is the Gram matrix of inner products of all the training
data points. This does not address the constant that must be
present in the regression. To solve this problem, the feature vec-
tor is augmented by adding a constant feature 1 to all samples.

3) Algorithm Summary and Computational Complexity: The
SRRM disaggregation is summarized and shown in Algorithm 1.
A tenfold cross-validation was used to determine the number
of clusters N , the kernel size for the clustering ψ, and the
regularization weight for the regression μ. The performance of
the algorithm was less sensitive to the kernel size for regression
than the other parameters and was set to the standard deviation
of y at coarse scale.

Algorithm 1 Disaggregation Using SRRMs

Require: Initialize membership vectors, vi ← |N (0; γ2I)|
and number of clusters, N for each day of the data set.
NDAYS is the total number of days.
for i = 0 to NDAYS do

Step 1: Clustering
for i = 1 to 30 do

Calculate ĴREG
CS and ∂ĴREG

CS /∂mi according to
Equations (4) and (10).
Update λi and v+

i according to Equations (8) and (9).
end for
Step 2: Kernel Regression
Calculate w according to Equation (18) using the
training set.
Estimate the disaggregated observations, ŷ for the test
set using Equation (19).
Run 10-fold cross-validation for the values of N and the
cross-validation constants ψ and μ.

end for
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The complexity of the DCS based clustering algorithm is
O(N2) for each iteration. For good convergence, 30 iterations
are needed. This is much lower than the dimensionality of the
data set and does not affect the complexity of the algorithm. To
reduce the computational load, a stochastic sampling method is
used. For this, the gradient is approximated by usingM samples
out of all N . The complexity then becomesO(MN) (M  N)
per iteration. M can be much lesser than N , and the results
are comparable to the original method, taking a fraction of the
time. The average complexity of the ridge regression method is
O(N3) [23].

B. PRI Framework

The disaggregation methodology using PRI includes a trans-
formation process to obtain a probabilistic relationship between
the variable to be disaggregated y at 1 km using auxiliary
information X at the same scale. A discrete formulation of the
Bayes rule is used to estimate yinitial at fine resolution, as given
in (20), wherein yi

train is discretized into k classes, i ∈ [1, k],
and xi1

j,train is discretized into kj classes in i1 ∈ [1, kj ], where
j indexes the individual variables that comprise X, m, i.e.,

p
(
yi1
initial

∣∣Xi1
train

)
=

p
(
Xi1

train

∣∣yi
train

)
p
(
yi
train

)
p
(
Xi1

train

)
yi
initial = argmax

yi
train

p
(
Xi1

train

)
p
(
yi
train

)
p
(
Xi1

train

)

p
(
Xi1

train

)
=

k∑
i=1

p
(
Xi1

train|yi
train

)
p
(
yi
train

)
. (20)

In the second step, yinitial is merged with the observations at
the coarser resolutions ycoarse to obtain improved estimates at
fine resolution, i.e.,

argmax
m

L(m) = H(m) + βKL (pm ‖pyinitial
) (21)

where I(m) is the cost function, pyINITIAL
is the pdf of the

original data, and pm is the pdf at each iteration. I(m) is the
entropy, and KL is the KLD. m is initialized to yCOARSE at
the first iteration. The β is a user-defined weighting parameter
that balances the redundancy and information preservation in
I(m). As the value of β increases, the cost function gives
more emphasis to KL, thus preserving more information about
the data at the cost of extremely high redundancy reduction.
In this paper, an intermediate value of β = 2 was chosen so that
the PRI image would approximate the mean level of y at coarse
scales but will also embed the level of detail provided by the
initial estimates of y at 1 km, to obtain morphed estimates of y
at 1 km. The computational complexity of the PRI algorithm
is given as O(N3

∏
kj), where kj are the number of bins

used to estimate the pdf of the features for the transformation
function. A detailed description of the PRI algorithm can be
found in [18].

Fig. 4. Study region in North Central Florida. LSP-DSSAT-MB simulations
were performed over the shaded 50× 50 km2 region.

