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Abstract—In this paper, bias correction approaches are inves-
tigated to understand their impact on assimilating active and/or
passive microwave observations on near-surface soil moisture
(SM) estimates. Synthetic and field observations were assimilated
in a soil–vegetation–atmosphere transfer model linked with an
integrated active–passive model at L-band for bare soil. The two
bias correction methods included in this study are the online bias
correction with feedback (BCWF) with extended implementation
with nonlinear observation operators and the simultaneous state
parameter (SSP) update. New equations for BCWF were derived
for the case of nonlinear observation operators because current
versions of this approach were not applicable for improving SM
by assimilating microwave observations. In SSP, the bias is com-
pensated by tunning the values of the parameters. The two ap-
proaches resulted in similar accuracy for improving SM estimates
compared with the uncorrected estimates. SSP showed the highest
certainty for both synthetic and field observations. Using the bias
correction methods, the mean estimates of SM improved by up
to 88%, 87%, and 94%, when passive, active, and active–passive
synthetic observations were assimilated, respectively, compared
with the open-loop estimates. In contrast, when assimilating field
observations from the Eleventh Microwave Water Energy Balance
Experiment, the mean estimates of SM improved by up to 44%,
18%, and 48%, when passive, active, and active–passive obser-
vations were assimilated, respectively, compared with open-loop
estimates. The decrement in improving the SM estimates suggests
sources of uncertainty other than those from model parameters
and forcings.

Index Terms—Backscattering coefficient, bias correction, en-
semble Kalman filter (EnKF) assimilation, microwave brightness
temperature, soil moisture (SM).
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I. INTRODUCTION

ACCURATE knowledge of soil moisture (SM) is cru-
cial in hydrology, micrometeorology, and agriculture for

estimating energy and moisture fluxes at the land surface.
Soil–vegetation–atmosphere transfer (SVAT) models are typi-
cally used to simulate energy and moisture transport in soil and
vegetation [1]. Although SVAT models coupled with vegetation
growth models capture the biophysics of dynamic vegetation
fairly well, SM estimates still diverge from reality due to errors
in computation and uncertainties in model parameters, forcings,
and initial conditions. The model estimates of SM can be signif-
icantly improved by assimilating remotely sensed observations
that are sensitive to SM changes, such as passive observations
of brightness temperature TB and/or active observations of
backscattering coefficient σ0 at frequencies <10 GHz [2]–[5].
For SM studies, observations at L-band (1.2–1.4 GHz) are
desirable due to their high sensitivity, large penetration depths,
and system feasibility. The currently operational European
Space Agency Soil Moisture and Ocean Salinity (SMOS) [6]
includes a passive system at L-band. In the near future, the
National Aeronautics and Space Administration Soil Moisture
Active Passive (SMAP) mission will include both active and
passive sensors [7].

Over the last decade, significant progress has been made in
estimating near-surface SM retrieved from active and/or passive
microwave observations in SVAT models (e.g., [2], [3], and
[8]–[19]). Although both the active and passive techniques
observe radiation quantities that are functions of SM and exhibit
similar sensitivities to soil water [20], the high sensitivity of σ0

to soil surface roughness may produce a much larger dynamic
range than that produced due to the effects of changes in soil
water alone. This makes it challenging to distinguish between
the contributions of soil water in the backscatter signal to obtain
absolute soil water estimates. Recently, a few studies have
linked the SVAT models with forward microwave models to
allow assimilation of microwave observations directly rather
than assimilating retrieved near-surface SM obtained from
microwave observations (e.g., [2], [21], and [22]).

The active and passive (AP) microwave observations pro-
vide complementary information regarding soil and vegetation.
Studies that use both AP observations in the SVAT-Microwave
models for assimilation are rare and recent. These synthetic
studies typically utilize separate formulations for estimating
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terrain backscatter and emission [22]. Because both the active
and passive signatures are functions of geometric and dielec-
tric properties of soil, an integrated AP modeling approach
may yield more biophysically realistic updates of the model
states and parameters. Such an integrated approach also ensures
robustness when assimilating both asynchronous (e.g., SMOS
and ALOS-PALSAR) and synchronous (e.g., SMAP) AP ob-
servations, in operational use. Integrated AP models have been
developed and tested for bare soil, such as the integral equation
method (IEM) [23], [24]. The IEM model [25], [26], which
is based on the Kirchoff approximation, represents the rough
surface as tangential surface slopes and estimates the scat-
tered field as the summation of two components given by the
Kirchoff and complementary scattered fields. The emissivity,
which is used to estimate TB , is calculated by integrating the
bistatic scattering coefficients.

Ensemble-based assimilation techniques such as the ensem-
ble Kalman filter (EnKF) have been widely used for land
data assimilation research and applications since they can be
applied to nonlinear and discontinuous models [27], such as
the SVAT and IEM models. Reichle et al. [3], [4] applied the
EnKF and the extended Kalman filter (EKF) to assimilate TB

observations and estimate SM profile, showing an error lower
than 2.0% SM in the estimates. The EnKF provided results
closer to the observations than the EKF for applications with
nonlinear functions. Since then, it has emerged as the algorithm
of choice for SM data assimilation in many studies [2]–[4], [9],
[28]–[32]. However, the EnKF algorithm minimizes only the
random errors and assumes that the system is unbiased. Reichle
and Koster [33] compared three independent surface SM data
sets and found large discrepancies, demonstrating the need for
bias estimation and correction in assimilation frameworks to
estimate SM. Because of the difficulty in characterizing the bias
in observations, they are often assumed to be unbiased [34].

Bias correction methods range from simple algorithms [35]
to more complex correction frameworks that estimate and cor-
rect bias in EnKF-based assimilation algorithms [36]. Some
studies utilize the augmented state vector (e.g., [28] and [31])
and update the states and model parameters simultaneously to
correct bias. However, the EnKF may become unstable when
a large number of parameters are included in the state vector.
In such cases, an integrated bias value could be estimated to
correct the model estimates. Friedland [37] demonstrated that
the Kalman filter equations for the augmented state are alge-
braically equivalent to two coupled recursive filters, resulting
in a two-stage estimation algorithm. The first stage consists of
the standard Kalman filter obtained by ignoring the bias (bias-
blind filter) [37]–[39]. The second stage provides estimates
of the bias based on the output of the first stage. Dee and
Da Silva [38] presented how to estimate the bias sequentially
in a data-assimilation system and its online implementation for
unbiased observations. Considering that the time-mean prior
error is approximately constant in time, the bias correction
algorithms use a persistent bias model during the propagation
phase, i.e., it is constant between two consecutive observations.
DeLannoy et al. [36] conducted an implementation of
Friedland’s algorithm using the EnKF in a synthetic study to
assimilate SM observations. In this method, the initial value

for the bias was assumed zero, and the bias covariance was
calculated using the empirical γ factor relating the bias covari-
ance to the state covariance [38], [39]. The results were found
to be sensitive to the initial value of the bias. In addition, the
empirical factor used in the model could overestimate the bias
to compensate for other errors in modeled states. However, a
major gap exists in using any of the current bias estimation
methods for nonlinear observation operators such as those
relating TB and σ0 to SM. In this paper, the methodology pre-
sented in Dee and Da Silva [38] will be extended to nonlinear
observation operator such as the AP model and estimate the bias
covariance without prior information.

The goal of this study is to implement a bias correction
methodology that incorporates a nonlinear observation operator
in two different approaches to understand their impact on SM
estimates from assimilation of AP observations at L-band.
In this paper, we implement an EnKF-based algorithm and
two bias correction approaches with a nonlinear observation
operator, viz., a simultaneous state parameter (SSP) update
and an online estimation and correction of bias with feedback
(BCWF), to assimilate AP observations directly in an SVAT
model linked with an integrated AP model. We use both
synthetic and field observations from the Eleventh Microwave
Water Energy Balance Experiment (MicroWEX-11) to analyze
the impact of assimilating AP observations on SM estimates
under bare soil conditions. The objectives of this study are as
follows: 1) to develop a bias correction framework for nonlinear
observation operators; 2) to implement the framework within
an assimilation algorithm using AP observations; and 3) to
evaluate the two bias correction approaches for their impact on
SM estimates when assimilating synthetic and field microwave
observations. The assimilation using the field observations pro-
vides insights into the model physics, unlike synthetic studies
in which the observations are typically obtained from the same
model or models using similar physics. The methodology de-
veloped here can be extended to studies under different terrain
conditions for various hydroclimatic regions.

In the next sections, we briefly describe the MicroWEX-11
observations, the linked SVAT-AP model, and the EnKF frame-
work used in this study to correct model bias.

II. MICROWEX-11

MicroWEX-11 was conducted in 2012 on a 9.6-acre field
from day of the year (DoY) 129 (May 8) to DoY 165 (June 13)
in North Central Florida. The objective of the experiment was to
observe microwave signatures of bare soil over smooth condi-
tions. The soils at the site were lake fine sand, with 89.4% sand,
7.1% clay, and a bulk density of 1.55 g/cm3. Data used in this
study include microwave brightness temperatures, backscatter-
ing coefficients, SM, wind speed, upwelling and downwelling
short- and longwave radiation, precipitation, irrigation, rela-
tive humidity, and air temperature measured every 15 min.
Horizontally polarized microwave brightness temperatures
were measured by the tower-mounted University of Florida
L-band Microwave Radiometer (UFLMR), operating at the
center frequency of 1.4 GHz and observing a footprint of 4.29 m
X 7.08 m from a height of 6.81 m. The active observations
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were conducted using the University of Florida L-band Auto-
mated Radar System (UFLARS) at 1.25 GHz providing σ0 in
four polarization combinations (HH, VV, HV, and VH). The
SM values were observed at 2, 4, 8, 16, and 64 cm, using
Campbell Scientific Water Content Reflectometers. Four
tipping-bucket rain gauges logged precipitation and irrigation
at the field site.

III. LSP-AP MODEL

The SVAT model used in this study is the land surface
process (LSP) model [1], [40]. The LSP model was linked with
the integrated AP model to provide the TB and σ0 estimates
at both vertical (V) and horizontal (H) polarizations (pols). In
the LSP-AP model, the LSP model provides the AP model with
estimates of soil moisture and temperature profiles. Such linked
models can be used to estimate the microwave signatures with-
out the need of in situ observations of SM and soil temperature
observations.

A. LSP Model

The LSP model simulates 1-D coupled energy and moisture
transport in soil and vegetation using diffusion-type equations
and estimates energy and moisture fluxes at the land surface and
in the root zone. The model is forced with micrometeorological
parameters such as air temperature, relative humidity, down-
welling solar and longwave radiation, irrigation/precipitation,
and wind speed. The LSP model includes 16 parameters [28],
with four parameters related to radiation balance, eight to latent
and sensible heat fluxes, and the remaining four to the soil
hydraulic properties. The sensible heat flux is calculated using
the bulk transfer approach from [41] and the latent heat flux
following [42]. The soil energy balance is calculated following
the equations from [43] and [44].

The number of soil layers, with uniform constitutive prop-
erties, is user defined. Two layers are used for this study: the
first layer, the top 1.7 m of soil, is primarily sandy, with 89.4%
sand, and the second layer (1.7–2.7 m) constituted 40.5% sand.
The soil has 35 computational blocks (nodes) in the two layers.
The thickness of the blocks increases exponentially, with four
blocks in the top 5 cm of the soil, appropriate for capturing
the highly dynamic moisture transport near the soil surface. A
block-centered finite-differential scheme is employed to solve
the coupled governing equations and estimate energy and mois-
ture fluxes at land surface and in the root zone at an adaptive
time step (seconds/minutes) in response to the forcings [45].

B. Integrated AP Model

A compact expression of IEM to compute the bistatic scat-
tering coefficient is [24]

σ0
soil,qp(θi, φi; θs, φs) =

k2i
2

exp
[
−σ2

(
k2iz + k2sz

)]

×
∞∑

n=1

σ2n

n!

∣∣Inqp∣∣2 W (n)(ksx − kix, ksy − kiy) (1)

where

k̂i = kixx̂+ kiy ŷ + kiz ẑ

= ki sin θi cosφix̂+ ki sin θi sinφiŷ + ki cos θiẑ (2a)

k̂s = ksxx̂+ ksy ŷ + ksz ẑ

= ks sin θs cosφsx̂+ ks sin θs sinφsŷ + ks cos θsẑ (2b)

where k is the wavenumber, σ2 is the variance of the surface
heights, and W (n)(ksx − kix, ksy − kiy) is the roughness spec-
trum of the surface related to the nth power of the surface
correlation function. The analytical expressions to compute Inqp
are given in [24].

The surface emissivity is related to the bistatic scattering
coefficient by

ep(θi, φi) = 1− 1

4π

2π∫
0

π
2∫

0

[
σ0
soil,pp(θi, φi; θs, φs)

+ σ0
soil,qp(θi, φi; θs, φs)

] sin θs
cos θi

dθsdφs (3)

where σ0
soil,pq is the bistatic coefficient at pq polarization; and

(θi, φi) and (θs, φs) are the incident and scattering directions,
respectively.

In the case of a bare soil, TB is given by [46]

TB,p = Teffep + TBsky(1 − ep) (4)

where p = {v, h} is the sensor polarization, e is the surface
emissivity, Teff is the effective temperature of the soil, and
TBsky is the brightness temperature of sky. At low frequencies,
such as at L-band, TBsky is low, ranging between 2 and 4 K.