III. EXPERIMENTAL DESCRIPTION AND RESULTS

A. Multiscale Synthetic Data Set

The proposed algorithm for disaggregation was tested using
data generated by a simulation framework consisting of the
Land Surface Process (LSP) model and the Decision Support
System for Agrotechnology Transfer (DSSAT) model, de-
scribed in [24]. A 50× 50 km2 region, which is equivalent to
approximately 25 SMAP pixels at 9-km spatial resolution, was
chosen in North Central Florida (see Fig. 4) for the simulations.
The region encompassed the University of Florida’s Institute
of Food and Agricultural Sciences Plant Science Research and
Education Unit, Citra, FL, USA, where a series of season-
long field experiments, called the Microwave, Water and En-
ergy Balance Experiments (MicroWEXs), have been conducted
for various agricultural LCs over the last decade [25]–[27].
Simulated observations of LST and LAI were generated at
200 m for a period of one year, from January 1, 2007 through
December 31, 2007. Topographic features, such as slope, were
not considered in this paper because the region is typically
characterized by flat and smooth terrains with no run-off due to
soils with high sand content. The soil properties were assumed
constant over the study region.

Fifteen-minute observations of PPT, relative humidity, air
temperature, downwelling solar radiation, and wind speed were
obtained from eight Florida Automated Weather Network sta-
tions [28] located within the study region (see Fig. 4). The
observations were spatially interpolated using splines to gener-
ate the meteorological forcings at 200 m. Long-wave radiation
was estimated following [29].

The model simulations were performed over each agricul-
tural field rather than all the pixels, to reduce computation
time. Based upon LC information at 200 m, contiguous and
homogeneous regions of sweet corn and cotton were identified,
as shown in Fig. 5. A realization of the LSP-DSSAT model was
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Fig. 5. (a) LC at 200 m during cotton and corn seasons. White, gray, and black shades represent bare-soil, cotton, and sweet-corn regions, respectively.
Homogeneous crop fields along with centers for (b) sweet corn and (c) cotton. See [24].

TABLE I
PLANTING AND HARVEST DATES FOR SWEET CORN AND

COTTON DURING THE 2007 GROWING SEASON

used to simulate LST, LAI, and PPT at the centroid of each ho-
mogeneous region, using the corresponding crop module within
DSSAT. The model simulations were performed using the
200-m forcing at the centroid, as shown in Fig. 5. Linear aver-
aging is typically sufficient to illustrate the effects of resolution
degradation [30]. The model simulations at 200 m were spa-
tially averaged to obtain PPT, LST, LAI, SM, and TB at 1 and
10 km. The SM obtained at 1 km was divided into the training
and test sets that were used as truth to evaluate the disaggre-
gation methodology and serve as simulated “in situ” measure-
ments to train the algorithm, respectively. PPT, LAI, and LST
are typically chosen due to their high correlations with SM [14],
[18], [31]. Other geophysical descriptors, such as slope and soil
texture, were not used in this paper because of their limited
utility in a flat and primarily sandy region, such as that in North
Central Florida. To simulate rain-fed systems, all the water
input from both PPT and irrigation were combined together,
and the “PPT” in this paper represents these combined values.

B. Disaggregation Framework Based on SRRM

The simulation period, from January 1 (DoY 1) to
December 31 (DoY 365), 2007, consisted of two growing
seasons of sweet corn and one season of cotton, as shown in
Table I. The LST, PPT, and LAI observations at 1 km were
obtained by adding white Gaussian noise to account for satellite
observation errors, instrument measurement errors, and mi-
crometeorological variability, following [32]–[34]. Errors with
zero mean and standard deviations of 5 K, 1 mm/h, 0.03 m3/m3,
and 0.1 for LST, PPT, SM, and LAI, respectively, were added
to the values at 10 km.

The SRRM uses LST, three-day PPT, LAI, LC at 1 km, and
SM at 10 km every three days as input. In the first step, the IT
cost function described in Section II-A is used for clustering
using the inputs at 1 km and the x and y coordinates of each
pixel scaled to a range of 0 and 1. This step of the algorithm uses
two parameters: the number of clusters N and a regularization

Fig. 6. RMSE in disaggregated SM at 1 km versus number of iterations of the
DCS clustering algorithm.

constant μ. Both the number of clusters and the regularization
constant is determined by cross-validating against the absolute
mean error in SM at the end of the second step for each day.

The optimal number of iterations that produced a usable
clustering result was determined by the minimum rmse for
a day when both the LC and micrometeorological conditions
were heterogeneous, i.e., DoY 222, providing the worst-case
scenario for convergence of the clustering algorithm. At the
end of this step, each pixel has a vector of N numbers,
(m1,m2, . . . ,mN ) that sum to 1 describing its membership to
each of the N clusters. Fig. 6 shows the spatially averaged rmse
between disaggregated SM and the observations at 1 km on
DoY 222 for different iterations of the clustering algorithms.
All parameters, except the number of clusters, were cross-
validated for each individual iteration. The number of clusters
was cross-validated once, using 50 iterations of the clustering
algorithm. For the cross-validation, the training set was ran-
domly divided into ten equal parts. Nine parts were used for
training, and one part was used for evaluating the algorithm.
This methodology, known as tenfold cross-validation, is re-
peated ten times with different randomly selected partitions to
approximate the average errors that the SRRM would incur. The
error oscillates with a mean amplitude of 1.2× 10−4 m3/m3

after 30 iterations. In this paper, 30 iterations of the clustering
algorithm are used.

In the second step, N models, f̂1, f̂2, . . . , f̂N are devel-
oped using LST, three-day PPT, LAI, LC, SM at 1 km, and
SM at 10 km as inputs to the regularized kernel regression
algorithm described in Section II-A, using training set. The
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TABLE II
DAYS SELECTED FOR EVALUATING SRRM ESTIMATES. THESE

DAYS CAPTURE VARIABILITY IN PPT/IRRIGATION AND LC

training set was consisted of randomly selected 33% of the
pixels or 500 out of the 2500 pixels that make up the region.
The remaining pixels were used as the test set. The hard
membership of each pixel i for model development purposes
is determined by the maximum value in its membership vector
mi = (mi

1,m
i
2, . . . ,m

i
N ). The disaggregated value of SM is

computed for each point in the test, represented as a vector,
x′
i = (LST1km

i , PPT1km
i ,LAI1kmi ,LC1km

i , SM10km
i ) by

SM1km
i = mT ·

(
f̂1 (x

′
i) , f̂2 (x

′
i) , . . . , f̂N (x′

i)
)
. (22)

The SRRM is evaluated using the rmse and standard devi-
ation of the errors over the entire season. The rmse over for
the entire time period is assessed for each LC. Moreover, the
disaggregated SM is compared with the true SM. To evaluate
how close the density function of the disaggregated estimates
is to the density function of the true SM, the KLD between
the density of the estimated observations and the true SM is
calculated for different LC’s over the season. The KLD is a
member of the class of well-known f -divergences that convey
distances in probability space. Any other f -divergence such as
the Hellinger distance or χ2-distance can also be used. A sensi-
tivity analysis was conducted to determine how each auxiliary
variable separately contributed to errors in downscaled SM. A
single auxiliary variable, LST, LAI, or PPT, was allowed to vary
for each LC, whereas the others were set to their mean values.
The relative rmses RMSEr, RMSEr = ΔRMSE/RMSEorg,
were investigated, where ΔRMSE is the change in rmse when
a single auxiliary variable is used compared with when all the
auxiliary variables are used (RMSEorg) for each day in 2007.
The daily RMSEr averaged over each LC, bare soil, corn, and
cotton in 2007 is also studied.

In addition, five days were selected from the season to
understand the effect of the heterogeneity in inputs on the
error in disaggregated SM. Variabilities in PPT, ranging from
uniformly wet to uniformly dry, and in LC, ranging from bare
soil to vegetated with both cotton and sweet corn, were used as
criteria for selecting the days, as shown in Table II. Quantitative
analyses of spatial variations in SM observed under dynamic
vegetation and heterogeneous LC conditions provide an index
of dynamic errors that can be expected. The utility of using
multiple models in the region, i.e., one model for each cluster,
was also investigated by comparing the disaggregation results
to when the entire data set is considered as a single cluster
and only one model is used for disaggregation, on DoY 222
of the study.

Fig. 7. Spatially averaged rmse in disaggregated SM at 1 km for each day of
the year in the simulation period using the SRRM and PRI method.

Fig. 8. Cumulative distribution function (CDF) of the errors in disaggregated
SM at 1 km.

Fig. 9. Disaggregated SM and True soil moisture at 1 km during 2007 for
(a) bare-soil, (b) corn, and (c) cotton pixels. The red lines correspond to
0.04 m3/m3 error in disaggregated SM.