IV. BIAS CORRECTION WITH NONLINEAR OPERATORS

In this paper, an EnKF-based assimilation algorithm was
used to correct bias when assimilating passive-only, active-only,
and both AP microwave observations and using the LSP-AP
model. Most of the current studies that correct bias within an
EnKF framework are based on the assumption that variables of
the state vector and observations belong to the same space [4],
[28], [33]. However, when assimilating microwave observations
for improving SM estimates, the variables of the state vector
and observations are not in the same space. Moreover, the AP
observations are nonlinearly related to SM. It is necessary to use
a nonlinear observation operator, such as a microwave model,
that links the state vector to the observations. This section
presents the derivation of the update and analysis equations for
the two different stages presented in [37] and [38] in the case of
a nonlinear observation operator.

A. EnKF for Nonlinear Observation Operators

The state equation for each realization [47] is given by

xi−
t = f

(
xi+
t−1, u

i
t−1, θ

+
t−1

)
+ ηit−1 (5)
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where f(·) is the nonlinear model, xi−
t is the state of the ith

ensemble prior to the update at time t, xi+
t−1 is the posterior

state of the ith ensemble at time t− 1, ui
t−1 represents the

meteorological forcing data for the ith ensemble member, θ+t−1

represents the model parameters, and ηit−1 is the model error.
In our study, the model physics are assumed to be perfect
(ηit−1 = 0).

The nonlinear observation operator M relates xi−
t to the

observations, i.e.,

dit = M
(
xi−
t

)
+ εit (6)

where εit is the error in the observations and is generally
assumed Gaussian with zero mean and variance Re.

The ensemble of state vectors xi
t and the perturbed observa-

tions dit can be represented in a matrix form as

At =
{
x1
t , x

2
t , · · · , xN

t

}
(7)

Dt =
{
d1t , d

2
t , · · · , dNt

}
(8)

where N is the number of ensembles.
The posterior matrix of state vectors A+

t is computed as a
linear combination of the prior estimate A−

t and the observation
matrix Dt weighted by the Kalman gain [22], [48], i.e.,

A+
t = A−

t +A
′

tM (A′
t)

T ×
(
M (A′

t) (M(A′
t))

T
+ γγT

)−1

×
(
Dt −M

(
A−

t

))
(9)

where A′
t = A−

t − Āt, Āt is the means of A−
t , and γ is the

ensemble of observation errors. The variance in the observation
error is assumed to be Re = (1/(N − 1))γγT .

B. Online Bias Correction Approach for Nonlinear
Observation Operators

The biased state equation can be represented as [47]

xi−
t = f

(
xi+
t−1, u

i
t−1, θ

+
t−1

)
(10)

where f(·) is the nonlinear model, xi−
t is the state of the

ith ensemble member prior to the update at time t, xi+
t−1 is

the posterior state of the ith ensemble member at time t− 1,
ui
t−1 represents the meteorological forcing for the ith ensemble

member, and θ+t−1 represents the model parameters.
The prior bias bi−t at time t is defined as the expectation of

the prior error, which is given by the true state xtrue
t and the

biased prior state xi−
t . This is

bi−t = E
{
xtrue
t − xi−

t

}
. (11)

In general, the prior bias can be time dependent, but for
the purposes of this study, we consider a constant bias model
to propagate the bias estimate in time between consecutive
assimilation updates [38], i.e.,

b̂i−t = b̂i+t−1. (12)

Considering that the bias is only due to the model and if
the prior bias were known, the unbiased prior state can be
computed by

x̃i−
t = xi−

t − b̂i−t . (13)

The nonlinear operator M relates xi−
t to the observations,

i.e.,

dit = M
(
xi−
t

)
+ εit (14)

where εit is the error in the observations and is generally
assumed Gaussian with zero mean and variance Re.

The bias-blind analysis equation is

xi+
t = xi−

t +Kt

[
dit −M

(
xi−
t

)]
(15)

with

Kt = S̃xd[S̃dd +Re]
−1 (16)

where S̃xd is the cross covariance between the prior unbiased
state and its transformation value in the observation space, and
S̃dd is the covariance of the transformed prior unbiased states
in observation space.

The posterior bias estimate b̂i+t is obtained as a linear combi-
nation of the prior bias estimate b̂i−t and the difference between
the observations and the prior bias-corrected state estimate
[37], [38], i.e.,

b̂i+t = b̂i−t − Lt

[
dit −M

(
x̃i−
t

)]

= b̂i−t − Lt

[
dit −M

(
xi−
t − b̂i−t

)]
. (17)

If the M operator is a continuous derivative function at
time t, we can define the linearized observation operator [38]

Nt ≡
∂M
∂x

|x=xi−
t
. (18)

Equation (17) can be rewritten as

b̂i+t = b̂i−t − Lt

[
dit −M

(
xi−
t

)
−Ntb̂

i−
t

]
(19)

with

Lt = S−
b,tN

T
t

[
NtS

−
b,tN

T
t + S̃dd +Re

]−1

(20)

where S−
b,t is the prior bias error covariance.

C. Bias Estimation for Nonlinear Observation Operators
to the EnKF

This section presents the extension of the equations derived
earlier for the EnKF based on [38] and [48]. In the EnKF, the
cross covariance and the covariance in the Kalman gains, i.e.,
Kt and Lt, can be calculated from the ensemble statistics.

The ensemble of state vectors xi
t, the ensemble of the bias

vectors b̂it, and the perturbed observations dit can be represented
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in a matrix form, respectively, as

At =
{
x1
t , x

2
t , · · · , xN

t

}
(21)

B̂t =
{
b̂1t , b̂

2
t , · · · , b̂Nt

}
(22)

Dt =
{
d1t , d

2
t , · · · , dNt

}
(23)

where N is the number of ensembles.
The bias-blind analysis equation becomes

A+
t = A−

t + S̃xd[S̃dd +Re]
−1

[
Dt −M

(
A−

t

)]
. (24)

Defining the ensemble perturbation matrix of the unbiased
state vector as Ã′

t = Ã−
t − ¯̃At, with ¯̃At being the mean matrix

of Ã−
t , and the ensemble perturbation matrix of the prior un-

biased states in the observation space as M′(Ãt) = M(Ã−
t )−

M̄(Ã), with M̄(Ã) being the mean matrix of M(Ã−
t ), S̃xd and

S̃dd can be calculated by [22], [48]

S̃xd =
Ã′

tM′(Ãt)
T

N − 1
(25)

S̃dd =
M′(Ãt)M′(Ãt)

T

N − 1
(26)

where Ã′
t is the ensemble perturbation matrix for the unbiased

state vector.
Equation (24) can be rewritten as

A+
t = A−

t + Ã′
tM′(Ãt)

T ×
[
M′(Ãt)M′(Ãt)

T +Re

]−1

×
[
Dt −M

(
A−

t

)]
. (27)

The posterior bias estimates for the EnKF are given by

B̂+
t = B̂−

t − Lt

[
Dt −M

(
A−

t

)
−NtB̂

−
t

]
. (28)

Similar to (25) and (26), the Kalman gain Lt can be calcu-
lated using the statistics of the ensembles as

Lt= B̂′
t

(
NtB̂

′
t

)T [
NtB̂

′
tB̂

′T
t NT

t +M′(Ãt)M′(Ãt)
T +Re

]−1

(29)

where B̂′
t is the ensemble perturbation of the bias vector defined

as B̂′
t = B̂−

t − ¯̂
Bt, with ¯̂

Bt being the mean matrix of B̂−
t .