The spatially averaged rmse for each DoY in the simulation
period is shown in Fig. 7. A Z-test was performed to evaluate
whether the disaggregated SM at 1 km is within a standard
deviation of ±0.04 m3/m3 from the true SM at 1 km, for mean-
ingful use in hydrological models [35]. This null hypothesis
was found to be true for every day of the simulation period.
Fig. 8 shows the cumulative density function (cdf) of the errors
in disaggregated SM. About 98% of the days have an rmse of
less than 0.02 m3/m3 in the disaggregated SM. Fig. 9 shows
the disaggregated SM versus true SM at 1 km. The algorithm
does not introduce any bias, and the data points are scattered
around the ŷ − y = 0 line, with a positive variance. Most of
the points for sweet-corn pixels and all of the points for cotton
lie within 0.04 m3/m3. Fig. 10(a) shows the errors for each
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Fig. 10. Spatially averaged rmse in disaggregated SM at 1 km for each day
of year in 2007 for bare-soil, corn, and cotton LCs using the (a) SRRM and
(b) PRI method.

TABLE III
KLD OVER THE 50× 50 km2 REGION FOR THE DISAGGREGATED

ESTIMATES OF SM OBTAINED AT 1 km USING

THE SRRM AND PRI METHOD

DoY segregated by type of LC. Bare-soil pixels during periods
of vegetation have the highest rmse. This is due to subpixel
vegetation at 250 m within a pixel classified as a bare-soil pixel,
when the vegetation fraction is < 0.5 at 1 km. Table III shows
the KLD between the densities of the disaggregated estimates
and the true SM. Bare-soil pixels at 1 km without any vegetation
at 250 m have the lowest KLD. Bare-soil pixels at the end of the
season that are affected by remnant crops and bare-soil pixels at
1 km with partial vegetation cover at 250 m have a higher KLD,
but very close to 0. Vegetated pixels at 1 km contain a higher
KLD as well. The boundary pixels classified as bare soil have
vegetation at the 250-m scale contributing to these errors.

Among the three scenarios considered for the sensitivity
analysis, rmses in downscaled SM are the lowest when just
LST is used for disaggregation. This suggests that SM is more

strongly coupled to LST than LAI or PPT. This is expected
since the spatial patterns apparent in LST images also appear
in the SM image, particularly bare-soil pixels, as shown in
Fig. 11(b), with a weaker and more complex relationship in
corn and cotton, as shown in Fig. 11(c) and (d), respectively.
LAI shows higher and similar effects on errors in disaggregated
SM for during the mid and late growing seasons of corn and
cotton crops. The use of PPT to disaggregate SM results in a
lower rmse immediately following a major rainfall event. At
other times, its sensitivity to SM is comparable to LST, for bare-
soil pixels, and to LAI, for vegetated pixels.

For the five selected days, the inputs, clustering results, the
first SM estimate, and PRI disaggregated SM are shown in
Figs. 12–15. The clustering results indicate that the implicit
inclusion of spatial coordinate information adequately con-
strains the clusters from becoming too small, whereas the LST,
LAI, PPT, and LC ensure that the clusters are simultaneously
representative of the LC and meteorological conditions in the
region. When fields are significantly smaller than the resolution
of auxiliary variables, for example, in developing countries, the
implicit inclusion of coordinates might not result in a clustering
that accurately follows field boundaries, although it would still
separate out regions with different meteorological conditions.
This would reduce the accuracy of disaggregated SM at the
field edges, and postprocessing based on finer scale LC will be
needed in such scenarios. DoY 39 shown in Fig. 12 and DoY
354 shown in Fig. 13 are the bare-soil LC before and after the
growing seasons, respectively. The disaggregated estimates for
both days are very close to the true SM at 1 km, but due to
crop residue and slightly heterogeneous PPT in the region [see
Fig. 13(b)], the error for DoY 354 is higher than for DoY 39.
It was found that heterogeneity in any one input is enough to
capture vegetation patterns in the disaggregated estimate using
Kernel regressive models as shown in Figs. 13(a), and 14(a),
for corn and cotton, when the LST is fairly uniform across the
region, whereas PPT is heterogeneous due to PPT patterns. On
DoY 222, even when there was maximum heterogeneity in LC
with corn, cotton, and bare soil, the error in SM is minimal as
shown in Fig. 16. The effects of noise amplitude in the coarse-
scale SM on the disaggregated SM were also investigated on
DoY 222. Independent Gaussian noise with zero mean and
standard deviations ranging from 0 to 0.1 m3/m3 was added
to the coarse-scale SM and the spatially averaged unbiased
rmse in disaggregated SM is shown in Fig. 17. The errors
grow sublinearly, i.e., with a slope lower than 1, whereas the
uncertainty in SM is < 0.06 m3/m3. When the uncertainty in
coarse SM is > 0.06 m3/m3, the errors grow with a slope of
1.14 showing that the errors in the disaggregated SM have a
higher magnitude than the uncertainties added to coarse SM.

The novelty and efficacy of this disaggregation algorithm
lies in the utilization of multiple models using clusters. This
is evident in Fig. 18(a); a regression model based on a single
cluster fails to fit the coarse SM and auxiliary data with a
sufficient degree of accuracy, resulting in speckle noise in the
disaggregated SM. Instead, Fig. 18(b) shows that using multiple
cluster-based models is an elegant solution that adequately fits
the coarse SM and the auxiliary data, and provides disaggre-
gated estimates of SM with low rmse.
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Fig. 11. (a) Relative change in rmse (RMSEr) when only LST, LAI, or PPT is used as input for disaggregation in (a) the whole region, (b) bare soil, (c) corn,
and (d) cotton for each day of 2007.

Fig. 12. DoY 39. (a) LAI at 1 km. (b) PPT at 1 km. (c) LC at 1 km (yellow
represents bare soil). (d) True SM at 1 km. (e) LST at 1 km. (f) Clustering result
at 1 km. (g) SM observations at 10 km. (h) Disaggregated SM using SRRM.
(i) Disaggregated SM using the PRI method.

C. Comparison Between SRRM and PRI

The PRI method uses LST, three-day PPT, LAI, LC, and SM
at 1 km every three days as input to obtain the first estimate
of the SM. To disaggregate SM, in (20), X is set to {LST,

Fig. 13. DoY 354. (a) LAI at 1 km. (b) PPT at 1 km. (c) LC at 1 km (yellow
represents bare soil). (d) True SM at 1 km. (e) LST at 1 km. (f) Clustering result
at 1 km. (g) SM observations at 10 km. (h) Disaggregated SM using SRRM.
(i) Disaggregated SM using the PRI method.

PPT, LAI, LC} and ytrain is set to {SMinsitu}. In this paper,
33% of the data set, selected randomly, is used for training
the parametric Bayesian model. For the second step, in (21),
the SM observations at 10 km are set as ycoarse, and the first
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Fig. 14. DoY 135. (a) LAI at 1 km. (b) PPT at 1 km. (c) LC at 1 km (yellow
represents baresoil, blue represents corn). (d) True SM at 1 km. (e) LST at 1 km.
(f) Clustering result at 1 km. (g) SM observations at 10 km. (h) Disaggregated
SM using SRRM. (i) Disaggregated SM using the PRI method.

Fig. 15. DoY 156. (a) LAI at 1 km. (b) PPT at 1 km. (c) LC at 1 km (yellow rep-
resents baresoil, green represents cotton). (d) True SM at 1 km. (e) LST at 1 km.
(f) Clustering result at 1 km. (g) SM observations at 10 km. (h) Disaggregated
SM using the SRRM method. (i) Disaggregated SM using the PRI method.

estimates of SM at 1 km from the transformation function are
set as yinitial. The value of m after the cost function I(m) is
minimized is the disaggregated SM estimates.

The disaggregated estimates using the SRRM were compared
with the PRI estimates using the rmse and the KLD of the
estimated densities of the disaggregated observations. The rmse
over for the entire time period is assessed for each LC using
the SRRM and PRI algorithms that are compared. The spatial
errors are also compared for the selected five days during the
simulation period, representing different micrometeorological

Fig. 16. DoY 222. (a) LAI at 1 km. (b) PPT at 1 km. (c) LC at 1 km (yellow
represents bare soil, blue represents corn, and green represents cotton). (d) True
SM at 1 km. (e) LST at 1 km. (f) Clustering result at 1 km. (g) SM observations
at 10 km. (h) Disaggregated SM using the SRRM method. (i) Disaggregated
SM using the PRI method.

Fig. 17. Standard deviation of noise added to coarse-scale SM as a function of
unbiased rmse in disaggregated SM.

and LC conditions. Finally, the running time of the SRRM and
PRI algorithms are compared to understand the effects of the
difference in algorithm complexity of the two algorithms.