V. ANALYSIS EQUATIONS FOR THE ENKF-BASED

BIAS CORRECTION APPROACHES

A. Bias Correction Method With Feedback (BCWF)

The estimation of unbiased states requires the prediction of
the prior state vector and the prior bias vector, the solution of the
bias update equations, and the solution of the analysis equation.
As mentioned in [38], a more efficient algorithm is the one that
uses the prior bias estimates as soon as they are available in
order to generate unbiased estimates. This procedure introduces
feedback information from the updated bias estimates to the
original system. This section presents the solution of the bias

update equation and the solution of the analysis equation for
the BCWF method.

1) The prior state vector and the prior bias vector are given
by

xi−
t = f

(
x̃i+
t−1, u

i
t−1, θ

+
t−1

)
(30)

dit =M
(
x̃i−
t

)
+ εit (31)

b̂i−t = b̂i+t−1 (32)

x̃i−
t = xi−

t − b̂i−t . (33)

2) The bias update equation in the EnKF framework is

B̂+
t = B̂−

t − Lt

[
Dt −M

(
A−

t

)
−NtB̂

−
t

]
(34)

Lt = B̂′
t

(
NtB̂

′
t

)T [
NtB̂

′
tB̂

′T
t NT

t

+ M′(Ãt)M′(Ãt)
T +Re

]−1

(35)

Ã+
t =A+

t − B̂+
t . (36)

3) The analysis equations are

˜̃A+
t = Ã−

t +Kt

[
Dt −M

(
Ã−

t

)]
(37)

Kt = Ã′
tM′(Ãt)

T
[
M′(Ãt)M′(Ãt)

T +Re

]−1

. (38)

B. SSP Update

In this approach, an augmented state vector is used, which
includes the parameters to which the states are most sensitive,
along with the states to be updated in the filter. Thus, the
augmented state vector is

ASSP,t =

[
x1
t , x

2
t , · · · , xN

t

Θ1
t ,Θ

2
t , · · · ,ΘN

t

]
(39)

where {x1
t , x

2
t , · · · , xN

t } represents the ensemble of states, and
{Θ1

t ,Θ
2
t , · · · ,ΘN

t } represents the ensemble of sensitive model
parameters. Equation (9) is also applicable for this technique. In
this approach, the bias is assumed that the improved parameter
estimation results in reduction or elimination of the bias.

VI. METHODOLOGY

A. LSP-AP Simulations

Model simulations using the LSP-AP model were conducted
for smooth bare soil conditions for 15 days, from DoY 129
to DoY 144 in 2012 during MicroWEX-11. Micrometeo-
rological forcings for the simulations were obtained from
MicroWEX-11. Initial moisture and temperature conditions
were obtained from the first values observed by the SM and
temperature sensors on DoY 129. The values of the 16 parame-
ters of the LSP model are shown in Table I obtained from [19]
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TABLE I
PARAMETERS INCLUDED IN THE LSP MODEL [45]. THE VALUES FOR CANOPY PARAMETERS WERE FROM [54], AND RANGES FOR

SOIL PARAMETERS WERE FROM [55]. THE RANGES OF PARAMETERS CONSIDERED AS SOURCE OF UNCERTAINTY IN THE

LSP AND AP MODELS WERE OBTAINED FROM [19] AND [28]

and [28]. The SM and temperature values provided by the LSP
model were used to calculate the soil dielectric constant using
[49], and the soil dielectric properties were given to the AP
model. The microwave observations are simulated at 1.26 GHz
for active, matching those of the SMAP, and at 1.42 GHz for
passive, matching the SMOS and SMAP observations. The inci-
dence angle was set to 40◦, matching the UFLMR and UFLARS
observations during MicroWEX-11. The correlation function
of the rough surface is assumed to be exponential based on
field observations during MicroWEX-11. The RMS height and
correlation length were 0.69 and 9.57 cm, respectively, based
on field observations [50].

B. Implementation of the EnKF

In this paper, the nonlinear propagator f(·) in (5) represents
the LSP model, x is the state vector consisting of near-surface
SM and root-zone SM (RZSM) estimates by the LSP model,
and the M operator represents the AP model transforming SM
into TB,v, TB,h, σ0

vv , and σ0
hh; ut is the vector of meteorological

forcings at time t, and θ are the model parameters of the LSP
model. The ith ensemble at time t is therefore expressed as

xi
t =

[
SMi

t

RZSMi
t

]
. (40)

The SM and RZSM estimates and observations were calcu-
lated by the equation

SM or RZSM =

k∑
i=1

SMiΔzi (41)

where k indicates the total number of blocks within 0–5 cm or
the root zone in the LSP model, Δzi indicates the thickness of
the ith block, and SMi indicates the volumetric SM in the ith

block. The thickness for each block is presented in Table III.
The contribution provided by each block to the RZSM estimates
is given by the ratio

ri =
ΔziSMi

RZSM
. (42)

The states at the observation space are

M
(
xi
t

)
=

⎡
⎢⎢⎢⎢⎣

T i
B,v,t

∗

T i
B,h,t

∗

σ0,i
vv,t

∗∗

σ0,i
hh,t

∗∗

SM∗∗∗

⎤
⎥⎥⎥⎥⎦

∗included in the vector when passive observations are available
∗∗included in the vector when active observations are available
∗∗∗included in the vector when assimilating SM observations.

(43)

Two hundred (N = 200) ensembles realizations were used
for assimilation to achieve reliable estimates [21], [28]. The
sources of uncertainty were the soil parameters in the LSP
model and the forcing data. The open-loop simulations of
the model were conducted using the 16 parameters, with four
uncertain parameters, viz., φ, λ, Ksat, and ψ0, that were uni-
formly distributed within the literature-based ranges, as shown
in Table I [28]. Among all the inputs/forcings to the LSP model,
precipitation/irrigation observations typically have the highest
errors compared with other micrometeorological parameters. A
Gaussian error with zero mean and standard deviation equal
to 12% of the observed precipitation/irrigation value was in-
troduced during events [51], [52]. An error with a Poisson
distribution and 0.45 mean was introduced in the absence of the
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TABLE II
SOURCES OF UNCERTAINTY IN FORCING VARIABLES [9]

events. In this paper, forcing variables vary within a physically
reasonable range based on [9], as shown in Table II.

For the synthetic study, the bias was introduced by a constant
function of 0.0015 m3/m3 in the SM estimates, for every
ensemble member in the EnKF, provided by the LSP model at
each step. The bias remained unchanged during the propagation
phase.

C. Implementation of Bias Correction Algorithms

1) SSP: In the bias correction through update of the sensitive
parameters, the augmented state vector is composed of the SM
and RZSM estimates and the parameters porosity (φ) and pore-
size index (λ) from the LSP model (Table III presents the node
thickness to calculate the SM and RZSM observation). The
selection of the sensitive parameters was based on the results
of [21] and [28]. The augmented state vector is therefore

xi
SSP,t =

⎡
⎢⎢⎣

SMi
t

RZSMi
t

φi
t

λi
t

⎤
⎥⎥⎦ . (44)

The vector representing the state at the observations space
remains the same as (43).

2) Online Bias Correction: In the BCWF method, the state
vector xi

t and the observation vector M(xi
t) are similar to (40)

and (43), and the bias state vector bi−t is defined as

bi−t =

[
bi−SM,t

bi−RZSM,t

]
. (45)

The initial bias in the BCWF method was a Gaussian func-
tion with zero mean and standard deviation of 4% of SM.

D. Synthetic and Field Observations

The synthetic truth was obtained from one of the realizations
from an unbiased open-loop simulation of the LSP-AP model.
The truth was not included in the ensemble of 200 members
during the assimilation. The field observations were obtained
from the MicroWEX-11 experiment, described in Section II.
A Gaussian error with zero mean and standard deviation of 4 K
was added to brightness observations, and a Gaussian error with
zero mean and standard deviation of 1 dB was added to active
observations based on field observations. For SM observations,
the truth was perturbed with a Gaussian error with zero mean
and 0.02 m3/m3 standard deviation.

E. Assimilation Experiments

Different assimilation scenarios with synthetic observations
of TB and σ0 were performed. The performances of the bias
correction methods presented in Section IV were compared
by assimilating H pol for passive and VV pol for active ob-
servations due to the high sensitivity of these polarizations to
detect variations in SM. The performance of the bias correction
methods was used to understand the improvements in the SM
estimates from assimilation scenarios involving passive-only,
active-only, and active/passive observations. The assimilation
experiment using in situ observations of TB,h and σ0

vv from
MicroWEX-11 is conducted using the two bias correction
methods. The temporal frequency of assimilation for both the
synthetic and field observations is every three days at 6 A.M.
EST, corresponding to the availability of current and near-future
remotely sensed microwave observations [6], [7]. The SM
represented near-surface SM (0–5 cm), comparable with that
derived from remote sensing measurements, and the integrated
SM at 0–100 cm represented the RZSM.

VII. RESULTS AND DISCUSSION

A. Assimilation of Synthetic Observations

1) Assimilation of SM Observations: The two bias correc-
tion methods, namely, SSP and BCWF, were compared in
terms of the time average standard deviation (ASD) in the
SM estimates of the ensemble, the time root-mean-square error
(RMSE) between the estimates and their respective true values,
and the time average bias (AB). The AB was estimated by
applying (11). In general, lower ASDs imply higher certainty
in the estimates, and lower RMSEs imply better accuracy.
Table IV summarizes these values when assimilating SM syn-
thetic observations. The SM estimates improved in comparison
with open-loop simulations when the standard EnKF was ap-
plied. When the bias correction methods were applied, the SM
estimates improved by 31% (SSP) and 39% (BCWF) compared
with open-loop simulations and by 8% (SSP) and 19% (BCWF)
compared with the EnKF. In all cases, the AB from the two bias
correction methods reduced compared with the open loop and
the EnKF. This indicates the need to implement bias correction
methods to improve the SM estimates.

Between the two bias correction methods, the BCWF re-
sulted in the lowest RMSE and the lowest ASD for the SM
estimates. While the BCWF compensates the bias by correcting
the posterior state estimates with the posterior bias estimates
using (30)–(38), the SSP compensates for the bias by modifying
the parameter values of the ensemble. Unlike real field obser-
vations where the bias may be, primarily, from the parameters,
in this study, the bias effects were represented by introducing a
constant value at every step in SM. The low performance of the
SSP compared with the BCWF is because the parameters are
not the source of bias in this case.

Fig. 1(a) shows the time series of the ensemble mean of
the SM estimates. Throughout the simulation period, the open-
loop simulations present the highest difference in comparison
with the truth. When comparing the simulations of the two bias
correction methods and the EnKF simulations, it is observed
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TABLE III
NODE THICKNESS USED TO CALCULATE THE SM AND RZSM OBSERVATIONS IN (41)

TABLE IV
ROOT-MEAN-SQUARE ERROR (RMSE) BETWEEN THE TRUTH AND THE ESTIMATES OF NEAR-SURFACE SOIL MOISTURE (SM), RZSM, TB,h , σ0

vv ,
THEIR TIME AVERAGE BIAS (AB), AND THEIR ASSOCIATED AVERAGE STANDARD DEVIATION (ASD) WHEN USING BIAS CORRECTION METHODS

AND ASSIMILATING MICROWAVE SYNTHETIC OBSERVATIONS. THE BIAS CORRECTION METHODS ARE THE SIMULTANEOUS STATE

PARAMETER (SSP) UPDATE AND THE BIAS CORRECTION WITH FEEDBACK (BCWF) UPDATE

Fig. 1. Estimates of SM when assimilating synthetic observations of (a) SM, (b) TB,h (c) σ0
vv , and (d) TB,h + σ0

vv when using the EnKF and the bias correction
methods: SSP and BCWF.
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Fig. 2. (a)–(d) Estimates of bias in SM when assimilating synthetic observations of SM, passive, active, and AP and using the EnKF and the bias correction
methods: SSP and BCWF.

Fig. 3. Mean and standard deviation (SD) of the parameter estimates when assimilating synthetic observations of SM, passive, active, and AP and using the SSP.

that both bias correction methods predict SM estimates closer
to the truth than the EnKF. The plots show that all assimilation
algorithms reduce the differences between the estimates and the
truth over time, improving the estimates in comparison with
open-loop simulations, which depict an increasing difference
over time. From DoY 129 to DoY 138, both the SSP and BCWF
methods reached similar values of SM. After DoY 138, the
BCWF obtained SM estimates closer to the truth. The lowest
differences between the bias correction methods and the truth
are obtained on DoYs 138 and 141.

Fig. 2(a) shows the bias estimated by the two bias correction
methods when assimilating SM observations. For this figure,

the open-loop bias is calculated by following (11) and the SM
estimates from open loop. It is observed that the SM bias from
SSP and BCWF always reduced compared with open loop. At
the time of assimilation, the bias estimated by BCWF resulted
in differences between SM estimates and the truth lower than
3.85% SM. As expected, this improvement reduced gradually
during the propagation phase of the filter.

Fig. 3 presents the parameter values estimated for correcting
the bias when assimilating SM observations and using the SSP
method and their standard deviation (SD) over time. Porosity
is the parameter that showed higher sensitivity than pore-size
index to fix the difference between the SM estimates and the
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SM observations. In contrast, pore-size index is the parameter
with the lower SD.