Fig. 7 shows that the rmse of the disaggregated observations
using the SRRMs was less than the rmse using the PRI algorithm.
The trends observed when the PRI algorithm is used, such as
higher errors during periods of vegetation, are preserved when
SRRM is used. However, variations in the difference observed
between the SRRM- and PRI-based SM can be explained by
its different correlations to LC and micrometeorological condi-
tions. The use of separate models in the SRRM enables low rm-
ses even under highly heterogeneous LC. In contrast, the rmses
increase by a larger magnitude during heterogeneous LC peri-
ods for the PRI algorithm because it uses a single disaggrega-
tion model for the whole study region.
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Fig. 18. SM at 10 km, true SM at 1 km and disaggregated SM at 1 km using (a) a single cluster for the study region and (b) multiple clusters following the
SRRM algorithm.

Table III compares the KLD between the disaggregated esti-
mates generated by the SRRM and PRI algorithms, and true SM
at 1 km. The general trends of KLD over different LC conditions
followed by the SRRM are similar to those observed for the
PRI. However, the errors for each LC are individually lower for
the SRRM compared with the PRI method, as shown in Fig. 10.
This is further validated by the KLD for the SRRM estimates
that is three orders of magnitude less than for PRI estimates.

Figs. 12–15 compare the disaggregated SM estimates using
the SRRM to those using the PRI method. The estimates
using PRI does not have sharply defined regions, unlike those
observed in the disaggregated SM using SRRM. The sharpness
of disaggregated result could arise either from noise or from
spatial discontinuities in the inputs due to physical discontinu-
ities in meteorological or LC conditions. Any disaggregation
algorithm must maintain the latter while suppressing the for-
mer. Equation (21), with β = 2, maximizes a cost function that
blurs the disaggregated SM so that the median error over all
pixels is minimized at the cost of a greater variance in error.
In the SRRM, the use of multiple models based on clusters
ensures that the spatial discontinuity is maintained in the dis-
aggregated SM when it is caused by a physical discontinuity. If
the discontinuity originates from additive noise, under certain
assumptions, the kernel regression suppresses the discontinuity
in the disaggregated SM. The assumptions are that the noise is
spatially uncorrelated and has a wide pdf. The results in [36]
show that both assumptions are reasonable.

The average execution time of the PRI was about 1.56 h/
disaggregation day and that of the SRRM was about 32 min/
disaggregation day. This is expected because the complexity of
PRI is O(N3

∏
kj) where kj are the number of bins used to es-

timate the pdf. For an adequate estimate of the pdfs,
∏

kj≈N
and the complexity approaches O(N4), that is an order of mag-
nitude higher than the complexity of the SRRM-based algorithm.

Thus, the SRRM achieves low mean errors using nonlinear
regression and low error variances using multiple regressive
models with soft boundaries. This ensures that sharpness is
maintained along with low rmses. Given exhaustive training
data, the PRI algorithm will have similar performance as the
SRRM as shown in [18]. However, for operational use of the
methodologies at field scale in regions with highly varied LC
or micrometeorology with low volume of training data, SRRM
provides sharp images of disaggregated SM with a faster run
time, less complexity, and lower rmses compared with the PRI.

IV. CONCLUSION

In this paper, a disaggregation methodology based upon
SRRM has been developed, implemented, and evaluated that
preserves the high variability in SM due to heterogeneous me-
teorological and vegetation conditions. The SRRM preserves
heterogeneity by utilizing a clustering algorithm to create a num-
ber of regions of similarity, which, subsequently, are used in a
kernel regression framework. The clusters were computed using
remote sensing products, i.e., PPT, LST, LAI, and LC. The
kernel regression was implemented on the clusters using in situ
SM. Across the whole season, 96% of the pixels were found to
have a disaggregation error of less than 0.02 m3/m3. The KLD
values for disaggregated SM at 1 km for the SRRM was equal
to 0, for all LCs. In contrast, the PRI method has KLD values
that are several orders of magnitude higher, and has a three-
fold higher execution time. The averaged spatial error is also
markedly lower for the SRRM compared with the PRI method.
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It is envisioned that the SRRM that is implemented and
evaluated in this paper may be applied using satellite images.
For example, the PPT data may be obtained from the Global
Precipitation Measurement missions and the LAI, LST, and LC
products are available from the MODIS sensor aboard Aqua
and Terra satellites.
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