2) Assimilation of Passive-Only, Active-Only, and AP Ob-
servations: Table IV summarizes the RMSE between the SM
estimates, the ASD when assimilating H-pol passive, VV-pol
active, and AP observations, and the time average bias (AB).
The mean bias of 0.0324 m3/m3 introduced in SM resulted in a
mean bias of 9.23 K in TB,h and of 1.01 dB in σ0

vv for open-
loop simulations. In general, when assimilating TB,h, σ0

vv , and
TB,h + σ0

vv observations and using the EnKF, the RMSE and
the ASD for the SM estimates improved in comparison with
open-loop simulations. In addition, the AB reduced when the
bias correction methods were applied compared with open loop
and EnKF.

When the bias corrections methods were applied, the SM
estimates improved by 24%–44%, compared with the open
loop, and by 10%–32%, compared with the EnKF. Similar to
the assimilation of SM observations, during the assimilation
of microwave passive, active, and AP observations, the lowest
difference and ADs for the microwave estimates were obtained
by the BCWF method.

Fig. 1(b)–(d) shows the time series between the truth and the
estimates of the SM for open loop, the EnKF, and the two bias
corrections methods (SSP and BCWF) when assimilating H-pol
passive [see Fig. 1(b)], VV-pol active [see Fig. 1(c)], and AP
[see Fig. 1(d)] observations. The two bias correction methods
showed an improvement in the SM estimates compared with
both open loop and EnKF. As shown in Fig. 1(b)–(d), the SM
estimates are highly responsive to assimilation of TB,h and
σ0
vv observations and precipitations events. In all cases, the

BCWF obtained SM estimates closer to the truth throughout the
studied period.

When assimilating H-pol passive observations, improve-
ments in the TB,h estimates of 10.20 K in average resulted
in improvements of 39% in average in the SM, whereas the
assimilation of VV-pol active observations resulted in improve-
ments of 1.29 dB in average in σ0

vv and of 40% in average
in SM estimates (see Table IV). When assimilating simulta-
neous AP observations, combined improvements of 9.87 K in
TB,h and 1.11 dB in σ0

vv resulted in improvements of 38%
in SM. From Table IV, it is observed that the bias correction
methods obtained similar improvement in SM estimates when
assimilating σ0

vv or TB,h observations. This is a consequence
of representing the bias effects as the addition of a constant
value in the SM estimates at every single step. The addition
of this constant value is equivalent to have a permanent water
source in the system, resulting in reducing the sensitivity of
passive observations to SM. In contrast, σ0

vv is less sensitive to
SM and then less affected by this representation. The BCWF
obtained closer SM estimates than the SSP after DoY 135.
The field in this study had a constant smooth surface over
the studied period; thus, the plots in Fig. 1(b) show the re-
sponse of passive observation to variations in SM only. The
bias estimated by BCWF depicted a similar trend than that
when assimilating SM observations [see Fig. 2(a) and (b)].
Similar to the assimilation of SM observations, porosity is more
responsive than pore-size index to fix the bias when applying
SSP (see Fig. 3).

During the assimilation of VV-pol active observations [see
Fig. 1(c)], the maximum improvements were observed dur-
ing the dry-down periods when the SM reached equilibrium
or field capacity. The improvement when assimilating active
observations is similar to assimilation of passive observations.
In general, the BCWF obtained better estimates for both σ0

vv

and SM estimates than the SSP. The bias estimated by BCWF
when assimilating active observations needed more points of
assimilation before being close to the true value in comparison
with passive observations [see Fig. 2(b) and (c)]. As observed in
Fig. 2(c), when assimilating σ0

vv observations, BCWF reduced
the bias the most throughout the studied period. Similar to the
bias estimation, when applying the SSP method to active ob-
servations, the updated parameters by the SSP method needed
more points of assimilation before fixing the bias compared
with the assimilation of passive observations (see Fig. 3).

When assimilating AP observations [see Fig. 1(d)], the SSP
method resulted in SM estimates closer to the truth than those
when assimilating passive-only or active-only observations [see
Fig. 1(b)]. In contrast, the SM estimates from the BCWF
were similar to active-only observations [see Fig. 1(c)], which
were the closest estimates to the truth. Between the two bias
correction methods, the BCWF obtained the lowest difference
of SM in comparison with the truth. The BCWF combines
all the uncertainty sources into the bias variable, and at each
update, the posterior bias value is calculated considering only
combined statistical information from the AP observations. In
contrast, the SSP updates the SM sensitive parameters and
accounts for their individual sensitivity to TB,h and σ0

vv using
the physics within the LSP-AP model during the propagation
phase. However, once the maximum improvement was reached
by compensating for the bias with a realistic value in the
parameters, the SSP method kept the updated values of the
parameters constant.

Overall, the BCWF showed to be the bias correction method
that best fixed the bias when its effects are represented by
adding a constant value in SM. Under real conditions, the un-
certainties would be higher due to rougher surface conditions,
vegetated terrains, or if the error in the model physics were
known and the performance of the bias correction methods may
be different.

B. Assimilation of TB,h, σ0
vv , and AP Observations

From MicroWEX-11

In the previous sections, it was found that, when assimilating
active and/or passive microwave observations, the lowest differ-
ence between the SM estimates and the truth was obtained by
the BCWF and the lowest SD was given by the SSP. Assimila-
tion of field observations, such as those from MicroWEX-11,
provides insights into additional bias sources other than
those from the forcings and parameters. As mentioned in
Section VI-B, for the assimilation of MicroWEX-11 observa-
tions, the constant value added in the SM estimates within
the LSP model during the synthetic experiment was removed.
Table V shows the root-mean-square difference (RMSD) during
the 15 days of the study, the time average difference (AD)
between the SM estimates, and the field observations when
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TABLE V
ROOT-MEAN-SQUARE DIFFERENCE (RMSD) BETWEEN THE TRUTH AND THE ESTIMATES OF NEAR-SURFACE SOIL MOISTURE (SM), RZSM,

TB,h , σ0
vv , THEIR TIME AVERAGE BIAS (AB), AND THEIR ASSOCIATED AVERAGE STANDARD DEVIATION (ASD) WHEN USING

BIAS CORRECTION METHODS AND ASSIMILATING MICROWEX-11 OBSERVATIONS. THE BIAS CORRECTION METHODS ARE THE

SIMULTANEOUS STATE PARAMETER (SSP) UPDATE AND THE BIAS CORRECTION WITH FEEDBACK (BCWF) UPDATE

Fig. 4. Estimates of SM when assimilating MicroWEX-11 observations of SM and using the EnKF and the bias correction methods: SSP and BCWF.

assimilating SM, TB,h, σ0
vv , and TB,h + σ0

vv observations using
the standard EnKF, the SSP and BCWF methods, and the
time average standard deviation (ASD). In general, the bias
correction methods improved the SM compared with open
loop and EnKF and reduced the difference between the SM
estimates and MicroWEX-11 compared with both open loop
and EnKF.

When assimilating SM observations, the EnKF improved the
SM estimates by 38.5% in comparison with open loop. When
the bias correction methods were applied, the SM estimates
improved by 40%–45% in comparison with open loop and by
4%–11% in comparison with the EnKF. Among the two bias
correction methods, the lowest RMSD in SM and the lowest
AD in SM were obtained by the SSP method. Fig. 4 shows the
time series of assimilation of MicroWEX-11 SM observations
to estimate SM. The higher differences between the observa-
tions and the estimates occurred during precipitation events.
During the dry-down periods (DoYs 131.5–137 and 140–144),
at the time of the assimilation, the bias correction methods
were closer to the observation with a difference lower than
0.0238 m3/m3. In general, the bias correction methods
showed similar performance when assimilating either syn-
thetic SM observations or MicroWEX-11 SM observations [see
Figs. 1(a) and 4]. Fig. 8(a) shows the difference between the SM
observations and the SM estimates from the two bias correction
methods. The SSP obtained the lowest difference compared
with open loop. During rainfall events, both bias correction
methods obtained similar differences. The parameters estimated
by the SSP also followed the trend showed by the synthetic

experiment, and it was confirmed that porosity was the most
sensitive soil parameter (see Fig. 9). This suggests that most of
the sources of uncertainty in the field experiment come from the
uncertainty in soil parameters.

Based on Table V, when assimilating TB,h observations,
the EnKF and the SSP did not improve the TB,h estimates
compared with the open loop, and the BCWF method increased
the difference in the TB,h estimates. In general, the EnKF and
the two bias correction methods obtained similar results to the
open loop in estimating TB,h (see Table V). Unlike the lack
of improvement in the RMSD in TB,h, the ASD from the SSP
method improved by 1.85 K in comparison with open loop. For
the estimation of SM, the bias correction methods improved the
estimates by 30%–50% compared with open loop. The SSP im-
proved the SM estimates by 12% compared with EnKF. The SM
estimates from the BCWF were similar to those from the EnKF.
The lowest improvement was given by the BCWF method.
Between the two bias correction methods, the SM estimates
from SSP were closer to the observations. Fig. 5 shows the time
series of both SM and TB,h estimates over the studied period.
During the dry-down periods, the open loop underestimated the
TB,h values but overestimated them by about 40 K immediately
after the precipitation events. During the application of the
assimilation methods, the SSP followed the trend more closely
and the levels of both TB,h and SM observations. However,
the TB,h estimates from the SSP methods did not reach as
low values as the TB,h observations during the precipitation
events. At the end of the assimilation period (DoYs 138–144),
the SM estimates by the BCWF were similar to open loop.
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Fig. 5. Estimates of (a) SM and (b) TB,h when assimilating MicroWEX-11 observations of TB,h and using the EnKF and the bias correction methods: SSP and
BCWF.

Fig. 6. Estimates of (a) SM and (b) σ0
vv when assimilating MicroWEX-11 observations of σ0

vv and using the EnKF and the bias correction methods: SSP and
BCWF.

At the assimilation times of that period, the Kalman gain in
the bias update equation [see (35)] was close to zero because of
the low standard deviation in the bias estimated by the BCWF.
Thus, the Kalman filter considered a case equivalent to the
EnKF (bias-blind scenario). This indicates additional effects in
the MicroWEX-11 observations that are not compensated by
correcting the bias only in the SM estimates. These differences
may come from roughness variations and contributions from the
SM profile, particularly from the top layers [53]. The AP model
did not reproduce the same behavior of the TB,h observed in
the field due to imperfect biophysics in the estimation of the
soil dielectric constant [21], [24]. It is observed that the AP
model captures only the sensitivity of the passive observations
during the dry-down periods. This suggests that improvements
accounting for the SM profile need to be incorporated in the AP
model to represent the sensitivity depicted by the observations
[53]. Fig. 8(b) shows differences between SM observations and
SM estimates by the bias correction methods compared with
open loop when assimilating TB,h observations. It is observed
that SSP corrected the difference the most.

When assimilating active observations, the EnKF did not
improve the σ0

vv estimates compared with open loop (see
Table V). The EnKF and the bias correction methods obtained
similar performance in improving σ0

vv . The bias correction
methods improved the SM by 20%–34% compared with open
loop and by 0%–6% compared with EnKF (see Table V). For
SM estimates, the lowest RMSD, the lowest AD, and the lowest
ASD were given by the SSP method. Similar to the assimilation
of TB,h observations, unlike the lack of improvement in σ0

vv ,
there was an improvement in SM estimates. The assimilation
of active observations confirms that there are other effects in
MicroWEX-11 observations that cannot be compensated by
correcting the bias only in SM. Fig. 6 shows the time series
of both SM and σ0

vv estimates over the studied period. It is
observed that, from DoY 132 to DoY 137.5, although σ0

vv

estimates from open loop were close to σ0
vv observations, SM

estimates from open loop were higher than SM observations.
From DoY 140 to DoY 142, σ0

vv estimates were higher than
observations, and the bias correction methods improved the σ0

vv

estimates. During the precipitation events (DoYs 137–140), the



274 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 54, NO. 1, JANUARY 2016

Fig. 7. Estimates of (a) SM, (b) TB,h, and (c) σ0
vv when assimilating MicroWEX-11 observations of simultaneous TB,h and σ0

vv and using the EnKF and the
bias correction methods: SSP and BCWF.

MicroWEX-11 active observations depicted high values that
the AP model could not reproduce. This resulted in σ0

vv and
SM estimates close to open loop during rainfalls, even after
applying the bias correction methods. When the bias correction
methods were applied close to rainfalls, the statistics within
the Kalman gain indicated that, to compensate the difference
between the active observations and the σ0

vv estimates, the SM
values needed to be increased. This resulted in posterior SM
values higher than prior values, producing a gradual increase in
the difference between the SM observations and the SM esti-
mates. The difference between the observations and estimates
of σ0

vv may come from roughness variations and contributions
from soil volume scattering. The main contribution in the field
backscatter signal comes from volume scattering for SM values
lower than 0.05 m3/m3; in contrast, the main contribution comes
from surface scattering for SM values higher than 0.05 m3/m3

[50]. Since the IEM accounts only for surface scattering, its
active and passive estimates do not reproduce high variations
as those depicted by MicroWEX-11 observations, particularly
during rainy periods. Figs. 8(c) and 9 show the difference
between the bias correction methods and MicroWEX-11 ob-
servations and the parameter values estimated by the SSP,
respectively. In both figures, the low sensitivity of σ0

vv to soil
parameters is confirmed. The SM bias estimated (see Fig. 8)
is similar to the initial values, and the update values for φ and
λ by the SSP in Fig. 9 are marginally modified in comparison
with the initial values. Fig. 8(c) shows the difference between
the SM estimates from the bias correction methods and the
MicroWEX-11 SM observations when assimilating σ0

vv ob-
servations. It is observed that the difference in SM was
higher when assimilating active observations than passive
observations.

When assimilating simultaneous AP observations, the EnKF
and the bias correction methods performed similar to the sce-
nario of assimilation of passive-only observations but better
than during the assimilation of active-only observations. In the
AP scenario, the EnKF and the bias correction methods did
not improve the σ0

vv and TB,h estimates compared with open
loop (see Table V). Unlike the lack of improvement in the
microwave estimates, the EnKF improved the SM estimates
by 41% compared with open loop (see Table V). The bias
correction methods improved the SM estimates by 30%–45%
compared with open loop and by 0%–7% in comparison with
EnKF. The BCWF predicted values similar to the EnKF (see
Table V) and similar to the passive-only assimilation case.
The highest improvement was given by the SSP method.
Fig. 7 shows the time series of the estimates of SM, TB,h, and
σ0
vv . The two bias correction methods tried to follow closer

the trend and the levels of both TB,h and σ0
vv observations.

Similar to the assimilation of TB,h observations, the SSP and
the EnKF obtained similar estimates of SM after DoY 138,
primarily because of the low value of the Kalman gain in
the bias update equation. During the precipitation events, the
estimates from the methods did not reach as low values as the
TB,h observations, and the σ0

vv did not reach as high values as
the σ0

vv observations. Due to these drawbacks in the AP model,
during the rainy periods, the AP observations provided opposite
information to the bias corrections methods. While TB,h and
σ0
vv indicated an increment in SM, the SM values overesti-

mated the SM observations. This opposite information resulted
in low improvement in SM by the bias correction methods.
Fig. 8 shows the bias estimated by the BCWF. It is observed
that the trend depicted by the assimilation of AP is similar to
that by the assimilation of SM and TB,h observations. In Fig. 9,
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Fig. 8. Estimates of bias in SM when assimilating MicroWEX-11 observations of SM, passive, active, and AP and using the EnKF and the bias correction
methods: SSP and BCWF.

Fig. 9. Mean and standard deviation (SD) of the parameter estimates when assimilating MicroWEX-11 observations of SM, passive, active, and AP and using
the SSP.

we plot the updated values for porosity and pore-size index by
the SSP. Porosity estimates had a trend similar to those from the
assimilation of SM estimates and had higher values than
the assimilation of passive-only and active-only observations.
Pore-size index estimates from the assimilation of AP observa-
tions were closer to the estimates from the assimilation of SM
and TB,h observations.

In general, the bias correction methods improved the SM
estimates when assimilating either synthetic or MicroWEX-11

observations. Unlike the synthetic study, for the assimilation of
field microwave observations, the lowest difference between the
estimates and the observations was obtained by the SSP. The
reduction in the performance showed by the bias correction
methods in improving the SM estimates, in comparison with
the synthetic case, showed the importance of incorporating new
representations to account for the SM profile in the estimation
of TB,h and soil scattering models considering both surface and
volume contributions in the estimation of σ0

vv .
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When correcting the bias in an assimilation framework, ob-
servations of TB,h with an uncertainty of 4 K and observations
of σ0

vv with an uncertainty of 1 dB obtained SM estimates
with an RMSE ranging between 0.0293 and 0.0414 m3/m3.
The sensor on board the SMOS and the SMAP reported an
accuracy from 1.3 to 2.6 K [6], [7] for passive observations and
an accuracy of 0.5 dB [7] for active observations. Based on the
methodology presented in this paper and the accuracy reported
in the SMOS and SMAP missions, it is expected to reduce the
uncertainty in SM reported in Table V.

VIII. SUMMARY AND CONCLUSIONS

In this paper, two bias correction approaches for nonlinear
observation operators using an EnKF framework have been
investigated: an online bias correction algorithm with feedback
(BCWF) and a simultaneous state parameter (SSP) update. New
equations for correcting the bias in the BCWF approach were
derived for cases of nonlinear observation operators following
[37] and [38] because current versions of this approach were not
applicable for improving SM by assimilating microwave obser-
vations. EnKF-based bias correction algorithms were used to
assimilate synthetic and field passive and/or active microwave
observations at L-band to improve the SM estimates. In the
synthetic study, a constant value was added in the SM estimates
to generate the bias within the LSP model. The sources of
uncertainties were the soil parameters in the LSP model and
all forcings. In addition, an observation error with zero mean
and a standard deviation of 4 K in TB,h and 1 dB in σ0

vv

were considered. The impact of the bias correction methods
in improving SM estimates was analyzed by applying the SSP
and BCWF approaches. In general, the bias correction methods
resulted in SM estimates closer to the true values than the
standard EnKF for both synthetic and field observations.

The two approaches resulted in closer estimates of SM to
observations; the lowest RMSE was obtained by BCWF for
the SM estimates when assimilating active/passive synthetic
microwave observations. While the BCWF compensates for the
bias by correcting the posterior state estimates with the updated
bias estimates, the SSP compensates for the bias by modifying
the parameter values of the ensemble. The improvement in the
SM estimates by the bias correction methods was 32%–48%
in comparison with open loop and 10%–32% in comparison
with EnKF for microwave synthetic observations. As expected,
the assimilation of TB,h observations resulted in estimates that
were closer to the true values of SM than the assimilation of σ0

vv

observations, as the active observations are highly influenced
by the uncertainty in the surface roughness of 2.5 cm. The
assimilation of AP observations showed better performance
than the assimilation of passive-only observations and similar
performance to assimilation of active-only observations. This
is a consequence of representing the bias effects by including
a constant value at every single step in the SM estimates from
LSP during the synthetic experiment.

In comparison with synthetic observations, the assimilation
of MicroWEX-11 active/passive observations suggests other
sources of uncertainty than those in forcings and model param-
eters. For the assimilation of field microwave observations, the

lowest RMSD between the estimates and the observations was
obtained by the SSP over the full studied period. In general, the
lowest ASD was also obtained by the SSP method. During the
assimilation of passive-only observations, higher differences
of 10–15 K were produced during and immediately following
the precipitation/irrigation events. It was found that TB,h was
underestimated during dry-down periods and overestimated
during precipitation events, compared with the observations
due to the equations used to relate the soil dielectric constant
and SM. During the assimilation of active-only observations,
the SSP showed the closest trend to σ0

vv observations. The
difference between the observations and σ0

vv estimates from the
bias correction methods may come from roughness variations
and contributions from volume scattering. The AP provided
values of σ0

vv close to the MicroWEX-11 observations all
over the studied period. When assimilating AP observations,
due to the drawbacks in the AP model, the active/passive
observations provided conflicting information regarding the SM
observations to the bias corrections methods during rainfall
events. While TB,h and σ0

vv indicated an increment in SM, the
SM observations indicated a decrement in the SM estimates.
This contradictory information resulted in low improvement
by the bias correction methods. However, among the different
scenarios, the assimilation of AP observations showed the best
performance in improving SM estimates. Based on the differ-
ences between the assimilation of synthetic and MicroWEX-11
observations, it is highly recommended to incorporate new
representations to account for the SM profile in the estimation
of TB,h and soil scattering models considering both surface and
volume contributions in the estimation of σ0

vv .
Based on the methodology presented in this paper and

the accuracy reported in the SMOS and SMAP missions,
it is expected to obtain SM estimates with errors lower
than 0.04 m3/m3 when correcting the bias in an assimilation
framework.
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